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In this paper, we follow up on the discovery of a new type of solution in the Einstein-Maxwell system
coupled minimally to a self-interacting complex scalar field. For sufficiently large gravitational coupling
and sufficiently small electromagnetic coupling we demonstrate that boson stars as well as black holes can
carry scalar hair that shows a distinct new feature: a number of spatial oscillations in the scalar field away
from the core or horizon, respectively. These spatial oscillations appear also in the curvature invariants and
hence should be a detectable feature of the space-time. As a first hint that this is true, we show that the
effective potential for null geodesics in this space-time possesses a local minimum indicating that in the
spatial region where oscillations occur a new stable photon sphere should be possible. We also study
the interior of the black holes with scalar hair and show that the curvature singularity appears at a finite
value of the radius and that black holes with wavy scalar hair have this singularity very close to the center.
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I. INTRODUCTION

In the quest to understand the nature of dark energy,
which currently seems to dominate the energy density
content of our Universe, different routes can be taken
within the given framework of the Standard Model of
Particle Physics and/or our model of the Universe which
relies successfully on the Theory of General Relativity
(GR). One route to understand how a model describing all
known interactions would look like is to first understand
how fields that typically appear in the Standard Model of
Particle Physics behave in strongly curved space-times.
One of the earliest steps in this direction was done

by studying electromagnetic fields coupled minimally to
General Relativity. As in the case of the vacuum solution
to the Einstein equation, a spherically symmetric solution
to the combined Einstein-Maxwell equations is static
and given by the Reissner-Nordström metric, which—in
turn—is a solution uniquely described by its asymptotic
“charges”, i.e., the Arnowitt-Deser-Misner (ADM) mass
and the electric (and/or magnetic) charge. This statement,
together with new results for rotating, axially symmetric
space-times, has then led to the formulation of the no-hair
conjecture [1]. In fact, for spherically symmetric, asymp-
totically flat electrovacuum space-times in the context of
GR, this now is a strictly proven (no-hair) theorem. The
status of the conjecture, however, is less clear when
changing any of the conditions mentioned above. As an
example, in recent years so-called scalar-tensor gravity
models have been studied extensively, essentially
building on the original work by Horndeski [2] (and more

recently [3]). In these extensions of General Relativity a
scalar field is nonminimally coupled to combinations of
curvature tensors, e.g., the Gauss-Bonnet term. This is
typically done in such a way that the resulting equations
of motion remain of second order. In these models, black
holes can carry nontrivial scalar fields on the horizon.
However, one does not have to leave the realm of
General Relativity to find counterexamples to the conjecture.
Introducing a complex, massive scalar field into GR, it has
been shown [4] (see also the review [5]) that sufficiently fast
rotating Kerr black holes that fulfill a precise fine-tuning
between the angular velocity at the horizon and the phase of
the scalar field (denominated a synchronization condition)
can carry scalar hair. Interestingly, it was shown in [4] that
these solutions bifurcate from a very specific subset of the
Kerr family as a result of an instability of the latter.
The question remains whether the rotation of the black

hole is necessary to form scalar hair, or if nonrotating
solutions can also become unstable in the sense discussed
above. It appears that this is, indeed, possible, but the
electromagnetic fields as well as the self-interaction of
the scalar field are essential ingredients here. The first
example of such solutions was presented in [6]. In this case,
an O(3) scalar field was minimally coupled to GR hence
evading the hypothesis of the no-hair theorems given in [7–
9]. In fact, black holes with scalar hair are also possible in a
complex scalar field model with the scalar field gauged
under a U(1) symmetry. This was studied first in [10] (see
also [11]). Considering first the Maxwell-scalar field
equations in the background of a Schwarzschild black
hole, the authors constructed so-called Q-clouds

PHYSICAL REVIEW D 105, 104063 (2022)

2470-0010=2022=105(10)=104063(13) 104063-1 © 2022 American Physical Society

https://orcid.org/0000-0002-3920-8437
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.105.104063&domain=pdf&date_stamp=2022-05-27
https://doi.org/10.1103/PhysRevD.105.104063
https://doi.org/10.1103/PhysRevD.105.104063
https://doi.org/10.1103/PhysRevD.105.104063
https://doi.org/10.1103/PhysRevD.105.104063


surrounding black holes. They found that these clouds of
scalar field exist only if both the electric charge of the cloud
as well as the self-interaction of the scalar field are present.
These results can be extended to the case in which the
space-time becomes dynamical and as an extension to the
results in [10,11] it was shown in [12–14] that additional
branches of solutions with new features exist. In particular,
it was shown that for sufficiently large gravitational
coupling, the space-time splits into two distinct parts:
(a) an inflating interior and (b) an exterior which is
described by the extremal Reissner-Nordström solution
[12]. Moreover, when the electric field on the horizon is
sufficiently small, an intermediate region appears in which
the scalar field develops spatial oscillations (wavy scalar
hair) which can also be found in the curvature invariants
[14]. It is exactly this latter feature that we are going to
elaborate more on in this paper. As an extension to the
results presented in [14], we will demonstrate here that
these oscillations also appear in the space-time of a charged
boson star. Boson stars [15–19] are globally regular lumps
of scalar field that carry a conserved Noether charge
associated with the U(1) symmetry of the model. When
considered in flat space-time, these solutions are often
referred to as Q-balls [20,21], the existence of which might
have interesting implications [22].
Next to boson stars we have also constructed the interior

of the black hole solutions and demonstrate that the
curvature singularity appears at a finite distance from the
origin of the coordinate system. Finally, we show that
the black holes (and boson stars, respectively) with wavy
scalar hair possess stable circular photon orbits on the
surface of the scalar cloud.

II. SET-UP AND EQUATIONS OF MOTION

The model studied in this paper has been discussed in a
number of publications before and we refer the reader to
these papers for more details (see e.g., [10]). For com-
pleteness, we would like to remind the reader of the action
as well as the equations of motion that we have solved
subject to appropriate boundary conditions.
The action of the model is

L ¼ 1

16πG
R −

1

4
FμνFμν −DμΨ†DμΨ −UðjΨjÞ; ð1Þ

describing a U(1) gauge field Aμ with field strength tensor
Fμν and a complex valued, self-interacting scalar field Ψ
both interacting minimally with gravity as well as mini-
mally inter se. Dμ ¼ ∂μ − igAμ denotes the covariant
derivative and UðjΨjÞ the scalar field potential. The crucial
point about the solutions that we are presenting here is that
the scalar field is charged and self-interacting. In the
following, we will choose the following potential:

UðjΨjÞ ¼ μ2jΨj2 − λjΨj4 þ νjΨj6; ð2Þ

but emphasize that the results in [14] demonstrate that the
actual form of the potential is not that relevant for the
qualitative behavior of the solutions. We will discuss spheri-
cally symmetric solutions to the equations resulting from the
variation of the action (1). While the space-time will be static
and allows the Ansatz for the metric in the form:

ds2¼−ðσðrÞÞ2NðrÞdt2þ 1

NðrÞdr
2þ r2ðdθ2þ sin2θdφ2Þ;

NðrÞ¼ 1−
2m̃ðrÞ

r
; ð3Þ

the matter field Ansatz is stationary

Aμdxμ ¼ vðrÞdt; Ψ ¼ ψðrÞ expðiωtÞ; ð4Þ

however, leads to a static energy-momentum tensor. Note
also that due to the U(1) gauge symmetry, the field equations
depend only on the combination gvðrÞ − ω. This allows us
to fix the residual gauge freedom by setting ω ¼ 0 in the
following. The explicit form of the equations of motions to
be solved numerically then reads:

m̃0 ¼ 4πGr2
�
v02

2σ2
þ Nψ 02 þ UðψÞ þ ðgvψÞ2

Nσ2

�
;

σ0 ¼ 8πGrσ

�
ψ 02 þ ðgvψÞ2

N2σ2

�
; ð5Þ

v00 þ
�
2

r
−
σ0

σ
−
2γ

r2

�
ð1 − NÞ σ

0

σ
þ N0

��
v0 ¼ 2g2vψ2

N
;

ψ 00 þ
�
2

r
þ N0

N
þ σ0

σ

�
ψ 0 þ g2v2ψ

N2σ2
−

1

2N
dU
dψ

¼ 0; ð6Þ

where the prime denotes the derivative with respect to r.

Using the rescalings x ¼ μr, m ¼ μm̃, V ¼
ffiffi
λ

p
μ v,

ψ ¼
ffiffi
λ

p
μ Ψ we are left with three dimensionless couplings:

α ¼ 4πGμ2

λ
; β2 ¼ νμ2

λ2
; e ¼ gffiffiffi

λ
p : ð7Þ

Note that the potential parameter β2 has to be chosen with
care in order to find the desired solutions. For β2 ¼ 1=4 the
potential possesses degenerate vacua at ψ ¼ 0, ψ2 ¼ 2,
while for β2 ¼ 1=3 the potential possesses a saddle point at
ψ2 ¼ 1. In the following, we will choose β2 ¼ 9=32, a
value in between these two choices.
The solutions can be characterized by their (dimension-

less) massM and their (dimensionless) electric charge Q—
similar to the spherically symmetric static solutions with
vanishing scalar fields, the Reissner-Nordström solution.
However, the scalar field and in particular the internal
symmetry associated with it add another physical property,
namely the globally conserved Noether charge. While the

YVES BRIHAYE and BETTI HARTMANN PHYS. REV. D 105, 104063 (2022)

104063-2



former two can be read from the asymptotic behavior of the
gravitational and electric fields

Nðx ≫ 1Þ ¼ 1 −
2M
x

þ αQ2

x2
þ…::;

Vðx ≫ 1Þ ¼ Φ −
Q
x
þ…: ð8Þ

with Φ a constant, the latter is given in terms of the integral
of the t-component of the locally conserved Noether
current:

QN ¼
Z

dx
2x2eVψ2

Nσ
: ð9Þ

In fact, the solutions with nontrivial scalar fields can be
thought of as being surrounded by a “cloud” of scalar
fields, often referred to in the literature as “Q-cloud”. The
mass of the cloud of scalar field, MQ, reads [10]:

MQ¼ΦQþMψ ; Mψ ¼2

Z
∞

x0

dxx2σ

�
e2V2ψ2

Nσ2
−UðψÞ

�
;

ð10Þ

where x0 ¼ 0 for globally regular solutions and x0 ¼ xh for
black holes. The first and second term represent the
contributions of the electromagnetic and scalar fields,
respectively.
Finally, black holes possess properties equivalent to

those of thermodynamic systems and we can define the
analogue of a temperature TH and an entropy S, respec-
tively, for the solutions that possess a horizon. For the
model discussed here the explicit expressions are

TH ¼ 1

4π
σðxhÞN0jx¼xh ; S ¼ 1

4
AH ¼ πx2h: ð11Þ

Both globally regular as well as black hole solutions obey a
Smarr law which reads [10]:

M¼αðΦQþMψÞ; M¼1

2
THAHþαðΦQþMψÞ; ð12Þ

where M is the ADM mass.
Let us also note that the null energy condition for the

solutions studied here reads −Tt
t þ Ti

i ≥ 0, i ¼ 1, 2, 3,
i.e., becomes

Nψ 02þðω−VÞ2ψ2

Nσ2
≥0;

V 02

2σ2
þðω−VÞ2ψ2

Nσ2
≥0: ð13Þ

Obviously, the conditions are fulfilled for all solutions that
we present in the following.
In [14], we have shown that the black hole solutions of

this model can possess what we called “wavy” scalar hair,

i.e., solutions that show spatial oscillations of the scalar
field well outside the horizon of the black hole. The
oscillations appear in the other fields, too. In the following,
we will demonstrate that this behavior also appears for
boson stars, i.e., strongly gravitating, but globally regular
solutions and does not rely on the existence of a horizon in
the space-time.

III. BOSON STARS WITH WAVY SCALAR HAIR

It is straightforward to show that the Eqs. (5) and (6)
allow for globally regular solutions, i.e., solutions that exist
on the interval x ∈ ½0∶∞Þ. The behavior at x → ∞ is
equivalent to that for black holes and determined by the
global charges of the solution. The behavior at x ≪ 1, on
the other hand, reads:

VðxÞ ¼ V0 þ
e2V2

0ψ
2
0

3
x2 þOðx3Þ;

ψðxÞ ¼ ψ0 þ
1

6

�
dU
dψ

����
ψ¼ψ0

−
e2ψ0V2

0

σ20

�
x2 þOðx3Þ ð14Þ

for the matter fields and

mðxÞ ¼ α

3

�
Uðψ0Þ þ

ðψ0V0Þ2
σ20

�
x3 þOðx4Þ;

σðxÞ ¼ σ0

�
1þ αe2ψ2

0V
2
0

σ20
x2
�
þOðx3Þ ð15Þ

for the metric functions. The expansion is given in terms
of the parameters V0, ψ0, σ0, which have to be determined
numerically. These expansions then suggest the following
boundary conditions in order to find a globally regular
solution to the Eqs. (5) and (6):

ψð0Þ¼ψ0; ψ 0ð0Þ¼0; V 0ð0Þ¼0; ψð∞Þ¼0 ð16Þ

for the scalar and electromagnetic field functions and

mð0Þ ¼ 0; σð∞Þ ¼ 1 ð17Þ

for the metric functions. Note that the condition ψð0Þ ¼ ψ0

can be replaced by a condition that fixes the electric charge
of the solution and reads

lim
x→∞

ðx2V 0ðxÞÞ ¼ Q: ð18Þ

Let us remind the reader in the following of the basic
properties of the solutions in both flat and curved space-
time, respectively. Setting α ¼ 0, the solutions correspond
to charged Q-balls and these exist on a finite interval of the
parameter ψ0, i.e., ψ0 ∈ ½ψ0;1;ψ0;2�. On the boundaries of
this interval, we find Ω≡ eΦ → 1. This is demonstrated in
Fig. 1, where we give the values of the Noether charge QN
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and the ADMmassM in function ofΩ (left) and the electric
charge Q, the value of vð0Þ as well as the asymptotic value
of the electric field, Φ, in dependence on ψ0 (right) for
e ¼ 0.08. As is obvious from these plots, we find two
branches of solutions in Ω (in what follows labeled branch
A and branch B, respectively) which both end at Ω ¼ 1 and
join at a minimal value of Ω. The solutions on these
branches have values of the physical properties that are very
different, e.g., a solution on branch B has much larger mass
and Noether charge in comparison to a solution for the
same value of Ω on branch A.
When the space-time is assumed dynamical, i.e., α > 0,

this two-branch pattern of solutions is modified qualita-
tively. This is shown in Fig. 2. When plotting the electric
charge Q in function of Ω≡ eΦ (left), we find that branch
B does not extend all the way back toΩ ¼ 1, but stops at an
Ω < 1, where it joins a third branch of solutions, which we
will refer to in the following as branch C. When plottingQ,
Vð0Þ and Φ as function of ψ0 the new branch seems a

natural extension of the branch B—with even larger values
of Q and smaller values of Φ, respectively, however a new
local maximum for Vð0Þ.
In order to understand what distinguishes a solution on

branch A from a solution on branch C, we show the profiles
of the metric functions N and σ (left) as well as for the
profiles of the scalar field function ψ and the electric field
function V (right) for a typical solution on branch A (with
Q ¼ 3) and compare it to a typical solution on branch C,
see Fig. 3. Both solutions are for α ¼ 0.012, e ¼ 0.08,
but have very different values of the electric charge: the
solution on branch A has Q ¼ 3, while the solution on
branch C has Q ¼ 213.
Moving from branch A to branch B and finally to branch

C corresponds to an increase in the electric charge Q [or
equivalently in the decrease of the parameter Vð0Þ].
Moving from branch A to C, we observe that the minimum
of the metric function N deepens and moves away from the
center of the boson star. Moreover, the metric function σ at
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FIG. 2. Left: The dependence of the electric chargeQ on the parameter Ω≡ eΦ for α ¼ 0.012, e ¼ 0.08, β ¼ 9=32. For comparison,
we also give the corresponding curve for α ¼ 0. Right: The dependence of the electric chargeQ, the value Vð0Þ≡ V0 and the asymptotic
value of the electric potential Φ on ψ0 for the same solutions.
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FIG. 1. Left: The dependence of the mass M and Noether charge QN on Ω for Q-balls with e ¼ 0.08 (and β ¼ 9=32). Right: The
dependence of the electric charge Q, the value Vð0Þ≡ V0 and Φ on ψ0 for the same set of solutions.
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the center of the star decreases and develops a steplike
profile from an originally approximately linear increasing
function in the transition region between the interior
of the boson star and the asymptotically flat exterior.
Following this process it is found that the metric function
NðxÞ presents a local minimum that decreases in value. At
the same time the scalar function ψðxÞ associated with the
branches A and B decreases monotonically to zero. We
observe this steplike behavior also in the matter field
functions. In fact, we find that for the solution on branch
C, we can define an interior region x ∈ ½0∶x̃� for which
ψðxÞ≡ p0 ≠ 0, where p0 is a positive constant. In this
interval for x we also have that the electric field
V 0ðxÞ≡ 0. This is very different from the solution on
branch A, where the scalar field decays smoothly from its
central value to zero with a nearly linear decay in the
intermediate region, where the electric field possesses a
local maximum. In fact, as pointed out already in [12],

the constant scalar field generates constant potential
scalar field energy density that can be interpreted as a
positive cosmological constant.
An interesting new feature appears for x > x̃. For x > x̄,

the scalar field function ψðxÞ≡ 0 such that the space-time
can be described by a Reissner-Nordström space-time for
x > x̄. However, for specific combinations of α and Q we
find that there is an intermediate region x ∈ ½x̃∶x̄� in which
the scalar field shows spatial oscillations. In fact, we have
discussed this phenomenon for the first time in [14] for
black holes and demonstrate here that it exists also for
boson stars, see Fig. 4.
In fact, one can understand this behavior by considering

the scalar field equation and assuming for simplicity that
the oscillations of the scalar field are small enough to
neglect the terms in the scalar field equation that are higher
than linear order. The equation then reads (note that this is
valid only for x ∈ ½x̃∶x̄�)
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FIG. 4. Left: Details of the functionsN and ψ for the solution on branch C shown in Fig. 3 in the region of the local minimum of NðxÞ.
For comparison, we also show the metric function NðxÞ of the extremal Reissner-Nordström solution with the same mass. We also give
the effective mass ðmeffÞ2. Right: The corresponding Ricci scalar R as well as the effective mass ðmeffÞ2.
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FIG. 3. Left: The profile of the metric functions N and σ for a solution on branch A (withQ ¼ 3) and for a solution on branch C (with
Q ¼ 213), respectively. For both solutions, we have chosen α ¼ 0.012, e ¼ 0.08. Right: The profiles of the corresponding electric field
function V 0 and scalar field function ψ .
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1

x2σN
ðx2σNψ 0Þ0 ¼ m2

effðxÞψ ;

m2
effðxÞ ¼

1

NðxÞ −
e2V2ðxÞ

N2ðxÞσ2ðxÞ ; ð19Þ

wherem2
eff now plays the role of a position-dependent mass

of the scalar field ψ . Our numerical results show that NðxÞ
is very small, but nonzero for x ∈ ½x̃∶x̄�, for the solution on
branch C discussed above we find typically NðxÞ ∼ 0.005
for x ∈ ½22; 25�. Hence m2

eff has large negative values and
(19) allows for oscillating solutions. All these features are
illustrated in Fig. 4, where details on the solution of branch
C shown in Fig. 3 are given. The comparison of the metric
function NðxÞ with the corresponding metric function
NrnðxÞ of the extremal Reissner-Nordström solution with
the same mass (left) demonstrates that NðxÞ is very close to
NrnðxÞ, however, does not possess a double zero because it
stays always positive (albeit small). The interesting feature
about the oscillations in the scalar field are that they lead to
oscillations in the curvature scalars, see Fig. 4 (right) for the
profile of the Ricci scalar R.

For completeness, we also demonstrate that while the
solutions on branch C possess large values of the electric
charge, they possess small values of Vð0Þ as compared to the
corresponding solutions on branch A. This is shown in
Fig. 5, where we give the dependence of the charge Q and
the asymptotic value of the electric potential Φ on the
parameter Vð0Þ as well as the dependence of Vð0Þ on Ω for
the same set of solutions as given in Fig. 2. For all the
solutions discussed above, we have fixed the gauge coupling
constant e ¼ 0.08. In the following, wewould like to discuss
how the variation of this coupling changes our results. This is
shown in Figs. 6–8 for α ¼ 0.012 and several values of e.
Our investigation suggests the following:

(i) For small values of e (typically e ∼ 0.04) the sol-
utions exist for ψ0∈ ½0;ψ0;max� with ψ0;max ≈ 4.5. In
the limit ψ0 → ψ0;max, the value σð0Þ tends to zero
and the solution develops a singularity at the center.
Note that several solutions corresponding to the
same value of ψ0 exist around ψ0 ∼ 1.4 and that
we have hence found it more convenient to replace
the boundary condition ψð0Þ ¼ ψ0 by the alternative
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FIG. 5. Left: The dependence of the charge Q and the asymptotic value of the electric potential Φ on the parameter Vð0Þ for the same
set of solutions as shown in Fig. 2. Right: The dependence of Vð0Þ on Ω for the same set of solutions.
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boundary condition limx→∞ ðx2V 0ðxÞÞ ¼ Q for the
numerical construction of these solutions.

(ii) For large values of e (typically e ∼ 0.12) the branch
of solutions stops at some finite value of ψ0 because
Ω → 1. In this case, two branches of solutions
(branch A and branch B) exist in Φ.

(iii) For the intermediate values of e (typically e ∼ 0.08)
we observe the phenomenon of oscillations and
existence of branch C as discussed above.

Finally, we show the dependence of the mass Mψ on
Ω ¼ eΦ in Fig. 9 for fixed α and several values of e. This
demonstrates that for solutions on branch C the massMψ is
proportional to Φ, a property not seen on any of the other
branches. Remembering that the metric functions of these
solutions are very close to those of an extremal RN solution
outside an intermediate value of the radial coordinate at
which the horizon forms, say x̄, the mass and charge of the
solutions are such that M ∼ x̄, Q ∼ x̄=

ffiffiffi
α

p
. We believe that

these facts about branch C explain the peculiar dependence
of the physical quantities observed, e.g., in Fig. 1. A similar
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statement is true for the corresponding black hole solutions
(see next section).

IV. BLACK HOLES WITH WAVY SCALAR HAIR:
NEW RESULTS

Black holes with wavy scalar hair have first been
discussed in [14]. Here we extend and refine the results
and also discuss the interior of these black holes.
We now have to impose boundary conditions at the

horizon of the black hole x ¼ xh > 0 (instead of at the
origin of the coordinate system) and we find that
the appropriate choice reads

mðxhÞ¼
xh
2
; N0ψ 0jx¼xh ¼

1

2

dU
dψ

����
x¼xh

; VðxhÞ¼0: ð20Þ

The first condition is equivalent toNðxhÞ ¼ 0, the second is
a regularity condition on the scalar field at the horizon,
while the third results from the synchronization condition.
As mentioned above, black holes can carry scalar hair in

minimally coupled gravity models if a so-called synchro-
nization condition is fulfilled. This is a condition imposed
on the matter fields at the horizon of the black hole and in
the case we are discussing here reads ω − eVðxhÞ ¼ 0,
where VðxhÞ is the value of the gauge field function on the
black hole horizon. Then choosing the gauge ω ¼ 0, we
have the condition on V given in (20).
In the following, we will first discuss the case α ¼ 0.012,

e ¼ 0.08, xh ¼ 1. We find—in agreement with the results
presented for boson stars above—that black holes can form
up to three branches of solutions in Ω ¼ eΦ. This is shown
in Fig. 10, where we give the mass M and the temperature
TH using the same convention for the labeling of the
branches. The mass increases along these branches moving
from branch A to B and then to C. On branch A and branch
C, respectively, the mass M increases when decreasing Ω,
while on branch B the mass increases with increasing Ω.
Comparing this with the dependence of the temperature TH

on Ω, which increases along branch A, but decreases on
both branch B and C. We find that this is qualitatively
different to the behavior of charged black holes without
scalar hair given by the Reissner-Nordström solution for
which αQ2 ¼ xhð2M − xhÞ and 4πTH ¼ 2ðxh −MÞ=x2h.
For fixed xh, the charge Q increases with M, while the
temperature TH decreases when the mass M is increased.
Both branch B and branch C show this qualitative behavior,
while the solutions on branch A show an increase in
temperature TH for increasing mass M. In fact, on branch
C, the solutions approach a solution with TH ¼ 0.
Interestingly, we find only one branch of solutions when

plotting the physical quantities in function of the electric
field at the horizon VH ≡ V 0ðxhÞ, see Fig. 11. Decreasing
V 0ðxhÞ we find that the mass M and electric charge Q
continuously increase.
Very similar to what has been discussed for boson stars

above and had already been presented briefly for black
holes in [14], the solutions on branch C develop spatial
oscillations in the scalar field function. Again, this is related
to the fact that the effective mass m2

eff of the scalar field
[see (19)] becomes negative in a given interval of x due to
the metric function NðxÞ being close to, but actually never
becoming equal to zero.
A new feature in comparison to [14] is that we find not

only one branch of solutions with spatial oscillations, but
several branches. This is indicated in Fig. 10 and Fig. 11 by
branch C0.1

In order to explain the difference (and origin) of these
branches, we show a solution on branch C0 in Fig. 12 and a
solution on branch C in Fig. 13. These solutions differ in
the value of the electric charge Q and M. We find that the
solutions on branchC0 have lower massM and chargeQ for
fixed value of the electric field on the horizon V 0ðxhÞ as
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FIG. 10. Left: We show the dependence of the mass M of black holes with scalar hair on Ω for α ¼ 0.012, e ¼ 0.08, xh ¼ 1.
Right: Same as left, but for the temperature TH .

1In fact, the existence of several branches of solutions with
very similar physical properties in this parameter regime makes
the numerical analysis very tedious.
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compared to the solutions on branch C. In fact, Figs. 12
and 13 show that the solutions on branch C0 have fewer
spatial oscillations in comparison to those on branch C.
We believe that the argument about the negativity of

the effective mass m2
eff allowing spatially oscillating

scalar field solutions also suggests that several solutions
corresponding to a different number of spatial oscillations
in the scalar field should exist. We have managed to
construct two examples for this case under the require-
ment of sufficiently small numerical errors (typically a
relative error on the order of 10−6). The solution on
branch C (see Fig. 12) shows only one local maximum in
the region where m2

eff < 0, while the solution on branch
C0 possesses three local maxima. Our results indicate that
the mass M and charge Q increase (slightly) with the
increase in number of oscillations.
Considering now the dependence of the results presented

above on the area of the horizon of the black hole, we have
followed the approach used in [10] and solved the equa-
tions for a fixed asymptotic value of the electric field
potential Φ and varied the horizon radius xh. We show
values ofΦ for which branches A and B coexist. Our results
show that two branches of black hole solutions exist when
varying xh. They merge at a maximal value of xh ¼ xh;max,
while for xh → 0 the black hole solutions approach the
boson star solutions. In this limit, the temperature of the
solution diverges due to the fact that the metric function
NðxÞ develops an infinite derivative at xh when xh → 0.
This is connected to the fact that the boundary condition for
the black holes at xh is NðxhÞ ¼ 0, while Nðx ¼ 0Þ ¼ 1 for
the boson stars. Note that this is hence an artifact of the
boundary conditions.
An example of such a family is given in Fig. 14 for

Φ ¼ 8.2. The values M, Q (left) and ψðxhÞ, TH (right)
are given in function of the horizon area AH ¼ 4πr2h.
The solutions on branch A have lower temperature TH
and higher values of ψðxhÞ in comparison to those on

branch B. For the branches C and C0, we find that when
increasing xh the temperature TH decreases.
In order to clarify some of the features of the new

solutions found, we have studied some thermodynamical
properties of the solutions by introducing the following
reduced quantities:

X ≡
ffiffiffi
α

p
M

; Y ≡ AH

16πM2
; Z≡ 8πMTH: ð21Þ

These have been presented for several solutions in [10] and
we extend these results here by adding the new branches of
solutions that we have found in [14] and in this present
paper. Note that for the RN solution we have:

TH ¼ 1

4πxh
ð1 −WÞ; M ¼ xh

2
ð1þWÞ; W ≡ αQ2

xh
;

ð22Þ

such that the quantities given in (21) read:

X ¼ 2
ffiffiffiffiffi
W

p

1þW
; Y ¼ 1

ð1þWÞ2 ;

Z ¼ ð1 −WÞð1þWÞ. ð23Þ

In Fig. 15 we give the X − Y and X − Z plots, respec-
tively, for α ¼ 0.0045 and for several values of e and Φ.
The black line corresponds to the RN solutions, while the
red one corresponds to e ¼ 0.0724, Φ ¼ 11. This latter
choice of parameters has been presented first in [10]
and is used here as a means to understand the dependence
of the quantities X, Y, Z on the parameters e and Φ,
respectively. We have chosen e ¼ 0.05, Φ ¼ 11 (magenta)
and e ¼ 0.0724,Φ ¼ 9 (blue), which we believe exemplify
the dependence well. More precisely, we find that
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FIG. 14. Left: We show the dependence of the mass M and electric charge Q on the value of the horizon area AH ¼ 4πx2h for black
holes with Φ ¼ 8.2. Right: We show the dependence of the temperature TH on the value of the scalar field on the horizon ψðxhÞ.
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(i) when we plot quantities versus X (the charge to mass
ratio), two branches of black hole solutions exist.
They are distinguished by different values of Y and
the branches join at a minimal value of X,

(ii) the limit xh → 0 corresponds to an increase of the
quantity X,

(iii) the temperature (represented by the quantity Z) stays
positive for all black holes with scalar hair and Z
increases for decreasing horizon radius and is also
bigger than the corresponding value for the RN
solution at the same value of X.

For comparison, we have then studied these quantities for
the black hole solutions with wavy scalar hair first
presented in [14]. Our results are shown in Fig. 16 for
α ¼ 0.012, e ¼ 0.08 and Φ ¼ 8.2. Clearly, the behavior is
qualitatively very different to that shown in Fig. 15. In
particular, we note the following:

(i) only one solution exists for a fixed value of charge to
mass ratio X,

(ii) for appropriate choice of the horizon radius the value
of Z is very close to the corresponding value of the
RN black hole for the same value of X.

A. Black hole interior

Finally, we have investigated the interior of these new
type of black hole solution. In fact, the knowledge of the
solution for x ∈ ½xh;∞Þ allows us to integrate the equations
for x < xh by using the (numerical) values of the fields at
x ¼ xh as boundary conditions. We have studied a few
cases and found that the physical singularity is approached
at a value of the radial coordinate x ¼ xs with 0 < xs < xh.
In particular the geometric invariants such as the Ricci and
Kretschmann scalar, respectively, diverge for x → xs. Our
numerical analysis reveals further that xs decreases when
moving along the branch A to branch B and C such that for
the solutions on branch C we find the curvature singularity
being located very close to x ¼ 0. Moreover, the value of
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the scalar field function is practically constant in this
interval, i.e., ψðxÞ ∼ ψðxhÞ for x < xh.

V. GEODESIC MOTION IN THE PRESENCE OF
WAVY SCALAR HAIR

In order to demonstrate that the new type of scalar hair we
have discussed here can lead to observable consequences,
we discuss briefly the behavior of test particles in the space-
time of the black holes. Similar arguments appear for boson
stars and a detailed analysis will be presented elsewhere.
Using the symmetries of the space-time and denoting the

energy of the test particle by E and its angular momentum
by Lz, the equation describing geodesic motion gμν _xμ _xν ¼ ε
takes the form

σ2 _x2 þ VeffðxÞ ¼ E2; VeffðxÞ ¼ Nσ2
�
L2
z

x2
− ε

�
; ð24Þ

where the dot denotes the derivativewith respect to an affine
parameter. Moreover, ε takes on the value 0 for massless
particles and −1 for massive particles, respectively.
We show the effective potential Veff for a massless

particle in some black hole space-times in Fig. 17. Note that
for ε ¼ 0, the numerical value of the angular momentum Lz
does not influence the qualitative discussion in the
following—that is why we have set it to unity for this
plot. As is obvious, there exists a new feature in the space-
time of a black hole with wavy scalar hair (solution C) as
compared to those with “standard” scalar hair: namely a

local minimum in the exterior space-time of the black hole.
For the example plotted, the local minimum is located at
x ≈ 21.8 and has value ≈10−5. Hence, a massless particle
with E2=L2

z ≈ 10−5 would move in a stable circular orbit
around the black hole that carries wavy scalar hair. This
suggests that these types of black holes would possess a
stable photon sphere well outside their horizon.

VI. CONCLUSIONS AND OUTLOOK

In the era of multimessenger astrophysics and new
telescopes and experiments being proposed to address
long-standing questions in modeling all four interactions
satisfactorily, extensions of the best model that we have to
date for the gravitational interaction have been proposed.
Often this involves new direct couplings between matter
fields and the space-time curvature. However, even in
minimally coupled models, i.e., in models where
General Relativity is coupled minimally to matter fields
interesting new phenomena appear. In particular, the
inclusion of scalar fields has been proven to be very
fruitful in this context and a number of no-hair conjectures
can be violated under certain conditions (see e.g., [5] for a
review). The interplay between electromagnetic and scalar
fields in curved space-time leads to new interesting
solutions such as globally regular objects, so-called boson
stars [15–19] that are (still) a viable alternative to super-
massive black holes as they can be as heavy and as large as
the latter.
In this paper we have demonstrated that new features

appear in a complex scalar field, U(1) gauged model when
the curvature of space-time is strong and the scalar field is
self-interacting. It is well known that black holes can carry
scalar hair in this model, however, we find that the form of
this scalar hair is more subtle than previously thought. We
find that for large gravitational coupling and large electric
charge the solutions develop spatial oscillations in the
scalar field, hence a new form of scalar hair that we have
denoted wavy scalar hair. These oscillations appear in a
region of space-time where grr is very close to zero on an
extended interval of the radial coordinate, but actually is
never zero. This leads to the effective mass of the scalar
field (as defined via a linearization of the scalar field
equation) becoming negative and the scalar field equation
has the form of a harmonic oscillator equation.
Interestingly, these oscillations also appear when consid-
ering boson stars in this model, i.e., the existence of an
event horizon in the space-time is not crucial. This
argumentation suggests—and has been confirmed numeri-
cally by us—that a whole discrete tower of solutions
should exist.
The observational consequences can only be speculated

on at this moment, but we have demonstrated that massless
(and, in fact, also massive) test particles would be able to
move on stable circular orbits around black holes and boson
stars, respectively. This observation suggests that black
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FIG. 17. We show the effective potential Veff [see (24)] for a
massless test particle with Lz ¼ 1 in the space-time of three
different black holes with scalar hair corresponding to branches
A, B and C. For all three space-times we have chosen xh ¼ 1,
α ¼ 0.012 and e ¼ 0.08. The black hole on branch A has
Φ ¼ 8.2, Q ¼ 11.6, the one on branch B has Φ ¼ 8.2,
Q ¼ 53.5, while the black hole on branch C has Φ ¼ 9.84,
Q ¼ 200, respectively. The minimum of the effective potential
for the case C appears at r ≈ 21.8.
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holes and boson stars should possess a photon sphere. It
will be interesting to investigate these observational con-
sequences further, in particular with view to the results
given in [23].

An interesting extension of our results would be to study
whether the new features we observe are generic, i.e., exist
e.g., also in higher dimensions and/or for rotating and
uncharged solutions.
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