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Fully nonlinear numerical evolutions of the Einstein-(multi)-Klein-Gordon equations are performed to
study head-on collisions of l-boson stars. Despite being spherically symmetric, l-boson stars have a
(hidden) frame of reference, used in defining their individual multipolar fields. To assess the impact of their
relative orientation, we perform simulations with different angles between the axes of the two colliding
stars. Additionally, two scenarios are considered for the colliding stars: that they are composites of either
the same or different scalar fields. Despite some model-specific behaviors, the simulations generically
indicate that (1) the collision of two sufficiently (and equally) massive stars leads to black hole formation;
(2) below a certain mass threshold the end result of the evolution is a bound state of the composite scalar
fields, that neither disperses nor collapses into a black hole within the simulation time; (3) this end product
(generically) deviates from spherical symmetry and the equipartition of the number of bosonic particles
between the different scalar fields composing the initial boson stars is lost, albeit not dramatically. This last
observation indicates, albeit without being conclusive, that the end result of these collisions belongs to the
previously reported larger family of equilibrium multifield boson stars, generically nonspherical, and of
which l-boson stars are a symmetry enhanced point. We also extract and discuss the waveforms from the
collisions studied.

DOI: 10.1103/PhysRevD.105.104057

I. INTRODUCTION

The advent of the gravitational wave (GW) era promises
to deliver invaluable information on some of the most
prominent challenges in theoretical physics. Amongst these
is the nature of the dark Universe. At the time of writing,
the LIGO-Virgo and now Kagra (LVK) collaborations
released three public catalogs from the first three science
runs O1þ O2 [1], O3a [2], and O3b [3], reporting 85
events. These events are providing invaluable information
about black hole populations [4], constraints on dark
energy models [5–8] and even tantalizing hints about the
nature of dark matter [9].
LVK searches are performed using “matched filtering,” a

data analysis technique to detect characteristic signals in
noisy data, which requires a library of theoretical waveform
models. In this respect, the issue of degeneracy has been an

understated caveat in GW detections. The black hole
interpretation seems vindicated within the Kerr black hole
paradigm of general relativity. There is, however, a lack
of alternative models for which waveforms have been
accurately produced, in order to assess whether matched
filtering really selects general relativity black holes within a
more extensive library of theoretical templates.
Within this empty landscape of alternatives, bosonic

stars offer a unique opportunity. First constructed in the
late 1960s [10,11] for massive, complex scalar fields (and
more recently for massive complex vector fields [12])
minimally coupled to Einstein’s gravity, these are self-
gravitating solitonic solutions that are both compact
[13–15] and dynamically robust in regions of their para-
meter space [16–21], forming from fairly generic initial
data and reaching the equilibrium state by “gravitational
cooling” [21–23], possibly complemented by GWemission
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(in nonspherically symmetric evolutions). Thus, they offer
an (non-black-hole) alternative relativistic two body prob-
lem which, unlike neutron stars, need not have electro-
magnetic counterparts. As a matter of critical importance,
the well posedness/hyperbolicity of the evolutions is under
control, and currently available computational infrastruc-
tures can be used with fairly minor adaptations, such as the
Einstein Toolkit [24–26]. This state of affairs contrasts with
modified gravity, wherein even promising models may face
fundamental issues, such as the breakdown of hyperbol-
icity, see e.g., [27]. Thus, one can use bosonic star binaries
to produce waveform banks that share features but also
present differences, with respect to those generated by the
vanilla black hole binaries of general relativity. In fact, one
such recent analysis raised the intriguing possibility that a
real GW event [28] could be interpreted as a collision of
vector bosonic stars [9], showing, at least as a proof of
concept, how such interpretation would lead to the dis-
covery of a fundamental, ultralight dark matter particle.
The simplest bosonic stars arise in single (complex) field

models. A realization of the last few years, however, is that
there is a wider landscape of bosonic star families when
allowing multifield models. Among these different pos-
sibilities, one of the most interesting configurations are the
l-boson stars [29], as it has been proved that they are the
only stable configuration [30], bestowing them with a
central role in the possible scalar field configurations.
l-boson stars are spherically symmetric solutions arising
in a model with 2lþ 1 complex scalar fields, wherein the
individual fields carry a multipolar structure but the
composite object is spherical and static. Note that l-boson
stars reduce to standard boson stars in the particular case
where l ¼ 0. Subsequent studies showed these solutions
are dynamically robust in regions of the parameter space
[31,32] and also unveiled they can be regarded as part of a
wider family of multifield, multifrequency bosonic stars
[30,33,34]. l-boson stars in contrast to l ¼ 0 regular boson
stars have greater compactness and they are hollow in the
central region. This empty space becomes larger as l
increases as well as their mass and reaches the maximum
compactness as l → ∞ [32]. The maximum compactness
for the l-boson stars almost doubles the maximum com-
pactness pf l ¼ 0 boson stars. Following this line of
thoughts it becomes an interesting problem to evolve
l-boson stars in binaries, both to further test their dynami-
cal robustness and to obtain new waveform templates that
enlarge the effort of constructing a vaster library of non-
Kerr waveforms. These are precisely the goals of this paper.
In this work we shall study head-on collisions of l-boson

stars, as the simplest “binaries” of these objects. Even in
this simplest scenario, the multifield nature of l-boson stars
allows more possibilities than when a single field is
considered. First, despite being described by a spherically
symmetric metric and total energy-momentum tensor, the
composite nature of l-boson stars endows the individual

fields with a (hidden) frame of reference with respect to
which the multipolar structure of the individual fields is
defined. Thus, even for head-on collisions starting from
rest, there is the additional degree of freedom of misalign-
ing the hidden spin axes of the individual stars. Second,
since one is entertaining the possibility of many scalar
fields, it fits such rationale to allow the l-boson stars to be
composed by the same, or by different, scalar fields. We
shall dub the former (latter) scenarios as tackling coherent
(incoherent) states. As we shall see, both choices, i.e.,
alignment and coherence, lead to important changes in the
dynamics, although some generic trends can also be
inferred from the sample of simulations performed.
We have focused on binary l-boson stars with l ¼ 1,

using several initial configurations and evolving them while
analyzing the spatial distribution of the scalar fields and
computing the GW emission. When the individual stars are
massive and compact enough, it is found that the remnant is
a black hole. However, if the sum of the masses of both stars
does not greatly exceed the maximum mass of the corre-
sponding family of solutions (see Fig. 1 below), then the
collision forms a gravitationally bound scalar field configu-
ration. Whereas in the merger of two standard l ¼ 0 boson
stars some of the final configurations clearly tend towards
another l ¼ 0 boson star [35–39], our results indicate that
the merger of two l-boson stars, albeit remaining in a bound
state, do not necessarily lead to an l-boson star.
The waveforms generated from the head-on collision of

the l-boson stars, like in the usual case of boson stars with
l ¼ 0, present very peculiar features, which make them
significantly different from the waveform of a black hole
collision, even nudus oculus. As we show in the present
work, the waveform produced by the head-on collision of
l-boson stars has a richer structure depending on the
parameters of the initial configuration (such as the relative
alignment), which makes a stronger case for the generation
of catalogues to be included in the LVK libraries.
This paper is organized as follows. In the next section, we

present the main ideas needed to construct l-boson stars, in
particular explaining the two different scenarios that shall
be considered: when taking two spatially separated lumps
composed by the same fields, called coherent states, or when
taking two spatially separated lumps composed of different
fields, called incoherent states. Next, we describe the
numerical implementation of these configurations and
in Sec. IV we define the quantities that will be analyzed,
together with the GWs during the evolution of the system.
We present our results in Sec. V and conclude with some
final remarks. Throughout the paper we use natural units,
c ¼ G ¼ ℏ ¼ 1.

II. MODELS FOR l-BOSON STAR BINARIES

A single l-boson star is described by an odd number N
of complex scalar fields, each with a harmonic time
dependence, of the form
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Φlmðt; r;ϑ;φÞ ¼ e−iωtϕlðrÞYl;mðϑ;φÞ; ð2:1Þ
where Yl;mðϑ;φÞ are the standard spherical harmonics.
Notice that the angular momentum number l for a given
solution is fixed and a single star has N ¼ 2lþ 1 fields,
corresponding to each possible value of m within the range
−l;…0;…;þl. A key ingredient to get a spherically
symmetric solution of the Einstein-Klein-Gordon (EKG)
system is that the field amplitude ϕlðrÞ is precisely the
same for all m.
We shall be considering models without self-interactions

amongst the different scalar fields. These fields, therefore,
only see each other via gravity. Still, when considering two
stars we may choose that the composing fields of the stars
are equal or are different. In this work we shall consider
both possibilities. This is reminiscent of the description of
coherent and incoherent states in quantum mechanics; for
the former case, a macroscopic number of quanta all pile
into the same momentum state, being used to describe
lasers and superfluids [40].
Our approach is as follows. The binary system we

consider is governed by the EKG theory and the field
equations for the metric gμν are

Rμν −
1

2
gμνR ¼ 8πðTð1Þ

μν þ Tð2Þ
μν Þ ≔ 8πTμν; ð2:2Þ

where Rμν is the Ricci tensor and R ¼ gμνRμν. The matter
content is given by either one or two sets of 2lþ 1
complex scalar fields Φlm, each with a stress-energy tensor
of the form

TðiÞ
μν ¼ 1

2

Xl
m¼−l

½∇μΦ̄
ðiÞ
lm∇νΦ

ðiÞ
lm þ∇μΦ

ðiÞ
lm∇νΦ̄

ðiÞ
lm

− gμνð∇αΦ̄
ðiÞ
lm∇αΦðiÞ

lm þ μ2Φ̄ðiÞ
lmΦ

ðiÞ
lmÞ�; ð2:3Þ

where i ¼ 1, 2; Φ̄lm denotes the complex conjugate ofΦlm
and μ is the mass of the scalar field particle, which
we assume is the same for all fields. This assumption
amounts to consider that all different scalar fields belong to
a larger multiplet.
As expected, each complex scalar field satisfies the

Klein-Gordon equation:

gμν∇μ∇νΦ
ðiÞ
lm − μ2ΦðiÞ

lm ¼ 0: ð2:4Þ

A. Coherent and incoherent states

As mentioned above, in this work we consider two
possible systems. We shall refer to the first system as
coherent state and to the second as incoherent state. The
functional description of both states follows.
(i) Coherent states. For this case, both l-boson stars are

made up of the same set of scalar fields. Such a scenario is
modeled with a single set of fields, initially accumulated at
two (essentially) disjoint spatial regions, that is,

Φð1Þ
lm ≠ 0; and Φð2Þ

lm ¼ 0; ∀ m: ð2:5Þ
For this system there are 2lþ 1 independent fields to
describe the binary. In this scenario a single set of fields fills
up spacetime, which can nonetheless clump at two different
locations, forming two l-boson stars centered at different
positions.
(ii) Incoherent states. Here, each star is composed by a

set of 2lþ 1 fields, being different for each star. This
requires to turn on both sets of fields discussed

Φð1Þ
lm ≠ 0; and Φð2Þ

lm ≠ 0; ∀ m: ð2:6Þ
Consequently, there are 2ð2lþ 1Þ independent fields
to describe the binary. Notice, however, that in both

FIG. 1. ADM mass (left) and radius (right) vs frequency for static l-boson stars with l ¼ 0, 1. The maximal value of the boson star
mass for l ¼ 0 and l ¼ 1 is μM0 ¼ 0.63 and μM0 ¼ 1.18, respectively. The black squares correspond to the solutions used in the head-
on collision analysis. In the inset of the right plot the compactness is shown as a function of the frequency.
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systems the interaction between any of the fields is only
through gravity.

III. NUMERICAL IMPLEMENTATION

In order to describe the dynamics of the binary it
becomes necessary to evolve 2lþ 1 complex fields for
the coherent system and 2ð2lþ 1Þ complex fields for the
incoherent system. For concreteness we focus in this work
on the simplest nontrivial l ¼ 1 case yielding three fields
for coherent states and six for incoherent states.

A. Initial data

Initial data for the binary system are obtained using a
superposition of two isolated l-boson stars. The construc-
tion of single isolated l-boson stars is described in detail
in Ref. [29]; here we outline a brief description of the
procedure.
The starting point is to consider a static and spherically

symmetric spacetime of the form

ds2 ¼ −α2dt2 þ γjkdxjdxk ¼ −α2dt2 þ a2dr2 þ r2dΩ2;

ð3:1Þ

where α and a are functions of r, dΩ2 is the line element
on the unit 2-sphere and the scalar fields that compose the
l-boson stars have a harmonic time dependence given
by (2.1). According to this assumptions it has been shown
in [29] that even though the scalar field oscillates in time
the stress-energy tensor is time independent and the EKG
equations yield static solutions that are described by the
following set of ordinary differential equations:

ϕ00
l ¼ −ϕ0

l

�
2

r
þ α0

α
−

a0

2a

�
þ aϕl

�
μ2 þ lðlþ 1Þ

r2
−
ω2

α2

�
;

ð3:2Þ

a0

a
¼ ð1 − aÞ

r
þ 4πra

�ðϕ0
lÞ2
a

þ ϕ2
l

�
μ2 þ lðlþ 1Þ

r2
þ ω2

α2

��
;

ð3:3Þ

α0

α
¼ ða − 1Þ

r
þ a0

2a
− 4πraϕ2

l

�
μ2 þ lðlþ 1Þ

r2

�
; ð3:4Þ

where a prime denotes derivative with respect to r. By
studying the Klein-Gordon equation close the origin r ¼ 0

one finds that the scalar field behaves as ϕl ∼ ϕ0rl. For a
given value of ϕ0, and demanding that the scalar field has
an exponential decay and the metric is Minkowski at
infinity, the EKG system becomes a nonlinear eigenvalue
problem for the frequency ω.
The equilibrium configurations are found by integrating

numerically Eqs. (3.2)–(3.4), considering appropriate

boundary conditions by means of a shooting method using
the frequency ω as the shooting parameter. The solutions
are identified by the value of ω, although for some ranges of
ω there may be more than one solution, defining different
branches, see Fig. 1 (left).
l-boson stars share many features with the single field

l ¼ 0 boson stars. Both exist only for a limited range of
frequencies and achieve a maximum Arnowitt-Deser-
Misner (ADM) mass. Figure 1 (left) displays the mass
of l-boson stars versus ω. The maximum mass solution
separates stable from unstable configurations as described
in [32]. In this work we shall only consider configurations
in the stable branch. More concretely, the stars we shall use
as initial data for the evolution below are marked with a box
on the existence curve in Fig. 1. We define the boundary of
the star as the radius of the spherical surface that encloses
99% of the mass; this radius is referred to as R99 and it is
displayed for the solutions in Fig. 1 (right). We define
the compactness of the stars as C ≔ M=R99 and it is
displayed as an inset in the same panel. In order to use
the infrastructure provided by the Einstein Toolkit we
transform the solutions to the usual Cartesian coordinates,
xμ ¼ ðt; r;ϑ;φÞ → xμ ¼ ðt; x; y; zÞ as

x¼ r cosφ sinϑ; y¼ r sinφ sinϑ; z¼ r cosϑ: ð3:5Þ

In our present investigation we also include configurations
that involve an intermediate rotation in the angles to
describe a relative misalignment between the stars, as
already discussed above and described in detail below.
The initial data for the binaries used in this work are
obtained by a linear superposition of the isolated solutions
of two stars given by the spatial metric and a set of

scalar fields fγð−Þjk ;Φð−Þ
lmg and fγðþÞ

jk ;ΦðþÞ
lm g for stars 1 and 2,

respectively. We shall consider the stars are centered at
ðxc; 0; 0Þ and ð−xc; 0; 0Þ. We also consider the stars to be
initially at rest (at t ¼ 0).
In this work we restrict our attention to ground state

solutions, for which the amplitudes Φlm have no nodes.
These are the solutions exhibited in Fig. 1.
We take as initial data for the spatial metric the super-

position [35–39,41]:

γjk ¼ γðþÞ
jk ðx − xc; y; zÞ þ γð−Þjk ðxþ xc; y; zÞ − γ̂jkðx; y; zÞ;

ð3:6Þ

where γ̂μν is the flat spatial metric. For the scalar fields we
need to distinguish between the two systems presented
above. For coherent states we construct the field as

Φð1Þ
m ðt¼0;x;y;zÞ¼ΦðþÞ

m ðx−xc;y;zÞþΦð−Þ
m ðxþxc;y;zÞ;

ð3:7Þ
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and Φð2Þ
m ðt; x; y; zÞ ¼ 0. Whereas for incoherent states, the

field is constructed as

Φð1Þ
m ðt ¼ 0; x; y; zÞ ¼ ΦðþÞ

m ðx − xc; y; zÞ;
Φð2Þ

m ðt ¼ 0; x; y; zÞ ¼ Φð−Þ
m ðxþ xc; y; zÞ: ð3:8Þ

Due to the nonlinearity of Einstein equations these initial
data introduce constraint violations. How this effect has
been tracked and controlled throughout the simulations is
discussed in Appendix A.
By means of the transformation (3.5), the stress-energy

tensor of each star is defined with respect to a Cartesian
frame ðx; y; zÞ. For the initial data, instead of taking the
spherical harmonics of each star defined with respect
to the same Cartesian frame, we may consider a relative
misalignment of the two corresponding Cartesian frames,
by performing a rigid rotation. This allows a more general
scenario, in which the stars have arbitrary initial orienta-
tions. As we shall see, this has an interesting impact on
the dynamics during the merger and in the resulting
configuration.
In order to model such non aligned stars we define

an intermediate set of coordinates x0 ¼ r cosφ sinϑ;
y0 ¼ r sinφ sin ϑ; z0 ¼ r cos ϑ, and perform a transforma-
tion of the form x ¼ RiðδÞx0, where i ¼ x, y, z are the
Einstein Toolkit Cartesian coordinates and RiðδÞ is the
rotation matrix for an angle δ around the i axis. The effect
of the rotations RzðπÞ, Rzðπ=2Þ, and RyðπÞ can be visu-
alized in Fig. 2.

B. Evolution scheme

Our numerical simulations are performed using the open
source Einstein Toolkit infrastructure [24]. The Einstein
equations are integrated in time using the Baumgarte-
Shapiro-Shibata-Nakamura formulation [42]. We use the
method of lines of the MoL thorn to solve the equations, via a
fourth order Runge-Kutta scheme provided by the McLachlan

thorn [43,44]. The scalar field evolution code has been
recently employed to study the stability of l-boson stars [33]
and it is described in more detail in that reference.
All the evolutions were made using the 1þ log time

slicing condition for the lapse α, and the Gamma-driver
condition for the shift βi [45]. We have used the thorn
aHFinder [46] to follow the formation of an apparent horizon
(AH) during the evolution. We have also monitored the
Hamiltonian and momentum constraints [47] to check the
convergence during the evolution.
The numerical grid consists of nested cubes with six

refinement levels and it is handled using the fixed mesh
refinement grid hierarchy included in the CARPET

arrangements.
In all simulations the stars have their centers placed at

μxc ¼ 25. The computational domain consists of a box
with μxmax ¼ 500 ¼ μymax ¼ μzmax, with a grid structure
of six refinement levels. The waveform extraction is made
at μr ¼ 100, 120. The spatial domain of the refinement
levels is f500; 50; 50; 25; 25; 10g. We set the resolution on
the finest level to μfΔx;Δy;Δzg ¼ 0.3125. This corre-
sponds to at least 86 points across the initial stars’ diameter
(defined as 2R99). The choice of a fixed mesh refinement is
mainly motivated by simplicity. The last refinement level
that do not contain the stars is included in order to have
enough resolution in case a black hole forms. Refinement
levels of the grid can produce reflections. However, we do
not see any significant impact of the crossing of the mesh
boundaries on the dynamics and on the determination of the
different quantities (mass, particle number, Hamiltonian
constraint). The Cartesian grid can induce a m ¼ 4 per-
turbation (see, for instance, [48,49]).

IV. HEAD-ON COLLISION DYNAMICS

Once we have constructed the initial data, we allow the
systems to evolve freely while monitoring the Hamiltonian
and momentum constraints to check the accuracy of the
results. As described above, both the evolution and the
number of scalar fields are different dependingon the system.
For the coherent states we evolve three complex fields,
whereas for the incoherent states we evolve six fields. We
have found that the main differences between the two
systems occur near the plunge and this is reflected in the
emitted GW signal and in the posterior outcome of the
plunge. We quantify the differences using some analysis
quantities, such as the mass of the final configuration, the
number of particles, and the GW signal.

FIG. 2. Amplitude of spherical harmonics for the modes
m ¼ −1, m ¼ 0, m ¼ 1, that compose a boson star with
l ¼ 1. The first column is taken as a reference for the usual
alignment; the second column shows the effect of a rotation
RzðπÞ; and the third column represents a rotation RyðπÞ. As a
reference, we have drawn a a red and a blue line on the surfaces.
This is particularly useful when comparing the first two columns,
which would otherwise look identical.
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A. Analysis quantities

Starting from the static superposition initial data, the
stars approach each other and eventually collide. In some of
the scenarios we have established that the final object after
the merger is a black hole. To diagnose its appearance in the
evolution we use the aHFinder thorn and then compute the
mass of the black hole through the apparent horizon area A,
using the relation MBH ¼ ffiffiffiffi

A
p

=16π, which is valid for a
Schwarzschild black hole. The use of the Schwarzschild
relation relies on no-hair theorems for static spherically
symmetric black holes, ruling out final equilibrium con-
figurations with scalar hair, even with a harmonic time
dependence [50]. Such no-hair theorems are, however,
circumvented for spinning black holes [51].
We focus primarily on the configurations for which

the end state has no horizon and the rest mass density is
nonzero. For the final time reached in our evolution, the
final remnant is a localized, perturbed distribution of the
different complex scalar fields. However, it is not possible
to determine whether that object corresponds to an l-boson
star. We describe some of its properties in the next sections.
For the total gravitational mass of localized solutions we

use the Komar integral.

M ¼ −
Z
Σ

ffiffiffi
γ

p
d3xαð2Tt

t − Tμ
μÞ; ð4:1Þ

where Σ is a spacelike slice extending up to spatial infinity,
γ is the determinant of the 3-metric induced on that slice
and α is the lapse function. To describe the end state of the
collision we compute the Noether charge associated with
the total bosonic number of particles N, which is defined as

N ¼
Z
Σ

ffiffiffi
γ

p
d3xαg0μjðiÞμ ; ð4:2Þ

where jðiÞμ ¼ P
m

i
2
ðΦ̄ðiÞ

m∇μΦ
ðiÞ
m −ΦðiÞ

m ∇μΦ̄ðiÞ
mÞ. This con-

served current is associated with the global invariance of
the theory under the action of a Uð1Þ group for each field.
We will use this quantity to classify the remnant of the
merger. Note that the Noether charge can also be computed
for each field. The integrals for the Komar mass (4.1) and
the number of particles (4.2) are performed in the entire
numerical grid on each time step.
We monitor the energy density of matter as ρ ¼ nμnνTμν

during the evolution as a measure of the energy left after the
collision, where nμ is the unitary normal vector to Σ.
Furthermore, in order to determine the deviations from

spherical symmetry of the postmerger configuration, we
compute the moments of inertia Ixx, Iyy, and Izz defined by

Ixixi ¼
Z
Σ

ffiffiffi
γ

p
d3xαρðr2 − xi2Þ: ð4:3Þ

B. Gravitational waves

Gravitational radiation is extracted from the numerical
simulations by computing the Newman-Penrose scalar
Ψ4 ¼ Cαβγδkαmβkδmγ, where Cαβγδ is the Weyl tensor
and k and m are two vectors of the null Kinnersley tetrad
[52,53]. Far from the source Ψ4 represents an outward
propagating wave and has been used as a measure of the
gravitational radiation emitted during the merger of com-
pact objects. In order to analyze the structure of the radiated
waves it is convenient to decompose the signal in -2 spin
weighted spherical harmonics as

Ψ4ðt; r;ϑ;φÞ ¼
X
l;k

Ψl;k
4 ðt; rÞ−2Yl;kðϑ;φÞ: ð4:4Þ

According to the peeling theorem the leading order decay
of Ψ4 is 1=r [54]. We use this fact to check the accuracy
in the computation of the gravitational waveforms. Our
description will focus directly on the strongly dominant
component l ¼ 2, k ¼ 2.

V. RESULTS

We have investigated five different cases of the l-boson
star datasets corresponding to different values of compact-
ness. All the initial configurations correspond to two stars
of the same type, localized on the stable branch, and with
total mass (sum of the two stars’ mass) that is larger than
the maximal mass of the model. The stars have radii (as
defined before) ranging from μR99 ¼ 56.5 (model N), to
μR99 ¼ 13.5 (model D), corresponding to a compactness
ranging from C ¼ 0.0074 to C ¼ 0.0838, respectively. In
this section, we extensively discuss the dynamics for the
various cases.
The physical attributes of the initial data and some

properties of the end state of the collisions are summarized
in Table I (for coherent states) and Table II (for incoherent
states). Note that the properties of the initial data coincide
in both tables, but not the end state. The models CHl1N and
INl1N that appear in both tables will appear only on the
analyzes related to the study of the final state. Concerning
the initial data the tables show the typical size R99, the
frequency, the Komar mass of each star M0, the number
of particles in one of the fields of each star (i.e. 1=3 of the
total number of particles of each star, as described in
Appendix B) and the compactness.
We define the time of collision tc, as the time at

which the spheres given by R99 of each star intersect.
Furthermore, in order to give a simple estimation of the
object’s size after the merger, we still use the aforemen-
tioned definition of R99 as the radius of a sphere containing
99% of the total mass, even when the object is not
spherically symmetric. The center of such sphere is set
at the center of mass, x ¼ y ¼ z ¼ 0.
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A. Aligned stars

As discussed above, l-boson stars are spherically
symmetric at the level of the total energy-momentum
tensor but have an internal frame of reference with respect
to the different modes. The phrase “aligned stars” refers to
both stars having the same orientation. The properties of
the remnants are presented in the last columns of Table I
for coherent states and the last columns of Table II for
incoherent states. In particular, the mass of the merger

remnant is computed using the Komar integral (4.1). Also,
some snapshots of the scalar field energy density ρ, during
the coalescence are displayed in Figs. 3 and 4. Figure 3
exhibits the evolution of a coherent state (model CHl1B)
whereas Fig. 4 exhibits the evolution of an incoherent state
(model INl1B).
Despite the fact that in all cases the initial mass of the

system is above the maximal mass of the model, we
observe two qualitatively distinct behaviors. For the most

TABLE II. Same as Table I for incoherent states.

Incoherent l ¼ 1

Model μR99 ω=μ μM0 μ2N0 C Remnant μR∼ μtc

INl1N 56.5 0.990 0.418 0.419 0.0074 BS � � � 0
INl1A 31.5 0.970 0.697 0.703 0.0221 BS 30 0
INl1B 27.5 0.962 0.775 0.784 0.0282 BS 23 0
INl1C 24.7 0.954 0.837 0.849 0.0391 BH μrAH ¼ 2.2 0
INl1D 13.5 0.883 1.13 1.17 0.0838 BH μrAH ¼ 3.6 230

TABLE I. Coherent cases for l ¼ 1. R99 is the radius that contains 99% of the mass of the star. ω is the frequency,
M0 is the mass of each star, N0 is the number of particles of each star and C is the compactness. The end state of the
simulation can be a localized boson configuration (BS) or a black hole (BH). R is the radius that encloses 99% of the
mass for scalar field remnant at μt ¼ 2500, while for black holes it labels the radius of the apparent horizon.

Coherent l ¼ 1

Model μR99 ω=μ μM0 μ2N0 C Remnant μR∼ μtc

CHl1N 56.5 0.990 0.418 0.419 0.0074 BS � � � 0
CHl1A 31.5 0.970 0.697 0.703 0.0221 BS 24 0
CHl1B 27.5 0.962 0.775 0.784 0.0282 BS 22 70
CHl1C 24.7 0.954 0.837 0.849 0.0391 BH μrAH ¼ 2.1 150
CHl1D 13.5 0.883 1.13 1.17 0.0838 BH μrAH ¼ 3.4 240

FIG. 3. Aligned evolutions of a coherent state. Snapshots of the scalar field energy density, ρ=μ2, for model CHl1B on the z ¼ 0 (top)
and x ¼ 0 (bottom) planes. The maximum density of the final configuration for these models is one order of magnitude larger than the
progenitors. Time is given in units of the scalar field mass, μ. Cycle refers to the iteration number.
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massive and compact models (C and D) a black hole is
formed. But for the less compact models (A and B) neither
a black hole forms during the simulation time, nor the field
disperses away after the collision. In such cases, a bound
scalar field configuration remains after the merger, albeit
the system is still evolving at the end of the simulation.
Whereas one cannot state with certainty the final outcome
of the system, the results suggest that the system does
tend to an equilibrium lump of scalar fields. This is an
asymptotic process in which the gravitational cooling
mechanism plays a key role to allow relaxation by slowly
decreasing the mass of the system. This slow mass ejection
can be observed in Fig. 5, where we plot the total mass for
models CHl1A, CHl1B and INl1A, INl1B as a function of
time after the merger. The horizontal dotted lines indicate
the value of twice the initial mass of each star. From Figs. 3
and 4 one can observe that the early phase of the encounter
is qualitatively similar for both states; but once the objects
make contact, the dynamics becomes complex and model

dependent. Nonetheless, we observe the same separation
between black hole formation and scalar remnant forma-
tion, regardless of the states being coherent or incoherent.
The natural question is this: what is the system evolving
towards when no black hole forms? In particular, since
l-boson stars involve precisely equal amplitudes of the
scalar fields involved, these collisions test how fine-tuned
these configurations are, and if such a destructive process
readily creates an asymmetry between the different fields.
To tackle this question one may look at the Noether

charge, or particle number, in each field. First, we observe
that (as discussed in Appendix B) for a single l-boson star
the total number of particles, N, is equally distributed
amongst each field. Denoting the Noether charge of each
field as Nm, then Nm ¼ N

2lþ1
. Thus, we can investigate if

such equipartition of the Noether charge remains after the
collision. To this end we have computed the time evolution
of the number of particles associated to each scalar field.
This is displayed for the coherent models CHl1A, CHl1B in

FIG. 4. Aligned evolutions of an incoherent state. Snapshots of the scalar field energy density, ρ=μ2, for model INl1B on the z ¼ 0
(top) and x ¼ 0 (bottom) planes. The maximum density of the final configuration for these models is one order of magnitude larger than
the progenitors.

FIG. 5. Aligned evolutions. Collision remnant mass, for coherent states, models CH1A and CH1B (left) and for incoherent states,
models IN1A and IN1B (right).
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Fig. 6 and for the incoherent models INl1A, INl1B in
Fig. 7. One observes that, independently of the state,
after the merger there is a monotonic loss of Noether
charge, consistent with the gravitational cooling process.
Moreover, this scalar field leaking is rather democratic; the
equipartition between the m� 1 modes is kept to high
accuracy, and the relative difference between them ¼ 0 and

m ¼ �1 modes is kept to a few percent. Thus, none of the
individual Noether charges (corresponding to the individual
fields) suffers dramatic preferential losses, even though
there is a slight suppression of the m ¼ �1 modes with
respect to the m ¼ 0 mode.
To gain further insight into the postmerger dynamics, in

Fig. 8 we have looked at the spatial distribution of the
Noether charge during the evolution for model CHl1B. One
observes that the m ¼ 0 field keeps its morphology
throughout the evolution. The dynamics arises from the
m ¼ �1 modes, which yield a nontrivial dynamics as the
two lumps become superimposed, in particular altering
their morphology. This can be corroborated in the left panel
of Fig. 9, where a difference can be observed between the
moments of inertia Ixx and Iyy ≈ Izz after the collision. In
the incoherent case, the asymmetry is also evident, as can
be seen in the right panel of Fig. 9. In both cases a
difference between Ixx and Iyy; Izz remains after μt ¼ 2500.
The above analysis is consistent with the remnants being
undergoing a relaxation process towards an equilibrium
configuration which is a multifield, but not necessarily
spherically symmetric, boson star [30,33]. In particular, for
the coherent state, it could be close to an l-boson star by
virtue of the evolution of the moment of inertia, see Fig. 9
(left panel). See also [38,55] for the discussion of multistate
boson stars in the context of the standard l ¼ 0 boson stars.
We also look at the evolution of the oscillation frequency

of the scalar field(s). During the merger process, this
frequency changes, which can be investigated by perform-
ing a spectral analysis. To this end we have evaluated the
discrete Fourier transform (DFT) in time of each scalar field
component, m ¼ −1, 0 and 1. For more accuracy, we have
actually evaluated the DFT at five different points and then
calculated the average. Figure 10 shows the DFT for the
case CHl1B. We notice that more than one frequency peak
arises, corresponding to several bound modes with ω < μ.
Moreover, at least up to the resolution we could achieve,

FIG. 6. Aligned evolutions. Top: total number of particles of
the remnant of the merger of coherent states CH1A, CH1B. The
dotted lines represent twice the initial number of particles present
in the binary. Middle: ratio between the number of particles
associated to the fieldsΦð1Þ

m withm ¼ þ1 andm ¼ −1. It remains
constant at unity. Bottom: ratio between the number of particles

associated to the fields Φð1Þ
m with m ¼ þ1 and m ¼ 0. At t ¼ 0

this quantity is not exactly unified, but this is the effect of the
superposition and appears only in this (coherent) case. During the
coalescence a small percentage of their initial value is lost. There
is no leaking or exchange of particles of individual fields during
the evolution.

FIG. 7. Same as Fig. 6, but now for incoherent states INI1A and INI1B.
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the spectra of the three m components coincide, not only
in the peaks locations, but also in their amplitude. From this
viewpoint, therefore, the different modes remain in syn-
chrony, as for the spectrum of the equilibrium states, the
l-boson stars. The key difference is, however, that the
l-boson stars spectra would only show a single peak.
To better resolve the excited modes, one would have to

increase the frequency resolution. This resolution, however,
is proportional to the inverse of the evolution time, which
implies a high computational cost to improve the frequency
resolution. In fact, the case shown here was run up to
μt ¼ 14231, a much longer evolution than for every other
model in this work. For this reason we have not considered
the spectrum of the other models.
Let us now turn our attention to the GWs emission. In

Fig. 11 we show the real part of the dominant quadrupolar
(l ¼ 2, k ¼ 2) mode of the Newman-Penrose scalar Ψ4 as a
function of time for both coherent states listed in Table I
and for incoherent sates listed in Table II. The signal is
extracted at μrext ¼ 100 and we have scaled the amplitude

with a factor r to better capture the asymptotic behavior.
The horizontal axis has been shifted as t → t − rext. For
models CHl1A, INl1A with relatively low compactness
(C ¼ 0.0221) the GWs signal display some differences
between the two. This differences are still visible for
models with larger compactness CHl1B and INl1B
(C ¼ 0.0282). But for models CHl1C and INl1C the final
remnant collapses and the differences in the signal are
almost negligible. The waveform indeed resembles the
signal of the collision of two black holes. Finally for the
most compact binary CHl1D and INl1D, the final product
of the merger forms a black hole and the waveforms are
identical for both states.
To quantify the differences between waveforms as well

as the similarities with the head-on collision of black holes,
mentioned in previous statements, we perform the follow-
ing pair of analyses. First, we calculate the Fourier trans-
form of Ψ4 to obtain the frequencies of the gravitational
signal for the different models. The results are shown in
Fig. 12, from which it can be confirmed that the main

FIG. 8. Aligned evolutions. Individual currents jm=μ for model CHl1B. Top panel: m ¼ 0 in the y ¼ 0 plane. Bottom panel: m ¼ þ1
in the z ¼ 0 plane.

FIG. 9. Aligned evolutions. Moments of inertia of the post merger configuration as defined in Eq. (4.3) for the models CHl1B (left
panel) and INl1B (right panel). Note that the curves of Iyy and Izz coincide perfectly in both cases. In the incoherent case, the
configuration does not seem to tend to a spherically symmetric distribution of scalar field. Despite the fact that the moments of inertia
used in Eq. (4.3) are gauge dependent they represent a good indicator of the presence of nonlinear stability, as has been described in [56].
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differences in the signal occur in relation to the compact-
ness of the stars; the peak frequency increases by a factor of
4 between model A and C, whether the superposition is
coherent or incoherent. Second, we compute the difference
between the collapsing models, CHl1C, CHl1D, INl1C,
and INl1D. To this end, we compare in each case with the
gravitational signal from a head-on collision of equal mass
black holes hole with the same total mass as the boson star
system. In Fig. 13 these gravitational waveforms are
shown. The more compact model, CHl1D overlaps better
with the black hole signal, in particular after the collapse, at
the ringdown phase. For the model CHl1C the GW signal
differentiates from the black hole signal qualitatively and
quantitatively at the first stage, however it matches roughly

the frequency and phase of the black hole collision at
ringdown. The model CHl1C is close to the BH/BS
remnant limit (see Table II), it involves more complex
dynamics before collapse, which is imprinted in the GW at
early times.
The more compact the binary, the larger the amplitude of

the gravitational waveform; for the most compact objects
the amplitude is almost one order of magnitude larger than
for their less compact counterparts. This result applies for
both coherent and incoherent states. This phenomenon is
related with the size and geometry of the binary. For
l-boson stars the maximum energy density is not located at
the geometrical center of the star; the shape of these objects
is more like a spherical shell. As the value of l increases,

FIG. 11. Waveforms for l ¼ 1 binaries described in Tables I and II. The extraction radius is μrext ¼ 100.

FIG. 10. DFT in arbitrary units (au) vs frequency. The inner figure shows an enlargement of he most relevant region in logarithmic
scale.
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the maximum of the density tends to the external boundary
leaving a region with almost zero density at the geometrical
center. For very compact binaries the radius R99 is con-
siderably smaller than for the less compact ones and the
encounter is more violent producing a stronger gravita-
tional signal.
To further investigate the postmerger behavior, let us

compare it for the l ¼ 1model B and for the merger of two
standard l ¼ 0 boson stars, with the same radius R99 as
the l ¼ 1 model. The l ¼ 0 corresponding collisions were
already discussed in [35], where it was shown that the
remnant approaches another l ¼ 0 boson star. In Fig. 15
(left) we can see that the mass decreases in the collision
process, reaching below the maximal mass allowed for

l ¼ 0 boson stars. The mass loss can be roughly divided
into two phases. There is an initial slower decrease, partly
due to GW emission, followed by a larger decrease rate,
due to scalar field emission, i.e. gravitational cooling, that
remains throughout the evolution. The remnant oscillates
around a spherical distribution; in fact an equilibrium boson
star with l ¼ 0, with the oscillation amplitude decreasing
with time. We stress the main relaxation process to attain
the equilibrium state is gravitational cooling. This can be
confirmed in Fig. 14, where the energy radiated by GW is
shown; when compared to the total mass loss, in Fig. 5, it is
seen that the emitted gravitational radiation is at least one
order of magnitude smaller than the total mass loss, in all
the cases.

FIG. 12. Fourier transform of the mode l ¼ 2, k ¼ 2 of Ψ4 for coherent (left) and incoherent (right) models.

FIG. 13. Difference between the black hole end state evolutions (CHl1C, CHl1D, INl1C, and INl1D) and the corresponding same
mass black hole head-on collision. Rel. Difference ¼ jΨ2;2

4 − Ψ2;2
4;BHj=maxðΨ2;2

4;BHÞ.

FIG. 14. Total energy radiated by the gravitational wave.
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The right panel of Fig. 15 exhibits the analogous
behavior for the collision of the stars with l ¼ 1.
Similarities with the previous case are observable: there
is a mass loss (together with a decrease in the number of
particles), with a GW emission component occurring
initially and an expelling of scalar field throughout the
entire evolution. In this case, however, it is not clear that the
final state oscillates around a spherically symmetric con-
figuration, say an l-boson star. It can be mentioned that the
system, as in the previous case, keeps oscillating, but the
oscillation amplitudes decrease more slowly in this case.
Also binary configurations consisting of boson stars with
masses smaller than the CHl1A model have been explored,
of particular interest are those cases where the total mass of
the system is smaller than the maximum mass of the l ¼ 1
family of solutions, Mmax

0 ¼ 1.176, the results for these
cases are very similar to those shown in Fig. 15, that is,
highly dynamic behavior at late times and a continuous
and very slow loss of mass compared to the corresponding
l ¼ 0models with the same value of R99. For instance, low
compactness models CHl1N and INl1N, which can be
found in Tables I and II, are an example of this behavior
since the initial total mass is smaller by half compared to
Mmax

0 . In Appendix C we present the wave forms of boson
stars mergers with l ¼ 0 and l ¼ 1 in order to stress the
role of the l parameter in the GW emission.
To establish how spherical the after merger is, one may

investigate the evolution of the components of the inertia
tensor, described above. For the l ¼ 0 boson stars merger
the difference between the diagonal components averages to
zero, confirming the tendency to sphericity. For the l-boson
stars with l ¼ 1 case, on the other hand, this is not so. This
supports the conclusion that the end state in the merger of the
l ¼ 0 boson stars tends towards a new l ¼ 0 boson star,
whereas for the l-boson stars with the l ¼ 1 merger, it does
not seem to tend towards a new l-boson star with l ¼ 1,
albeit still remaining a bound state of the scalar field. It is
possible that the asymptotic end state is a localized con-
figuration with less symmetries; our simulations, however,
can only raise this possibility, not establish it.

B. Nonaligned stars

As discussed above, a binary system of l-boson stars
may be given a relative orientation, despite the sphericity of
the individual stars. We shall now discuss the impact of this
feature on the head-on collisions. Let us take the orientation
of the left (centered at μx ¼ −25) l-boson star fixed and
rotate the right star (centered at μx ¼ þ25) using the Ri
matrices presented at the end of Sec. III A. It turns out that
this relative orientation has very noticeable consequences
in the outcome of the merger. Specifically we will make
rotations around the y and z axes (recall that the collision is
along the x axis) for the coherent model B, identifying the
cases by the transformation performed, i.e. the RyðδÞ and
RzðδÞ, respectively, where we have chosen the angles of
rotation as δ ¼ π; π

2
and π

4
.

As a general observation before describing specific
cases, we do not obtain appreciable differences in the
evolution of the mass or of the total number of particles
with respect to the aligned case, see the upper panels of
Fig. 16, despite some particularities that we will address
later. Another similarity with the aligned coherent case is
that the number of particles in them ¼ þ1mode is equal to
that of the m ¼ −1 mode throughout the evolution, as
indicated by the middle panels of Fig. 16.
On the other hand, the relative behavior of the number of

particles in the modes m ¼ þ1 and m ¼ 0 can be different
in the nonaligned case, although the relative difference is
still small, never exceeding 10%. A difference found with
respect to the aligned configuration, is that that there are
cases where the three momenta of inertia become different.
Let us now discuss the specific cases with RyðπÞ,

Ryðπ=2Þ and Ryðπ=4Þ; the last two cases, however, are
qualitatively similar. An l ¼ 1 boson star is a composite of
an m ¼ 0 and m ¼ �1 modes. The m ¼ 0 mode has a
dipolelike energy distribution, whereas the m ¼ �1 modes
are toroidal. In Fig. 17(a) we show snapshots of the energy
density for the z ¼ 0 (top panels) and x ¼ 0 (bottom
panels) planes. One observes that the maximum of the
density can reach the origin. This behavior is characteristic
of this type of merger [rotation RyðπÞ]. The bottom panels

FIG. 15. Mass and total number of particles for long simulations of the mergers of the l ¼ 0 CHl0B (left) and l ¼ 1 CHl1B (right).
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FIG. 16. Nonaligned stars. Total and individual (associated with each field) number of particles. Left: rotations around the y axis.

Right: rotations around the z axis. As in Fig. 6, 1 − Nð1Þ
þ1=N

ð1Þ
0 shows expected deviations from unity at t ¼ 0 due to coherent

superposition.

FIG. 17. Nonaligned stars RyðπÞ. (a) Scalar field energy density, ρ=μ2, for model CHl1B. Top panel: z ¼ 0 plane. Bottom panel:
x ¼ 0 plane and (b) Individual currents jm=μ for model CHl1B. Top panel:m ¼ 0 in the y ¼ 0 plane. Bottom panel:m ¼ þ 1 in the
z ¼ 0 plane.
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confirm that the symmetry along the (collision) x axis is
preserved during the merger. Figure 17(b) shows snap-
shots for the individual currents for the same collision.
The top panels correspond to the mode m ¼ 0; one
observes that the quadrupolar shape is maintained all
along the evolution, presenting a clearly repulsive effect
(attributed to the phase difference of π in this mode after
the rotation) thus preventing this mode from concentrat-
ing at the origin. The bottom panels show the current for
the mode m ¼ þ1where there is not a well-defined shape
after the merger.
Regarding the Ryðπ=2Þ collision, there is an even more

intricate interaction amongst the modes of each star. In
Fig. 18(a) we present snapshots of the energy distribution in
the z ¼ 0 plane (top panels) and in the x ¼ 0 plane (bottom
panels). The noticeable feature is that the symmetry of the
configuration with respect to the collision axis is lost.
Another characteristic is that the maximum density can

reach the origin after the merger, despite the hollow shape
of each star. Figure 18(b) shows the individual currents for
the m ¼ 0 (top panels) and the m ¼ þ1 (bottom panels)
modes. These examples show that the spherical symmetry
of the end product of the merger is lost. One can further
support this statement by looking at the moments of inertia
of the final configuration. Figure 19 shows the moments of
inertia as a function of time for the rotated case RyðπÞ and
Ryðπ=2Þ. For the case with CHl1B-RyðπÞ one of the three
moments of inertia is different. For the case with CHl1B-
Ryðπ=2Þ the three moments of inertia remain all different.
We have also studied the evolution of a system where the
nonalignment is due to a rotation around the z axis. This
case shows several effects similar to the previous case, for
example, the attraction/repulsion of the modes and a loss of
sphericity.
In Fig. 20(a), we present the evolution of the energy

density for the RzðπÞ rotation, and in Fig. 20(b) we present

FIG. 18. Nonaligned stars Ryðπ=2Þ. (a) Scalar field energy density, ρ=μ2, for model CHl1B. Top panel: z ¼ 0 plane. Bottom panel:
x ¼ 0 plane and (b) Individual currents jm=μ for model CHl1B. Top panel:m ¼ 0 in the y ¼ 0 plane. Bottom panel:m ¼ þ 1 in the
z ¼ 0 plane.
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the corresponding evolution of the modes. The energy
density diagnosis shows, as in the rest of the cases
analyzed, a loss of the original symmetry of each star.
As in the aligned case, this kind of rotations keeps

unchanged the initial m ¼ 0 mode, see Fig. 2 (recall that
the spherical harmonic l ¼ 1, m ¼ 0 does not depend on
the angle φ). During the evolution it can be seen that
individually the m ¼ 0 mode maintains its morphology,

FIG. 20. Nonaligned stars RzðπÞ. (a) Scalar field energy density, ρ=μ2, for model CHl1B. Top panel: z ¼ 0 plane. Bottom panel:
x ¼ 0 plane and (b) Individual currents jm=μ for model CHl1B. Top panel:m ¼ 0 in the y ¼ 0 plane. Bottom panel:m ¼ þ 1 in the
z ¼ 0 plane.

FIG. 19. Moments of inertia for the nonaligned models CHl1B, with RyðπÞ (left) and Ryðπ=2Þ (right).
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while the m ¼ �1 have a drastic change in morphology,
yielding the observed change in the energy density. The
Rzðπ=2Þ rotation case is shown in Fig. 21(a). We see a
twisting effect in the evolution of the energy density
distribution in the z ¼ 0 − plane. Concerning the individual
modes, the m ¼ 0 mode tends to keep the original
morphology, while the m� 1 modes loose it, a behavior
similar to the previous case.
To conclude, we have observed that the rotations around

the y axis, Ry, produce more significant changes in the final
morphology than the rotations along the z axis, which also
modify the final morphology, but keep the shape of the
remnant m ¼ 0 mode.
Regarding the GW profiles, we looked for any signifi-

cant difference that could indicate a waveform dependence
(particularly in its amplitude) on the angle and direction of
rotation. As shown in Fig. 22, however, in none of the
alignments studied for the model B we have observed

significant differences; the amplitude of the seven cases is
of the same order, although the first peak appears earlier in
the nonaligned cases, with a maximum difference in time
with respect to the aligned case of μΔt ∼ 50 for the RyðπÞ
case. This is true for all Ψl;k

4 but in particular for the
dominant l ¼ 2 k ¼ 0, 2 modes shown in Fig. 22.
Rotations Ry of the initial data cause slightly larger

differences in the waveforms than the Rz cases. This is
consistent with the fact, already pointed out, that unex-
pected dynamics on the m ¼ 0 scalar field may occur,
essentially because Ry, unlike Rz, modifies the distribution
of all the individual fields of the rotated star and not only
the m ¼ �1 modes.
The GW signals just discussed can be compared with

the ones previously presented for coherent (aligned) super-
position and the incoherent one. For example, comparing
the upper right panel of Figs. 11 and 22, one observes this
at the level of the GWs. We remark that in hypothetical

FIG. 21. Nonaligned stars Rzðπ=2Þ. (a) Scalar field energy density, ρ=μ2, for model CHl1B. Top panel: z ¼ 0 plane. Bottom panel:
x ¼ 0 plane and (b) Individual currents jm=μ for model CHl1B. Top panel:m ¼ 0 in the y ¼ 0 plane. Bottom panel:m ¼ þ 1 in the
z ¼ 0 plane.
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astrophysical scenarios an exact alignment should be
accidental, and the generic case should be of misaligned
stars. Concerning the end state, however, it is unclear if the
coherence could have a greater importance than the relative
alignment of the stars.

VI. FINAL REMARKS

In this paper we have studied head-on collisions of
l-boson stars, starting from rest. These are composite self-
gravitating solitons, made up of 2lþ 1 complex, massive
scalar fields [29]. In such scalar lumps, the different scalar
fields have precisely the same amplitude, which raises the
concern of possible self-tuning. Yet, it has been shown that
these solutions are dynamically robust in regions of the
parameter space [31,32], at least against small perturba-
tions. Here, we test these solutions against more violent
processes: head-on collisions of two such equal stars.
Our simulations consider a variety of cases. As the two

main scenarios we consider that the two colliding l-boson
stars are made up of the same, or of different, scalar fields.
These two cases are dubbed coherent and incoherent,
respectively. Additionally, we consider different possible
orientations of the colliding stars. It may sound strange
that such spherical stars have an “orientation”; yet they do.
The point is that the composing fields of each star have a
multipolar structure—cf. Fig. 2—defined with respect to a
preestablished Cartesian reference frame. We can thus
choose that these reference frames coincide, or not, for
the two colliding stars. These two cases are dubbed aligned
and nonaligned, respectively.
Independently of the specific characteristics of each

model that we have studied, a first generic conclusion
one can put forward is the following. The collision of
sufficiently massive (and therefore compact stars) stars
forms a black hole. This is what happens, e.g. for models C
and D in Fig. 1, corresponding to the collisions CH11C and

CH11D in Table I and IN11C and IN11D in Table II. But
below a certain mass threshold, the collisions do not lead to
horizon formation; a bound state of the different scalar
fields remains that neither disperses nor collapses. This is
seen, for instance, for models A and B in Fig. 1, corre-
sponding to the collisions CH11A and CH11B in Table I
and IN11A and IN11B in Table II.
Concerning the end state of collisions that do not form a

black hole, the simulations reveal different specificities,
depending on the chosen characteristics of the stars and of
the collision. Still one sees two generic features. First, the
democracy between the different composing fields of each
l-boson star is lost, albeit not dramatically. This feature can
be diagnosed from the Noether charge in each field—see
e.g. Fig. 6 (for aligned coherent states), Fig. 7 (aligned
incoherent states) and Fig. 16 (for nonaligned states).
Observe, nonetheless, that the balance of particles in the
m ¼ �1 modes is kept to high accuracy, and the slight
imbalance with the m ¼ 0 mode does not exceed a few
percent. Second, the collision aftermath deviates from
spherical symmetry. This can be quantified by looking at
the moments of inertia, see Fig. 9 (for aligned collisions)
and Fig. 19 (for nonaligned collisions). Observe that
Ixx ¼ Iyy in all cases, except the nonaligned collisions
under a rotation Ryðπ=2Þ; also note that in some cases the
three momenta of inertia, Ixx; Iyy; Izz seem to converge after
some time, which may be interpreted as a glimpse of a
tendency towards sphericity.
Overall, the above description, albeit not entirely con-

clusive, allows us to answer the question we have set out
to investigate: how dynamically robust are l-boson stars?
The answer seems to be twofold. Exact, equilibrium
l-boson stars, with precise equipartition of the number
of particles amongst the 2lþ 1 fields are indeed fine-
tuned, and will not withstand generic perturbations. This is
no surprise, and it was already anticipated by considering

FIG. 22. Waveforms for nonaligned l ¼ 1 binary. CHl1B model. Top panels show the real part of the l ¼ 2, k ¼ 2 mode. Bottom
panels show the real part of the l ¼ 2, k ¼ 0 mode. The extraction radius is μrext ¼ 100.
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nonspherical perturbations of equilibriuml-boson stars [33].
Yet, l-boson stars as a particular symmetry enhanced point
of a larger family of multifield bosonic stars, as reported
in [30], can be considered to be dynamically robust and long
lived. In fact, the violent collisions we have considered could
only produce an imbalance in the Noether charges, of the
order of a few percent. Of course, the end states of our
simulations remain oscillating and have not yet reached a
stationary state.We cannot rule out that gravitational cooling
and GWemission will work towards a spherical distribution,
getting rid of the nonspherical modes. However, our simu-
lations do not exhibit strong, generic evidence for this
possibility. The very slow convergence towards a final state
is not a consequence of using models with initial total mass
larger than the maximummass of the final expected state, an
l ¼ 1 boson star, as can be concluded from the CHl1N and
INl1N cases presented.
Finally, let us comment that our collisions have gen-

erated waveforms which can be quite different from those
of BHs. As emphasized in the Introduction, it will be
interesting to continue this effort in order to generate large
libraries of alternative waveform templates to compare with
observational data. This effort, of course, will require going
towards orbiting binaries.
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APPENDIX A: CODE VALIDATION

In all binary boson star configurations considered in this
paper we have chosen to separate the stars 50 coordinate
units (μxc ¼ 25). This responds to the fact that this is a

distance for which, at least in the solutions studied, the
absolute maximum of the violation of the Hamiltonian
constrain H at t ¼ 0 is approximately of the same order as
the floor error of the numerical implementation, estimated
from the single isolated star simulations. We verified that
the L∞ norm, i.e. the maximum of the absolute value of the
Hamiltonian constrain, decreases as the separation of the
stars is increased. For example, the value obtained if
the binary CHl1B is separated by a distance of 70, 50,
and 30 coordinate units, is L∞ðHÞðt¼0Þ¼9×10−5;10−4;
2×10−3, respectively. Thus, for the chosen separation of
50, the violation induced for the constraint is of the same
order of the interpolation error. L∞ðHÞ and the L2 norm

of H, defined as L2ðHÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

H2
i =Ng

q
, where Ng is the

number of points of the grid, are shown in Fig. 23 as
functions of t in the case where the separation of the stars is
50 units. The left panel shows that part of the initial data
numerical error dissipates until μt ¼ 500. The right panel
indicates that the maximum of jHj remains contained in the
same order of magnitude throughout the simulation, in this
plot, we show the results using two different computational
domains; in the first one, using a blue line we show the case
used in the simulations throughout the article, a box of size
μxmax ¼ 500, in the second case a box of size μxmax ¼ 120.
The maximum of jHj is located (and remains) near the
center of the grid.
To evaluate the evolution of the small constraint

violations induced by the initial data superposition of
the two boson star solutions and test for convergence,
we have analyzed the Hamiltonian and momentum con-
strain together with some of the analysis quantities
and GW outputs using three different resolutions. The
coarsest level in the low resolution case is set to
μfΔx;Δy;Δzg ¼ 20, while for the medium and high
resolutions we have μfΔx;Δy;Δzg ¼ ffiffiffi

2
p

10, μfΔx;Δy;
Δzg ¼ 10, respectively. In the medium and low resolu-
tions we have placed six refinement levels with the same
spatial distribution as in the high resolution case (which is
the one used in this work) described in Sec. III B. In
Fig. 24 we have plotted the gravitational waveform of
CHl1A, which converges. The left and the bottom panels
of Fig. 23 show that the Hamiltonian constrain also
converges with resolution. The momentum constrains
have been corroborated to be consistent with zero at
t ¼ 0, and later in the evolution the three components
converge with increasing resolution, as expected. At the
middle panel of Fig. 24 the differences between the
gravitational signal at different resolutions are given, this
helps to establish convergence of the GW and also gives
an estimate of 1 × 10−3 for the relative difference when
comparing the high and the medium resolutions. Finally,
we have generated GWoutput at different radii in order to
check consistency and accuracy of the results; the bottom
panels of Fig. 24 show that Ψ2;2

4 and Ψ2;0
4 overlap when
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properly rescaled by the factor 1=r. The extraction
surfaces are therefore within the “wave zone.”

APPENDIX B: NUMBER OF PARTICLES

In this appendix we show that the number of boson
particles in a single isolated l-boson stars, for a fixed value
of l, is equally distributed among the different modes m,
that compose the star. There is an equipartition of the total
Noether charge.

The total conserved (Noether) charge associated to all
scalar fields of an l-boson star is given by the zero
component of the total current j0, as

N ¼
Z

j0α
ffiffiffi
γ

p
dx3 ≔

Z � Xl
m¼−l

jm

�
α

ffiffiffi
γ

p
dx3; ðB1Þ

where j0 is given by the sum

FIG. 24. Model CHl1A. Top panels show the real part of rΨ2;2
4 and rΨ2;0

4 at μrext ¼ 100 using different resolutions. Their differences
are displayed in the middle panel. Bottom panels show overlap of waves extracted at different radii when they are appropriately rescaled.

FIG. 23. L2 and L∞ norms of the Hamiltonian constraint for the model CHl1B. In this plot, as in the results presented throughout this
article the stars have been separated 50 coordinate units.
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j0 ¼
Xl
m¼−l

�
i
2
g0bðΦ̄m∇bΦm −Φm∇bΦ̄mÞ

�
¼

Xl
m¼−l

jm:

ðB2Þ

For a single l-boson star the scalar field has a time
dependence of the form Φm ¼ e−iωtϕlðrÞYlmðϑ;φÞ and
the metric is given by (3.1). The individual currents jm, can
be written, after some simplifications, as

jm ¼ −
1

α2ðrÞωϕ
2
lðrÞjYlmðϑ;φÞj2: ðB3Þ

Integration of Eq. (B3) over the 3-element of volume gives
the number of particles associated to each field

Nm ¼
Z

αjm
ffiffiffi
γ

p
dx3 ¼ −ω

�Z
∞

0

dr
aðrÞr2
αðrÞ ϕ2

lðrÞ
�

×

�Z
π

0

Z
2π

0

dϑdφ sin θjYlmðϑ;φÞ2j
�
; ðB4Þ

the second integral is equal to 1 due to the normalization of
the spherical harmonics. Therefore

Nm ¼ −ω
Z

∞

0

dr
aðrÞr2
αðrÞ ϕ2

lðrÞ; ðB5Þ

and from Eq. (B1) one obtains

N ¼
Xl
m¼−l

Z
αjm

ffiffiffi
γ

p
dx3 ¼ ð2lþ 1ÞNm: ðB6Þ

Consequently, the total number of particles of a single
l-boson star is divided equally into the associated number
of particles stored in each field

Nm ¼ 1

2lþ 1
N: ðB7Þ

APPENDIX C: COMPARISON WITH l= 0
BOSON STARS

The purpose of this appendix is to continue the dis-
cussion regarding the comparison between boson stars
mergers with l ¼ 0 and l ¼ 1, presented at the end of
Sec. VA, identifying the effect of the l parameter on the
GW signal. The dynamics and GW signatures of the merger
of boson star binaries have been discussed extensively in
the past, e.g. [17,37]. It has been shown that the gravita-
tional waveform may be very different from that of
black holes specially in the early phases. In our numerical
experiments, we have obtained similar results to the ones
presented in [37,38] for the standard l ¼ 0 boson stars
merger, in particular that the waveform of the merger of
incoherent states is much smaller and occurs after its
coherent counterpart.
As discussed above, for the boson stars with l ¼ 1

mergers, the coherent and incoherent configurations become
more similar. Due to this fact, we focus our description of the
l ¼ 0 and l ¼ 1 comparison, only for the corresponding
coherent states. In order to perform such comparison of the
gravitational waveforms we select stars with the same R99.
In Table III we shown some properties of the stars. The

radii of the stars are the same as models listed in Table I. In
Fig. 25 it is shown the waveforms ψ22

4 , for models listed in
Tables I and III.
For models CHl0A and CHl1A with μR99 ¼ 31.5, the

mode ψ22
4 for boson stars with l ¼ 0 has the same order of

magnitude despite the fact the compactness is larger for the
l ¼ 1 boson stars. For models with μR99 ¼ 27.5 (CHl0B
and CHl1B) the maximum amplitude of the signal is
considerably larger for the l ¼ 1 case. For models with
μR99 ¼ 24.7 (CHl0C and CHl1C) the final product of the
collision for l ¼ 0 is a boson star, but for l ¼ 1 the remnant
is a black hole. Both signals are clearly distinguishable.
Finally, for models with μR99 ¼ 13.5 (CHl0D and

CHl1D) the gravitational imprints for l ¼ 0 boson stars
and l ¼ 1 boson stars are quite different from each other
despite the fact a black hole forms after the merger in both
cases. This happens because, in the l ¼ 1 boson star
binary, the mass of the BH formed is bigger.

TABLE III. Coherent cases for l ¼ 0. R99 is the radius that contains 99% of the mass of the star. ω is the
frequency,M0 is the mass of each star, N0 is the number of particles of each star and C is the compactness. The final
remnant can be a localized boson configuration (indicated in the table as “BS”) or a black hole (indicated as “BH”).
R is the radius that encloses 99% of the mass for scalar field remnant at μt ¼ 2500 while for BHs it labels the radius
of the apparent horizon.

Coherent l ¼ 0

Model μR99 ω=μ μM0 μ2N0 C Remnant μR∼ μtc

CHl0A 31.5 0.985 0.296 0.298 0.009 BS 30 0
CHl0B 27.5 0.980 0.333 0.335 0.012 BS 30 0
CHl0C 24.7 0.976 0.364 0.367 0.015 BS 25 110
CHl0D 13.5 0.931 0.548 0.559 0.041 BH μrAH ¼ 1.25 320
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Multifrequency Bosonic Stars and a Stabilization Mecha-
nism, Phys. Rev. Lett. 126, 241105 (2021).

[31] Miguel Alcubierre, Juan Barranco, Argelia Bernal, Juan
Carlos Degollado, Alberto Diez-Tejedor, Miguel Megevand,
Darío Núñez, and Olivier Sarbach, Dynamical evolutions of
l-boson stars in spherical symmetry, Classical Quantum
Gravity 36, 215013 (2019).

[32] Miguel Alcubierre, Juan Barranco, Argelia Bernal, Juan
Carlos Degollado, Alberto Diez-Tejedor, Miguel Megevand,
Darío Núñez, and Olivier Sarbach, On the linear stability of
l-boson stars with respect to radial perturbations, Classical
Quantum Gravity 38, 174001 (2021).

[33] Víctor Jaramillo, Nicolas Sanchis-Gual, Juan Barranco,
Argelia Bernal, Juan Carlos Degollado, Carlos Herdeiro,
and Darío Núñez, Dynamical l -boson stars: Generic
stability and evidence for nonspherical solutions, Phys.
Rev. D 101, 124020 (2020).

[34] M Alcubierre, Juan Barranco, Argelia Bernal, Juan Carlos
Degollado, Alberto Diez-Tejedor, Víctor Jaramillo, Miguel
Megevand, Darío Núñez, and Olivier C. A. Sarbach, Ex-
treme l-boson stars, Classical Quantum Gravity 39, 094001
(2022).

[35] C. Palenzuela, I. Olabarrieta, L. Lehner, and Steven L.
Liebling, Head-on collisions of boson stars, Phys. Rev. D
75, 064005 (2007).

[36] C. Palenzuela, L. Lehner, and Steven L. Liebling, Orbital
dynamics of binary boson star systems, Phys. Rev. D 77,
044036 (2008).

[37] Miguel Bezares, Carlos Palenzuela, and Carles Bona, Final
fate of compact boson star mergers, Phys. Rev. D 95,
124005 (2017).

[38] Miguel Bezares and Carlos Palenzuela, Gravitational waves
from dark boson star binary mergers, Classical Quantum
Gravity 35, 234002 (2018).

[39] Nicolas Sanchis-Gual, Carlos Herdeiro, José A Font, Eugen
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