
Spin Hall effects and the localization of massless spinning particles

Abraham I. Harte 1,* and Marius A. Oancea 2,3,4,†

1Centre for Astrophysics and Relativity, School of Mathematical Sciences Dublin City University,
Glasnevin, Dublin 9, Ireland

2Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
3Erwin Schrödinger International Institute for Mathematics and Physics,

University of Vienna, Boltzmanngasse 9, 1090 Vienna, Austria
4Max Planck Institute for Gravitational Physics (Albert Einstein Institute),

Am Mühlenberg 1, D-14476 Potsdam, Germany

(Received 10 March 2022; accepted 24 April 2022; published 27 May 2022)

The spin Hall effects of light represent a diverse class of polarization-dependent physical phenomena
involving the dynamics of electromagnetic wave packets. In a medium with an inhomogeneous refractive
index, wave packets can be effectively described by massless spinning particles following polarization-
dependent trajectories. Similarly, in curved spacetime the gravitational spin Hall effect of light is
represented by polarization-dependent deviations from null geodesics. In this paper, we analyze the
equations of motion describing the gravitational spin Hall effect of light. We show that these equations are a
special case of the Mathisson-Papapetrou equations for spinning objects in general relativity. This allows us
to use several known results for the Mathisson-Papapetrou equations, and apply them to the study of
electromagnetic wave packets. We derive conservation laws, we discuss the limits of validity of the spin
Hall equations, and we study how the energy centroids of wave packets, effectively described as massless
spinning particles, depend on the external choice of a timelike vector field, representing a family of
observers. In flat spacetime, the relativistic Hall effect and the Wigner(-Souriau) translations are recovered,
while our equations also provide a generalization of these effects in arbitrary spacetimes. We construct a
large class of wave packets that can be described by the spin Hall equations, but also find its limits by
giving examples of wave packets which are more general and are not described by the spin Hall equations.
Lastly, we examine the assumption that electromagnetic wave packets are massless. While this is
approximately true in many contexts, it is not exact. We show that failing to carefully account for the
limitations of the massless approximation results in the appearance of unphysical “centroids” which are
nowhere near the wave packet itself.
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I. INTRODUCTION

Many observations of the physical world—particularly
in astrophysical contexts—involve measurements of
electromagnetic and (more recently) gravitational radiation.
Interpreting this radiation requires a theoretical model for
its propagation. In the case of electromagnetic waves, one
might begin with Maxwell’s equations. In the case of
gravitational waves, one might instead use the Einstein
field equation. Regardless, exact solutions are rarely

available and the geometric optics approximation1 is
typically applied in order to make progress. This assumes
that wavelengths are small compared with all other relevant
length scales, and forms the basis for most of the theory of
gravitational lensing [1–5].
Mathematically, the geometric optics approximation

allows the field equations, which are partial differential
equations, to be approximated by a set of ordinary dif-
ferential equations. The problem of solving partial differ-
ential equations is thereby reduced to the much simpler
problem of solving ordinary differential equations. More
specifically, this process shows that the amplitudes and
polarization states of high-frequency electromagnetic and
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1The geometric optics approximation, with or without higher-
order corrections, is sometimes referred to as the high-frequency
approximation, or as the Wentzel-Kramers-Brillouin (WKB)
approximation.
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gravitational waves propagate along null geodesics.
The resulting field acts, in this approximation, as though
it were formed from a collection of noninteracting massless
particles.
It is the purpose of this paper to investigate what happens

beyond geometric optics, when wavelengths are small
but not completely ignorable. More specifically, how do
corrections to geometric optics affect propagation direc-
tions? While the equations which govern small corrections
to geometric optics were derived long ago [6,7] for electro-
magnetic and gravitational waves propagating through
curved spacetimes, their consequences have not been
thoroughly explored. It is nevertheless known that all
reasonable definitions for the local “propagation direction”
agree in geometric optics: The direction of the electromag-
netic momentum density is identical for all observers, and
that coincides with the direction of the local phase gradient,
the direction along which “information” propagates, and
the (necessarily degenerate) principal null direction of the
electromagnetic field. Beyond geometric optics, different
notions of propagation direction no longer agree; the
direction of the 4-momentum density can be different for
different observers, there can be two principal null direc-
tions, and phase gradients can depend on a choice of basis
[8]. Moreover, amplitude and polarization states no longer
propagate independently along each ray. Instead, there is a
transport of information between neighboring rays as well
as along them. This means that beyond leading order, there
is no well-defined direction which can be associated with
“information flow” in a high-frequency field.
This complexity requires that we be precise about what

exactly it is whose propagation we would like to under-
stand. In this paper, we focus on the “bulk” propagation of
small2 electromagnetic pulses in curved spacetimes. We
choose a “center” for each pulse and ask how that center
evolves in time. Pulses in geometric optics are simple; with
reasonable assumptions, they travel along null geodesics
[9]. Like their constituent rays, the centers of high-fre-
quency pulses behave, at leading order, like massless
monopolar particles. One order beyond geometric optics,
the motion depends on a pulse’s angular momentum. More
subtly, it also depends on precisely which definition is used
to describe the pulse’s center. Regardless, there is a sense in
which otherwise-identical wave packets with opposite
circular polarizations can be deflected with respect to
one another. This behavior may be summarized by stating
that one order beyond geometric optics, the bulk motion is
equivalent to that of a massless dipole.
In the literature on flat-spacetime optics in nontrivial

materials, spin-dependent corrections to the propagation of
electromagnetic fields are sometimes described as spin Hall
effects. There are in fact a number of different spin Hall

effects which have been discussed theoretically, some of
which have also been observed experimentally [10–12].
Some spin Hall effects are induced by, e.g., gradients in the
refractive index [13–22]. Others arise even without any
material inhomogeneities; the geometric spin Hall effect
[23–25] and the related relativistic Hall effect [26] and
Wigner(-Souriau) translations [27–29] all arise in vacuum
and in flat spacetime. These three effects may be shown to
be associated with differing definitions for the “center” of a
given wave packet. More precisely, the relativistic Hall
effect and the Wigner translations are related to differences
between three-dimensional centroids which would natu-
rally be associated with different observers. They are
essentially the same as (unnamed) effects which have long
been known for massive objects [30–33]. The geometric
spin Hall effect is somewhat different, being instead
concerned with differences between centroids which are
defined on different two-dimensional cross sections.
The spin-dependent propagation effects discussed in this

paper arise in vacuum but in generic spacetimes, and are
sometimes referred to as gravitational spin Hall effects
[34,35]. Various approaches have been taken before to
understand the motion of electromagnetic, and also gravi-
tational, wave packets in this context. Some approaches
have been based on classical high-frequency expansions in
the spirit of geometric optics [36–47]. Others have taken a
semiclassical approach, using the Bargmann-Wigner equa-
tions or Weyl equations [48–50]. Still other approaches
have not made any direct contact with an underlying field
theory, but have instead claimed that the motion of a wave
packet could be described using massless versions of the
Mathisson-Papapetrou (MP) equations [18,51–57], equa-
tions which are known to describe classical spinning
objects in curved spacetimes.
This paper focuses on the gravitational spin Hall effect of

light, as described inRef. [42].While the derivation therewas
based on a high-frequency approximation, it differs from
other high-frequency approaches by being applicable in
arbitrary spacetimes and by avoiding specific 3þ 1 folia-
tions. This paper endeavors to better understand themeaning,
the domain of applicability, and the limitations of the
gravitational spin Hall equations. It also unifies those
equations with others which have appeared in different
contexts; the gravitational spin Hall equations are shown
to be a special case of the MP equations, and the flat-
spacetimegradient-index spinHall effect, the relativisticHall
effect, and theWigner(-Souriau) translations are all shown to
be special cases of the gravitational spin Hall equations.
But before any equations of motion can be sensibly

discussed, it is necessary to first explain what exactly those
equations describe. This leads us to consider what can be
meant by the centroid of an extended wave packet. One
definition which has appeared in the literature is shown to
be untenable. A large number of others remain, however,
and we show the set of all such possible centroids is
unbounded for massless—but not massive—objects. While

2These wave packets must be large compared to their dominant
wavelengths but small compared to all other length scales.
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this might at first appear to be a failure of the definitions, it
is in fact a failure of masslessness. We show that wave
packets with nonzero angular momentum cannot be mass-
less, and this is essential to their localizability. While the
massless approximation can be useful for many purposes,
ignoring its limitations can result in qualitatively incorrect
conclusions.
The paper begins in Sec. II by reviewing the gravitational

spin Hall effect of light, as presented in Ref. [42]. For
comparison with the spin Hall effect of light in flat-
spacetime optics [11], we emphasize the role of the
Berry phase and the Berry connection in describing
polarization, as well as the role of the Berry curvature in
the gravitational spin Hall equations.
Section III shows that with particular initial and spin

supplementary conditions, the gravitational spin Hall equa-
tions emerge as a special case of the MP equations. This
relation allows us to use the well-developed theory asso-
ciated with the MP equations to clarify the meanings of the
worldline and the momentum which arise in the spin Hall
equations. It also allows us to write down conservation laws
for those equations and to discuss their regimes of validity.
The spin Hall equations involve an arbitrary choice of

timelike vector field, and we show in Sec. IV that this
parametrizes different definitions for the centroid of an
extended wave packet. Our main result regarding these
centroids is that although massive spinning objects can be
localized, massless ones cannot.
Section V examines whether or not the initial conditions

which reduce the MP equations to the gravitational spin
Hall equations are in fact realized by reasonable wave
packets. We use a high-frequency approximation to explic-
itly construct a large class of electromagnetic wave packets.
For many members of this class, the appropriate conditions
are indeed satisfied. However, we also find wave packets
which do not have the expected properties. This implies
that there are nontrivial assumptions on the nature of the
wave packet which have been implicitly (and unknowingly)
imposed in the prior literature. We also show that our
approximate wave packets can fail to satisfy the dominant
energy condition. This is an unphysical artifact of the
high-frequency approximation, and is what leads to the
apparent delocalization of spinning wave packets discussed
in Sec. IV.
In Sec. VI, we discuss an analogy between light

propagation through an optical medium and light propa-
gation through vacuum but in an effective optical metric.
Using a standard optical metric, we recover the spin Hall
effect of light in an inhomogeneous medium from the
gravitational spin Hall equations.
Finally, the Appendix demonstrates that at least in flat

spacetime, the spin of any massless object which satisfies
the dominant energy condition must vanish. It follows that,
e.g., electromagnetic wave packets with nonzero spin
cannot be exactly massless.

Notation and conventions: We work on an arbitrary
smooth Lorentzian manifold ðM; gαβÞ, where the metric
tensor gαβ has signature ð−þþþÞ. Greek letters are used
for spacetime indices and run from 0 to 3. We use bold
symbols to denote 3-vectors, and their components are
labeled by Latin letters from the middle of the alphabet,
ði; j; k;…Þ, that run from 1 to 3. Units are used in which
G ¼ c ¼ 1, the Einstein summation convention is assumed,
and we use the notation aαbα ¼ a · b, aαaα ¼ a · a ¼ a2.
The Riemann tensor is defined such that 2∇½α∇β�ωγ ¼
Rαβγ

λωλ for any ωγ. When working with tensors T defined
at different spacetime points xα; x̃α ∈ M, we use the usual
notation, Tα

βðxÞ, when the tensor is defined at xα, while we
use primed indices, Tα0

β0 ðx̃Þ, for tensors defined at x̃α.

II. GRAVITATIONAL SPIN HALL EFFECT
OF LIGHT

The equations of motion which describe the spin Hall
effect for electromagnetic waves propagating through
curved spacetimes were derived in Ref. [42]. They were
obtained by performing a covariant high-frequency analysis
of the vacuum Maxwell equations. A similar approach was
used in Ref. [45] to describe the spin Hall effect for
gravitational waves propagating on curved backgrounds.
For electromagnetic waves, the derivation starts with the
WKB ansatz

Aα ¼ Re½ϵðψaα þ ϵψ ð1Þ
α þOðϵ2ÞÞeiu=ϵ� ð2:1Þ

for the electromagnetic potential, where ϵ is a small
parameter related to the wavelength, u is a real phase
function, ψ is a real scalar amplitude, and aα is a complex
polarization vector normalized such that aαāα ¼ 1. Higher-

order terms, such as ψ ð1Þ
α , do not play any role in this

section. The overall factor of ϵ is for convenience and
ensures that the field strength Fαβ ¼ 2∇½αAβ� is nontrivial
and finite in the ϵ → 0 limit. If u increases as with time, it is
convenient to define the future-directed wave vector
kα ¼ −∇αu, and in terms of that, a timelike observer with
4-velocity tα will measure the wave frequency

ω ¼ −t · k=ϵ: ð2:2Þ

The derivation of the spin Hall effect in Ref. [42] relies
on an analysis of the overall phase factor of the field, which
consists of u at the lowest order in ϵ, together with a higher-
order phase factor, referred to as the Berry phase, which
comes from the polarization vector aα. Using the WKB
ansatz above, together with the Maxwell equation

ð∇β∇α − δβα∇γ∇γÞAβ ¼ 0; ð2:3Þ
and the Lorenz gauge condition∇αAα ¼ 0, the wave vector
kα must be be null and orthogonal to the polarization vector,
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k · k ¼ k · a ¼ 0: ð2:4Þ

Additionally, the scalar amplitude ψ must satisfy the
transport equation

∇αðkαψ2Þ ¼ 0; ð2:5Þ

and the polarization vector aα must be parallel transported,

kβ∇βaα ¼ 0: ð2:6Þ

These are the usual equations of geometric optics. The null
geodesic rays of geometric optics are integral curves of kα.
It is convenient to expand the polarization vector in terms

of a tetrad fkα; tα; mα; m̄αg, where the real covector tα is
timelike, kα, mα, and its complex conjugate m̄α are null,
t ·m ¼ 0, and m · m̄ ¼ 1. Given Eq. (2.4), there must exist
complex scalars z1, z2 and z3 such that

aα ¼ z1mα þ z2m̄α þ z3kα: ð2:7Þ

The complex covectors mα and m̄α form a circular
polarization basis, and the considered electromagnetic
wave is circularly polarized when z1 ¼ 0 or z2 ¼ 0. The
term proportional to kα is pure gauge, not fixed by the
Lorenz gauge condition, and it will not play any role in
what follows.
The only element of the tetrad which is interpreted as

being fixed by the field is kα. Supplementing that with tα
fixes the 2-plane spanned by mα and m̄α. And within
that plane, there is still an additional freedom associated
with the spin rotations mα ↦ eiϕmα, where ϕ is any real
scalar. Any change in tα will result in a shift with the form
mα↦mαþckα, which can only affect z3 in (2.7). Although
that is interpreted as a gauge transformation here, changes
in tα will act nontrivially and play an important role in the
spin Hall equations.3 Spin rotations instead affect the values
of z1 and z2. Nevertheless, they do not affect the spin Hall
equations.
We can now obtain a transport equation for z1 and z2

along the rays. Viewing mα as a covector-valued field over
the cotangent bundle, depending on both position and on
kα, the parallel transport equation (2.6) implies that

d
dτ

�
z1
z2

�
¼ iðkαBαÞ

�
1 0

0 −1

��
z1
z2

�
; ð2:8Þ

where

Bα ¼ im̄β

�
∇α þ kγΓ

γ
αλ

∂
∂kλ

�
mβ ð2:9Þ

is the Berry connection. The operator in brackets in the
Berry connection may be seen to be a horizontal covariant
derivative on the cotangent bundle. Regardless, the trans-
port equation (2.8) can be integrated to yield

z1ðτÞ ¼ eiγz1ðτ0Þ; z2ðτÞ ¼ e−iγz2ðτ0Þ; ð2:10Þ
where

γ ¼
Z

τ

τ0

dτ0kαBα ð2:11Þ

is the Berry phase. The Berry phase represents a higher-
order correction to the overall phase of the WKB potential,
and is generally responsible for the spin Hall effect of light
[16,21]. For circularly polarized electromagnetic waves, the
leading-order field takes the form Aα ¼ Re½ϵψmαeiðuþϵγÞ=ϵ�
or Aα ¼ Re½ϵψm̄αeiðu−ϵγÞ=ϵ�, depending on the handedness
of circular polarization state. The total phase at this order is
therefore proportional to uþ ϵsγ, where s ¼ �1. Note that
both the Berry connection and the Berry phase depend on
spin rotations mα ↦ eiϕmα, transforming as Bα ↦ Bα −∇αϕ and γðτÞ ↦ γðτÞ − ϕðτÞ þ ϕðτ0Þ.
In geometric optics, the dispersion relation k · k ¼ 0

may be viewed as a Hamilton-Jacobi equation for the
phase function u. If that is solved using the method of
characteristics, one recovers the null geodesic rays of
geometric optics. In Ref. [42], the strategy was to general-
ize this procedure, deriving the spin Hall effect by looking
for an effective dispersion relation involving the gradient
of the corrected phase function uþ ϵsγ. Letting Kα ¼
−∇αðuþ ϵsγÞ, we use k · k ¼ 0 and the definition of the
Berry phase γ to arrive at the following effective dispersion
relation,

K · K − 2ϵsK · B ¼ Oðϵ2Þ: ð2:12Þ
This can be viewed as a Hamilton-Jacobi equation for the
total phase function uþ ϵsγ. Using the method of charac-
teristics, we can solve this Hamilton-Jacobi equation and
obtain ray equations with polarization-dependent correc-
tions to the geodesic equations of geometric optics.
However, since these equations depend on the Berry
connection Bα, they are not invariant under spin rotations.
This gauge dependence can be removed by switching to
noncanonical coordinates,4 as described in Ref. [42]
[Sec. IV.B.1] (see also Ref. [58]).
The spin Hall equations which result from the use

of these coordinates, which describe the polarization-
dependent propagation of circularly polarized light, can
be written as [42]

3Changes of tα are analogous to the Wigner translations
discussed in Ref. [27], which act as gauge transformations on
plane waves, but act nontrivially on finite wave packets.

4A similar approach is also used for the description of
charged particles in an external electromagnetic field, where a
coordinate transformation is used to rewrite the equations of
motion in terms of the gauge-invariant Faraday tensor instead of
the gauge-dependent vector potential.
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_xα ¼ pα þ ϵspβ½ðFpxÞβα þ Γγ
λβpγðFppÞλα�;

_pα ¼ Γγ
αβpγpβ − ϵspβ½ðFxxÞαβ þ Γγ

βλpγðFxpÞλα�; ð2:13Þ

where xα denotes a position, pα a momentum, the dot an
ordinary (noncovariant) derivative d=dτ, and s ¼ �1
depending on the handedness of the circular polarization
state. The same equations, but with s ¼ �2 instead,
describe the spin Hall effect for circularly polarized
gravitational waves [45]. They are understood to be valid
up to terms of order ϵ2. The spin Hall equations are
expressed in terms of the Berry curvature components

ðFppÞβα ¼ 2Im

�∂mγ

∂pα

∂m̄γ

∂pβ

�
;

ðFxxÞβα ¼ 2Imð∇αmγ∇βm̄γ þmγ∇½α∇β�m̄γÞ;

ðFpxÞαβ ¼ −ðFxpÞβα ¼ 2Im

�∂mγ

∂pβ
∇αm̄γ

�
; ð2:14Þ

which are invariant with respect to spin rotations.
The procedure leading to the spin Hall equations has

removed any dependence on spin rotations. However, it has
introduced a physical dependence on the timelike covector
tα. This can be made explicit by calculating the components
of the Berry curvature using the properties of the tetrad5

fpα; tα; mα; m̄αg, which results in ([42], Appendix C)

ðFppÞβα ¼
Σαβ

ðp · tÞ2 ;

ðFxxÞβα ¼
Σγλ

2

�
Rγλαβ þ

2

ðp · tÞ2 pρΓ
ρ
γ½α

× ðΓσ
β�λpσ − 2ðp · tÞ∇β�tλÞ

�
;

ðFxpÞαβ ¼
Σαγ

ðp · tÞ2 ðpρΓ
ρ
βγ − ðp · tÞ∇βtγÞ: ð2:15Þ

Each term here is linear in the real bivector

Σαβ ¼ 2im̄½αmβ� ¼ εαβγλpγtλ
p · t

; ð2:16Þ

which is invariant under spin rotations and is uniquely
determined by pα and tα. We shall see in Sec. III that Σαβ is
proportional to the angular momentum tensor of the wave
packet. Regardless, substituting Eq. (2.15) into (2.13)
shows that the spin Hall equations can be written in the
more compact form

_xα ¼ pα þ 1

p · t
ðϵsΣαβÞpγ∇γtβ; ð2:17aÞ

Dpα

dτ
¼ −

1

2
RαβγλpβðϵsΣγλÞ; ð2:17bÞ

whereD=dτ ¼ _xα∇α denotes the covariant derivative along
the worldline. It is now manifest that the only external
choice relevant to these equations is the timelike vector
field tα. We shall see below that that choice parametrizes
the definition for xα.
Unlike the integral curves of kα, which are interpreted as

rays within (say) a wave packet, the position xα which
appears in the spin Hall equations (2.17) is interpreted as
describing the position of the wave packet as a whole: its
“centroid.” Similarly, the momentum pα is interpreted as
the net momentum of the wave packet, not as a momentum
density within that wave packet. One consequence of the
spin Hall equations is that the worldline is not necessary
tangent to the momentum. Systems with this feature are
sometimes referred to as having hidden momentum [33,59–
62] or anomalous velocity [15,48,63–65]. Also note that
inspection of Eq. (2.17) shows that the affine parameter τ is
dimensionless and that ϵ has units ðlengthÞ2. Examination
of the spin Hall equations shows that τ has been chosen
such that _x · t ¼ p · t. It is straightforward to see from
Eq. (2.17b) that if pα is initially null, it remains null for all
time. Equation (2.17a) implies that when the momentum is
null, so too is the worldline: _x · _x ¼ Oðϵ2Þ. These equations
are assumed to be used only for initial data in which pα, and
therefore _xα, are indeed null.
There is not always a hidden momentum. As a particular

case, suppose that tα is parallel transported in the sense that

_xβ∇βtα ¼ OðϵÞ: ð2:18Þ

With this choice, _xα ¼ pα þOðϵ2Þ and Eq. (2.17) reduces
to the polarization-dependent ray equations obtained by
Frolov in Ref. ([44], Eq. 110–112). In this sense, the spin
optics approximation in that paper describes a particular
case of the gravitational spin Hall equations obtained in
[42]. However, since one of our goals is to understand the
role of tα in Eq. (2.17), we do not assume any special
choices for it in the remainder of this paper.
It was not clear in the derivation of the spin Hall equations

precisely what xα, pα, or tα are, what types of wave packets
these equations describe, or what sorts of approximations are
implicit in them (beyond the assumption of high-frequen-
cies). These issues will be addressed below.

III. MATHISSON-PAPAPETROU EQUATIONS
AND THEIR IMPLICATIONS FOR THE SPIN

HALL EQUATIONS

The spin Hall equations (2.17) are interpreted as describ-
ing the motion of circularly polarized electromagnetic wave

5Here, pα has replaced the kα which appeared in the above
discussion. mα and m̄α are now viewed as functions of position
and of pα.
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packets. However, it is known from separate arguments that
the motion of any sufficiently compact spinning object is
governed by the Mathisson-Papapetrou (MP) equations6

Dpα

dτ
¼ −

1

2
Rαβγλ _xβSγλ; ð3:1aÞ

DSαβ

dτ
¼ 2p½α _xβ�: ð3:1bÞ

These equations evolve an object’s linear momentum pα

and its angular momentum Sαβ ¼ S½αβ� along a specified
worldline. They are very general: As long as the quadrupole
and higher-order multipole moments of an object’s stress-
energy tensor can be ignored, the MP equations hold for all
sufficiently compact objects with conserved stress-energy
tensors [69,71]. In particular, although much of the
literature on these equations assumes that pα is timelike,
their derivation makes no use of that condition; null
momenta are also admissible. Whether or not the momen-
tum is null depends only on the nature of the underlying
stress-energy tensor.
The generality of the MP equations can be understood, in

part, from the fact that they are essentially kinematic. They
arise as consequences of attempting to maintain Poincaré
invariance as much as possible along the given worldline
[72]. Indeed, they imply the presence of ten conserved
quantities along that worldline, which correspond locally to
the four translations, three rotations, and three boosts of a
four-dimensional Minkowski spacetime (even when the
actual spacetime is not Minkowski). The nontrivial physics
which enters into this is that corrections to the MP
equations—deviations due to the breakdown of Poincaré
invariance—depend only an object’s quadrupole and
higher-order moments. It is expected from the equivalence
principle that “sufficiently compact” objects should behave,
at least locally, as though the spacetime is flat, and a
calculation shows that the breakdown of the flat-spacetime
conservation laws first occurs at quadrupolar order.
What is relevant here is that electromagnetic wave

packets are associated with conserved stress-energy ten-
sors. Their bulk motion can therefore be described not only

by the spin Hall equations, but also by theMP equations.We
show in Sec. III A that there is a precise sense in which the
spin Hall equations arise as a special case of the MP
equations. Section III B exploits this connection between
the spin Hall equations and the MP equations to relate
quantities in the spin Hall equations to an underlying stress-
energy tensor. Section III C uses known results for the MP
equations to write down previously unknown conservation
laws associatedwith the spinHall equations. Finally, Sec. III
D explores the approximations used in the spin Hall
equations and discusses when those approximations hold.

A. Spin Hall equations from MP equations

Our first task is to show that the spin Hall equations are a
special case of the MP equations. We now show that the
spin Hall equations arise after choosing appropriate initial
data for the MP equations, fixing an appropriate definition
for the centroid of an extended wave packet, and imposing
a particular parametrization for the worldline of that
centroid.
A priori, it may appear that the spin Hall and MP

equations do not even describe the same physical quan-
tities. The spin Hall equations evolve xα and pα while tα is
specified independently. By contrast, the MP equations
evolve pα and Sαβ while xα is specified independently.7

This discrepancy is resolved by showing that in the present
context, (i) the angular momentum equation (3.1b) can be
trivially solved, and (ii) the specification of tα is equivalent
to the specification of xα.
To summarize our result, given any future-directed

timelike vector field tα and any constant “spin parameter”
sϵ, the MP equations reduce to the spin Hall equations, at
least up to terms of order ϵ2, when:
(1) The worldline parameter τ is chosen such that

_x · t ¼ p · t ð3:2Þ

for all time.
(2) The momentum pα is at least initially null.
(3) The angular momentum satisfies

Sαβpβ ¼ 0 ð3:3Þ

at least initially, and

6These are variously referred to as the Papapetrou, Mathisson-
Papapetrou, and Mathisson-Papapetrou-Dixon equations. The
same labels are commonly applied also to more general equations
which involve the quadrupole and higher-order moments of the
relevant object. As recounted in [66], Mathisson [67] appears to
have been the first to obtain the pole-dipole equations (3.1). He
did so before Papapetrou [68] and using a superior method.
Mathisson also derived some of the quadrupole terms which
are not included here. Dixon [69] derived all quadrupole and
higher-order terms, developing a full theory of multipole mo-
ments to all orders. This was later generalized to also allow for
self-interaction [70,71]. Here we refer to the test body pole-dipole
equations—without quadrupole or higher-order moments—as the
MP equations.

7The worldline which appears in the MP equations is to be
interpreted as a choice of origin for a multipole expansion. It does
not necessarily have any interpretation as a centroid. That
interpretation arises only when additional conditions are imposed
on the worldline. However, except in maximally symmetric
spacetimes, ignoring the quadrupole and higher-order moments
cannot be justified unless there is some sense in which the
worldline lies near an object’s “center.”
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Sαβtβ ¼ 0 ð3:4Þ

for all time.
(4) The magnitude of the angular momentum is at least

initially given by

SαβSαβ ¼ 2ðsϵÞ2: ð3:5Þ

The MP equations are reparametrization-invariant, so no
generality is lost by imposing condition 1 for all time, at
least so long as the worldline is not orthogonal to tα.
Equation (3.2) serves merely to use the object’s energy to
nondimensionalize the time parameter.
The interpretation of Sαβtβ ¼ 0, also known as the

Corinaldesi-Papapetrou spin supplementary condition
[33,73], is more substantial. As discussed in more detail
in Sec. IVA below, it is an implicit definition for xα. The
angular momentum of any object depends on the choice of
origin,8 and certain components of Sαβ can always be
eliminated by an appropriate choice of origin. Here, xα is
chosen to eliminateSαβtβ, which is proportional to the body’s
mass dipole moment with respect to an observer whose
4-velocity is tangent to tα. This definition allows xα to be
interpreted as a kind of centroid. However, that centroid
clearly depends on tα. Different choices for tα generically
result in different centroids, and each of these is in principle
observable. The different centroids represent slightly differ-
ent notions of “center” for an extended object. Relations
between them are discussed in Secs. IV B and IV C below.
A particular worldline can be fixed by choosing a

particular tα. There should therefore exist an evolution
equation for the tangent vector _xα to that worldline. To
derive that evolution equation, first combine (3.1b), (3.2),
and (3.4) to see that

0 ¼ D
dτ

ðSαβtβÞ
¼ ðp · tÞðpα − _xαÞ þ Sαβ _xγ∇γtβ: ð3:6Þ

Rearranging then results in the momentum-velocity
relation

_xα ¼ pα þ 1

p · t
Sαβ _xγ∇γtβ: ð3:7Þ

It follows that _xα andpα are not necessarily collinear. As long
as the operator δαβ − ðp · tÞ−1Sαγ∇βtγ can be inverted, (3.7)

determines _xα uniquely in terms of pα, Sαβ, and tα. In the
small-angularmomentum context considered here, the invert-
ibility requirement is trivially satisfied as long as p · t is not
too small. In particular, tα cannot be null and proportional to
pα. This is discussed further in Sec. IVA below.

With the centroid fixed by (3.4), the superficially similar
spin constraint (3.3) plays a very different role: It is
interpreted as a genuine physical restriction on the types
of systems which can be described by the spin Hall
equations. Combining (3.3) and (3.4) with (3.5) shows
that the angular momentum is at least initially9

Sαβ ¼ ϵsΣαβ ¼ ϵs
p · t

εαβγλpγtλ: ð3:8Þ

The spin constraint Sαβpβ ¼ 0 therefore amounts to a
particular choice of initial condition for the angular
momentum tensor. It implies that the spin is purely
longitudinal. As explained in Sec. V E below, this is
consistent with a wide class of high-frequency electromag-
netic wave packets. However, it is also shown there that
there are reasonable high-frequency wave packets which
are not consistent with (3.8). It is a genuine physical
restriction on the types of wave packets which can be
described by the spin Hall equations.
Our next task is to show that if Sαβ is initially given by

(3.8), it retains that form for all time. This can be
demonstrated by showing that the constraints (3.3) and
(3.5), as well as the null character of pα, are preserved
under time evolution. First consider the null character of
pα. If we assume that Sαβ ¼ OðϵÞ for all time, (3.1a) and
(3.7) immediately imply that

d
dτ

ðpαpαÞ ¼ Oðϵ2Þ: ð3:9Þ

If pαpα is initially zero, it can therefore grow to be at most
of order ϵ2. Again applying the MP equations and the
momentum-velocity relation,

D
dτ

ðSαβpβÞ ¼ −
1

p · t
½ðSγβpβÞ_xλ∇λtγ�pα þOðϵ2Þ: ð3:10Þ

If Sαβpβ is initially zero, as is assumed in condition 3
above, it therefore remains zero up to terms of order ϵ2.
Equation (3.3) is thus preserved under time evolution.
Lastly, use of these results together with (3.1b) shows that

d
dτ

ðSαβSαβÞ ¼ Oðϵ3Þ: ð3:11Þ

This implies that the initial spin magnitude (3.5) is
preserved under time evolution. Combining these results
shows that Sαβ retains the form (3.8) for all time, at least up
to terms of order ϵ2.

8Recall that this is true even in Newtonian physics.

9The given constraints determine Sαβ only up to an overall
sign. Here we fix the sign in order for the MP and spin Hall
equations to agree, which may also be viewed as fixing the
definition for the sign of s.
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The spin Hall equations (2.17) now follow, up to terms of
order ϵ2, by substituting (3.8) into (3.1a) and (3.7). They
may be viewed as the MP equations (3.1) specialized to
conditions 1–4 above. This result can also be established by
directly showing that (3.8) is a solution to (3.1b) and then
using that to deduce the momentum-velocity relation (3.7)
([35], Sec. 2.4.4.). Regardless, the spin Hall equations of
motion are equivalent to the equations of motion satisfied
by a massless dipolar particle.

B. The meaning of the momentum

Now that we have established that the spin Hall
equations follow from the MP equations, results known
for the latter may be applied to the former. It is natural to
ask what exactly is meant by the pα and the xα which
appear in the spin Hall equations. The fundamental object
in classical electromagnetism is the electromagnetic field,
so there must be a relation between that field and (say) the
momentum. Such a relation is not necessarily clear from the
derivation of the spin Hall equations in Ref. [42]. However,
the MP equations can be derived by first defining pα and
Sαβ as integrals over an object’s stress-energy tensor and
then using stress-energy conservation to deduce the evo-
lution equations for those quantities [69,71,74]. Imposition
of a centroid condition then provides a definition for xα in
terms of the underlying stress-energy tensor. To summarize,
the field can be used to construct the stress-energy tensor,
which can in turn be used to construct the momenta and the
centroid.
As the spin Hall equations are special cases of the MP

equations, we may identify momenta in the former with
momenta in the latter. There are however subtleties. In
particular, different definitions for the momenta may satisfy
formally identical evolution equations. This is especially
clear when the definitions differ by terms which are
considered “higher order.” However, it can also occur in
other cases. For example, if the triple ðxα; pα; SαβÞ satisfies
the MP equations together with an appropriate centroid
condition, so does ðxα; cpα; cSαβÞ, where c is any nonzero
constant. It follows that at best, the momenta in the two
frameworks can be identified only up to an overall constant.
Despite this, we choose to interpret the momenta in the

spin Hall equations to be exactly those which are typically
used in derivations of the MP equations and their general-
izations: If the object of interest has stress-energy tensor Tαβ,
and if that object’s worldtube is foliated by the 1-parameter
family of hypersurfaces Στ, the linear and angular momenta
at time τ are given by ([74], Eqs. (5.1) and (5.2))

pα ¼
Z
Στ

Kα
α0Tβ0

α0dSβ0 ; ð3:12aÞ

Sαβ ¼ 2

Z
Στ

σ½βHα�α0Tβ0
α0dSβ0 : ð3:12bÞ

Unprimed indices here are associated with xαðτÞ, which is
assumed to lie in Στ. Primed indices are associated with
the integration point x0. The bitensors Kα

α0 ðx; x0Þ and
σβðx; x0ÞHαα0 ðx; x0Þ are Jacobi propagators; they can be used
to form a basis for solutions to the geodesic deviation (or
Jacobi) equation along the geodesic segment which connects
x to x0. The Jacobi propagators can be computed explicitly
[74] using derivatives of Synge’s world function σðx; x0Þ,
which is defined to be one half of the squared geodesic
distance between its arguments [75,76]. In terms of this
world function, σα ¼ ∇ασ and

Hαα0 ¼ ½−∇α0σα�−1; Kα
α0 ¼ Hβα0∇ασβ; ð3:13Þ

where ½…�−1 denotes an inverse operation.
In flat spacetime and in inertial coordinates, the above

propagators reduce to

Kα
α0 ¼ δα

0
α ; σβHαα0 ¼ ðxβ − x0βÞηαα0 ; ð3:14Þ

where ηαα
0 ¼ diagð−1; 1; 1; 1Þ is the usual Minkowski

metric. Substituting these expressions into (3.12) recovers
the standard special-relativistic definitions [1,32] for the
linear and angular momenta. Even in curved spacetimes,
the special relativistic expressions for the momenta remain
good approximations to the exact expressions (3.12) if the
coordinates are taken to be Riemann normal coordinates
with origin xα.

C. Conservation laws

The specific choice of propagators appearing in the
momenta (3.12) may appear to be obscure. They were
chosen, in part, so that if κα is Killing,

Z
Στ

Tβ0
α0κ

α0dSβ0 ¼ pακ
α þ 1

2
Sαβ∇ακβ: ð3:15Þ

This relation is exact. It is useful because the integral on the
left-hand side—which is now identified as a linear combi-
nation of the linear and angular momenta—is conserved.
In fact, if κα is interpreted not as an ordinary Killing field,

but as a generalized Killing field,10 the momentum defi-
nitions (3.12) ensure that (3.15) remains valid in any
spacetime; cf. Refs. [71,72]. The space of generalized
Killing fields is always ten dimensional in four spacetime
dimensions. It also includes all ordinary Killing fields

10A generalized Killing field requires for its construction a
choice of worldline and a foliation [71,72]. Each generalized
Killing field is exactly Killing on the worldline in the sense that
Lκgab ¼ ∇aLκgbc ¼ 0 there. Away from the worldline, the
generalized Killing fields are exact symmetries for separation
vectors (defined via the exponential map) rather than for the
metric itself. Although the generalized Killing fields do not
necessarily satisfy Killing’s equation there, they do satisfy certain
projections of it.
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which may exist. If a generalized Killing field κα is not an
ordinary Killing field, pακ

α þ 1
2
Sαβ∇ακβ is not necessarily

conserved, at least exactly. However, that quantity is
approximately conserved in the pole-dipole context in
which the quadrupole and higher-order moments of a body
are neglected. That is, the approximation in which the MP
equations hold, and indeed, those equations are equivalent
to the statement that

pακ
α þ 1

2
Sαβ∇ακβ ¼ const: ð3:16Þ

for all generalized Killing fields κα. There are ten inde-
pendent constants associated with the ten generalized
Killing fields, and these completely determine the four
components of pα and the six components of Sαβ. The
coupling of the linear and angular momenta in the MP
equations (3.1) is interpreted as a consequence of the fact
that, e.g., a local rotation about one point on the worldline is
equivalent to both a rotation and translation when viewed at
another point on the worldline.
Regardless, (3.16) is most useful when κα is an ordinary

Killing field. In that case, the associated conservation law
can be simplified in the spin Hall context. There, the
angular momentum is given by Eq. (3.8) so

pα

�
κα þ

�
ϵs

2p · t

�
εαβγλtβ∇γκλ

�
¼ const: ð3:17Þ

A particular component of the linear momentum is there-
fore conserved. Precisely which component is conserved
generically depends on both the spin magnitude ϵs and on
the choice of tα.
There are, however, cases where the s-dependent terms

vanish in Eq. (3.17). First, the Killing field may be
covariantly constant. This occurs for all translations in
Minkowski spacetime, and also for null translations along
the direction of gravitational wave propagation in pp-wave
spacetimes. For different reasons, there can be no spin
correction to the conservation of energy in static space-
times, at least when tα and κα are both identified with the
static Killing field. The spin-dependent term in (3.17) will
then be proportional to t½α∇βtγ�, which vanishes on account
of the spacelike hypersurface which is orthogonal to tα in
that context. Statements of energy conservation in the
Schwarzschild spacetime are therefore independent of spin
in the spin Hall context. This is not the case in Kerr
spacetimes with nonzero angular momentum, which are
stationary but not static.
We have only discussed conservation laws associated with

Killing vector fields. Other conserved quantities, associated
with the existence of Killing-Yano tensors, are known (at
least approximately) for the massive MP equations coupled
to appropriate centroid conditions [77–82]. However, we

have not investigated whether or not these laws also hold for
the massless case of interest here.

D. Neglected terms

The spin Hall equations (2.17) are expected to be valid
only through first order in the “small” (although dimen-
sionful) parameter ϵ. Terms nonlinear in the spin have been
ignored, as have any contributions from the quadrupole and
higher-order moments of a wave packet’s stress-energy
tensor. Dixon has however found all multipolar corrections
to the MP equations [69], and using his results, the
neglected terms in the spin Hall equations can be estimated.
We now discuss how to perform these estimates and under
which conditions the spin Hall equations can be justified.
Dixon’s laws of motion may be found in, e.g., ([69],

Eqs. (13.7) and (13.8)). See also ([66], Eqs. (283), (284),
and (290)) for a version of those laws which is truncated at
quadrupolar order. Inspecting them shows that the MP
evolution equation (3.1a) for pα is corrected by a force term
proportional to

Jβγλρ∇αRβγλρ; ð3:18Þ

where Jβγλρ denotes the quadrupole moment of the wave
packet’s stress-energy tensor. The evolution equation (3.1b)
for Sαβ is corrected as well, acquiring a torque term
proportional to

Jγλρ½αRβ�
γλρ: ð3:19Þ

There are further forces and torques which couple a wave
packet’s octupole and higher-order moments to higher-
order derivatives of the Riemann tensor, and together, these
corrections provide a complete description for the evolution
of the linear and angular momentum along a given world-
line. If the worldline is fixed by adopting the centroid
condition (3.4), there is, in addition, an evolution equation
for xα which generalizes the spin Hall equation (2.17a).
That generalization differs from its spin Hall counterpart
due to the presence of terms involving the quadrupole and
higher-order moments, as well as terms which are nonlinear
in Sαβ.
To begin to estimate the consequences of neglecting all

of these corrections to the spin Hall equations, it is first
necessary to introduce a number of scales. To begin, the
background spacetime is assumed to be characterized by a
radius of curvature lR and a scale l∇R over which that
radius varies,

Rαβγλ ∼
1

l2
R
; ∇ρRαβγλ ∼

1

l2
Rl∇R

: ð3:20Þ

These estimates, and all the similar ones below, are
assumed to hold in a locally inertial frame which is
instantaneously at rest with respect to tα, the vector field
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chosen to fix the centroid. Another important scale is lt,
which characterizes variations in tα,

∇αtβffiffiffiffiffiffiffi
−t2

p ∼
1

lt
: ð3:21Þ

The length scales lR, l∇R, and lt characterize the external
environment.
We now introduce several additional scales which

characterize the wave packet itself. The first of these is
the energy

E≡ −
p · tffiffiffiffiffiffiffi
−t2

p : ð3:22Þ

In terms of a wave packet’s characteristic frequency ω, it is
suggested by (2.2) [and by (5.27) below] that E ¼ ϵω.
Another relevant scale is provided by the angular momen-
tum. Using (3.5), this is given by

Sαβ ∼ ϵjsj ¼ jsj
ω
E: ð3:23Þ

While the derivation of the spin Hall equations in [42]
suggested that s ¼ �1 for circularly polarized electromag-
netic wave packets, we shall see in Sec. V below that this is
true only when the wave packet has a relatively simple
structure; it must have “spin angular momentum” but not
“orbital angular momentum”. More generally, it follows
from the integral expression (3.12b) for Sαβ that a rough
bound is given by jsj < ωlw, where lw denotes a character-
istic width for the wave packet. Below, we assume that jsj
remains well below this bound in order not to violate the
high-frequency approximation. But even so, it may still be
that jsj ≫ 1.
Our final estimate involves the quadrupole moment

Jαβγλ. Unlike pα and Sαβ, this rescales under changes in
the worldline parameter. Using the dimensionless param-
eter τ which is associated with the normalization condition
(3.2), it may be shown that the quadrupole moment has
dimension ðlengthÞ4. It is generically of order

Jαβγλ ∼ ðElwÞ2: ð3:24Þ
Magnitudes of the higher-order moments are essentially the
same except for the involvement of higher powers of lw.
Regardless, these scalings imply that a wave packet can be
characterized by s, ω, E, and lw.
The approximations inherent in the spin Hall equations

may now be summarized as
(1) Terms nonlinear in the spin can be neglected in the

momentum-velocity relation: lt ≫ jsj=ω.
(2) The instantaneous quadrupole force can be neglected

in comparison with the spin-curvature contribution to
the linear momentum evolution: l2

w ≪ ðjsj=ωÞl∇R.

(3) The instantaneous quadrupole torque can beneglected
in comparison with the p½α _xβ� contribution to the
angular momentum evolution: l2

w ≪ ðjsj=ωÞl2
R=lt.

(4) The quadrupole torque negligibly affects the spin
over the dimensionless integration timescale
Δτ: EΔτ ≪ ðjsj=ωÞðlR=lwÞ2.

These constraints are all related to terms which are
neglected when going from Dixon’s laws of motion to
the MP equations, and finally to the spin Hall equations.
Separately, it is also necessary to assume that
(5) The wave packet is large compared with its wave-

length and it does not have nontrivial structure on
very small scales, ωlw ≫ jsj.

This is required for the approximate validity of geometric
optics, which was used in the derivation of the spin Hall
equations in [42]. Alternatively, if the MP equations are
used as a starting point, geometric optics must be used to
motivate the initial data considered here—for example the
null character of pα. This viewpoint is discussed further in
Sec. V below. Regardless, condition 5 must be imposed in
order for a pulse to maintain its structure. If it were violated,
a wave packet would rapidly diffract away.
Let us now examine the consequences of assumptions

1–5. The first of these implies that tα must vary sufficiently
slowly that lt ≫ jsjðwavelengthsÞ. Assumptions 1, 2, 3,
and 5 imply that the wave packet must be small compared
to the curvature scales,

lw ≪ minðlR;l∇RÞ: ð3:25Þ

This guarantees that, e.g., the octupole terms in the laws of
motion are negligible compared with quadrupole terms. It
is therefore unnecessary to impose that restriction sepa-
rately from the ones above.
Regardless, (3.25) does not exhaust the content of the

first three assumptions. When jsj ∼ 1, for example, they
imply much stricter bounds on lw. Writing those bounds in
dimensionless form while also incorporating assumption 5,

1 ≪ ωlw ≪ min

�
lRðω=ltÞ12; ðωl∇RÞ12

�
: ð3:26Þ

In this sense, lw cannot be either too large or too small
when compared with one wavelength.
Assumptions 1, 2, and 3 arise from comparing the

instantaneous magnitudes of different terms in the equations
of motion. Assumption 4 tells us how long those equations
can be reliably integrated. If lw is approximately constant, it
implies that the integrations remainvalid over (dimensionful)
timescales—or equivalently distances—of order

Δt≡ EΔτ ≪
jsj
ω
ðlR=lwÞ2 < l2

R=lw: ð3:27Þ

Note that the allowable integration time here is much smaller
when jsj ∼ 1 than it is for amaximally spinningwave packet.
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This is because smaller spin effects are more easily over-
whelmed by quadrupole corrections.
One subtlety in this discussion is that it is not necessarily

justified to assume that lw remains constant over an
integration timescale. Electromagnetic wave packets
almost11 invariably diffract and spread out as they propagate.
This differs from the behavior of (some) solids and strongly
self-gravitating fluids, which can—at least approximately—
maintain their dimension over long timescales. We estimate
the divergence of an electromagneticwave packet by analogy
with a Laguerre-Gauss beam in flat spacetime. If such a beam
has minimumwidth l�

w, its width at a distanceL ≫ l�
w away

from where that minimum occurs is of order [83]

lw ∼
Ljsj
ωl�

w
: ð3:28Þ

We assume that this relation holds not only for Laguerre-
Gauss beams, but generically. Further assuming that the
equations of motion are integrated beginning near the point
where the beam has attained its minimum width, so L ∼ Δt,
substituting (3.28) into (3.26) while also using (3.27) shows
that

Δt ≪ min

��
ωl2

R

lt

�1
2

;

�jsj12ωl2
R

l�
w

�1
3

; ðωl∇RÞ12
�
l�
w

jsj12 : ð3:29Þ

Increasing ω at fixed l�
w therefore increases the upper bound

on the integration time. This is consistent with what might
have been expected from improving the high-frequency
approximation. However, it is not possible to increase Δt
indefinitely: As shown by, e.g., (3.26) in the jsj ∼ 1 case,
increasingω results in a decreasing upper bound onl�

w. Also
note that the maximum allowable integration time decreases
when jsj ≫ 1.
One example which may be considered is that of a wave

packet propagating at a distance r from a static gravitating
object of mass M. In this case, the curvature scales are
lR ∼ rðr=MÞ1=2 and l∇R ∼ r. Furthermore, if tα is chosen
to be parallel to the static Killing field, lt ∼ rðr=MÞ.
This implies that lt ≫ lR ≫ l∇R in an approximately
Newtonian regime. In that regime, it follows from
assumptions 2, 3, and 5 that the minimum beam width
is bounded by

1 ≪ ωl�
w ≪ ðjsjωrÞ12: ð3:30Þ

It also follows from (3.29) that if r does not change too
much over the integration time,

Δt ≪ min

��
ωr
jsj

�1
2

;

�
ω

jsjMl̄w

�1
3

r

�
l�
w: ð3:31Þ

Both bounds together imply that Δt ∼ L ≪ r, which
significantly limits the applicability of the spin Hall
equations in astrophysical systems.
Except for assumption 5 above, our discussion has

focused only on neglected terms in the spin Hall equations
of motion. However, there are separate errors incurred by
using inaccurate initial data in those equations. As dis-
cussed in Sec. III A, it is assumed in the spin Hall context
that pα is null, SαβSαβ > 0, and Sαβpβ ¼ 0. However, we
show in the Appendix that in fact, there does not exist any
exact wave packet with these properties. An electromag-
netic field with nonzero angular momentum must have a
timelike momentum, not a null one. Nevertheless, there are
large classes of electromagnetic fields for which the spin
Hall initial data is approximately valid, and it is in that
context that the spin Hall equations should be understood.
We do not, however, attempt to estimate the errors incurred
by this aspect of the approximation.

IV. THE MANY CENTROIDS
OF EXTENDED OBJECTS

Whether an extended object is composed of “ordinary”
matter, electromagnetic fields, or anything else, it is not
possible to fully describe its location using only a single
worldline. There are nevertheless situations in which it is
useful to use a single worldline to describe the “averaged”
location of an extended object. This is the role of a centroid.
However, unlike in Newtonian mechanics, there are many
centroids which might reasonably be associated with
relativistic systems. One of these centroids might be more
useful in one context, while another might be more useful
in another context. The various centroids may be inter-
preted as a particular class of observables.
The centroids considered here are associated with

timelike vector fields. As stated in Sec. III A above, any
such vector field may be associated with a centroid by
requiring that Sαβtβ ¼ 0. This interpretation is verified in
Sec. IVA below. Distinctions between the various centroids
and the implications of those distinctions are discussed in
Secs. IV B–IV D.
Many of the ideas described in this section were

introduced long ago by, e.g., Pryce [30] and Møller
[31]. Some of those ideas have been rediscovered more
recently by different communities, who have introduced
different terminologies and interpretations. For example,
displacements between different centroids have, in certain
contexts, been described as relativistic Hall effects [26] and
also as Wigner [27] or Wigner-Souriau [28,29] translations.
Regardless, properties of different centroids are well-under-
stood for massive objects, where pα is timelike.
What has not been so carefully explored in the litera-

ture is the massless case, where pα is null. This section

11There are nondiverging beams in flat spacetime, but these
must be specially prepared and most do not decay rapidly enough
to have well-defined momenta. In a curved spacetime, it is likely
that except in very special circumstances, beam divergence will
be even more rapid due to the defocusing of null geodesics.
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discusses both the massive and massless cases together.
Our main new finding is concerned with the maximum
possible separation between different centroids associated
with the same physical object. For massive bodies, we
recover the classical result [31–33,84] that all possible
centroids are confined to a disk with finite radius. The set
of all centroids therefore localizes a massive object to
a finite region, providing some reassurance that the cen-
troid definition is a reasonable one. The massless case is
different, however. We find that massless spinning objects
cannot be localized in this way; they possess centroids
separated by arbitrarily large distances. This is potentially
problematic, and resolving it involves examining certain
subtleties of the approximations used to describe, e.g.,
electromagnetic wave packets. Our conclusion is that the
delocalization of massless objects is not physically relevant
because a wave packet cannot truly be massless.
The strategy taken in this section is to first discuss all

issues in flat spacetime and in inertial coordinates. All
arguments are then straightforward and all results are exact.
There are no subtleties involving neglected higher-order
terms in the laws of motion. Later, in Sec. IV D, we discuss
how—with appropriate caveats—the same results carry
over for sufficiently small objects in curved spacetime.

A. Defining a centroid

Our first task is to show that, as claimed above, the
choice of tα is equivalent to a choice of worldline. For
simplicity, we work in flat spacetime and use inertial
coordinates.
To begin, recall that the definitions (3.12) for an object’s

linear and angular momentum supposed that a particular
worldline had been fixed and that pα and Sαβ depended
only upon a parameter τ which had been associated with
that worldline. Those definitions are easily generalized to
avoid the introduction of any particular worldline. Instead,
if the hypersurfaces Στ are replaced by Σx, where xα is now
an arbitrary point (not yet associated with any particular
worldline), pα and Sαβ may be viewed as functions of that
point. With this redefinition in mind, as long as the Σx
foliate the support of the stress-energy tensor, stress-energy
conservation implies that the left-hand side of (3.15)
must be independent of xα for each Killing field κα. The
quantities pακ

α þ 1
2
Sαβ∇ακβ are therefore conserved in the

sense that they are independent of xα. Using this together
with the fact that the flat spacetime Killing fields can be
written as κα ¼ T α þ Bαβxβ, where the translation T α and
the rotation or boost Bαβ ¼ B½αβ� are arbitrary constants, the
linear and angular momenta associated with two different
points, x and x̃, must be related via

pαðx̃Þ ¼ pαðxÞ; ð4:1aÞ

Sαβðx̃Þ ¼ SαβðxÞ þ 2ðx − x̃Þ½αpβ�ðxÞ: ð4:1bÞ

This describes how the linear and angular momenta trans-
form under a shift of origin. In flat spacetime, these
relations are exact. They have the same form as the
Wigner-Souriau translations which arose in the study of
chiral fermions in Refs. ([28], Eq. 3.7) and ([29], Eq. 2.7).
They could also have been derived straightforwardly from
the momentum definitions (3.12) as well as (3.14).
Defining S̃αβ ≡ Sαβðx̃Þ together with the deviation vector

ξα ≡ x̃α − xα, it follows from (4.1b) that

Sαβtβ ¼ S̃αβtβ − ð−p · tÞξα − ðξ · tÞpα: ð4:2Þ

The claimed centroid condition (3.4) now amounts to the
vanishing of the left-hand side of this equation. And no
matter how x̃α has been chosen or what form S̃αβ may have,
that can be arranged by choosing xα such that

xα ¼ x̃α þ Tpα −
1

ð−p · tÞ S̃
αβtβ; ð4:3Þ

where T is an arbitrary parameter. Varying over all possible
values of this parameter recovers a worldline; what we call
the centroid associated with tα. This is true regardless of
whether pα is timelike or null. It may also be seen that if
∇βtα ¼ 0, the centroid is tangent to pα and T may be
identified with the worldline parameter τ which is asso-
ciated with the normalization condition (3.2). Both of these
statements can fail when tα is not constant.
Next, we verify that the centroid is deserving of its name.

First, recall that stress-energy conservation implies that
SαβðxÞ does not depend on the hypersurface Σx, as long as
all fields fall off sufficiently rapidly and all relevant
hypersurfaces completely cut through the support of the
stress-energy tensor. We may therefore choose Σx to be the
hyperplane which is orthogonal to tα at xα. Doing so, while
temporarily adopting inertial coordinates which are comov-
ing with tα, use of (3.12) and (3.14) shows that Sαβtβ ¼ 0

holds only when

xi ¼ 1

E

Z
x0iT00ðx0Þd3x0; ð4:4Þ

where

E ¼
Z

T00ðx0Þd3x0 ð4:5Þ

is the energy (3.22). This is the standard nonrelativistic
center of mass definition, but with the nonrelativistic mass
density replaced by the relativistic energy density Tαβtαtβ.
It follows that as long as Tαβtαtβ ≥ 0, the centroid must lie
inside the convex hull of the spatial support of the stress-
energy tensor. That the energy density should not be
negative could be viewed as a consequence of, e.g., the
dominant energy condition. That condition is satisfied by
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essentially all standard classical fields, including electro-
magnetic ones [85].
One subtlety which does not appear to have been

recognized before is that although the dominant energy
condition is satisfied by exact electromagnetic field con-
figurations, it is not necessarily satisfied by the approxi-
mate fields which might be used to describe high-frequency
wave packets. As discussed further in Sec. V E below, there
can exist timelike tα for which the approximate energy
density is positive in some regions and negative in others.
This has a dramatic consequence: The centroid of an
approximate wave packet can appear to lie arbitrarily far
from the wave packet itself. Those centroids are of course
spurious. They are a consequence of neglecting higher-
order terms in the stress-energy tensor. See further dis-
cussion in Secs. IV C and V E below.
Another comment which can be made is concerned with

the fact that it is common in the literature [31,69,71,86,87]
to use Sαβpβ ¼ 0 as a centroid condition instead of
Sαβtβ ¼ 0, particularly—but not exclusively [53,88–90]—
for objects with timelike momenta. This has the apparent
advantage that the results do not depend on extraneous
choices such as that of tα. And in the massive case, there is
nothing wrong with this; Eq. (3.7) remains valid with
tα ¼ pα. But this fails for massless objects. In that case,
(4.2) remains valid so replacing tα there by pα shows that x
must be a solution to

S̃αβpβ ¼ ½ðx̃ − xÞ · p�pα: ð4:6Þ

If the left-hand side here is nonzero and not proportional to
pα, no such solution exists. If the left-hand side is instead
proportional to pα, any xα which satisfies ðx − x̃Þ · p ¼
const will do. That restricts the centroid only to a three-
dimensional null hypersurface, not a worldline. In either
case, Sαβpβ ¼ 0 cannot be interpreted as a centroid con-
dition for massless objects. While this has been noted
before, details were scant [39,64].
In some of the literature which does attempt to use

Sαβpβ ¼ 0 as a centroid condition for massless objects
[52,88–90], there is a relation derived between the momen-
tum and the velocity which suggests that a centroid does
indeed exist. However, that relation involves a ratio whose
denominator (in a curved spacetime) is RαβγλSαβSγλ. The
momentum-velocity relation therefore fails in the flat
spacetime context of our present discussion. It also fails
at least somewhere on many worldlines which might be
considered in more general spacetimes. It does not appear
to us to be viable to attempt to impose a condition which
fails to be robust or to have reasonable limits. In particular,
the lack of a viable flat-spacetime limit implies that even
when Sαβpβ ¼ 0 does result in a unique worldline, it will
not describe a centroid in the sense of (4.4).

B. Displacements between different centroids

As there are many different centroids which may
be used to describe an extended object, it is natural to
ask how these are related to one another. The answer
has long been known for massive objects, as described in,
e.g., Refs. [32,33,84,91,92]. There, a canonical centroid
was defined via Sαβpβ ¼ 0 and separations were derived
between this centroid and others. As noted above, a
canonical centroid cannot be defined in this way when
considering massless objects. Nevertheless, only minor
changes are needed to consider the differences between
arbitrary reference centroids. We discuss both the massless
and massive cases below. For simplicity, we also continue
to work in flat spacetime and to use inertial coordinates.
Consider two future-directed timelike vector fields tα and

t̃α and the corresponding centroid conditions

Sαβtβ ¼ S̃αβ t̃β ¼ 0: ð4:7Þ

These define two worldlines, the points on which may be
denoted by xα and x̃α. Finding a unique displacement ξα ¼
x̃α − xα between them requires that points on each world-
line be identified in a particular way. It is convenient to do
so by supposing that

ξ · t ¼ 0; ð4:8Þ

in which case (4.2) and (4.7) imply that ξ · t̃ ¼ 0 and

ξα ¼ Sαβ t̃β
p · t̃

¼ −
S̃αβtβ
p · t

: ð4:9Þ

This displacement vector is exact in flat spacetime, is valid
for both massive and massless objects, and there is no
constraint on the nature of the angular momentum. One
immediate consequence is that all centroids coincide for
nonspinning objects.
Given Eq. (4.7), it is always possible to introduce a spin

vector Sα such that

Sαβ ¼ εαβγλSγtλffiffiffiffiffiffiffi
−t2

p ; ð4:10Þ

which is unique only up to arbitrary multiples of tα. In
terms of any such spin vector, the displacement (4.9) can be
written as

ξα ¼ εαβγλSβtγ t̃λ
ðp · t̃Þ

ffiffiffiffiffiffiffi
−t2

p : ð4:11Þ

This is a spacelike vector orthogonal to tα, t̃α, and Sα. It
may be used to relate any two centroids to one another. It
still does not make any assumptions regarding the nature of
the spin or the object’s mass.

SPIN HALL EFFECTS AND THE LOCALIZATION OF … PHYS. REV. D 105, 104061 (2022)

104061-13



If we now specialize to the spin Hall case where Sαβ is
given by Eq. (3.8) and pα is null, the spin vector may be be
identified with

Sα ¼ ϵs

� ffiffiffiffiffiffiffi
−t2

p

p · t

�
pα: ð4:12Þ

As this is proportional to pα, it may be described as a
“longitudinal spin.” The displacements in this case are
given by

ξα ¼ ϵs

�
εαβγλpβtγ t̃λ
ðp · tÞðp · t̃Þ

�
; ð4:13Þ

which are transverse to the momentum.

C. Localization of extended objects

As the choice of tα is essentially arbitrary, one might
hope that the centroids associated with different vector
fields are not too different. In particular, it is natural to ask if
they are all confined to a finite region—perhaps within the
convex hull of the spacelike support of the object’s stress-
energy tensor. As noted above, this does indeed follow
from (4.3) when Tαβtαtβ ≥ 0. It is also possible to show,
without using Tαβ, that the set of all possible centroids is
localized whenever pα is timelike; cf. ([91], Sec. 6.3) or
([32], Sec. 3.1b). We now discuss both the massive and the
massless cases and show that in the latter context, some
“centroids” can be arbitrarily distant from one another.
Assume that some future-directed timelike tα has been

fixed and measure all deviations as being with respect to the
centroid for which Sαβtβ ¼ 0. If points on the centroids
associated with t̃α and tα are identified using (4.8), it
follows from (4.11) that the square of the proper distance
between those points is

ξ2 ¼
�ðt · t̃Þ2 − t2t̃2

ð−t2Þðp · t̃Þ2
�
hαβSαSβ; ð4:14Þ

where

hαβ ≡ gαβ þ
t2 t̃αt̃β þ t̃2tαtβ − 2ðt · t̃Þtðαt̃βÞ

ðt · t̃Þ2 − t2t̃2
ð4:15Þ

projects vectors into the space orthogonal to both tα and t̃α

(when those vectors are not parallel).
To discuss the implications of this in the massive case, it

is convenient to now choose tα ¼ pα so all deviations
are measured with respect to the centroid defined by
Sαβpβ ¼ 0. Then (4.14) implies that

ξ ¼ S
m
ðV sin θÞ; ð4:16Þ

where S ≡ ð1
2
SαβSαβÞ1=2 characterizes the magnitude of the

spin, m≡ ð−p2Þ1=2 is the mass,

V ≡ ½1 − t2 t̃2=ðt · t̃Þ2�1=2 < 1 ð4:17Þ

is the relative speed between tα (¼ pα) and t̃α, and θ ∈
½0; π� is the angle between t̃α and Sα which would be
measured by an observer whose 4-velocity is tangent to tα.
It is evident from (4.16) that the magnitude of the centroid
displacement can be no larger than the Møller radius S=m.
All centroids are therefore confined to a disk with that
radius. Unless energy conditions are violated, there is a
sense in which the disk of centroids must be smaller than
the object itself.
The massless case is more subtle. For simplicity, we do

not discuss the most general massless case, but only the
spin Hall case in which the angular momentum is restricted
via Sαβpβ ¼ 0. As it is not possible to choose tα to be
proportional to pα in this context, we assume that tα and its
associated centroid have been fixed in some other way and
that all other centroids are measured with respect to it. The
distance between the centroid determined by tα and the one
determined by t̃α is then found by substituting (4.12) into
(4.14). This yields

ξ ¼ S
E

�
V sin θ

1 − V cos θ

�
ð4:18Þ

for a massless object, where E is the energy (3.22), and S,
V, and θ have the same meanings as in (4.16). In this case, it
also follows from (3.5) that S ¼ ϵjsj.
The prefactors are essentially the same in the massless

displacement (4.18) and its massive counterpart (4.16);
the energy E which appears in the massless case is
simply replaced by the mass m, which is of course the
energy in the zero-momentum frame. Up to this replace-
ment, both displacements coincide when V ≪ 1. Indeed, all
centroids determined by “nearly comoving” observers
satisfy ξ ≤ ðS=EÞV. In both the massless and the massive
cases, they are contained within the “generalized Møller
radius” S=E.
If the magnitude of V is not restricted, the massless and

massive displacements still coincide when t̃α is aligned,
antialigned, or orthogonal to Sα in a frame comoving with
tα. In the aligned and antialigned cases, there is no effect at
all: ξ ¼ 0. In the orthogonal case where θ ¼ π=2, we have
instead that the proper distance between two centroids is
ξ ¼ ðS=EÞV. Since V < 1, this is again bounded by
generalized Møller radius. In the massless case and for a
high-frequency wave packet, (5.27) below shows that this
bound can be written as

ξ <
S
E
¼ jsj

ω
; ð4:19Þ
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where ω denotes the angular frequency of the field in the
frame comoving with tα. The displacement is therefore less
than approximately jsj wavelengths. It is in agreement with
discussions of the relativistic Hall effect [26] and the
Wigner translations [27], where the energy centroid of a
beam with nonzero angular momentum was shown to
experience a similar shift after applying a boost orthogonal
to the direction of propagation.
What does not appear to have been noticed before is that

the maximum displacement in the massless case does not
occur at θ ¼ π=2 (except in the V ≪ 1 limit). For fixed V,
the angle which maximizes ξ in (4.18) is instead

θ ¼ cos−1 V: ð4:20Þ

Using that, the maximum displacement between massless
centroids is found to be

ξ ¼ S
E

�
Vffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − V2
p

�
: ð4:21Þ

This diverges as V → 1. Unlike in the massive case, the set
of all possible centroids is not bounded for a massless
spinning body. Arbitrarily large displacements can occur
between the centroids associated with tα and t̃α when those
vectors differ by ultrarelativistic boosts which are almost—
but not quite—parallel to the momentum.
This presents an apparent problem for the formalism.

One interpretation is simply that massless spinning objects,
whatever those may be, cannot be localized. However,
this is unacceptable if we interpret certain electromagnetic
wave packets as examples of massless spinning objects.
Physically realizable wave packets clearly can be localized,
and any worldlines which fail to lie near the support of their
stress-energy tensors are hardly deserving to be called
“centroids”. Therefore, either our centroid definition is
inappropriate or there is something wrong with our
interpretation of electromagnetic wave packets as spinning
objects with null momenta. The first possibility can be
discounted by recalling the discussion following (4.3).
The resolution is that the momentum of a spinning

electromagnetic wave packet is not actually null. It must be
timelike. We have been assuming above that the momen-
tum is null, and given reasonable assumptions, this is
approximately true for a high-frequency wave packet.
Indeed, it is true through leading and subleading orders
in a high-frequency approximation, and that is all that the
spin Hall equations can describe (as they omit terms of
order ϵ2). However, it is demonstrated in Sec. V D below,
using an explicit family of wave packets, that the momen-
tum is always timelike when going to one higher order. The
mass is found to be order ϵ=lw, where lw is again a
characteristic width for the wave packet. Using Eq. (4.16),
this implies that the maximum deviation between centroids
is of order lw. Although that is the intuitively expected

result, establishing it requires that calculations be per-
formed to a relatively high order. Truncating the approxi-
mation too early results in a conclusion which is not even
qualitatively correct.
At lower orders in the high-frequency approximation,

one can say only that the momentum is approximately null.
Mathematically, we are considering 1-parameter families of
wave packets in which, e.g., limϵ→0pαpα ¼ 0. However,
what is physically interesting is an example of such a
family at a particular (“small”) value of ϵ. In that context, a
vector can be “approximately” null only with respect to
some restricted class of observers. If a vector is actually
timelike, for example, there clearly exist some observers for
whom it appears to be stationary and some observers for
whom it appears to be “nearly null.” There is therefore a
sense in which the high-frequency approximation implic-
itly selects a kind of rest frame. It is reliable only in frames
which are not too highly boosted with respect to that
rest frame.

D. Centroids in curved spacetimes

The main results obtained thus far in this section are that
(i) the displacements between different centroids are given
by Eq. (4.11), (ii) the maximum magnitude of the dis-
placement is given by Eq. (4.16) when pα is timelike, and
(iii) the displacement is unbounded when pα is null. These
results were derived in flat spacetime, and in that context,
they are exact. There are no corrections due to higher-order
spin effects, quadrupole moments, or anything else. We
now discuss the sense in which our results remain at least
approximately valid for sufficiently small objects in generic
spacetimes. One would expect from the equivalence prin-
ciple that everything remains at least approximately valid
even in curved spacetimes, and indeed it does.
We begin by obtaining a curved spacetime form for the

transformation law (4.1b) between the angular momentum
evaluated about different points xα and x̃α. It is useful to
first use the exponential map to define a deviation vector ξα

between those points, so

x̃α ¼ expx ξβ: ð4:22Þ

In a Riemann normal coordinate system with origin xα, this
takes the standard form ξα ¼ x̃α − xα. Regardless of the
coordinate system, the displacement vector is the negative
gradient of Synge’s world function, ξα ¼ −σαðx; x̃Þ. We
can use this to find covariant Taylor expansions in the style
of, e.g., ([76], Sec. 6). Letting primed indices be associated
with x̃α and unprimed ones with xα, the relevant expansion
for the angular momentum tensor is

S̃α
0β0 ¼ gα

0
αgβ

0
β½Sαβ þ ξγ∇γSαβ þOðξ2Þ�; ð4:23Þ

where gα
0
α denotes the bitensor which parallel propagates

vectors from xα to x̃α along the geodesic segment which
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connects those points. A similar expansion may also be
used to relate the linear momentum at xα to the linear
momentum at x̃α.
Regardless, continuing requires that we compute the

gradients of pα and Sαβ. While the argument can be gen-
eralized, consider for simplicity displacements xα ↦ x̃α

which lie entirely within the same “constant-time” hyper-
surface, so Σx ¼ Σx̃. Then, associating double-primed
indices with an integration point x00, it follows from
(3.12) that

ξγ∇γpα ¼ ξγ
Z
Σx

dSβ00Tβ00
α00∇γKα00

α; ð4:24aÞ

ξγ∇γSαβ ¼ 2ξγ
Z
Σx

dSβ00Tβ00
α00 ðHα00 ½ασβ�γ þ∇γHα00 ½ασβ�Þ:

ð4:24bÞ

All bitensors here are evaluated at ðx; x00Þ. If the maximum
distance, within Σx, between x and any integration point
where Tβ00

α00 ≠ 0 is of order lw, standard coincidence
limits for the world function [76] imply that σαβ ¼ gαβ þ
Oðl2

w=l2
RÞ, Kα0

α ¼ Hα0
α þOðl2

w=l2
RÞ, and ∇γHα0

α and
∇γKα0

α are both of order lw=l2
R, where lR denotes the

curvature length scale introduced in Sec. III D. Moreover,
using the energy (3.22) to estimate the error terms, it
follows that through the first order in ξα,

p̃α0 ¼ gαα0pα þOðEξlw=l2
RÞ; ð4:25aÞ

S̃α
0β0 ¼ gα

0
αgβ

0
βðSαβ þ 2p½αξβ�Þ þOðEξl2

w=l2
RÞ: ð4:25bÞ

In flat spacetime, the error terms here are exactly zero;
cf. (4.1b).
We would now like to use (4.7) to associate one centroid

x̃α with the timelike vector field t̃α
0
and another centroid xα

with the timelike vector field tα. Repeating the same steps
as in Secs. IVA and IV B, it is again convenient to identify
points on both worldlines using ξ · t ¼ 0, which we now
assume to be compatible with the assumption that Σx ¼ Σx̃.
Equation (4.25) can then be shown to imply that
gαα0ξαt̃α

0 ¼ Oðξl2
w=l2

RÞ. It also follows that (4.9) general-
izes to

ξα ¼ gββ0Sαβ t̃β
0

gγγ0pγ t̃γ
0 þOðξl2

w=l2
RÞ: ð4:26Þ

This assumes that ξ is not so large that terms of order ξ2

become important in (4.25). More generally, the basic
special relativistic form for this expression remains valid
when lw and ξ are both much smaller than lR. Most of the
above special-relativistic results remain valid in this con-
text. Technically, however, one can no longer conclude that
there are massless centroids which are arbitrarily distant

from one another, as then ξ must be large. It is nevertheless
clear from the flat spacetime limit that massless objects
must still be problematic in curved spacetime.

E. The irrelevance of centroid conditions

One important consequence of Eq. (4.26) is that the
centroid depends only (quasi)locally on the timelike vector
field used to define it. If tα and t̃α coincide in, say,
neighborhoods of emission and observation points, what-
ever they do in between the emitter and the observer is
irrelevant; the associated centroids will coincide at both the
beginnings and ends of their journeys. This is illustrated
schematically in Fig. 1. Physical meaning can be attributed
to tα only in the neighborhoods of the emission and the
observation events. What it does elsewhere is essentially
irrelevant.
As a consequence, the effects of different spin supple-

mentary conditions can be understood without repeatedly
solving the equations of motion with different conditions.
Solving the Mathisson-Papapetrou equations—whether
massive or massless—with the spin supplementary con-
dition Sαβtβ ¼ 0 requires an apparently extraneous speci-
fication of the vector field tα. Indeed, that vector field must
be specified not only at a point, but in a neighborhood of
the entire trajectory. The observation of the previous
paragraph shows that all that matters is the specification
of the vector field near the emission and the observation
points, at least if the displacement never gets too large. It
may also be noted that it is only near the emitter and source
that there necessarily exists a natural choice for tα; it may

FIG. 1. A massless spinning object, as described by two
different families of timelike observers, tα and t̃α. The displace-
ment between two points on the worldlines xα and x̃α is described
by the shift vector ξα. Since tα ¼ t̃α near the emitter and the
receiver, we have ξα ¼ 0 in these regions, and the two worldlines
coincide, up to relative error terms of order ðlw=lRÞ2.
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be identified near those points with the 4-velocities of the
emitter and the observer.
The transformations (4.25) and (4.26) may also be

interpreted as a way to generate new solutions to the
equations of motion. Given a triple ðxα; pα; SαβÞ which
satisfies the MP equations with the centroid condition
Sabtb ¼ 0, the triple (expxξ, p̃α̃, S̃

α̃ β̃) satisfies those same
equations but with the centroid condition S̃α̃ β̃ t̃β̃ ¼ 0. This
statement is exact in flat spacetime and approximate more
generally.

V. MOMENTA OF CIRCULARLY POLARIZED
WAVE PACKETS

As discussed in Sec. III, there are essentially only two
conditions required for the validity of the spin Hall equations
in the formconsideredhere. First, the effect of the quadrupole
and higher-order moments must be negligible. When this
occurs can be estimated using the arguments in Sec. III D.
However, the spin Hall equations also require for their
validity that pα be null and that Sαβ have the form (3.8).
These may be viewed as restrictions on the initial data for the
MP equations. The claim has been that such conditions
model an electromagnetic wave packet. However, this
connection appears in the literature as an unsubstantiated
(and usually unstated) hypothesis. It is implied by results in
the Appendix that the spin Hall initial data cannot hold
exactly, at least when s ≠ 0. The purpose of this section is to
understand if there is an appropriate approximate sense in
which the spin Hall initial data is actually associated with
electromagnetic wave packets.
We show that to the expected orders, there are indeed

generic wave packets which are compatible with the spin
Hall initial data. Nevertheless, we show that those data
inevitably break down at one higher order; the momentum
becomes timelike, for example. We also show that there are
reasonable wave packets which are not even approximately
described by the spin Hall initial data. For them, Sαβpβ is
nonzero even at the lowest nontrivial order. Said differently,
the spin is not purely longitudinal. The existence of these
exceptions emphasizes that in applications, the connection
between the “microscopic” (the electromagnetic field
structure) and the “macroscopic” (the spin Hall equations
or generalizations) is nontrivial and must be considered on
a case-by-case basis.
All calculations in this section are performed in flat

spacetime and in inertial coordinates. However, as we are
concerned only with finding initial linear and angular
momenta for the MP equations, all calculations for suffi-
ciently small wave packets are confined to small regions in
spacetime. Flat spacetime calculations therefore remain
excellent approximations for sufficiently compact wave
packets even in curved spacetimes, as long as the inertial
Minkowski coordinates are reinterpreted as an appropriate
system of Riemann normal coordinates.

A. A family of wave packets

Our first task is to construct a sufficiently general class of
approximate electromagnetic wave packets. We work in a
high-frequency approximation and consider a family of
vector potentials Aα. These vector potentials are assumed to
be given by the asymptotic series

Aα ¼ Re

�X∞
n¼0

ϵ̃nþ1ψ ðnÞ
α eiu=ϵ̃

�
; ð5:1Þ

where the amplitudes ψ ðnÞ
α and the eikonal u are indepen-

dent of the small parameter ϵ̃ > 0. Note that the ϵ̃ which
appears here is related to, but generically distinct from, the
ϵ which appears in the spin Hall equations [and in (2.1)]. If
c is any constant, Aα=ϵ̃ is invariant, at leading order, under
all transformations where u ↦ cu and ϵ̃ ↦ cϵ̃. It is
convenient for now to avail of this ambiguity by allowing
ϵ̃ to differ from ϵ by a convenient constant. Then u is not
restricted to have units ðlengthÞ2.
Again defining the leading-order wave vector kα ≡

−∇αu, Maxwell’s equations and the Lorenz gauge con-
dition imply that u must be a solution to the eikonal
equation

∇u ·∇u ¼ k · k ¼ 0: ð5:2Þ

Maxwell’s equations and the gauge condition also imply
that, for all n ≥ 0, the amplitudes must satisfy the transport
equations

½2ðk · ∇Þ þ ð∇ · kÞ�ψ ðnÞ
α ¼ −i□ψ ðn−1Þ

α ; ð5:3Þ

and the constraint equations

kαψ ðnÞ
α ¼ −i∇αψ ðn−1Þ

α ; ð5:4Þ

where ψ ð−1Þ
α ≡ 0 [39,42]. These equations are hierarchical.

A solution to the n ¼ 0 equation is required to solve the
n ¼ 1 equation, an n ¼ 1 solution is required to solve the
n ¼ 2 equation, etc.
We now specialize to fields which are, at least at the

leading order, plane fronted,12 and traveling in the þz
direction in the inertial coordinate system (t, x, y, z). This
can be represented mathematically by choosing the eikonal

u ¼ t − z: ð5:5Þ

It is then convenient to solve the transport and constraint
equations by interpreting u as a null coordinate and by
defining

12A plane-fronted wave is not necessarily a plane wave. It is
not necessarily uniform on each wavefront.
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v≡ 1

2
ðtþ zÞ; ζ ≡ 1ffiffiffi

2
p ðxþ iyÞ: ð5:6Þ

The four scalars (u, v, ζ, ζ̄) form a null coordinate system in
which the Minkowski line element reduces to

ds2 ¼ 2ðdζdζ̄ − dudvÞ: ð5:7Þ

These coordinates can be associated with a complex null
tetrad ðkα; nα; mα; m̄αÞ via

kα ≡ −∇αu; nα ≡ −∇αv; mα ≡∇αζ: ð5:8Þ

The only nonvanishing inner products among this tetrad are
m · m̄ ¼ 1 and k · n ¼ −1. In terms of it, the metric is
gαβ ¼ 2½mðαm̄βÞ − kðαnβÞ�. Note that, unlike in Sec. II, the
mα and m̄α here are ordinary fields on spacetime. They are
not defined over the cotangent bundle.
We now restrict to waves which are not only plane

fronted but also circularly polarized at leading order.

Mathematically, this is taken to mean that ψ ð0Þ
α is assumed

to be null (and nonzero). The constraint equation (5.4) then
implies that the leading-order amplitude must be propor-
tional either to mα þ χkα or to m̄α þ χkα, where χ is any
scalar [see (2.7)]. Terms proportional to kα are pure gauge
at leading order, although not necessarily at higher orders.13

Regardless, we set χ ¼ 0 for simplicity. Circularly polar-
ized fields are then described by

ψ ð0Þ
α ¼ ψmα ð5:9Þ

or ψ ð0Þ
α ¼ ψm̄α, depending on the handedness of the field.

Unlike in Sec. II, we do not assume that ψ which appears
here is necessarily real. Use of Eq. (5.3) shows that it is
independent of v but otherwise arbitrary: ψ ¼ ψðu; ζ; ζ̄Þ.
We may now substitute the leading-order amplitude (5.9)

into the transport equation (5.3) and the constraint equa-

tion (5.4) in order to derive the subleading amplitude ψ ð1Þ
α .

One solution is

ψ ð1Þ
α ¼ i∂ ζ̄ðψnα − vmα∂ζψÞ: ð5:10Þ

Two orders beyond geometric optics, we find that

ψ ð2Þ
α ¼ 1

4
∂ ζ̄□½vð2ψnα − v∂ζψmαÞ�: ð5:11Þ

Together, (5.1), (5.9), (5.10), and (5.11) describe an
approximate family of circularly polarized electromagnetic
fields in flat spacetime. That family is parametrized by the

geometric-optics scalar amplitude ψ and by the constant ϵ̃,
which is related to the inverse frequency of the field. Its
properties are explored in the remainder of this section. If
desired, fields with the opposite helicity can be considered
by swapping mα and m̄α in the amplitudes (5.9), (5.10),
and (5.11).
Vector potentials are not directly measurable. More

interesting are the field strengths Fαβ, and for any vector
potential with the form (5.1), a direct calculation shows that
these are given by

Fαβ ¼ 2Im
X∞
n¼0

ϵ̃nðk½αψ ðnÞ
β� þ i∇½αψ

ðn−1Þ
β� Þeiu=ϵ̃: ð5:12Þ

For the amplitudes constructed above, this evaluates to

Fαβ ¼ 2Im
���

ψ −
1

2
iϵ̃v2□ðv−1ψÞ − 1

8
ϵ̃2v2□2ψ

�

× k½αmβ� þ ϵ̃2∂2
ζ̄
ψn½αm̄β� þ iϵ̃∂ ζ̄

�
ψ −

1

2
iϵ̃v□ψ

�

× ðk½αnβ� −m½αm̄β�Þ
�
eiu=ϵ̃

�
þOðϵ̃3Þ: ð5:13Þ

At leading (geometric optics) order, Fαβ is a linear
combination of k½αmβ� and k½αm̄β�. At subleading order,
its tensorial structure changes; it acquires terms propor-
tional to k½αnβ� and m½αm̄β�. These corrections may be
interpreted as modifying the apparent “polarization state” at
higher orders. More broadly, the tensorial structure of the
electromagnetic field may alternatively be understood by
noting that the Newman-Penrose scalars associated with the
tetrad (kα, nα,mα, m̄α) satisfyΦi ¼ Oðϵ̃2−iÞ for all i ¼ 0, 1,
2. At leading order, there is only Φ2. At subleading order,
there is also Φ1. At two orders beyond geometric optics,
there is also Φ0. This is a special case of the peeling result
for high-frequency fields which was obtained in [39].

B. Stress-energy tensors

Our goal is to compute linear and angular momenta,
which are determined by integrals of stress-energy tensors.
The electromagnetic stress-energy tensor is

Tαβ ¼
1

4π

�
FαγFβ

γ −
1

4
gαβFγλFγλ

�
; ð5:14Þ

and through leading and subleading orders, substitution of
Eq. (5.13) into this expression results in

Tαβ ¼
1

8π
f½jψ j2 þ ϵ̃v2Imðψ̄□ðψ=vÞÞ�kαkβ

− 4ϵ̃Imðψ̄∂ ζ̄ψkðαm̄βÞÞg þOðϵ̃2Þ: ð5:15Þ
In regions where jψ j ≠ 0, this can be written more
suggestively as

13Terms in ψ ð0Þ
α which are proportional to kα are physically

equivalent to an ordinary (gauge-invariant) geometric optics field
added to ψ ð1Þ

α ([39], Appendix B).
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Tαβ ¼
1

8π
½jψ j2þ ϵ̃v2Imðψ̄□ðψ=vÞÞ�k̃αk̃β þOðϵ̃2Þ; ð5:16Þ

where the covector

k̃α ≡ kα − 2ϵ̃Im½ð∂ ζ̄ lnψÞm̄α� ð5:17Þ

which appears here can be interpreted as a modified wave
vector. Like the leading-order wave vector, this is null:
k̃αk̃

α ¼ Oðϵ̃2Þ. At leading order, Tαβ ∝ kαkβ þOðϵ̃Þ, and it
is somewhat remarkable that at one order higher, this is
modified only to Tαβ ∝ k̃αk̃β þOðϵ̃2Þ. All observers there-
fore agree on the direction of momentum density, even at
the subleading order.
Similar factorizations of the stress-energy tensor14 have

been discussed in more general contexts in Ref. [39]. A
result like the one found here was shown to arise whenever
kα is shear-free. If there is shear in the leading-order rays,
different observers generically disagree on the direction of
the subleading momentum density. Moreover, even in the
shear-free case, observers typically disagree on the direc-
tion of the momentum density once terms of order ϵ̃2 are
included; stress-energy tensors at that order are generically
more complicated.

C. Linear and angular momenta

The stress-energy tensor in Eq. (5.16) may be used to
compute the net linear momentum on a t ¼ const hyper-
surface. Using Eq. (3.12), and putting primes on integration
variables and on the objects which depend on the integra-
tion variables,

pα ¼
1

8π

Z
d3x0½jψ 0j2 þ ϵ̃v02Imðψ̄ 0□0ðψ 0=v0ÞÞ�k̃α þOðϵ̃2Þ:

ð5:18Þ
It follows from Eq. (5.17) that pαpα ¼ Oðϵ̃2Þ; the momen-
tum is null through leading and subleading orders.
However, it is not necessarily true that pα is proportional
to kα beyond leading order.
More interesting is the angular momentum Sαβ, which

we compute about a point xα ¼ ðt; xiÞ which lies within the
hypersurface of integration. There are two interesting sets
of components. First, using Eqs. (3.12) and (5.16),

Si0 ¼ 1

8π

Z
d3x0½jψ 0j2 þ ϵ̃v02Imðψ̄ 0

□
0ðψ 0=v0ÞÞ�

× ðx0 − xÞi þOðϵ̃2Þ: ð5:19Þ
This can be interpreted as the dipole moment of the
energy density with respect to a static observer at xα.

The other relevant components of the angular momentum
tensor are

Sij ¼ ϵ̃

2π
Im

Z
d3x0ðψ̄ 0∂ ζ̄0ψ

0Þm̄½iðx0 − xÞj�

− 2k½iSj�0 þOðϵ̃2Þ: ð5:20Þ

D. Vanishing phase gradients

The linear and angular momenta simplify considerably
when the complex phase of ψ is constant. Looking first at
the linear momentum, if ∇α argψ ¼ 0 and if jψ j decays to
zero sufficiently rapidly at large transverse distances,
Eq. (5.18) reduces to

pα ¼
1

8π

�Z
d3xjψ j2

�
kα þOðϵ̃2Þ: ð5:21Þ

The subleading contribution to the linear momentum
vanishes and pα is seen to be proportional to the constant
leading-order wave vector kα. It is important to note,
however, that the net momentum is in general distinct
from the momentum density. The former is proportional to
kα while the latter is proportional to k̃α. An observer with a
high-resolution detector might therefore ascribe an appar-
ent “direction of propagation” which differs, at Oðϵ̃Þ, from
the direction of pα. More than this, the direction of the
momentum density varies slightly across the wave packet.
When the phase gradient vanishes, Eq. (5.19)

simplifies to

Si0 ¼ 1

8π

Z
d3x0ðx0 − xÞijψ 0j2 þOðϵ̃2Þ: ð5:22Þ

Here too the subleading contribution vanishes.
Furthermore, Eq. (5.20) reduces to

Sij ¼ 2iϵ̃p0m̄½imj� − 2k½iSj�0 þOðϵ̃2Þ: ð5:23Þ

One particularly simple choice for xi arises by enforcing
the centroid condition (3.4). Temporarily assume that tα ¼
ð1; 0; 0; 0Þ so that condition reduces to Si0 ¼ 0. It then
follows from Eq. (5.22) that this centroid condition implies
that

xi ¼ 1

8πE

Z
d3x0jψ 0j2x0i þOðϵ̃2Þ; ð5:24Þ

where E is again given by Eq. (3.22). In terms of the
bivector Σαβ which is defined by Eq. (2.16),

Sαβ ¼ ϵ̃EΣαβ þOðϵ̃2Þ: ð5:25Þ

The angular momentum therefore satisfies Sαβpβ ¼ Oðϵ̃2Þ.
An angular momentum which differs from this only by a
sign can be obtained by considering an otherwise-identical

14Reference [39] discusses these factorizations for the aver-
aged stress-energy tensor. However, averaging has no effect in the
circularly polarized case considered here.
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field with opposite helicity, which is accomplished by
replacing the mα which appears in Eq. (5.9) with m̄α.
Equation (5.25) matches the form (3.8) for Sαβ, assuming

that s ¼ 1 and

ϵ ¼ ϵ̃E: ð5:26Þ

The two small parameters we have introduced are therefore
proportional to one another. Physically, either one can be
interpreted as related to the leading-order angular frequency
which would be seen by an observer with 4-velocity t̃α:

ω ¼ −ðk · t̃Þ=ϵ̃ ¼ −ðp · t̃Þ=ϵ: ð5:27Þ

To summarize, we have found sufficient conditions for
the physical picture suggested in Sec. III, namely that pα is
null, s ¼ �1, and Sαβpβ ¼ 0. This is valid, up to terms of
order ϵ̃2, at least for all decaying, circularly polarized
electromagnetic wave packets with planar wavefronts and
vanishing phase gradients. It is shown in Sec. V E below
that this picture can change when ψ has a nontrivial phase
gradient.

1. Violation of energy conditions

It was shown in Sec. IVabove that ifpα is null and Sαβ has
the form (3.8), the set of all possible centroids determined by
Sαβtβ ¼ 0 is not bounded in spacelike directions (when
varying over all timelike tα). This suggests that theworldlines
we refer to as centroids are perhaps poorly named; it may be
that some of them are nowhere near the wave packet of
interest. It is well known that this type of situation can occur
for theNewtonian center ofmass if themass density switches
sign.15 Relativistically, avoiding this kind of pathology
involves requiring that the stress-energy tensor satisfy
appropriate energy conditions. And in an exact context,
electromagnetic stress-energy tensors with the form (5.14)
are known to satisfy all standard energy conditions [85].
However, it is not necessarily true that the approximate
electromagnetic stress-energy tensors of interest here also
satisfy those energy conditions. We now show that they do
not. It is this violation of energy conditions which is behind
the peculiarly distant centroids associated with massless
spinning objects.
Suppose that t̃α has a form which maximizes the centroid

displacements in Sec. IV C. Using our null tetrad (5.8), one
possibility which is compatible with (4.20) is

t̃α ¼
1
2
kαð1þ V2Þ þ nαð1 − V2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − V2
p þ Vffiffiffi

2
p ðmα þ m̄αÞ; ð5:28Þ

where V ∈ ½0; 1Þ denotes the relative speed between t̃α and
(1,0,0,0). In the case of interest here, where there is no
phase gradient, (5.16) and (5.17) imply that if Oðϵ̃2Þ terms
are ignored,

Tαβ t̃αt̃β ¼
jψ j2
8π

ðk̃ · t̃Þ2;

¼ 1 − V2

8π

�
jψ j2 þ ϵ̃V∂yjψ j2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − V2
p

�
: ð5:29Þ

For any nontrivial bounded wave packet, there will be some
regions in which ∂yjψ j2 is negative and other regions in
which it is positive. Furthermore, the first term here can
always be made negligible compared to the second by
choosing V sufficiently close to 1. It follows that if Oðϵ̃2Þ
terms are ignored, there are timelike vectors t̃α for which
Tαβ t̃αt̃β is negative in some parts of the wave packet and
positive in others; the energy density switches sign. This
amounts to a violation of the weak, strong, and dominant
energy conditions.
As noted above, this violation is an artifact of our

approximation. All exact electromagnetic stress-energy
tensors satisfy the weak, strong, and dominant energy
conditions. That there is a problem with our approximation
is not difficult to see in this context, as we are finding a
“subleading” term which dominates over the “leading”
term. It is not particularly surprising that in such a scenario,
terms of even higher order might not be negligible. It is less
clear, however, that simply assuming that a wave packet is
both massless and spinning is enough for it to be associated
with spurious, arbitrarily distant centroids. That is, how-
ever, a consequence of the fact the high-frequency approxi-
mation breaks down for certain highly boosted observers.

2. Momentum is timelike, not null

It is shown in the Appendix that it is impossible for a
truly massless wave packet to have nonzero spin. It is
however clear that an electromagnetic wave packet can
have nonzero spin. The conclusion is that spinning electro-
magnetic wave packets cannot truly be null. We now show
that our wave packets are timelike once we include terms
two orders beyond those in geometric optics.
To establish this, first note that the electromagnetic field

(5.13) can be used to compute the stress-energy tensor to
one higher order than shown in Eq. (5.16). That may in turn
be used to compute pα. The full stress-energy tensor is
complicated, however. The calculation can be considerably
simplified by noting that all we need to determine the
causal character of pα is the Oðϵ̃2Þ contribution to k · p.
That can in turn be computed by showing only that

Tαβkβ ¼ −
ϵ̃2

16π
j∇ψ j2kα þOðϵ̃3Þ: ð5:30Þ

15As an example, suppose that two masses, mþ > 0 and
m− ¼ 2δ −mþ, are placed on a line at coordinates �lw. Then
the center of mass lies at ðmþ=δ − 1Þlw, which can be anywhere
at all for appropriate choices of δ.
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This result and (5.21) imply that

p · p ¼ −
ϵ̃2E
8π

Z
d3x0j∇0ψ 0j2 þOðϵ̃3Þ; ð5:31Þ

where E again denotes the energy seen by a stationary
observer. Note that because ∂vψ ¼ 0, this is always
negative; every localized electromagnetic wave packet of
the given form has the small nonzero rest mass

m ¼ ϵ̃

�
E
8π

Z
d3x0j∇0ψ 0j2

�
1=2

þOðϵ̃2Þ: ð5:32Þ

If ∇ψ ∼ ψ=lw for some length scale lw, this suggest that
m ∼ ϵ̃E=lw ¼ ϵ=lw. Results on the localization of massive
objects which were reviewed in Sec. IV C therefore imply
that all centroids associated with these wave packets are in
fact confined to a disk whose radius is of order S=m ∼ lw.
This is the expected result. We emphasize, however, that it
cannot be established—even qualitatively—in the massless
approximation.

E. Nonvanishing phase gradients and the limitations
of the spin Hall framework

If the phase gradient of ψ does not vanish, the phy-
sical picture associated with the spin Hall equations
might not hold. First, it is not necessarily true that s ¼
�1 for a circularly polarized electromagnetic wave packet.
Additional contributions to this parameter can arise. This is
referred to as orbital (as opposed to spin) angular momen-
tum in the optics literature [93,94]. While the derivation of
the spin Hall equations in [42] did not allow for the
possibility of orbital angular momentum, their derivation
as a special case of the MP equations makes it clear that
orbital angular momentum requires no essential changes; s
merely takes on different integer values in the spin Hall
equations.16 A more dramatic consequence of allowing
nontrivial phase gradients is that it becomes possible to
construct wave packets with spin vectors which are not
longitudinal; Sαβpβ ≠ 0 even at the leading nontrivial order.
In these cases, the form (3.8) for the angular momentum is
incomplete and the spin Hall equations are no longer valid.
Even then, however, the MP equations can still be applied.
We first consider the possibility of nonlongitudinal spin.

If the centroid condition is imposed with tα ¼ ð1; 0; 0; 0Þ, it
follows from (5.20) that

Sαβpβ ¼ ESαβkβ þOðϵ̃2Þ

¼ ϵ̃E
4π

Im

�
m̄α

Z
d3x0ðz0 − zÞψ̄ 0∂ ζ̄0ψ

0
�
þOðϵ̃2Þ:

ð5:33Þ

A nontrivial transverse angular momentum therefore
requires that ψ̄∂ ζ̄ψ have a nontrivial moment along the
optical axis. That this is possible can be illustrated by
examples. Suppose that

ψ ¼ jψ jeixu=l2⊥ ; ð5:34Þ

where l⊥ > 0 is a parameter. Also assume that

Z
du0u0jψ 0j2 ¼ 0 ð5:35Þ

so the z component of the centroid lies at z ¼ tþOðϵ̃Þ.
Substitution into (5.33) then shows that

Sαβpβ ¼ −
ϵ̃Eðmþ m̄Þα
8

ffiffiffi
2

p
πl2⊥

Z
d3x0ju0ψ 0j2 þOðϵ̃2Þ; ð5:36Þ

This is nonzero for any nontrivial ψ . It follows that for this
class of wave packets, Sαβ is not in the spin Hall form (3.8).
Equivalently, Sα cannot be parallel to pα; it must have a
nonzero y component. It is not possible to use the spin Hall
equations to understand the motion of such a wave packet.
However, there is no obstacle to using the MP equations
in their more general form (3.1). The conclusion here is
that Sαβpβ ¼ 0 is a physical restriction; it is not inevitable.
The derivation of the spin Hall equations appears to
have implicitly assumed that the wave packets have,
e.g., vanishing phase gradients.
Now consider a wave packet with no transverse angular

momentum, but with potentially large amounts of longi-
tudinal angular momentum. This can be produced by
introducing polar coordinates ðr; θÞ in the xy plane and
then supposing that

ψ ¼ jψ jeinθ; ð5:37Þ

where n is an integer. Additionally, suppose for simplicity
that jψ j depends only on r and u and that it satisfies (5.35).
It then follows from (5.20) that when evaluated at the
centroid,

Sαβ ¼ ðnþ 1Þϵ̃EΣαβ þOðϵ̃2Þ; ð5:38Þ

where Σαβ is again given by (2.16). If ϵ is again related to ϵ̃
via (5.26) comparison with (3.8) shows that for these wave
packets,

s ¼ nþ 1: ð5:39Þ
16An analogous discussion for electromagnetic beams propa-

gating in flat spacetime but in nontrivial materials may be found
in [95].
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If a wave packet with the opposite helicity had been
considered, we would have found instead that s ¼ n − 1.
Regardless, it is clear that s is not necessarily equal to �1.
Much larger amounts of angular momentum are possible
than had been supposed in, e.g., [42]. Formally, n can be
arbitrarily large here. However, the high-frequency analysis
breaks down when ψ varies on the same scale as eiu=ϵ̃. If the
spatial extent of the wave packet is of order lw, this implies
that our equations can be trusted only when n ≪
lw=ϵ̃ ¼ ωlw.

VI. SPIN HALL EFFECT OF LIGHT IN AN
INHOMOGENEOUS MEDIUM

As a final application, we now show how the ray
equations describing the spin Hall effect of light in an
inhomogeneous medium [13–18,21,96,97] can be recov-
ered from the gravitational spin Hall equations (2.17). The
main tool used here is the well-known analogy between
electromagnetic waves propagating inside a dielectric
medium and electromagnetic waves propagating through
vacuum but in an effective metric [98–104]. More precisely,
consider a background metric g̃αβ and a dielectric medium
with a varying refractive index n and a 4-velocity uα. It has
then been shown in Ref. [75,99] (see also Ref. [104]) that the
combined effect of the background spacetime and the
dielectric medium on light rays can be studied by consid-
ering vacuum propagation in the optical metric

gαβ ¼ g̃αβ þ ð1 − n−2Þuαuβ; ð6:1Þ

where the indices on the 4-velocities here have been lowered
using g̃αβ.
To describe the spin Hall effect of light in an inhomo-

geneous medium, we take the background metric to be the
Minkowski one in inertial coordinates ðt; x; y; zÞ so
g̃αβ ¼ ηαβ. We also suppose that the medium is stationary
in these coordinates so ∂tn ¼ 0 and uα ¼ ð1; 0; 0; 0Þ. The
spin Hall equations (2.17) additionally require the choice of
a timelike vector field tα to fix the centroid definition, and
this may be identified here with uα. A calculation then
shows that with the effective metric gαβ, ΣαβRαβγ

λ ¼ 0. The
spin Hall equations in this metric therefore reduce to

_xα ¼ gαβ
�
pβ þ

1

p · t
Sβρgγλpγ∇λtρ

�
; ð6:2aÞ

_pα ¼ Γβ
αγgγλpβpλ: ð6:2bÞ

As uα is Killing and the effective metric is static, the spin-
dependent terms in the conservation law (3.17) vanish so
E ¼ −pαuα ¼ const. Introducing a 3-vector notation, the
momentum must be null with respect to gαβ, meaning that

pi ¼ p; p0 ¼ −
ffiffiffiffiffiffiffiffiffi
p · p

p
n

¼ −
p
n
: ð6:3Þ

Energy conservation in the effective metric therefore
implies that E ¼ p=n is constant. It is only the direction
of p which must be determined from the equations of
motion.
A calculation shows that the nontrivial components of

(6.2) reduce to

dt
dτ

¼ np ¼ n2E; ð6:4aÞ

dx
dτ

¼ pþ ϵs
p3

�
dp
dτ

× p

�
; ð6:4bÞ

dp
dτ

¼ p2

n
∇n ¼ 1

2
∇ðnEÞ2: ð6:4cÞ

To obtain the same form of the ray equations as in the optics
literature, we can reparametrize everything in terms of t
instead of τ. Doing so,

dx
dt

¼ p
np

þ ϵs
p3

�
dp
dt

× p

�
; ð6:5aÞ

dp
dt

¼ p
n2

∇n: ð6:5bÞ

These are the ray equations describing the spin Hall effect
of light in an inhomogeneous medium, as obtained in
Refs. [15,97,105]. They can be rewritten in the form
presented in Refs. [16,17,21,22] by rescaling the momen-
tum and time, as mentioned in Ref. [97] (see also Ref. [18]).
Deriving the spin Hall effect of light in an inhomo-

geneous medium from (2.17) is important for several
reasons. First, it establishes that the gravitational spin
Hall equations really are related to the spin Hall effects
described in flat-spacetime optics; the gravitational spin
Hall equations thus have been given an appropriate name.
Second, the ray equations usually used in the optical
literature implicitly fix tα at the outset and do not allow
it to vary. Beginning instead with the gravitational spin Hall
equations, where tα is arbitrary, instead allows a unified
description of the spin Hall effect of light, determined by
the gradient of n, and the relativistic Hall effect [26,27],
determined by changes in tα. Lastly, the spin Hall effect of
light, as described by Eqs. (6.5), has been confirmed
experimentally in Refs. [19,21]. The present connection
between Eqs. (2.17) and (6.5) gives some level of con-
fidence in the theoretical predictions of Eqs. (2.17) and in
the existence of a genuinely gravitational spin Hall effect
of light.
As another application of the type of analysis presented

in this section, one might consider the propagation of light
in a plasma which is in a curved spacetime, perhaps near a
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black hole. In some regimes, the plasma can be expected to
have an effective refractive index [106–110]. The spin Hall
equations (2.17) together with the optical metric (6.1) could
then be used to derive polarization-dependent corrections to
the propagation of electromagnetic pulses in the presence
of an astrophysical plasma.

VII. CONCLUSIONS

This paper has investigated the implications, properties,
and limitations of the gravitational spin Hall equations
derived in Refs. [42,45]. In the electromagnetic case of
interest here, these equations describe the motion of high-
frequency circularly polarized electromagnetic pulses
which propagate in vacuum but in arbitrary background
spacetimes. In this context, the spin Hall effect refers to the
transverse deflection of a pulse due to its spin.
Our first class of results concern the meanings of the

position and the momentum which appear in the gravita-
tional spin Hall equations. In general, a spinning wave
packet must be extended and the adoption of any equation
of motion must be associated with a particular choice of
centroid. We have found that the position appearing in the
gravitational spin Hall equations is a centroid whose
definition is parametrized by the timelike vector field tα

which appears in those equations. That position may be
interpreted as a spin supplementary condition, chosen to
ensure that the angular momentum satisfies Sαβtβ ¼ 0.
More physically, the centroid is the center of energy of
the wave packet in a frame which is instantaneously at rest
with respect to tα.
Different choices for tα are in general associated with

different centroids, and we have computed the shifts
between those centroids. For massive objects with timelike
momentum, we recover the known result that these shifts
are always bounded: At any fixed time, all centroids lie
within a finite disk. However, we have shown that this is no
longer true in the (massless) null case. Massless spinning
objects have arbitrarily distant centroids. In this sense, they
cannot be localized.
Although this might appear to be problematic, we show

that there is no spinning electromagnetic field configuration
which is in fact massless. More generally, no massless
object of any composition can have spin unless it violates
the dominant energy condition. Nevertheless, there is a
sense in which high-frequency electromagnetic wave pack-
ets can be approximately null. Truncating the high-
frequency approximation at subleading order results in
an approximate stress-energy tensor which violates the
dominant energy condition. There is a large amount of both
positive and negative energy density in certain highly
boosted frames, and it is this negative energy density
which makes it appear as though there are centroids far
outside of the wave packet itself. These energy densities—
and the associated distant centroids—are not real. They are
unphysical artifacts of the high-frequency approximation.

If higher-order terms are included, a spinning electromag-
netic wave packet would be seen to satisfy all standard
energy conditions and to have a positive rest mass. This rest
mass guarantees that all centroids remain in a finite region;
real electromagnetic wave packets can be localized.
When working in the approximately massless approxi-

mation associated with the spin Hall equations, one must be
careful about the limitations of that approximation. The
concept of something being “approximately null” can make
sense only in a class of frames, and the high-frequency
approximation breaks down in very different frames. In
particular, some weak restrictions must be placed on the tα

appearing in the gravitational spin Hall equations in order
to avoid regimes where those equations are no longer valid.
We have also addressed other aspects of the approx-

imations inherent in the gravitational spin Hall equations.
First, there is the question whether or not the initial data
assumed in the gravitational spin Hall equations does
indeed describe reasonable high-frequency wave packets.
We argue that it does, to the expected degree of accuracy, at
least when there are negligible phase gradients across the
wavefronts. Some cases of nontrivial phase gradients can
still be described by the spin Hall equations, just with larger
amounts of angular momentum. In other cases with
significant phase gradients, Sαβpβ ≠ 0 so the angular
momentum is no longer longitudinal and the spin Hall
equations cannot be applied. Nevertheless, those cases can
still be described by the Mathisson-Papapetrou equations,
which are more general than the spin Hall equations.
Besides the approximations involved in the initial con-

ditions used in the equations of motion, there are also
neglected terms in the equations of motion themselves. For
example, the quadrupole moment of the wave packet is
neglected. We have provide a detailed discussion of when
such terms can be neglected and when they cannot. This is
subtler than for the nearly rigid massive objects whose
quadrupole moments are more commonly considered, as
electromagnetic fields do not hold themselves together as
they propagate. Electromagnetic wave packets generically
spread out over time, increasing the quadrupole and higher-
order moments and eventually invalidating the equations of
motion.
Another theme in this paper has been to relate the gra-

vitational spin Hall equations to other equations which have
also been proposed in the literature to describe the motion
of spinning electromagnetic wave packets—sometimes in
quite different contexts. First, we have shown that the
gravitational spin Hall equations are special cases of the
Mathisson-Papapetrou equations, which govern the motion
of generic (not necessarily electromagnetic) spinning
objects in curved spacetimes. The gravitational spin Hall
equations arise from the MP equations with a particular
choice of spin supplementary (or centroid) condition, a
particular type of initial data, and a particular worldline
parametrization. Second, we have shown that the spin Hall
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effect of light in an inhomogeneous medium can be
obtained from the gravitational spin Hall equations with
the use of an effective optical metric. This provides a
connection between the gravitational spin Hall and the MP
frameworks, and an effect which has been experimentally
observed [19,21].
Lastly, we have shown that the observer dependence of

the gravitational spin Hall equations is directly related to
the relativistic Hall effect [26] and the Wigner(-Souriau)
translations [27–29]. While these effects are exactly recov-
ered (as previously discussed) in Minkowski spacetime, the
discussion here generalizes them to arbitrary curved space-
times. We have also pointed out that this effect has long
been known in the relativistic theory of motion as applied to
massive objects [30–33], and the approximately massless
electromagnetic case is not significantly different (except in
the aforementioned unboundedness of the set of all mass-
less centroids).
Our analysis of different centroids and their properties

has been purely classical. In a quantummechanical context,
there are various results which state that massless particles
cannot be localized when their spins are greater than 1=2
[111–121]. While this appears to be at least qualitatively
related to our result that massless classical objects with
finite spin cannot be localized, the meanings of “particle”
and “localization” are different in both contexts. It would
nevertheless be interesting to better understand the con-
nections between these results.
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APPENDIX: MASSLESS SPINNING OBJECTS
VIOLATE ENERGY CONDITIONS

The purpose of this appendix is to show that if a massless
object has finite momentum and satisfies the dominant
energy condition, its spin must vanish. For simplicity, we
work in flat spacetime. We also assume that the hypersur-
face used to compute the linear and angular momenta is

spacelike and that the angular momentum is computed with
respect to a centroid defined using (3.4). It follows from
our results that at least within classical physics—where
the dominant energy condition is usually expected to
hold—“massless spinning particles” are unphysical except
as approximations. This applies, in particular, to all
classical electromagnetic wave packets.
We work here with linear and angular momenta defined

via the integrals (3.12). Using inertial coordinates together
with (3.14), first note that the massless condition pαpα ¼ 0
can be written as

Z
Στ

dSα

Z
Στ

dS0βT
α
γðxÞTβγðx0Þ ¼ 0: ðA1Þ

As Στ is spacelike by assumption, dSα must be past-
directed timelike. This and the dominant energy condi-
tion, which requires that Tαβvαwβ ≥ 0 for any co-oriented
timelike vectors vα and wα, imply that TαβdSβ must be
future-directed causal. The inner product between any
two future-directed causal vectors can never be positive,
so the integrand in (A1) is nonpositive. If the integrand
were anywhere negative, the integral would not vanish. The
massless condition therefore requires that for all x and x0
in Στ,

Tα
γðxÞTβγðx0ÞdSαdS0β ¼ 0: ðA2Þ

Setting x ¼ x0 here implies that TαβdSβ must be null.
Allowing x and x0 to differ shows that in addition, the
direction of this vector field must be constant. More
precisely,

TαβðxÞdSβ ∝ pα: ðA3Þ

It now follows from (3.12), (3.14), and (A3) that the
angular momentum must have the form Sαβ ¼ p½αsβ�, for
some vector sβ. This makes no assumptions regarding the
origin used to compute the angular momentum. However,
as explained in Sec. IV, given any timelike vector tα, it is
always possible to adjust the origin in order to ensure that
Sαβtβ ¼ 0. Doing so in this case makes all of the angular
momentum vanish: Sαβ ¼ 0.
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