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The sensitivity of gravitational wave searches is reduced by the presence of non-Gaussian noise in the
detector data. These non-Gaussianities often match well with the template waveforms used in matched filter
searches, and require signal-consistency tests to distinguish them from astrophysical signals. However,
empirically tuning these tests for maximum efficacy is time consuming and limits the complexity of these
tests. In this work we demonstrate a framework to use machine-learning techniques to automatically tune
signal-consistency tests. We implement a new χ2 signal-consistency test targeting the large population of
noise found in searches for intermediate mass black hole binaries, training the new test using the framework
set out in this paper. We find that this method effectively trains a complex model to downweight the noise,
while leaving the signal population relatively unaffected. This improves the sensitivity of the search by
∼11% for signals with masses > 300 M⊙. In the future this framework could be used to implement new
tests in any of the commonly used matched-filter search algorithms, further improving the sensitivity of our
searches.
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I. INTRODUCTION

Since the first detection of gravitational waves in 2015
[1], the LIGO detectors have been upgraded multiple times,
and the network of detectors now includes Advanced LIGO
[2], Advanced Virgo [3] and Kagra [4]. The third observing
run of the LIGO-Virgo-Kagra network [5] has been
completed and a whole suite of new compact binary
coalescence (CBC) signals have been observed [6–11].
Along with improvements in the detectors, search algo-
rithms used to search for CBC signals have also been
improved by using information from the full network and
introducing new methods for removing noise [12–14].
A set of modeled [11–23] and unmodeled [24] search

algorithms have been used to observe CBCs in the past. In
this paper we will focus on modeled searches. Modeled
searches construct a large bank of simulated signals
(templates) with a variety of masses and spins in order
to cover the targeted parameter space. These templates are
then each used to perform a matched filter over the data for
each detector. The matched filter signal-to-noise ratio
(SNR) is then compared across the detector network in
order to check for consistency across detectors.
The matched filter is the optimal solution when search-

ing for known signals assuming that only Gaussian noise is

present [15]. However, in the presence of non-Gaussian
noise transients, large SNRs can be produced where no
signal is present [16]. Gravitational-wave detectors contain
many such transients [25,26], commonly referred to as
“glitches.” Glitches can produce huge SNR values while
having little resemblance to the CBC signals being
searched for. It is therefore necessary to employ signal-
consistency tests to remove as many of these glitches as
possible in order to reduce the rate of false alarms. In this
paper we will explore how to effectively develop and tune
such a signal-consistency test to separate the signal and
noise populations. We will apply this methodology to the
PyCBC search [12] as a demonstration of its use. However,
we strongly emphasize that this method will be applicable
to any modeled search.
In the PyCBC search, multiple signal-consistency tests are

employed. First, thematched filter SNR ismodified using two
χ2 tests that compare the morphology of the signal in the data
with that of the template [27,28], penalizing any signals found
to be inconsistent. Peaks in the reweighted SNR time series
are then compared across the detector network, checking for
consistency in the template parameters, as well as the relative
time of arrival, amplitude and phase of the signals [29]. Each
potential candidate event is then given a detection statistic in
order to rank the likelihood that it is a real signal.
After these tests are performed, the remaining signals are

shifted in time relative to each other to empirically measure*connor.mcisaac@port.ac.uk
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a nonastrophysical background. The detection statistic
values of the background signals can then be compared
to the observed coincident signals in order to produce a
false alarm rate for each observed signal [17].
The existing signal consistency tests remove a large

number of glitches from the single detector data, reducing
the rate of background coincidences, and therefore reduc-
ing the false alarm rate of observed signals. However, a
large number of glitches continue to be detected, particu-
larly when searching with high mass templates [30],
Mtotal ≳ 100 M⊙, where the signal may only be in the
detector frequency band for a fraction of a second.
In this work we propose a method of creating and tuning

new signal-consistency tests in order to separate signal and
noise populations. We show that we can use machine-
learning techniques such as stochastic gradient descent to
optimize these tests efficiently, and thus improve the
sensitivity of our searches to gravitational wave signals.
The use of machine-learning in gravitational wave

searches is an area where much work is being done.
Several works have explored the use of neural networks
to replace the matched filter statistic [31–35], using con-
volution neural networks to predict the probability of a
signal being present.
One advantage of convolution neural networks com-

pared to a matched filter is the computational cost involved.
This is particularly important for multimessenger
astronomy, where prompt detection of gravitational wave
signals could enable a followup with electromagnetic
observations. It has been shown that convolution neural
networks could be an effective method for enabling such
observations [36–40].
These works have shown that machine learning can, in

some cases, compete with the sensitivity of a matched filter
search when applied to a single detector. However, such
methods have not yet been demonstrated to be effective in
large-scale searches for CBCs covering a wide range of
parameters. Current methods also do not produce additional
information such as the amplitude and phase of the signal,
used in the matched filter search to test triggers across
detectors, they therefore lose sensitivity when compared to
a matched filter search using a network of detectors [41].
In this work we choose to introduce a machine learning

model within the current matched filter framework in order
to utilize the statistical tests already available to us. We
implement a new χ2 test using stochastic gradient descent
to train a set of tunable parameters within the model,
optimizing the test using noise triggers from a previous
search along with a set of simulated signals. By imple-
menting the model as a χ2 test it should remain rigorous in
the case of unseen data, such as a new population of
glitches.
We start by describing the general use of χ2 tests within

gravitational wave searches and the tests currently used
within the PyCBC search in Sec. II. In Sec. III we describe

our proposed framework for training new χ2 tests using
machine-learning methods. We then utilize this framework
in Sec. IV to train a new χ2 test for use in a search for
intermediate mass black hole (IMBHs). In Sec. V we
present the effect of this trained model on the IMBH search
showing that it improves the sensitivity of the search,
particularly at high masses, where the effect of non-
Gaussian noise is most prominent.

II. A REVIEW OF χ 2 TESTS IN GW SEARCHES

We will begin by reviewing existing χ2 signal-
consistency tests used in gravitational wave searches.
In order to search for signals in strain data, a matched

filter is used. Assuming the strain data takes the form of
sðtÞ ¼ nðtÞ þ hðtÞ, where nðtÞ is stationary Gaussian noise
and hðtÞ is a known signal, matched filtering is the optimal
method for detecting the signal hðtÞ. The calculated SNR is
analytically maximized over the amplitude and phase of the
signal. The SNR is calculated as

ρ2 ¼ jðsjhÞj2
ðhjhÞ ; ð1Þ

where the inner product is

ðajbÞ ¼ 4

Z
fhigh

flow

ãðfÞb̃�ðfÞ
SnðfÞ

df; ð2Þ

and SnðfÞ is the one-sided power spectral density (PSD) of
the noise. However, in the case of non-Gaussian noise,
large peaks in the SNR time series can be produced. Short
bursts of non-Gaussian noise are often referred to as
“glitches,” these can produce extremely large values of
SNRs with little similarity to the signal being searched for.
In order to remove such triggers signal-consistency tests
may be introduced to test the morphology of the trigger
compared to that of the search template.
A χ2 test is one such test. A χ2 test is constructed by

performing a matched filter with additional templates, ĥ⊥,
that are orthogonal to the search template such that
ðhjĥ⊥Þ ¼ 0. Given well-behaved noise, and a signal which
is an exact match to the search template, the matched filter
SNR of the orthogonal template will follow a reduced χ2

distribution with 2 degrees of freedom [15]. However, when
there is non-Gaussian noise present, such as a glitch, the
SNR will deviate from this distribution, taking a larger
value. By examining triggers on the SNR-χ2 plane the
signal and noise populations may then be separated.
After choosing a suitable template, ĥ, to be used for the

χ2 test one first normalizes it so that ðĥjĥÞ ¼ 1. The part of
the signal orthogonal to the search template is then
selected:
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ĥ⊥ ¼ ĥ − ðĥjhÞhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðĥjhÞ2

q : ð3Þ

N such templates are created in this way and their SNRs are
combined to produce the χ2 statistic.

χ2r ¼
1

2N

XN
i

ρ2i : ð4Þ

In the case that the templates are orthogonal to one another
this will produce a reduced χ2 distribution with 2N degrees
of freedom. However, in general, orthogonality between
the χ2 templates is not always enforced, in which case
the statistic will follow a generalized χ2 distribution with
increased variance.
The χ2 test also assumes that the signal in the data

matches the search template. However, due to the discrete
placement of templates within the parameter space of the
search there will be some mismatch between these two
signals. This mismatch means that the χ2 template will no
longer be orthogonal to the signal and some of the signal’s
SNRwill be included in the χ2 statistic, increasing the mean
of the distribution, creating a noncentral χ2 distribution. A
similar effect will be caused if the PSD is miscalculated, or
if the noise is nonstationary.
In general any N templates can be chosen to construct a

χ2 test. However, this test will be most effective when
templates are chosen that have some overlap with known
non-Gaussian noise in the data, in particular, aiming to
target noise which produces high SNR triggers for the
targeted parameter space.
To separate the signal and noise populations a

reweighted SNR is then calculated that penalizes triggers
where the χ2r is larger than expected. This reweighting takes
the general form

ρ̂ ¼ fðρ; χ2rÞ: ð5Þ

This reweighted SNR is then used to rank potential
candidate events.

A. Existing χ 2 tests in the PyCBC search

There are currently two χ2 signal-consistency tests
employed within the PyCBC search. The first of these is
the Allen χ2 test [27]. This test divides the template into p
independent frequency bins, splitting the template such that
each bin will contribute equally to the SNR. The SNR
contribution for each of these subtemplates is calculated
and compared to the expected value, calculating the χ2

statistic as

χ2r ¼
p

2p − 2

Xp
i¼1

�
ρ

p
− ρbin;i

�
2

: ð6Þ

This will take large values when a glitch is present in the
data that does not share the same morphology as the search
template. Specifically this test checks the distribution of
power along the track of the CBC signal. Although this test
does not follow the exact form described in the previous
section, it follows the same principle detecting excess
power along the track of the signal. The reweighted
SNR [42] is then calculated as

ρ̃ ¼
�
ρ; if χ2r ≤ 1

ρ½ð1þ ðχ2rÞ3Þ=2�−1
6; if χ2r > 1

: ð7Þ

By ranking the candidates based on this reweighted
SNR, a large number of noise triggers can be down-
weighted. This test is particularly powerful for lower mass
systems where the signals span a wide range of frequencies
within the band of the detectors, allowing for a larger
number of frequency bins to be used effectively. The
number of frequency bins to be used is varied as a function
of the search templates parameters [43]. The number of
frequency bins to use and the form of the SNR reweighting
are currently tuned empirically and have evolved over time
[42–44].
The second χ2 test is the sine-Gaussian χ2 test [28]. This

works by performing a matched filter with n sine-Gaussian
signals, each being placed at frequencies higher than those
expected from the search template. As these sine-Gaussian
signals do not overlap with the search template, we can
construct a χ2 test as the sum of their SNRs

χ2r;sg ¼
1

2n

Xn
i

ρ2sg;i: ð8Þ

This statistic tests if excess power is present above the final
frequency of the search template. When excess power is
present large values of χ2r;sg will be produced and the SNR
is reweighted again

ρ̃sg ¼
�
ρ̃; if χ2r ≤ 4

ρ̃ðχ2r;sg=4Þ−1
2; if χ2r > 4

: ð9Þ

The addition of this second test further reduces the rate of
noise triggers due to glitches. This test has a significant
impact for higher mass templates where there is a pop-
ulation of short duration glitches known as “blips” [45].
A subset of these blips have power extending to high
frequencies allowing this test to remove them successfully
[28]. However a large number of these glitches are not
removed by this test [30].
Both of these tests have been tuned empirically by hand,

choosing the number of frequency bins to be used and the
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placement of the sine-Gaussian signals, as well as the exact
form of the reweighting of the SNR. In the next section we
propose an approach that allows us to create and tune new
χ2 tests using a data-driven approach.

III. AUTOTUNING OF A χ 2

SIGNAL-CONSISTENCY TEST

We propose a framework in which we create new χ2 tests
and empirically tune them based on a set of training data.
To achieve this we take a set of noise triggers from a
previous search along with a set of simulated signals and
use stochastic gradient descent to tune the parameters of
our model.
In order to optimize the parameters of our chosen model

we first must define a loss function: this is the quantity that
we aim to minimize during the training process. The loss
function is a function of the triggers SNR, ρ, and its SNR
reweighted by the new χ2 test described in Sec. IV, ρ̂. For
this work we choose to define a separate loss function for
noise triggers and simulated signals. The loss functions
used in the case of noise triggers is

Lnðρ̂; ρÞ ¼
�
ρ̂ − 4; if ρ̂ > 4

0; if ρ̂ ≤ 4
; ð10Þ

which penalizes any cases where the reweighted SNR
is greater than 4. Below this threshold the PyCBC search
currently discards all triggers, so it is unnecessary to reduce
it any further.
The loss function used for simulated signals is

Linjðρ̂; ρÞ ¼ ρ − ρ̂: ð11Þ

This penalizes the case where the χ2r value is large and
the SNR is reduced. This contribution to the loss will also
allow us to train a function that reweights the SNR as in
Eq. (5) in order to create a greater separation between the
signal and noise populations in the SNR-χ2 plane.
To update the parameters of the model we must then

calculate the gradients with respect to the loss function.
This is done using backpropogation after calculating the
loss function using a set of training data. The χ2 model and
matched filter are implemented in TensorFlow [46,47],
allowing the gradients to be tracked through the calculation
and the parameters updated.
Stochastic gradient descent has been used widely in the

field of deep learning to optimize extremely complex
models [48,49], this framework therefore allows us to
produce highly complex transformations while allowing
us to effectively tune them to the detector data at a
reasonable computational cost.
In the next section we will describe one such model and

the data used to train the model.

IV. A χ 2 TEST FOR INTERMEDIATE MASS
BLACK HOLE SEARCHES

To demonstrate the training scheme described in the
previous section we will attempt to train a χ2 test that
improves the separation between glitches and signals when
searching for IMBHs, which we consider as signals with
Mtot > 100 M⊙. In this mass range the Allen χ2 test
described in the Sec. II A has a limited effect due to the
systems merging at low frequencies and covering a
relatively small frequency range within the detector band-
width. The sine-Gaussian χ2 test is successful in removing
a population of glitches that affect templates within this
mass range, however, many glitches remain that do not
have significant high frequency power [30].
In this section we will define a transformation using the

framework outlined in the previous sections using data
from a previous IMBH search in order to train the χ2 test
and improve the sensitivity of the search.

A. Creating χ 2 templates

Existing χ2 tests effectively test the distribution of power
of a candidate event along the track of the signal in the
time-frequency plane and test for excess power at high
frequencies. We aim to test for excess power in a frequency
band similar to those of the search templates, aiming to
cover areas of the time-frequency plane not currently
covered by existing tests.
To achieve this we transform the search template itself,

shifting the template in time and frequency. The optimal
values for these time and frequency shifts will depend on
the template being used and the noise present in the data.
Time shifted templates have previously been used in the
PyGRB search [50,51] to create a χ2 signal-consistency test
using fixed values for the time shifts. We propose a model
that allows different time and frequency shifts for each
template, tuning these values based on the current data.
The time and frequency shifts are selected using a dense

neural network. The template is first turned into an input by
sampling it between 12 and 256 Hz with a sample width of
0.1 Hz, we then take the absolute value of the template and
normalize it so that the mean of the input is one. This input is
then passed to a dense neural networkwith two output values
between−1 and 1. The first of these values is used as the time
shift after being scaled by the maximum allowed time shift
Δtmax, similarly, the second value is used as the frequency
shift after being scaled by the maximum allowed frequency
shift Δfmax.
The dense neural network consists of 11 dense layers,

using the rectified linear unit (RELU) activation functions
for hidden layers and the hyperbolic tangent function for
the output layer. In order to produce multiple time/
frequency shift pairs we train multiple networks with this
configuration. However, to speed up the training of this
model the first six dense layers are shared between each
network. The sizes of the dense layers are listed in Table I.
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After calculating these shifts they are applied to the
template before using Eq. (3) to generate our χ2 templates.
In addition to this model we must define a function to

reweight the SNR with the χ2r value. We create a para-
metrized model that can reproduce the reweighting in
Eqs. (7) and (9).

ρ̂ ¼
�
ρ; if χ2r ≤ σ

ρððδþ ðχ2r=σÞβÞ=ðδþ 1ÞÞ−1
α; if χ2r > σ

: ð12Þ

Here σ, α, β, and δ are parameters that can also be tuned to
increase the effectiveness of the test. This reweighting
leaves any signals with χ2r less than the threshold, σ,
unchanged. At large χ2r values α and β determine how
quickly the reweighted SNR decreases with the χ2r value,
while β and δ affect the transition between these two
regimes.

B. Data

In order to most effectively train the model we target
glitches that are missed by previous signal-consistency
tests. We achieve this by performing a search using the
setup described in [30] covering 45 days of data from the
first half of the third observing run. The data used in this
search is available from GWOSC [52,53]. From this search
we then select a set of noise triggers with ρ̃sg > 6 and
6 ≤ ρ ≤ 64. These noise triggers may have been down-
weighted by existing signal-consistency tests, but have not

been downweighted enough to remove them from the
analysis. In order to avoid including real signals we remove
any triggers that are coincident across multiple detectors.
This will also remove a number of noise triggers that have
formed coincident triggers, however, enough triggers
remain to create a substantial training set. These triggers
are then clustered over a window of 1 second and the
triggers with the largest ρ̃sg in that window are kept. We
record the times of the triggers and the parameters of the
template that produced them.
We also select a set of simulated signals to include during

training. From the list of simulated signals that were
recovered by the search, with false-alarm rates smaller than
1 per year, we select a set using the same constraints as the
noise triggers. For these triggers we record the parameters of
the simulated signal, as well as the template that recovered
the signal. By using the template that recovered the signal
in the searchwe are including the effect of templatemismatch
within the training scheme, this allows the SNR reweighting
step in Eq. (12) to be tuned to account for this contribution.
The simulated signals used in this analysis include effects
from precession and higher-order modes that are not present
in the template bank, by including these effects in the analysis
we can train the model to avoid identifying these effects as
noise, maintaining our sensitivity to these signals.
For each sample, the strain is loaded at 2048 Hz, for

samples containing simulated signals the signal is then
added. The strain data is high-pass filtered at 12 Hz and
PSDs are calculated using 512 seconds of data around the
time of the sample, following the same procedure as the
PyCBC search. 64 seconds of data around the trigger is then
selected, ensuring that the trigger is not within the first
32 seconds or the last 16 seconds to allow time for the
inspiral and ringdown of the search templates.
The search templates are generated using the

SEOBNRv4_ROM [54,55] waveform model, and are generated
at the same length and sample frequency as the strain data.
The simulated signals are generated using the NRSUR7DQ4

[56], SEOBNRv4 [54,55] and SEOBNRv4HM [57,58] waveform
models.
In order to ensure the noise and signal samples have

similar importance during training we select an equal
number of each. Additionally, to ensure that the parameters
in Eq. (12) are trained to separate the noise and signal
populations across a range of SNRs we bin our samples by
SNR and select an equal number of samples from the noise
and signal models for each bin. The boundaries of these
SNR bins are 6, 8, 10, 14, 18, 24, and 64. In each of these
SNR bins we draw 1200 noise samples and signal samples
from those remaining after filtering has been applied.
We set aside 10% of all samples to be used as a validation

set to monitor the performance of the model on unseen data,
all other samples are used to train the model. This gives us a
total of 12960 samples for training and 1440 samples for
validation.

TABLE I. This table details the architecture of the neural
network used to calculate time and frequency shifts. The input
is the absolute value of the search template sampled at 0.1 Hz
between 12 and 256 Hz. Dense layers transform their input using
a matrix multiplication followed by the addition of a bias vector,
the output is then passed to the activation function listed. The
hyperbolic tangent activation function of the final layer ensures
the output is in the range ½−1; 1�. The two outputs are multiplied
by Δtmax and Δfmax, respectively, to generate the time and
frequency shifts. Four such networks are generated, the layers
marked with an asterisk (*) share their weights between the four
networks.

Layer Output size

Input 2440
Denseþ RELU * 128
Denseþ RELU * 128
Denseþ RELU * 64
Denseþ RELU * 64
Denseþ RELU * 32
Denseþ RELU * 32
Denseþ RELU 16
Denseþ RELU 16
Denseþ RELU 8
Denseþ RELU 8
Denseþ tanh 2
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C. Training

The training of the model is performed in batches, each
batch contains 32 samples from the training set described in
the previous section. For each sample the peak SNR within
0.1 seconds of the trigger time is calculated. The search
template is then generated and passed to the transformation
described in Sec. IVA. The resulting templates are then
normalized and the orthogonal templates calculated using
Eq. (3). These templates are then used to calculate χ2r at
the time of the peak SNR and the reweighted SNR is
calculated. This value can then be passed to the loss
function in order to calculate the loss values for the batch.
Once the losses have been calculated, backpropogation

is used to obtain the gradients of the loss function with
respect to the trainable weights of the network described in
Sec. IVA, as well as the trainable parameters in Eq. (12).
Stochastic gradient descent is then used to apply small
changes to the variables based on the calculated gradients.
In order to speed up training and improve performance for
sparse gradients we use Nesterov momentum [59] when
calculating the parameter updates.
Before training the full model we perform a pretraining

phase where only the parameters of the SNR reweighting in
Eq. (12) are trained. This step is faster than the training of

the full model and by performing this step first the training
of the χ2 model is more effective early in the training. After
this step we proceed with the main training step, training
the parameters of the model described in Sec. IVA and the
SNR reweighting in Eq. (12) at the same time.
The main training step is repeated until all samples in the

training set have been analyzed 25 times, taking a total of
∼24 hours using 8 CPU cores. During training the learning
rate determines how quickly parameters are changed in
response to the calculated gradients. In order to improve
convergence late in the training stage we employ learning
rate decay. After each full cycle of the training set the
learning rate is multiplied by a factor of 0.9, allowing the
model to make smaller adjustments late in training.

D. Trained model

As shown in Fig. 1 we see that the loss calculated using
the test set decreases as training continues. This change is
mainly driven by the model downweighting noise triggers,
while the contribution from signals makes a smaller change
over the course of the training. The effect of this training
can also be seen in Fig. 2, and we can see that as training
continues a larger fraction of the SNR is removed as noise
triggers are targeted more effectively by the model, while
signals are left relatively unaffected.
In Fig. 3 we can see that the noise and signal populations

are well separated in the SNR-χ2 plane, particularly at high
SNRs. The parameters in Eq. (12) have been trained such
that the majority of signal samples are below the threshold,
σ, while noise samples above the threshold are heavily
downweighted.

FIG. 1. The average loss calculated using the unseen test data as
it changes with the number of training batches used. The average
losses contributed by noise samples and signal samples are also
plotted. This shows a large improvement in the loss contributed
by noise samples, while the loss from signals remains reasonably
steady.

FIG. 2. The average fraction of the SNR removed calculated
using the unseen test data as it changes with the number of
training batches used, split by noise and signal samples.
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V. EFFECT ON AN INTERMEDIATE MASS
BLACK HOLE SEARCH

In this section we will show the effect of introducing this
model to a search for IMBHs. For this test we carry out a
search following the configuration set out in [30], covering
eight days of data from the first half of the third observing
run. We run the search twice, with the only change being
the introduction of the model trained in the previous
section. To ensure that the model generalizes to new data
we run this search on a stretch of data completely separate
to that used during training.
By introducing this model, noise triggers can be effec-

tively downweighted. Figure 4 shows the change in the
number of triggers found when using the new ranking
statistic. This reduction in triggers will reduce the number

of coincident noise triggers in the foreground and the
empirically measured background. It is this decrease in the
rate of background triggers that produces an increase in
the significance of remaining foreground triggers, thereby
improving the sensitivity of the search.
We evaluate the sensitivity of the search using a number

of simulated signals added to the data and analyzed in the
same way as the main search. These simulated signals
follow the same distribution as those in [30]. The SEOBNRv4

and SEOBNRv4HM waveform models are used to generate
aligned spin signals, with total masses in the range
½100; 600� M⊙ and mass ratios in the range [1, 10].
Precessing signals are generated using the NRSUR7DQ4
waveform model with total masses in the range
½100; 600� M⊙, mass ratios in the range [1, 4] and compo-
nent spins isotropically distributed. For all simulated
signals the distance is drawn uniformly in the range
[0.5, 11] Gpc, with isotropic sky positions and binary
orientations. The sensitive volume of the search is then
calculated by applying a threshold to the calculated false-
alarm rate of 1 per year and measuring the detection
efficiency in a number of distance bins. The detection
efficiencies are then multiplied by the volume enclosed in
the distance bins and the volumes summed to find the total
sensitive volume of the search.
In Fig. 5 we see that the sensitivity of the search has been

increased by the addition of the new χ2 test, with an
increase in sensitivity of ∼4% for signals with total masses
in the range ½100; 300� M⊙, increasing to ∼11% for signals
with total masses in the range ½300; 600� M⊙. This is due to
the higher rate of glitches matching high mass templates,
any decrease in the glitch population will therefore have a
larger effect for these templates.

VI. CONCLUSION AND OUTLOOK

In this work we have demonstrated a new framework to
automatically train complex new χ2 signal-consistency tests

FIG. 4. The cumulative number of single-detector triggers with
ranking statistics below a given value. We can see a reduction in
the number of single-detector triggers for all three detectors when
changing from the previous ranking statistic (dashed line) to the
new ranking statistic (solid line) including the new tuned model.

FIG. 5. The ratio of the sensitive volume time for the search
including the trained model to the search without, calculated
using simulated signals added to the data with a detection
threshold on false-alarm rate of 1 per year.

FIG. 3. The test samples plotted in the SNR-χ2 plane after
training is complete. Lines of constant reweighted SNR are
plotted. We can see that at high SNR values there is good
separation between the noise samples (black dots) and signal
samples (blue triangles), allowing the model to downweight noise
triggers heavily.
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within modeled searches for gravitational wave signals. We
have applied this to the example of a search for IMBH
signals, where glitches have a strong effect on the sensi-
tivity of the search. Our framework is able to train a new χ2

model, which provides an improved separation of the signal
and noise populations allowing the noise triggers to be
downweighted. Using this new χ2 test improves the
sensitivity of the search to real signals by ∼4% for signals
with total masses in the range ½100; 300� M⊙ and ∼11% for
signals with total masses in the range ½300; 600� M⊙.
The introduction of new χ2 tests is difficult and usually

requires empirical tuning by hand to be effective, and often
requires retuning for different target parameter spaces or
noise populations. As signal-consistency tests become
more complex this can become unfeasible. However, by
utilizing machine-learning techniques we have shown that
we can tune these automatically, removing the burden in
improving and optimally tuning these tests. The method we
demonstrate here could be applied to any of the commonly
used matched-filter search pipelines targeting compact
binary mergers.
The population of glitches within the interferometer data

continues to be one of the largest challenges facing
gravitational wave searches. By continuing to develop
signal-consistency tests that specifically target such noise
we can continue to improve the sensitivity of searches and
increase the chance of observing new events in areas of the
parameter space most affected by glitches.

The trained parameters as described in Sec. IVA are
available as a supplementary data file at [60].
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and S. Ossokine, Enriching the symphony of gravitational
waves from binary black holes by tuning higher harmonics,
Phys. Rev. D 98, 084028 (2018).

[58] R. Cotesta, S. Marsat, and M. Pürrer, Frequency domain
reduced order model of aligned-spin effective-one-body
waveforms with higher-order modes, Phys. Rev. D 101,
124040 (2020).

[59] Y. Nesterov, A method for solving the convex programming
problem with convergence rate Oð1=k2Þ, Proc. USSR Acad.
Sci. 269, 543 (1983).

[60] C. McIsaac and I. Harry (2022), https://icg-gravwaves
.github.io/chisqnet/.

[61] gw-openscience.org.

CONNOR MCISAAC and IAN HARRY PHYS. REV. D 105, 104056 (2022)

104056-10

https://doi.org/tensorflow.org
https://doi.org/tensorflow.org
https://doi.org/10.5281/zenodo.5177374
https://arXiv.org/abs/1609.04747
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1103/PhysRevD.83.084002
https://doi.org/10.1103/PhysRevD.90.122004
https://doi.org/10.1088/1742-6596/610/1/012021
https://doi.org/10.1088/1742-6596/610/1/012021
https://doi.org/10.1016/j.softx.2021.100658
https://doi.org/10.1016/j.softx.2021.100658
https://doi.org/10.1103/PhysRevD.89.061502
https://doi.org/10.1103/PhysRevD.89.061502
https://doi.org/10.1103/PhysRevD.95.044028
https://doi.org/10.1103/PhysRevResearch.1.033015
https://doi.org/10.1103/PhysRevResearch.1.033015
https://doi.org/10.1103/PhysRevD.98.084028
https://doi.org/10.1103/PhysRevD.101.124040
https://doi.org/10.1103/PhysRevD.101.124040
https://icg-gravwaves.github.io/chisqnet/
https://icg-gravwaves.github.io/chisqnet/
https://icg-gravwaves.github.io/chisqnet/
https://gw-openscience.org
https://gw-openscience.org

