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We show how (at least, in principle) one can construct electrically and magnetically charged slowly
rotating black hole solutions coupled to nonlinear electrodynamics (NLE). Our generalized Lense–Thirring
ansatz is, apart from the static metric function f and the electrostatic potential ϕ inherited from the
corresponding spherical solution, characterized by two new functions h (in the metric) and ω (in the vector
potential) encoding the effect of rotation. In the linear Maxwell case, the rotating solutions are completely
characterized by a static solution, featuring h ¼ ðf − 1Þ=r2 and ω ¼ 1. We show that when the first is
imposed, the ansatz is inconsistent with any restricted (see below) NLE but the Maxwell electrodynamics.
In particular, this implies that the (standard) Newman–Janis algorithm cannot be used to generate rotating
solutions for any restricted nontrivial NLE. We present a few explicit examples of slowly rotating solutions
in particular models of NLE, as well as briefly discuss the NLE charged Taub-NUT spacetimes.
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I. INTRODUCTION

Theories of nonlinear electrodynamics (NLE) are
classical field theories that naturally generalize the linear
Maxwell theory. Dating back to the beginning of the
twentieth century, first such theories emerged as an attempt
to tame the divergencies associated with pointlike charges
and cure the problem of infinite self-energy in Maxwell’s
theory. While this original problem has later been resolved
by invention of renormalization, NLE remains at the
theoretical forefront to these days. Perhaps the best known
example of NLE is the Born–Infeld theory [1], which has
many unique and remarkable properties [2], and naturally
arises in the context of string theory [3,4] and early universe
cosmology [5]. Other models of NLE were proposed to
resolve the spacetime singularity [6]—providing a physical
source for the regular black holes [7], to capture the basic
features of the QED at the classical level [8], to describe
dual strings in flat spacetime [9], or most recently as a
maximally symmetric alternative to the Maxwell theory
[10,11] and its deformation [12].
Of course, all the above models can be straightforwardly

extended to a curved spacetime. At present, there exists a
plethora of static spherically symmetric solutions of the
Einstein-NLE system—such solutions are known for the
Born–Infeld theory [13–15], for logarithmic Lagrangians
[16], for a square root Lagrangian [17,18], for regular black

hole models [6,19,20] (see also [21,22] for nonminimal
coupling models), and other theories [23–26]. Recently,
also dynamical solutions lacking any symmetry were
constructed [27], and their further generalizations including
electromagnetic radiation were studied in [28,29]. All these
solutions are, however, twist free, and it would be
extremely valuable to obtain rotating generalizations of
the static spherically symmetric cases thus providing an
NLE version of the Kerr–Newman solution.
So far there have been a number of attempts at

constructing rotating black holes coupled to NLE. An
obvious candidate to this end is to try to generate such
solutions from the corresponding static ones by employing
the (possibly upgraded) Newman–Janis trick [30,31].
While this trick successfully leads to a Kerr–Newman
solution, it does not preserve the Einstein field equations
for arbitrary source [32] nor works for the vacuum solutions
in the presence of modified gravity theories [33,34]. In
particular, charged spacetimes generated in this way, e.g.,
[35–39], do not satisfy the corresponding Einstein-NLE
equations [35,40,41]. At the same time, a task of solving
the corresponding equations of motion directly seems,
due to their innate nonlinearity, quite formidable. That is
why here we approach the rotating generalization more
modestly—by considering a slow rotation approximation.1
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1While some of the studies claim to have considered slowly
rotating solutions in NLE, e.g., [42–45], as we see below, this is
not really the case because of the incorrect ansatz for such
solutions.
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As we show below, Maxwell’s theory is surprisingly
unique in providing (even slowly) rotating solutions in a
“natural way”. Specifically, we prove a “No Go theorem”
that, in particular, rules out the standard Newman–Janis
trick as a way of deriving rotating NLE solutions within a
large family of NLE models. Based on this theorem, one
can immediately dismiss a number of attempts at con-
structing rotating NLE black holes published previously in
the literature. We also present a complete set of ordinary
differential equations (ODEs) governing slowly rotating
Einstein-NLE solutions in a broader setting and use them to
derive two new explicit solutions. These solutions may, at
least, in principle, be used in the future as “test grounds” for
finding a possible generalization of the Newmann–Janis
trick for the NLE theories (if it exists).
In order to construct slowly rotating solutions in NLE,

we employ the generalized Lense–Thirring ansatz for the
metric [34,46,47]

ds2 ¼ −Nfdt2 þ dr2

f
þ 2ar2hsin2θdtdφþ r2dΩ2; ð1Þ

where a is the rotation parameter, N ¼ NðrÞ and f ¼ fðrÞ
are two independent metric functions, and dΩ2 ¼
sin2 θdφ2 þ dθ2 is the volume element on the sphere. As
we see, for any NLE, one can set

N ¼ 1; ð2Þ

generalizing the result of [48] for spherical Maxwell and
Born–Infeld black holes. Moreover, for the charged slowly
rotating solutions in the Einstein–Maxwell theory we have

h ¼ f − 1

r2
; ð3Þ

where f is the corresponding static metric function,

f ¼ 1 − 2M
r þ e2þp2

r2 , where e, p are the electric, magnetic
charges, andM stands for the mass. Interestingly, as we see
in Sec. III, the metrics generated by the Newman–Janis
algorithm are, in the slow rotation approximation, of the
form (37) with (2) and (3). However such a form, namely,
that h is given by the corresponding static metric function f
via (3), is consistent only in the Maxwell theory among all
NLEs of the restricted form (13) below. This, in particular,
means that not only is the Newman–Janis algorithm unable
to construct full rotating solutions in NLE, it actually fails
already at the lowest linear in a order.
Our paper is organized as follows. In the next section, we

summarize the basics of NLE theories and list their
equations. In Sec. III, we review the corresponding static
solutions, as well as review the rotating metrics generated
by the Newman–Janis formalism and their slowly rotating
approximation. We then show how (at least, in principle)
one can construct electrically (Sec. IV) and magnetically

(Sec. V) charged solutions in any NLE, as well as establish
the uniqueness of the Maxwell theory as the only NLE
whose slowly rotating solutions can be written in the above
form. We conclude in Sec. VI. In Appendix A, we construct
slowly rotating magnetized solutions in the “Square Root”
model of NLE, and Appendix B contains the discussion of
NLE charged Taub-NUT solutions.

II. THEORIES OF NLE

Let us first review the basics of nonlinear electrody-
namics. Any such theory is formulated in terms of the two
invariants of the electromagnetic field,

S ¼ 1

2
FμνFμν; P ¼ 1

2
Fμνð�FÞμν; ð4Þ

where the field strength Fμν is given in terms of the vector
potentialAμ by the familiar expression,Fμν ¼ ∂μAν − ∂νAμ.
Whereas S is a true scalar, the invariant P is only a
pseudoscalar. To restore parity invariance, we thus consider
theories that depend onP via its “square”; that is, we assume
that the NLE theory is characterized by the following
Lagrangian:

L ¼ LðS;P2Þ: ð5Þ

As we see, the latter assumption significantly simplifies the
subsequent discussion of the slowly rotating solutions. In
addition, one might require that the theory of NLE should
approach that of Maxwell in the weak field approximation,
imposing

lim
Fμν→0

L ¼ 1

2
S þOðS2;P2Þ; ð6Þ

which is known as the principle of correspondence. (This
requirement is violated, for example, by the Square Root
Lagrangian discussed in the Appendix.)
Introducing the following notation:

LS ¼ ∂L
∂S ; LP ¼ ∂L

∂P ¼ 2PLP2 ¼ 2P
∂L
∂P2

; ð7Þ

the generalized Maxwell equations read

d � E ¼ 0; dF ¼ 0; ð8Þ

where

Eμν ¼
∂L
∂Fμν ¼ 2ðLSFμν þ LP � FμνÞ: ð9Þ

Moreover, upon minimally coupling to the Einstein–Hilbert
term,
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I ¼ 1

16π

Z
M
d4x

ffiffiffiffiffiffi
−g

p ðR − 4LÞ; ð10Þ

we obtain the following Einstein equations:

Hμν ¼ Gμν − 8πTμν ¼ 0; ð11Þ

where the generalized EM energy-momentum tensor reads

Tμν ¼ 1

4π
ð2FμσFν

σLS þ PLPgμν − LgμνÞ: ð12Þ

We refer to Eqs. (8) and (11) as the Einstein-NLE
equations.
In what follows, we also consider a simpler class of

theories, obtained by considering restricted Lagrangians
that are independent of the invariant P, that is,

L ¼ LðSÞ: ð13Þ

The corresponding equations of motion straightforwardly
follow from the above.

III. NEWMAN–JANIS ALGORITHM:
GENERATING ROTATING SOLUTIONS

FROM THE STATIC ONES?

In the NLE literature, many rotating black hole
“solutions” have been generated from the static ones by
applying the (standard—“coined for Maxwell’s theory”)
Newman–Janis algorithm. In this section, we review this
approach and its limitations. We start by considering the
static spherically symmetric solutions.

A. Static solutions

Consider a general static spherically symmetric metric
element,

ds2 ¼ −Nfdt2 þ dr2

f
þ r2dΩ2; ð14Þ

where N ¼ NðrÞ and f ¼ fðrÞ are two independent metric
functions, and dΩ2 ¼ sin2 θdφ2 þ dθ2 is the volume
element on the sphere. It was shown in [48] for the
Born–Infeld theory, and is similarly valid for any NLE, that

N ¼ 1: ð15Þ

The argument goes as follows. Let l denote a radial null
vector of the metric element (14). Then, we have
Rμνlμlν ∝ N0. Thus, Eq. (15) can be imposed provided

Tμνlμlν ¼ 0: ð16Þ

The NLE electromagnetic stress tensor Tμν, (12), consists
of two terms, first proportional to gμν and the second

proportional to FμαFν
α. When multiplied by lμlν, the first

term trivially vanishes, while the latter term is proportional
to wαwα, where wα ¼ Fαμlμ. However, for radial magnetic
fields, we have wα ¼ 0, whereas for radial electric fields
w2 ¼ 0, implying that (16) is satisfied for any NLE and (15)
can be imposed [48].
To find the spherical solution for given NLE, we thus

consider the spherical element (14) with N ¼ 1, supple-
mented by the corresponding vector potential. Considering
both electric e and magnetic p charges, the ansatz for the
vector potential reads

A ¼ eϕdtþ p cos θdφ; ð17Þ

where ϕ ¼ ϕðrÞ is the function characterizing the electro-
static potential. We then find that the invariants (4) are
given by

S ¼ −e2ϕ02 þ p2

r4
; P ¼ −

2epϕ0

r2
: ð18Þ

The t component of the Maxwell Eq. (8), ð∇ · EÞt ¼ 0, then
yields

ϕ00 þ ϕ0 d
dr

lg

�
4p2LP2

r2
− r2LS

�
¼ 0: ð19Þ

In fact, without specifying NLE, one can integrate this
equation once, to obtain

LS ¼ 4p2LP2

r4
þ β

r2ϕ0 ; ð20Þ

where β is a dimensionless integration constant. Since LS
andLP2 depend on ϕ (or more precisely its first derivatives)
but not on f, this equation can be (at least, in principle)
integrated to obtain ϕ. Once ϕ is known, the metric
function f can be obtained from the Einstein equation,
say Hrr ¼ 0,

f0 þ f
r
þ BðrÞ ¼ 0; ð21Þ

where

BðrÞ ¼ 4re2ϕ02LS − 2rð2P2LP2 − LÞ − 1

r
; ð22Þ

which yields a solution

f ¼ −
R
BðrÞrdr

r
−
2M
r

; ð23Þ

where M is an integration constant. The remaining equa-
tions are then automatically satisfied. We refer to [49] for
the discussion of thermodynamics of these solutions.
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B. Newman–Janis algorithm
Starting from a static solution (14), there is a hope

(fulfilled in the Maxwell/vacuum case) that one could
obtain the corresponding rotating solution by the
Newman–Janis algorithm, e.g., [30,31,39,50] (see also
[51]). The “recipe” goes as follows: (i) Start from a general
spherical spacetime characterized by two metric functions
f ¼ fðrÞ and g ¼ gðrÞ,

ds2 ¼ −fdt2 þ dr
f
þ gdΩ2; ð24Þ

and proceed to the Eddington–Finkelstein coordinates,
ðu; r; θ;φÞ,

du ¼ dt −
dr
f
: ð25Þ

The corresponding inverse metric can then be written as

gμν ¼ −lμnν − lνnμ þmμm̄ν þmνm̄μ; ð26Þ

where the (complex) null frame reads

l¼ ∂r; n¼ ∂u −
f
2
∂r; m¼ 1ffiffiffiffiffi

2g
p

�
∂θ þ

i
sinθ

∂φ

�
:

ð27Þ

ii) Perform a complex coordinate transformation,

u → u − ia cos θ; r → rþ ia cos θ; ð28Þ

wherea is the rotation parameter, and replace f → Fðr; a; θÞ
and g → Σðr; a; θÞ. Of course, the transformation (28) affects
the null frame (27), as ∂θ → ∂θ þ ia sin θð∂u − ∂rÞ; that is,

l → ∂r; n → ∂u −
F
2
∂r;

m →
1ffiffiffiffiffiffi
2Σ

p
�
∂θ þ ia sin θð∂u − ∂rÞ þ

i
sin θ

∂φ

�
: ð29Þ

Expression (26) then defines the new metric by inversion.
(iii) Return back to the Boyer–Lindquist coordinates,

du ¼ dtþ λðrÞdr; dφ ¼ dφþ χðrÞdr; ð30Þ

requiring that the only nondiagonal component of the metric
is that of gtφ. Together with imposing g ¼ r2, this fixes the
above functions F and Σ. The resulting metric then takes the
following Carter’s form [52]:

ds2 ¼ −
Δ
Σ
ðdt − asin2θdφÞ2 þ Σ

Δ
dr2 þ Σdθ2

þ sin2θ
Σ

½ðr2 þ a2Þdφ − adt�2; ð31Þ

where

Σ ¼ r2 þ a2cos2θ; Δ ¼ r2f þ a2: ð32Þ

Note that such a “solution” is completely characterized by a
single metric function f of the corresponding static solution.
Of course, in the NLE case, the generated metric also has

to be supplemented by the corresponding “rotating” vector
potential A. For example, the following proposal,

A ¼ p cos θ
Σ

½ðr2 þ a2Þdφ − adt�; ð33Þ

has been used in [39] to construct the rotating magnetically
charged solutions.
However, the above Newman–Janis generated rotating

spacetime does not solve the corresponding NLE equa-
tions, e.g., [40]. In fact, as we see, this is true even at the
linear OðaÞ level. To show this, consider a slowly rotating
limit of the above metric and potential, obtaining thus,

ds2 ¼ −fdt2 þ dr2

f
þ 2ar2 sin2 θhdtdφþ r2dΩ2; ð34Þ

A ¼ p cos θ

�
dφ −

aω
r2

dt

�
; ð35Þ

where, in the above, we have ω ¼ 1, and

h ¼ f − 1

r2
: ð36Þ

As we see in the next section, the slowly rotating mag-
netically charged solutions of NLE can be obtained in the
form (34) and (35). However, the restriction (36), following
from the standard Newman–Janis algorithm, is too strong
and consistent only with the Maxwell theory [among all
restricted theories (13)]. The same conclusion about (36)
remains valid also in the electrically charged case. In other
words, the standard Newman–Janis algorithm fails to
produce rotating solutions for any nontrivial NLE. This
is similar to the recent observation [34] that the Einstein
gravity is the only theory (up to quartic corrections in
curvature) that admits the slowly rotating spacetimes of the
form (34) with h given by (36).

IV. SLOWLY ROTATING ELECTRIC SOLUTIONS

In this and the next sections, we show how (at least, in
principle) one can construct slowly rotating spacetimes
coupled to any NLE. To this purpose, we consider the
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electrically and magnetically charged cases separately
(and leave the more complicated dyonic case to the future
studies). In both cases, we impose the generalized Lense–
Thirring ansatz for the metric,

ds2 ¼ −fdt2 þ dr2

f
þ 2ar2sin2θhdtdφþ r2dΩ2; ð37Þ

taking into account that at least at the OðaÞ order, the
conditionN ¼ 1, (15), has to remain valid. In what follows,
we consistently work to the linear order in the rotation
parameter a.

A. Finding electric solutions

For the electric solutions, we choose the following ansatz
for the vector potential:

A ¼ eϕðdt − aω sin2 θdφÞ; ð38Þ

where ϕ corresponds to the static solution, and ω ¼ ωðrÞ
captures the effect of rotation. In this case, we find

S ¼ −e2ϕ02 þOða2Þ; P ¼ −
4e2ϕϕ0ω cosθ

r2
aþOða3Þ:

ð39Þ

Again, since P is linear in a, and L ¼ LðS;P2Þ, then at a
given OðaÞ order Tμν takes the following simplified form:

4πTμν ¼ f0FμσFν
σ þ g0gμν; ð40Þ

where

f0 ¼ 2LSjP¼0; g0 ¼ −LjP¼0; ð41Þ

both being functions of ϕ0 (independent of ω and f).
Considering Einstein equations Hrr ¼ 0 ¼ Hφφ, and

solving them algebraically for f0 and g0, we obtain

f0 ¼ ζ

4e2r2ϕ02 ; g0 ¼ rf00 þ 2f0

4r
; ð42Þ

where

ζ ¼ r2f00 − 2f þ 2: ð43Þ

At the same time, ð∇ · EÞt ¼ 0 can algebraically be solved
for L0

S and yields

L0
S ¼ −

LSðrϕ00 þ 2ϕ0Þ
rϕ0 : ð44Þ

The remaining nontrivial equations are then Htφ ¼ 0 and
ð∇ · EÞφ ¼ 0 (both being of the order a). They explicitly
give

r4ϕ0h00 þ 4r3ϕ0h0 − ϕζω0 − ϕ0ζω ¼ 0; ð45Þ

Aω00 þ Bω0 þ Cω − r4ϕ02LSh0 ¼ 0; ð46Þ

where

A ¼ r2ϕϕ0fLS;

B ¼ −rLSðrfϕϕ00 − rϕϕ0f0 − 2rfϕ02 þ 2fϕϕ0Þ;
C ¼ ϕ0ð−8e2ϕϕ02LP2 þ rϕ0LSðrf0 − 2fÞ − 2ϕLSÞ; ð47Þ

and LS and LP2 are expressed at P ¼ 0; that is, they are
functions of ϕ0 but not ω.
Thus, we have a simple procedure for determining the

slowly rotating electrically charged solutions. The func-
tions f and ϕ are those of the corresponding static solution,
given by (23) and (20), after setting p ¼ 0. Equations (45)
and (46) then represent coupled ordinary differential
equations for “rotating” functions ω and h. Obviously,
one can express h0 from the second equation, and by
plugging this back to the first one, obtain a third-order ODE
for ω. As discussed in conclusions, such an equation is
guaranteed to have a “nice” solution for ω, which then
yields h by integrating (46).

B. Maxwell uniqueness

Let us now impose the conditions (3), h ¼ ðf − 1Þ=r2,
upon which Eq. (45) gives

½ϕðω − 1Þ�0ζ ¼ 0: ð48Þ

In other words, we find that for any nontrivial NLE, we
have to have

ω ¼ 1þ c
ϕ
; ð49Þ

for some (dimensionful) constant c. Plugging this into
Eq. (46) then yields

rLSϕ
0 þ LSðϕþ cÞ þ 4e2ϕ02LP2ðϕþ cÞ ¼ 0: ð50Þ

For restricted class of theories, (13), we have LP2 ¼ 0,2 and
the latter equation can be integrated to give

ϕ ¼ 1

r
− c: ð51Þ

2More generally, the theory LðS;P2Þ is admissible provided
the solution of (50) is consistent with the solution of (20) (with
p ¼ 0). This requirement seems rather restrictive. In particular,
we have checked that it is not satisfied for the ModMax theory
[10,11]—this theory thus does not admit slowly rotating electric
solutions with h ¼ ðf − 1Þ=r2. On the other hand, a theory given
by L ¼ ðS4 þ P4Þ1=4 admits trivially Maxwell-like solutions.
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It is now obvious that the constant c is unphysical and only
corresponds to the gauge for the vector potential—it can be
gauged away by A → Aþ dλwhere λ ¼ ect. Thus, without
loss of generality, we have

ω ¼ 1; ϕ ¼ 1

r
: ð52Þ

Equation (20) (with p ¼ 0) then yields the Maxwell theory.
Thus, we have proved the following:
Theorem.—For restricted class of theories, (13), the only

NLE consistent with h ¼ ðf − 1Þ=r2 for the ansatz (37) and
(38) is the Maxwell theory.
In particular, this implies:
Collorary.—Electrically charged spacetimes generated

by the standard Newman–Janis algorithm do not solve the
corresponding NLE equations following from (13), not
even at the linear OðaÞ level.

C. Special NLE with ω= 1

In the above, we have established that imposing h ¼
ðf − 1Þ=r2 leads to the Maxwell theory and, in particular,
implies that one has to have ω ¼ 1. Let us now ask the
“opposite”: imposing

ω ¼ 1; ð53Þ
can we have any nontrivial NLE? The partial motivation to
study this question stems from the NLE literature, e.g.,
[42,43], where the assumption (53) is automatically
assumed. As we now show, apart from the Maxwell theory,
there is yet another special NLE consistent with (53), given
by (61) below. This theory is, however, distinct from the
NLE theories studied in [42,43], invalidating thus some of
the results in these papers. This theory also provides an
example of NLE where slowly rotating electric solutions
can be explicitly constructed.
To construct our special NLE, let us return to Eq. (45)

and impose (53). In this case, this equation can be
integrated for h, and gives

h ¼ f − 1

r2
−
2M0

r3
þ h0; ð54Þ

whereM0 and h0 are the integration constants. Here, h0 can
be reabsorbed by redefining φ, namely, dφ → dφ − ah0dt.
In other words, h0 is not physical, and we can set h0 ¼ 0.
On the other hand, M0 seems physical as it “redefines” the
asymptotic angular momentum. Of course, one possibility
is to consider M0 ¼ 0, in which case, we are back to the
Maxwell case. On the other hand, considering M0 non-
trivial, Eq. (46) then yields

4e2LP2ϕϕ02 þ LSðrþ 3M0Þϕ0 þ ϕLS ¼ 0: ð55Þ

Focusing on the restricted theories (13), the latter can be
integrated and gives

ϕ ¼ 1

rþ 3M0

: ð56Þ

The corresponding metric function f is then obtained by
integrating (20) where the lhs is given by one half of the
first expression in (42). This then yields

f ¼ 1þ 4βe2

9M2
0

−
2M þ 8βe2=ð9M0Þ

r
−
8rβe2

27M3
0

þ r2
�
Λ −

8βe2

81M4
0

lg

�
r

rþ 3M0

��
; ð57Þ

where M and Λ are the integration constants. Interestingly,
for large r, this has the following expansion:

f ≈ 1 −
2M
r

þ Λr2 −
2βe2

r2
þ 24βe2M0

5r3
þO

�
1

r4

�
; ð58Þ

which upon setting Λ ¼ 0 and β ¼ −1=2 has the required
Reissner–Nordstrom asymptotic behavior. For small enough
positive M0, we have (up to) two horizons, shielding
singularity at r ¼ 0. Note also that the electromagnetic field
is regular on the horizon, by the token of (39).
The corresponding theory can easily be constructed from

(20). Namely, we have

LS ¼ −
1

2r2ϕ0 ¼
ðrþ 3M0Þ2

2r2
¼ 1

2
ð1 − sÞ−2; ð59Þ

where

s ¼
�
−

S
S0

�1
4

; S0 ¼
e2

ð3M0Þ4
: ð60Þ

Equation (59) can be integrated to yield

L ¼ 2S0

�
s3 þ 3s2 − 4s − 2

2ð1 − sÞ − 3 lgð1 − sÞ þ 1

�
; ð61Þ

which obeys (6). Of course, in here, S0 is the fundamental
coupling constant that gives rise to the modification related
to M0 above.
To conclude, among restricted NLE theories (13), there

are two theories that yield the Lense–Thirring solutions
with ω ¼ 1: Maxwell theory and the theory defined by the
Lagrangian (61). Surprisingly, this Lagrangian is identical
to the one obtained in [28] as the only NLE model
admitting electromagnetic radiation in the Robinson–
Trautman class of spacetimes.

V. SLOWLY ROTATING MAGNETIC SOLUTIONS

A. Finding magnetic solutions

To find the magnetic solutions, we supplement the metric
(37) with the following ansatz for the vector potential:
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A ¼ p cos θ

�
dφ −

aω
r2

dt

�
; ð62Þ

where ω ¼ ωðrÞ is a new vector potential function. The
field invariants (4) now read

S ¼ p2

r4
þOða2Þ; P ¼ 2p2 cosθðrω0 − 2ωÞ

r5
aþOða3Þ:

ð63Þ

Note that sinceP is linear in a, andL ¼ LðS;P2Þ, then at a
given OðaÞ order Tμν takes a simplified form,

4πTμν ¼ f0FμσFν
σ þ g0gμν; ð64Þ

where

f0 ¼ 2LSjP¼0; g0 ¼ −LjP¼0; ð65Þ

both being explicit functions of r (independent of ω and f).
Equation (23) with e ¼ 0 immediately gives

f ¼ 1 −
2M
r

−
2
R
r2LðrÞdr
r

: ð66Þ

Solving algebraically, Hrr ¼ 0 ¼ Hφφ for f0, g0 yields

f0 ¼ r2ζ
4p2

; g0 ¼ 1

2r2
ðrf0 þ f − 1Þ; ð67Þ

where ζ is given by (43), ζ ¼ r2f00 − 2f þ 2. Eliminating
further d

drLS from ð∇ · EÞt ¼ 0, and plugging these to
Htφ ¼ 0 and ð∇ · EÞt ¼ 0, gives the following two OðaÞ
equations:

r4fh00 þ 4r3fh0 − r2ζh − ζω ¼ 0; ð68Þ

Aω00 þ Bω0 þ Cω − 2r6LSh ¼ 0; ð69Þ

where

A ¼ ðr6LS − 4p2r2LP2Þf;
B ¼ rfðr5L0

S − 2r4LS − 4p2rL0
P2 þ 24p2LP2Þ;

C ¼ fð8p2rL0
P2 − 2r5L0

S þ 2r4LS − 40p2LP2Þ − 2r4LS:

ð70Þ
Equations (68) and (69) represent two coupled ordinary
differential equations for ω and h. While these equations
can be easily decoupled, they result in higher(4th)-order
linear ODEs with variable coefficients. (We briefly com-
ment on finding the corresponding solutions in conclu-
sions.) This procedure is illustrated in Appendix A where
we construct slowly rotating magnetized black holes in the
“Square Root” NLE.

B. Maxwell uniqueness

Let us now impose (3), h ¼ ðf − 1Þ=r2. Then, Eq. (68)
immediately yields

ðω − 1Þζ ¼ 0; ð71Þ

and for any nontrivial NLE, we must have

ω ¼ 1: ð72Þ

Returning back to ð∇ · EÞt ¼ 0 then yields that

r5L0
S − 4p2r

d
dr

LP2 þ 20p2LP2 ¼ 0: ð73Þ

Obviously, for the restricted class of theories (13), we have
just proved that one has to have LS ¼ const., which is only
consistent with the Maxwell theory.3 We have thus proved
the following:
Theorem.—Among all restricted NLE theories (13),

Maxwell theory is the only one that admits the magnetically
charged slowly rotating solutions of the form (37), (62)
with the restriction h ¼ ðf − 1Þ=r2. In particular, this
means that the standard Newman–Janis algorithm fails to
produce solutions already at the linear OðaÞ level.
This theorem, in particular, invalidates “solutions” con-

structed in [37,39].

VI. CONCLUSION

In this paper, we have analysed slowly rotating gener-
alizations of static spacetimes sourced by NLE. To this end,
we have presented a generalized Lense–Thirring ansatz for
the metric (37) together with a simple ansatz for the vector
potential in electric (38) and magnetic (62) cases and shown
that with these one can solve (at least, in principle) the
corresponding Einstein-NLE equations to the linear order
in the rotation parameter. The dyonic case seems more
complicated, and we leave it for the future studies. To
illustrate this procedure, we have found two explicit
examples where the corresponding solutions can be found
in a closed form. (The detailed analyses of these solutions
are left for future studies.)
We have also proved the “No Go Theorem” which

establishes that the Maxwell theory is the only NLE among
all theories (13) that admits function h given by the
“natural” expression (3). This, in particular, shows that
the standard Newman–Janis algorithm [which leads to the
form (3) in the slow rotation approximation] fails to
produce rotating solutions in NLE even at the lowest
(linear) level in rotation parameter a, as well as shows
that a number of (slowly rotating) metrics constructed in
previous studies cannot satisfy the corresponding equations

3Again, Eq. (73) is not satisfied for the ModMax theory,and
trivially works for L ¼ ðS4 þ P4Þ1=4.
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of motion. We have also pointed out that (i) some of the
previous attempts to construct rotating solutions in NLE
used too simplistic (ω ¼ 1) ansatz for the vector potential,
while (ii) some other previously constructed solutions
actually do not present slowly rotating black holes but
rather correspond to weakly NUT-charged solutions (see
Appendix B where these solutions are constructed for the
general case). This effectively leaves no solutions at all for
(slowly) rotating black holes in NLE (see, however, the
recent progress in [53,54]).
Our work opens several new directions for future studies.

First, the above No Go Theorem strictly speaking only
regards the restricted NLEs (13). It is possible that once a
more general setting of (5) is considered, there are other
theories which allow for (3), see Eq. (50) and the corre-
spondingdiscussion in the footnote. Itwouldbe interesting to
construct examples of such nontrivial theories.
Second, while we have shown that the standard

Newman–Janis algorithm does not give rise to the corre-
sponding rotating solutions, we cannot dismiss a possibility
that an appropriately modified Newman–Janis algorithm
cannot be formulated for NLE theories. The explicit slowly
rotating solutions found in this paper may provide a test
ground for finding such an algorithm.
Third, during our investigation, we have stumbled upon a

special example of NLE, whose slowly rotating electric
solutions are distinguished by the “Maxwell-like” (ω ¼ 1)
form of the gauge potential. Interestingly, this is the same
theory discovered recently in [28] as the only theory of
NLE admitting radiation in the Robinson–Trautman class
of spacetimes. This theory certainly deserves further
attention in the future.
Fourth, as we have seen above, the general solution for

the slowly rotating NLE hinges on solving a higher-order
linear ODE with variable coefficients. Assuming the
coefficients of the equation are continuous functions, the
general theory of ODE guarantees the existence and
uniqueness of a solution provided some initial conditions
are prescribed. Furthermore, the solution of such nth-order
ODE would be at least Cn−1. In this way, the procedures
detailed above provide a solution to our stated problem.
However, one would like to have more then just existence
result. To this end, one can transform the higher-order ODE
into a first-order system and employ some of the approxi-
mate solution methods. One such method is the Magnus
expansion [55] which gives the solution as an exponential
of a series containing integrals of nested commutators of
the coefficient matrix. The convergence is controlled by a
suitable norm of the coefficient matrix, and even truncated
solutions often capture the main features of the complete
solution.
Historically, it took almost 50 years to upgrade the

slowly rotating charged solutions of Lense–Thirring to the
full nonlinear Kerr–Newmann geometry. It will be inter-
esting to see if some of the hereby presented slowly rotating

solutions can be promoted to full (possibly analytic)
charged and rotating solutions in some nontrivial NLE.
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APPENDIX A: MAGNETIC SOLUTIONS IN
SQUARE ROOT ELECTRODYNAMICS

In this Appendix, we construct a slowly rotating mag-
netized solution in the so called Square Root model of
NLE, characterized by

L ¼ −β
ffiffiffi
S

p
; ðA1Þ

where β is a dimensionful coupling constant, with dimen-
sions 1=L. This Lagrangian represents a strong field regime
of many models of NLE, Born–Infeld theory for example.
It was originally proposed by Nielsen and Olesen [9] to
treat the so-called dual string in flat spacetime. It also gives
rise [56] to the confinement potential [57], see also [58] for
recent developments on nonlinear gauge theories contain-
ing “Square Root” Lagrangians. Of course, the model can
also be generalized to curved spacetime and was recently
discussed in [59–61]. Note that when considering only the
magnetic field all energy conditions are satisfied unlike the
case of pure radial electric field.
To construct the magnetized solution, we adopt the

ansatz (37) together with the potential (62) and follow
the procedure outlined in Sec. V. Namely, the static metric
function f, (66), is given by

f ¼ 1 −
2M
r

þ 2βp: ðA2Þ

Note that this modification of the Schwarzschild solution is
related to the solid angle deficit/excess (depending on the
sign of βp). Such a solution also represents the geometry
outside the core of the so-called global monopole, a
spacetime defect created by a gravitating triplet of scalar
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fields whose original Oð3Þ symmetry is spontaneously
broken to Uð1Þ. A global monopole was extensively
discussed in the literature, see, e.g., [62–64] for original
works and some more recent work by two of the
authors [65,66].
For M ¼ 0, Eqs. (68) and (69) yield the following

solutions for h and ω:

ω ¼ ω1

r
þ ω2r2 þ ω3rð

1
2
þqÞ þ ω4rð

1
2
−qÞ;

h ¼ −
ω1

r3
− ω2 − 2ω3βprðq−

3
2
Þ − 2ω4βprð−q−

3
2
Þ; ðA3Þ

where ωi’s are the integration constants, and

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2β2 þ 36pβ þ 17

p
4pβ þ 2

: ðA4Þ

Obviously, we can eliminate ω2 by redefining φ, and so we
set ω2 ¼ 0. Writing ω1 ¼ 2M0 and setting ω3 ¼ 0 ¼ ω4

for simplicity (though it would be interesting to study the
physical meaning of these terms), we thus recover the
following simple solution:

h ¼ −
2M0

r3
; ω ¼ 2M0

r
: ðA5Þ

When M ≠ 0, the terms with “strange powers” of r in
(A3) are replaced by hypergeometric functions. However,
setting again ω3 ¼ 0 ¼ ω4, the solution (A5) remains valid
also in this case.

APPENDIX B: TAUB-NUT SOLUTIONS IN NLE

Lorentzian Taub-NUT spacetimes [67,68] represent
an interesting class of axisymmetric (electro-vacuum)
solutions of Einstein equations. Such solutions are char-
acterized by the appearance of the so called Misner strings
[69]—the singular rotating sources of angular momentum
[70]. As these strings extend all the way to infinity, the
Taub-NUT solutions are not asymptotically flat. They also
feature various pathologies, such as the existence of closed
timelike curves in the vicinity of Misner strings. As we see
below, some of these solutions were in the NLE literature
confused with the slowly rotating black hole solutions. To
demonstrate this, we study the charged Taub-NUT sol-
utions coupled to a general NLE (5).
Namely, we seek the charged Taub-NUT solution in the

following form:

ds2 ¼ −fðdtþ 2n cos θdφÞ2 þ dr2

f

þ ðr2 þ n2Þðdθ2 þ sin2 θdφ2Þ;
A ¼ ϕðdtþ 2n cos θdφÞ; ðB1Þ

where we have denoted the NUT parameter by n, choosing
a symmetric distribution for Misner strings (which are
located on both the north-pole and south-pole axes). The
solution is characterized by a single metric function
f ¼ fðrÞ, and single gauge potential function ϕ ¼ ϕðrÞ.
Using this ansatz, we find the following expressions for

the invariant S and P:

S ¼ −ϕ02 þ 4n2ϕ2

ðn2 þ r2Þ2 ; P ¼ −
4nϕϕ0

n2 þ r2
: ðB2Þ

The t component of the generalized Maxwell equation (8)
then yields the following ODE:

ϕ00 þ ϕ0 d
dr

lgð−ðn2 þ r2ÞLSÞ

þ 2nϕ
ðn2 þ r2Þ2

�ðn2 þ r2ÞL0
P

LS
þ 2n

�
¼ 0: ðB3Þ

Since LS and LP depend only on ϕ but not f, this equation
can (at least, in principle) be integrated to yield solution for
ϕ. The Hrr ¼ 0 Einstein equation then yields a first-order
equation for f,

f0 þ r2 − n2

rðn2 þ r2Þ f −
1

r
ð1 − 8nLPϕϕ

0

− 2ðn2 þ r2ÞðLþ 2LSϕ
02ÞÞ ¼ 0; ðB4Þ

and the remaining equations are automatically satisfied.
The explicit examples were constructed, e.g., for the Born–
Infeld theory [71] (see also [72]) or the recently constructed
ModMax theory [73].
In particular, let us consider a small n expansion, expand-

ing the metric and the gauge potential to the linear order in n.
In this case, the weakly NUT-charged solution is fully
characterized by the staticmetric function f and static electric
potential of the corresponding NLE, determined from

ϕ00 þ ϕ0 d
dr

lgð−r2LSÞ ¼ 0;

f0 þ f
r
−
1

r
ð1 − 2r2ðLþ 2LSϕ

02ÞÞ ¼ 0; ðB5Þ

c.f. Eqs. (20) and (23). [As always, here we assumed that
L ¼ LðS;P2Þ and so LP ∼OðnÞ.] In particular, for a
specific NLE, the corresponding solutions were constructed
in [44,45] and confused with the slowly rotating black holes.
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