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Superradiance is a process by which massive bosonic particles can extract energy from spinning
black holes, leading to the build up of a condensate if the particle has a Compton wavelength
comparable to the black hole’s Schwarzschild radius. One interesting possibility is that superradiance
may occur for photons in a diffuse plasma, where they gain a small effective mass. Studies of the spin-0
case have indicated that such a build up is suppressed by a spatially varying effective mass, supposed to
mimic the photons’ interaction with a physically realistic plasma density profile. We carry out
relativistic simulations of a massive Proca field evolving on a Kerr background, with modifications to
account for the spatially varying effective mass. This allows us to treat the spin-1 case directly relevant
to photons, and to study the effect of thinner disk profiles in the plasma. We find similar qualitative
results to the scalar case, and so support the conclusions of that work: either a constant asymptotic mass
or a shell-like plasma structure is required for superradiant growth to occur. We study thin disks and find
a leakage of the bosonic condensate that suppresses its growth, concluding that thick disks are more
likely to support the instability.
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I. INTRODUCTION

In the presence of a highly spinning black hole (BH),
massive bosonic fields can develop superradiant instabil-
ities. The field can scatter off the BH in a way that extracts
energy and angular momentum from it, in a wave analog to
the Penrose process [1]. The fluctuations may be seeded
by an initial environment or quantum fluctuations. If the
amplified excitations in the field cannot escape to infinity,
they may fall back onto the BH such that the process will
continuously repeat, forming a bosonic condensate with
energy that grows exponentially over time [2]. The phe-
nomenon of superradiance, first proposed by Zel’dovich
[3], has been extensively studied using both numerical
[4–10] and (semi)analytical methods [11–33]: see [34] for a
comprehensive review.
The mass term naturally confines fields around BHs,

producing a potential well such that they are gravitationally
bound. In appropriate mass ranges, the extraction of energy
and angular momentum continues for successive bound
modes, until the spin of the black hole becomes too small to
support further growth of the bosonic field. The saturation
of each mode has been shown to occur via a smooth and
approximately adiabatic process [8].

Beyond the idealized case of a pure Kerr background
metric and a simple mass term in the bosonic potential,
there are many physical mechanisms that may disrupt
superradiance. A key outstanding question is how
robust the process is to environmental effects and
additional interactions. Even for a mass term in the
absence of self-interactions, the presence of multiple
modes can significantly affect the superradiant growth
[31]. Self-interactions may lead to an early saturation
of the superradiant instability due to mode mixing [35]
(although this requires further investigation in the
relativistic regime [36]), with the possibility of an
explosive destabilization of the condensate in a “bose-
nova” event [37,38]. Recent studies have also consid-
ered how couplings to Standard Model particles may
produce electromagnetic counterparts or quench the
mechanism [39–42], as well as the effect of deviations
from the Kerr metric [43,44].
The superradiant process is highly dependent on the

massM of the BH and the scalar field mass m ¼ ℏμ, and is
most efficient when the particle Compton wavelength
λ ¼ 1=μ is of the same order as the BH radius rs ∼M
(throughout the paper we adopt geometrical units such that
G ¼ c ¼ 1). In physical units this gives

μM ≃
�

M
M⊙

��
m

10−10 eV

�
¼ Oð1Þ; ð1Þ
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which sets a range of particle masses for solar mass and
supermassive BHs for which the process may occur. As can
be seen, these masses are much lower than those of any
known bosonic particles, and so typically superradiance is
of interest for light vector or scalar bosons beyond the
Standard Model, e.g., dark photons or axionlike particles,
which may compose some fraction of the dark matter (but
not necessarily a substantial amount).
However, it has also been proposed that superradiant

instabilities might occur when the photon gains an effective
mass while passing through a cloud of plasma [18,45,46]:
for example, when the BH is immersed in a diffuse
accretion disk. The effective mass of a photon in plasma
is given by its oscillation frequency:

μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πα

ne
me

r
¼ 1.2 × 10−12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ne

10−3 cm−3

r
eV; ð2Þ

where ne is the number density of the plasma [46]. For
stellar mass BHs (M ∼ 1–100 M⊙), the superradiant range
in Eq. (1) corresponds to μ ∼ 10−10 − 10−12 eV, and thus
ne ∼ 10−2 − 10−3 cm−1. Plasma densities around this range
are typical in the interstellar medium (ISM) [47]. The
considerations around the robustness of superradiance
mentioned above are particularly important for this case,
since treating the photon as a Proca field with a constant
mass is clearly an oversimplification of the complicated
magnetohydrodynamical effects involved, as was clearly
acknowledged by those who originally proposed this
mechanism [45]. These less idealized configurations,
including higher-order interactions in the plasma and
electromagnetic fields [41,45,48–50], or spatially varying
densities [46,51], may mean that the build up does not
occur, or that if it does the growth may end in runaway
instabilities like the bosenova [4,22,24,35,37,38,38].
There are several interesting consequences, should

plasma-driven superradiance indeed be effective and robust.
It may be used to explain the low BH spins measured by the
Advanced LIGO and Virgo network of gravitational-wave
detectors [46], and increase the fraction of hierarchical
mergers in dynamical formation scenarios [52]. It would
also potentially prevent BH spin observations putting con-
straints on the existence of new bosonic particles, as first
proposed in [21] (see also [22,25–27,53–55]), and compli-
cate the search for a stochastic background of gravitational
waves [32,56–59]. The impact of the effect has also been
investigated in the context of compact stars [60,61]. A
further potential application of the effect is in the early
Universe, when plasma densities were higher and thus the
corresponding photon mass was much larger. Then a super-
radiant instability could be triggered around light primordial
black holes [62], resulting in a spectral distortion of the
CMB. Since we do not observe such a distortion, one could
place bounds on the existence of highly spinning PBHs,
provided the mechanism is considered sufficiently robust to

occur in a generic situation. Finally, it has been speculated
that destabilization of the superradiant build up in plasmas
may explain energetic transient signals at radio frequencies,
such as fast radio bursts [45,63–65].
Dima et al. [46] studied the effect of a position-

dependent effective mass on the superradiant build up
as a toy model for more realistic scenarios where the ISM
plasma forms an accretion disk around the BH, whose
density typically increases as it approaches the horizon.
They used time-domain studies of a massive scalar field,
using the spectral decomposition method of Dolan [66]
to follow the long timescales involved. In this work we
perform similar studies in the massive vector boson
(Proca) case, which is more directly applicable to photons.
Vector bosons are more efficient at extracting energy and
angular momentum from rotating BHs than scalars since
their scattering results in a higher amplification of the
incoming waves, and the superradiant modes are more
closely bound, i.e., they are located nearer the BH horizon
[34]. One might hope that this could improve the robust-
ness of the process to spatial variations in the plasma. To
study vector boson superradiance, we use a (3þ 1)
dimensional evolution of the vector field on a stationary
Kerr background (neglecting backreaction of the field on
the metric). To facilitate comparison, we focus on effec-
tive mass configurations that are qualitatively similar
to those in [46], but our setup allows for more general
mass configurations, so we can also probe the thin disk
case. A typical evolution for the constant-mass case is
shown in Fig. 1.
Our results broadly support the conclusions reached by

Dima et al. [46]. We find that superradiance does not
occur when the effective mass background corresponds to
a Bondi accretion profile. However, superradiant growth
is once again possible with suitable modifications to the
configuration, such as the addition of a constant asymp-
totic mass or a cutoff in the density in the inner region
(creating a plasma “shell”). Compared to the scalar case in
Ref. [46], the enhancements we observe are more modest:
our simulations do not yield order-of-magnitude improve-
ments in the instability growth rates with respect to the
constant-mass case. As above, our setup also permits the
study of a wider range of disk thicknesses. In the absence
of an asymptotic mass, we find that thin disks do not
support superradiant growth (even with a sharp inner
cutoff in the density), due to “leakage” of the bosonic field
out of the poles. Therefore, all other factors being equal,
thicker disks are more effective at triggering superra-
diance. A schematic summary of our results is provided
in Fig. 2.
The paper is structured as follows. In Sec. II we describe

the numerical setup, with further technical details contained
in the Appendix. In Sec. III we describe our results for the
set of models tested. In Sec. IV we discuss our findings and
future research directions.
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II. SETUP AND NUMERICAL METHODS

A. Kerr metric background

Following Refs. [4,8,9], we write the fixed background
metric in Cartesian Kerr-Schild coordinates. These have the
advantage of being horizon penetrating, such that there is
no coordinate singularity at the horizon (see [67] for a
discussion of this form of the Kerr metric and its

interpretation). In these coordinates, the spacetime line
element is given by

ds2¼−dt2þdx2þdy2þdz2þ 2Mr3

r4þa2z2

×

�
dtþrðxdxþydyÞ

a2þr2
þaðydx−xdyÞ

a2þr2
þðzdzÞ

r

�
2

: ð3Þ

FIG. 2. Schematic overview of the Proca mass profiles studied in this paper. In all cases we considered a BH spin parameter
a=M ¼ 0.99. Rows correspond to the two radial mass profiles we study, as defined in Eqs. (34) and (35) below: a “spherical accretion”
profile μ0ðrÞ and a “hollow shell” profile μ1ðrÞ. The columns show the effect of various modifications to these profiles, including the
addition of an angular dependence (colored in orange in the schematic graphs on the top row) and/or of a nonzero asymptotic mass value
(colored in blue). A red cross means that we did not observe modes that undergo superradiant growth for the simulated parameters, and a
green tick mark means that we did. In one case (model 6 in the text), superradiant amplification may or may not occur depending on the
shell’s thickness.

FIG. 1. Time evolution in the x − y plane of the Proca field energy density ρTðtÞ, as defined in Eq. (32) below, for constant Proca mass
μ ¼ 0.5M−1. We show snapshots at three different time steps: at t ¼ 130M, when the field is in the transient phase (i.e., nonsuperradiant
modes in the initial data are decaying into the BH or radiating away); at t ¼ 785M, when the superradiant mode is just becoming
dominant; and at t ¼ 2225M, when the Proca field has been growing in the superradiant phase for some time. The energy density is
normalized to its maximum value ρT;ref for the simulation with t ¼ 785M. The values within the BH horizon are set to zero to mask the
excision region.
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Here r is not a coordinate (in particular, it is not the
Cartesian radial coordinate R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
) but rather

a function of the Cartesian spatial coordinates (x, y, z) given
by the implicit expression

x2 þ y2

r2 þ a2
þ z2

r2
¼ 1; ð4Þ

although one may recognize it as the Boyer-Lindquist
radial coordinate from that alternative coordinate choice.
Here M and J denote the mass and angular momentum of
the BH, a ¼ J=M is the Kerr parameter, and a=M ∈ ½0; 1�
is the dimensionless spin parameter. Thus the BH is entirely
parametrized by J and M. The alignment of the angular
momentum is taken to be in the z direction, without loss
of generality.
The metric in the standard 3þ 1 Arnowitt-Deser-Misner

(ADM) decomposition is given by

ds2 ¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ; ð5Þ

with components

α ¼ ð1þ 2HltltÞ−1=2; ð6Þ

βi ¼ −
2Hltli

1þ 2Hltlt
: ð7Þ

The induced metric reads

γijdxidxj ¼ δij þ 2Hlilj; ð8Þ

where

H ¼ Mr3

r4 þ a2z2
; ð9Þ

lμ ¼
�
1;
rxþ ay
r2 þ a2

;
ry − ax
r2 þ a2

;
z
r

�
: ð10Þ

The extrinsic curvature Kij is derived from its
definition as

Kij ¼
1

2α
ðDiβj þDjβiÞ; ð11Þ

given that ∂tγij ¼ 0.

B. Proca field

The real Proca field Xμ is associated with the Lagrangian

L ¼ 1

4
FαβFαβ þ 1

2
μ2ðXαXαÞ; ð12Þ

and evolves on the background metric according to the
equation of motion

∇βFαβ ¼ μ2Xα; ð13Þ

where Fαβ is defined as

Fαβ ¼ ∇αXβ −∇βXα: ð14Þ

Assuming that the Proca field mass μ is a constant, this
results in the requirement that

∇αXα ¼ 0: ð15Þ

Note that since Xα is massive, this condition is not a gauge
choice, but a constraint that must be satisfied.
In our toy model, the mass term μ depends on the spatial

coordinates. In this case the constraint becomes

∇αXα ¼ −2∂αðln μÞXα; ð16Þ

which is still a coordinate-invariant expression.
We decompose Eq. (13) into (3þ 1) dimensional ADM

coordinates, following Ref. [7]. Using the projection
operator of the spatial slices

Pν
μ ¼ δνμ þ nμnν; ð17Þ

where nμ is the normal to the hypersurface, the field Xμ can
be decomposed into a spatial part Ai and a timelike part φ,
where

Aμ ¼ Pν
μXν and φ ¼ −nμXμ: ð18Þ

An electric field is defined by analogy with electro-
magnetism, which provides the equation for the (first order
in time) evolution of Ai

Ei ¼ Pμ
i n

νFμν: ð19Þ

Projection of the 4-dimensional equation of motion onto
the spatial slice and normal to it gives rise to an equation of
motion for Ei and the constraint

CE ¼ DiEi − μ2φ ¼ 0; ð20Þ

whereDi is the covariant derivative on the spatial slice. The
evolution equation for φ is derived from Eq. (16). To ensure
that numerical violation of Eq. (20) is kept to a minimum,
we stabilize it by introducing an auxiliary damping variable
Z [7,68,69]. The equations of motion for the decomposed
quantities in terms of the ADM metric variables are then

∂tφ ¼ −AiDiαþ αðKφ −DiAi − ZÞ þ Lβφ

− 2ðαAi − βiφÞ∂iðln μÞ; ð21Þ
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∂tAi ¼ −αðEi þDiφÞ − φDiαþ LβAi; ð22Þ

∂tEi ¼ αðKEi þDiZ þ μ2Ai þDkDiAk −DiDkAkÞ
þDjαðDiAj −DjAiÞÞ þ LβEi; ð23Þ

∂tZ ¼ αðDiEi þ μ2φ − κZÞ þ LβZ; ð24Þ

where L denotes the Lie derivative, and κ is a constant of
order unity that controls the level of constraint damping.
We use Sommerfeld boundary conditions to allow outgoing
radiation to exit the grid with minimal reflections.

C. Initial Proca data

We follow the suggestion in Ref. [9] and use an initial
“seed” for the superradiant growth of the lowest m ¼ 1
(S ¼ −1, n ¼ 0) mode of the form

Ax ¼ Ay ¼
A

detðγijÞ
e−R=r0 ;

Az ¼ 0; ð25Þ

where R0 ≈ 1=ðMμ2Þ is approximately the characteristic
radius for the m ¼ 1 mode, and A ∼ 10−1 is a small seed
amplitude (the absolute value of A is arbitrary when we
neglect backreaction, as we do here).

D. Diagnostic quantities

The stress-energy tensor for the Proca field is

Tμν¼Fρ
μFνρ−

1

4
gμνFρσFρσþμ2XμXν−

μ2

2
gμνXρXρ: ð26Þ

We define the projections of the stress-energy tensor

ρ≡nαnβTαβ; Si≡−γiαnβTαβ; Sij≡γiαγjβTαβ; ð27Þ

which we can calculate as

ρ¼1

2
ðEiEiþμ2ðφ2þAiAiÞþDiAjðDiAj−DjAiÞÞ; ð28Þ

Si ¼ μ2φAi þ EjðDiAj −DjAiÞ; ð29Þ

and

Sij ¼ μ2
�
AiAj þ

1

2
γijðφ2 − AkAkÞ

�
þ EiEj

þ 1

2
γijEkEk þ ð∂iAk − ∂kAiÞð∂jAk − ∂kAjÞ

−
1

2
γijDlAmð∂lAm − ∂mAlÞ: ð30Þ

Due to the existence of a timelike Killing vector
ζμ ¼ ð1; 0; 0; 0Þ, the current Jμ ¼ ffiffiffiffiffiffi−gp

ζν Tμν is conserved:
∇μJμ ¼ 0. This results in a conservation equation obeyed
on each 3-dimensional hyperslice of the 3þ 1 ADM
decomposition [9,70]:

∂t

Z
Σ

ffiffiffi
γ

p
ρT ¼

Z
∂Σ

d2x
ffiffiffi
σ

p
FT; ð31Þ

where

ρT ¼ nνJν ¼ αρ − βkSk; ð32Þ

FT ¼αNiJi¼Ni½βiðαρ−βjSjÞþαγijðβkSjk−αSjÞ�; ð33Þ

and nν is the normal to the 3-dimensional hypersurface.
Here Ni is the normal to the 2-dimensional surface
enclosing the 3-dimensional volume over which the density
is integrated, for which the induced metric σij has deter-
minant σ. Further details on implementing these expres-
sions in a simulation can be found in Ref. [70].
In our simulations we monitor the individual contribu-

tions to Eq. (31), with the fluxes taken through coordinate
spheres of radius 144M far from the bound superradiant
mode (to check outgoing radiation of the Proca field), and
2M close to the BH horizon (to monitor fluxes through the
horizon). These fluxes are reconciled to the growth of mass
energy within the volume, to monitor the accumulation of
errors in the simulation. The overall growth of the mass of
the bound Proca field state is used as a measure of the
superradiant growth rate.

E. Numerical methods

In our simulations, the metric of Eq. (3) is a fixed
background metric on which the dynamical Proca field
evolves. Therefore we are neglecting backreaction of the
Proca field on the metric, and calculating the mass profile μ,
the metric values and their gradients analytically at each
point. This will be a good approximation where the energy
density of the Proca field is small, as it would be at the
initial stages of the superradiant build up in which we are
interested. We fix the value of a=M ¼ 0.99 and M ¼ 1 in
code units.
The Kerr-Schild form of the metric necessitates excision

of the singularity, which is achieved by setting the field
components and their time derivatives to zero just outside
the inner horizon. Given sufficient resolution at the outer
horizon, the ingoing nature of the metric prevents the errors
this introduces from propagating to the region outside
the BH. For the value of a ¼ 0.99M used in this work, the
outer horizon is a spheroid with equatorial radius 1.511M
and polar radius 1.141M. We found that a finest resolution
of Δx ¼ 1

48
M ≈ 0.02083M was required to recover the

correct rate of superradiant growth in the constant-mass
case, and the same value was found to achieve convergence
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in our simulations with a spatially varying mass. The finest
grid at this resolution covers a cube with side length
10
3
M ¼ 3.33M, which fully encloses the outer horizon.
Further numerical details, including code verification

and convergence testing, are provided in the Appendix.

F. Mass profile configurations tested

Eight of the Proca mass profiles that were tested in
Ref. [46] are listed in Table I, and shown in Fig. 2
(schematically) and Fig. 3 (quantitatively). (Note that these

are defined in Boyer-Lindquist coordinates, which are
translated into the Kerr-Schild ones used in our simula-
tions.) They are
(1) Accretion: the radial mass profile

μ0ðrÞ ¼ μH

�
rþ
r

�
λ=2

ð34Þ

is meant to reproduce the qualitative features of
spherically symmetric Bondi accretion [71]. The
parameters μH and λ are a normalization mass and
radial power-law index, respectively.

(2) Accretion-angular: modifies model 1 by introducing
a term proportional to sin θ, which changes the
spherically symmetric mass profile into an axi-
symmetric disk centered at the equatorial plane.
This mass potential mimics advection dominated
accretion flows [72–74].
Model 2, when transformed to our Kerr-Schild

coordinates, features a region immediately outside
the BH horizon where the Proca mass sharply
decreases to zero, which causes a discontinuity
in the derivative of the Proca mass ∂aðln μÞ in
Eq. (16), as illustrated in Fig. 4. Such a discontinuity
triggers numerical instabilities in our simulations,
so we remove it by adding a small constant mass
μc ¼ 0.02M−1 in our implementation of model 2.
A smaller value of μc would cause the derivative to
change too rapidly for our finite-difference evolution

FIG. 3. Proca mass profiles in Table I around the BH in the x − z plane. The ordering of the panels shown here is consistent with that in
Figs. 2 and 5. The top row is generated using parameters μH ¼ 1, λ ¼ 1, μc ¼ 0.42, and the bottom row is generated using MμH ¼ 2,
λ ¼ 1, Mμc ¼ 0.42, and r0=M ¼ 6, for illustration purposes. The central black circle masks the excision region around the inner
horizon.

TABLE I. Proca mass profiles studied in this paper and in
Ref. [46]. Here ðr; θÞ are the radius and the polar angle in Boyer-
Lindquist coordinates, rþ is the outer horizon of the black hole,
and μc, μH , r0, λ are constant parameters. The radial function
μ0ðrÞ mimicking accretion is given in Eq. (34), and the function
μ1ðrÞ mimicking a shell in Eq. (35).

Models μðxÞ
(1) Accretion μ0ðrÞ
(2) Accretion-angular μ0ðrÞj sin θj
(3) Accretion-constant

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ0ðrÞ2 þ μ2c

p
(4) Accretion-angular-constant

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ0ðrÞ2 sin2 θ þ μ2c

p
(5) Shell μ1ðrÞ2
(6) Shell-angular μ1ðrÞj sin θjp
(7) Shell-constant

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ1ðrÞ2 þ μ2c

p
(8) Shell-angular-constant

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ1ðrÞ2 sin2 θ þ μ2c

p
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scheme in the problematic region. The chosen value
of μc is well below the Proca mass Mμ ∼ 0.5
corresponding to the strongest superradiance, so
any superradiant growth related to this constant-
mass term will occur on timescales much longer than
our simulations, and therefore it does not signifi-
cantly affect our results (indeed in this case we do
not observe superradiance, and would expect this
change to only enhance it).

(3) Accretion-constant: modifies model 1 by adding a
further constant-mass term μc, which aims to capture
the effect of the asympotic ISM density [47].

(4) Accretion-angular-constant: has both the angular
j sin θj dependence and a constant-mass term μc.

(5) Shell: the radial mass profile

μ1ðrÞ ¼ μH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Θðr − r0Þ

�
1 −

r0
r

��
r0
r

�
λ

s
ð35Þ

models the possibility that the accretion disk trun-
cates at some radius near the BH. The truncation
radius is set by the parameter r0.
In our numerical implementation, we replace the

term Θðr − r0Þð1 − r0=rÞ with a smooth sigmoid
function ½1þ e−kðr−r00Þ=r00 �−1. We choose k and r00 to
approximate the original profile as closely as possi-
ble, while still being numerically tractable with our
finite-difference scheme.

(6) Shell-angular: modifies model 5 by introducing the
angular dependence through a j sin θjp term, similar
to (but more general than) model 2.

(7) Shell-constant: modifies model 5 by introducing a
constant-mass term μc, as in model 3.

(8) Shell-angular-constant: modifies model 5 by intro-
ducing both the angular j sin θj dependence and a
constant-mass term μc, as in model 4.

The parameters used in each mass profile, and the
exponential growth (or decay) rates found by fitting results
from these simulations, are listed in Table II.

III. RESULTS

In Fig. 5 we summarize the results of our simulations for
the mass profiles listed in Tables I and II. Each panel in
Fig. 5 shows the Proca field energy as a function of time for
a different mass profile. All simulations use the same initial
conditions and integration region as in the “uniform”
(constant Proca mass) case, which is shown as a dash-
dotted gray line for comparison in all of the panels: see also
Fig. 1, where we plot the Proca energy distribution at
different time slices on the x − y plane for the constant-
mass case.1

The two panels in the leftmost column correspond to the
radial mass distributions μ0ðrÞ and μ1ðrÞ that approximate
Bondi accretion and a spherical hollow shell, respectively.
We then modify these distributions by adding an angular
dependence (second column), a constant-mass term (third
column), or both (fourth column).
In simulations using Bondi accretion alone (either

with or without an angular modification) the field energy
decays in time. However, by adding a constant-mass term
we observe a superradiant growth rate which is approx-
imately half (0.367� 0.006 and 0.539� 0.010 for the
accretion-constant and accretion-angular-constant cases,
respectively) of the constant-mass growth rate. These
results suggest that a Bondi accretion profile alone is not
enough to trigger superradiance, but that a nonzero asymp-
totic mass (provided e.g., by the ISM) may still trigger a
superradiant growth of the Proca field, albeit with growth
rates somewhat slower than the ideal constant-mass case.
We do find superradiance for the spherical shell dis-

tribution, which features a “hollow” inner region close to
the BH where the Proca mass is suppressed. The boundary
of this region at r0 ¼ 8M provides a mirrorlike structure
that reflects the Proca field back to the ergoregion, helping
to enhance the superradiant scattering of the field. Having a

FIG. 4. Derivative of ln μ, the natural logarithm of the Proca
mass, for mass profiles with angular dependence. We plot the
derivative of ln μ with respect to the Kerr-Schild coordinate x at
y ¼ 1.2M, z ¼ 0M, and in the range x ∈ ½−M;M�. The red curve
refers to model 2 (accretion-angular) as defined in Table I
and Ref. [46], and shows that this quantity diverges. The blue
curve shows that the addition of a small constant-mass term
μc ¼ 0.02M−1 to model 2 removes the divergence.

1In the uniform case we choose Mμ ¼ 0.5, corresponding to
the maximum possible Proca growth rate. In the cases where we
add an asymptotic mass we chooseMμ ¼ 0.42 to match the value
used in Dima et al. [46], for which the uniform Proca rate would
be slightly lower. The difference in the rates between the two
values ofMμ is negligible, and it would not noticeably change the
“reference” dash-dotted gray lines in Fig. 5.
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TABLE II. Parameters used in each simulation, and resulting Proca field growth (plus sign) or decay (minus sign) rates. The first
column refers to the mass profiles listed in Table I (“Uniform” denotes a constant Proca mass value). Columns 2–6 list the parameters
used in each simulation. Column 7 lists the growth or decay rates obtained by an exponential fitting of the Proca energy data displayed in
Fig. 5 for t > 1000M, with errors estimated using fourth-order Richardson extrapolation (see Appendix A 3). In column 8 we normalize
the rate to the corresponding growth rate for a constant Proca mass (i.e., the “Uniform” case). In column 9, for comparison, we list the
growth or decay rates found in Ref. [46], when available.

Models

Parameters Growth/decay
rate ½10−4=M� Relative rate

Growth/decay rate
Dima et al. ½10−4=M�Mμ MμH λ r0=M p

(0) Uniform 0.5 � � � � � � � � � � � � 3.35� 0.08 1.00� 0.02 � � �
(1) Accretion � � � 1.0 1.5 � � � � � � −61.0� 4.2 −18.2� 1.2 −4.99 × 102

(2) Accretion-angular � � � 0.5 2.5 � � � 1.0 −44.9� 2.8 −13.4� 0.8 � � �
(3) Accretion-constant 0.42 0.5 2.5 � � � � � � 1.23� 0.02 0.367� 0.006 3.99 × 10−6

a

(4) Accretion-angular-constant 0.42 0.5 2.5 � � � � � � 1.81� 0.03 0.539� 0.010 � � �
(5) Shell � � � 2 2 8 � � � 2.58� 0.04 0.768� 0.011 0.513

� � � 2 2 rISCO � � � −12.0� 1.4 −3.58� 0.40 −2.62 × 102

(6) Shell-angular � � � 0.5 2 8 1.0 −7.19� 0.05 −2.12� 0.02 � � �
� � � 2 2 8 1.0 −5.58� 0.04 −0.17� 0.01 � � �
� � � 2 2 8 0.75 1.41� 0.06 0.42� 0.02 � � �
� � � 2 2 8 0.5 1.54� 0.07 0.46� 0.02 � � �

(7) Shell-constant 0.42 2 1.5 8 � � � 9.68� 0.26 1.44� 0.04 � � �
(8) Shell-angular-constant 0.42 2 1.5 8 � � � 8.69� 0.18 1.30� 0.03 −1.39b

aRef. [46] used MμH ¼ 1.0 and λ ¼ 2.0, instead of the parameters listed in this Table.
bRef. [46] found a positive (growth) rate of 0.119 when Mμc ¼ 0.3.

FIG. 5. Time evolution of the Proca field energy EðtÞ, exhibiting either superradiant growth or decay for different Proca mass profiles.
Each panel corresponds to the corresponding mass profile shown schematically in Fig. 2. For reference, the gray dash-dotted lines in all
eight panels show the simulation result for a constant Proca massMμ ¼ 0.5. All of the field energies EðtÞ shown here are normalized to
Eðt ¼ 1000MÞ to aid comparison. The “shell-angular” case illustrates four profiles with varying radial dependence and different angular
dependence (shell thickness), illustrating that thicker shells favor superradiance.
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sufficiently large radius for this region is found to be
crucial: the dashed red line in the bottom-left panel shows
that no superradiant growth is observed if the boundary is
located at r0 ¼ rISCO ¼ 1.454M.
When we add an angular modification of the spherical

shell distribution, we find that the superradiant growth is
strongly dependent on the thickness of the disk. The “shell-
angular” profiles we studied are shown in Fig. 6.
In thick disks, similar to those studied in Ref. [46], we

find that the superradiant instability can still be triggered.
However, for even slightly thinner disks (achieved by
adding a power p to the sin θ term, μ ∼ j sin θjp) the growth
is lost and the mass of the superradiant Proca field decays
exponentially. With this angular modification, the “mirror”
structure disappears at the two poles on the z axis, which
allows leakage of the superradiant modes from the inner

region. The leakage is illustrated in Fig. 7, where we see a
net positive outward energy flux in this configuration that
increases for thinner disks. This implies that thinner disks
would be less likely to support superradiant growth, as the
Proca field is able to escape at the poles.
For the spherical shell distribution with an additional

constant-mass term (shell-constant) we observe a super-
radiant growth rate ∼50% greater than that of the constant-
mass case. For the shell distribution with both an angular
dependence and a constant-mass term (shell-angular-
constant), the superradiant growth rate is slightly slower,
only ∼30% greater than that of the constant-mass case.
Similar to the results we found in modifications of the
Bondi accretion, these results suggest that a roughly
constant-mass term is key to restoring superradiant insta-
bilities. Of course, we should emphasize that we have in all
cases chosen to add a constant-mass term that is in an
appropriate range to support superradiance on short time-
scales for the chosen BH mass, so this should be regarded
as a “best-case” scenario. Where the mass is outside the
optimal range, the timescale of superradiance will be highly
suppressed, as it would be in the uniform mass case.

IV. DISCUSSION

In this work we have performed relativistic, nonlinear
3þ 1D evolutions of a massive vector field around a Kerr
BH, with a spatially varying effective mass to mimic the case
of photons interacting with a plasma. We find that different
models for the distribution of the plasma can both stall the
superradiant build up, and actually enhance the superradiant
growth rate. In particular, we find that for models 1
(accretion) and 2 (accretion-angular) no superradiant insta-
bility is observed; for models 3 (accretion-constant) and
4 (accretion-angular-constant) the superradiant growth is
slower than in the constant Proca mass case; and for models
7 (shell-constant) and 8 (shell-angular-constant) the super-
radiant growth rate is enhanced. The outcome in the case of
model 6 (shell-angular) depends on the thickness of the disk,
with thicker disks supporting a (slower than uniform) growth

FIG. 6. We illustrate the four configurations studied in the “shell-angular” case, as listed in Table II: top to bottom in the table maps
from left to right in these plots. The smaller p values towards the right correspond to a thicker plasma disk, which we find to be more
efficient at supporting superradiant growth. Note the different color map in the left panel.

FIG. 7. Energy flux out of a sphere at radius r ¼ 144M for
simulations with the shell-angular profile, normalized to the final
value of the flux in thep ¼ 1 case. After the field settles down from
the initial evolution (t > 500M), a net positive energy flux is still
present, indicating leakage of the superradiant field due to the
disklike effective mass. The leakage, which is smaller for thicker
disks (smaller values ofp), can inhibit the growth of the condensate.
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rate, and thinner disks leading to a decay of the superradiant
mode due to leakage at the poles.
These results are broadly consistentwith the previouswork

using scalar fields as a proxy [46]. In particular, they
emphasize the importance of a nonzero asymptotic mass in
confining the field sufficiently for the superradiant instability
to take hold.Alternatively, the “mirrorlike” structure provided
by an inner cutoff in the plasma cloud can trigger and even
provide enhanced rates of superradiance in comparison to the
uniform mass case. In general, having merely a localized
overdensity, such as an accretion spike or disk, is insufficient
to obtain superradiant growth.On theother hand, the presence
of such structures, in addition to a nonzero asymptotic mass
or an inner cutoff, does not inhibit the growth.
Our results confirm that vector and scalar fields have a

similar response to nonuniform mass terms, and thus the
analysis of [46] indeed applies to the photon case by which
their work was motivated. One aspect in which we were
able to extend their studies was to investigate the impact of
disk thickness on the superradiant growth rate. We confirm
their finding that superradiance occurs for thick disks, but
we have shown that thinner disks reduce the superradiant
growth rate, and can lead to an overall decay of the bound
Proca field. This is because they permit leakage of the field
from the poles, which can dominate over the growth from
superradiant scattering in the ergosphere.
Our Proca field evolution is performed on a fixed Kerr

background, which is a very good approximation for the
initial stages of superradiant growth, where there is a small
density relative to the curvature scale of the BH (M2ρ ≪ 1 in
geometrical units). Performing the simulations on a dynami-
cally evolving background would permit the study of the
effects of backreaction of the field onto the BH at later
stages, in particular the spin down or spin up of the BH
from superradiance, or accretion of the superradiant Proca
field onto the BH due to instabilities. Such simulations
are feasible, although computationally more expensive. A
cheaper alternative would be to simply adjust the mass M
and angular momentum J of the fixed background Kerr
metric at each time step based on the measured flux of these
quantities into the BH horizon. This technique would be
effective where the evolution is smooth and adiabatic, but
not in the case of rapid and violent bursts. We leave such
studies of the late growth to future work.
To apply our results to the electromagnetic field inside a

plasma one must assume that it is well approximated by a
simple massive Proca field, neglecting self-interactions and
interactions with other fields. This assumption would break
down when the field becomes large enough to disrupt the
plasma distribution, or to turn on higher-order interactions.
The inclusion of a self-interaction term in the Proca field
could approximate some of the additional effects of real
electromagnetic fields inside plasmas, along with a time
evolving (as well as spatially varying) value for the mass
term which takes account of the superradiant growth.
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APPENDIX: NUMERICAL RELATIVITY SETUP

1. Numerical methods and code validation

We use the GRChombo numerical relativity framework
[76–78], but we compute the metric components and their
derivatives analytically at each point rather than storing
them on the grid. The evolution of the Proca field follows
the standard method of lines, with Runge-Kutta time
integration and fourth-order finite-difference stencils.
As discussed in Sec. II A, we evolve the Proca field on

the fixed background metric in Kerr-Schild coordinates.
The metric is validated by checking that the numerically
calculated Hamiltonian and momentum constraints converge
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to zero with increasing resolution, as do the time derivatives
of the metric components, i.e., ∂tγij ¼ ∂tKij ¼ 0 (calculated
using the ADM expressions). This ensures that (ignoring the
backreaction) the metric is indeed stationary in the chosen
gauge, consistent with it being fixed over the field evolution.
To verify the numerical scheme used in this paper, we

first evolve the Proca field with a uniform Proca mass
Mμ ¼ 0.5 using the initial conditions of Eq. (25). We then
integrate ρ in Eq. (28) in the region between r ¼ 2M and
r ¼ 144M to obtain the total matter energy of the Proca
field. The resulting evolution is shown in Fig. 8. At early
times, i.e., before t ∼ 500M, nonsuperradiant modes in the
initial data either fall into the BH or radiate away, causing
the energy to decrease. After t ∼ 500M, the m ¼ 1 super-
radiant mode dominates the total energy growth. From
the simulation at the highest resolution (N ¼ 208) we
find a growth rate of 2MωI ¼ ð6.71� 0.16Þ × 10−4 for
the energy, in good agreement with the value of 2MωI ¼
6.6 × 10−4 found in Ref. [9].
As the spacetime has a timelike Killing vector, the

conservation equations (31) must hold for all times. As
a check of the quality of our simulations we can compare
the right-hand and left-hand sides of the equality, thus
checking that energy in the region between r ¼ 2M
and r ¼ 144M is conserved via the fluxes (see [70] for
implementation details). In Fig. 9 we demonstrate the good
agreement between these two quantities.

2. Convergence testing

We use a fixed hierarchy of grids with the largest box of
size L ¼ 384M,N ¼ 144 and 7 levels of refinement, with a

resolution on the finest grid of Δxfine ¼ 0.02083M. We
confirm that this resolution is sufficient by performing
convergence tests as described in this section.
In Fig. 8 we simulate the constant Proca mass scenario

with different resolutions. There is some increase in the
superradiant growth rate as we increase the resolution, but
the change gets smaller as the resolution increases, and it is
consistent with being in the convergent regime. Our results
are also consistent with the growth rates found in previous
work by East [9].
We have performed convergence tests for both a constant

Proca mass case and a representative, position-dependent
mass profile (model 3), as shown in Fig. 10. For both
cases we have computed the Proca field energy at three
resolutions Δ1, Δ2, and Δ3. For the constant Proca mass
case (top panel) we used Δ1 ¼ 0.0208M, Δ2 ¼ 0.0170M,
and Δ3¼0.0144M, as shown in Fig. 10 (top panel). For
model 3 (bottom panel) we used Δ1 ¼ 0.0268M, Δ2 ¼
0.0208M, and Δ3 ¼ 0.0144M (corresponding to N ¼ 112,
N ¼ 144, and N ¼ 176).
The convergence factor is defined as the ratio of the

relative differences between the solution at the low/medium
and the middle/high resolutions:

cðtÞ ¼ kFΔ1
− FΔ2

k
kFΔ2

− FΔ3
k ; ðA1Þ

In the limit Δ → 0 the convergence factor is expected to
behave as

lim
Δ→0

cðtÞ ¼ Δn
1 − Δn

2

Δn
2 − Δn

3

; ðA2Þ

FIG. 9. Consistency check between flux and volume integrals
for a constant Proca mass simulation with intermediate resolution
Δ2 ¼ 0.0170M. In blue we show the time derivative of the
integrated energy between r ¼ 2M and r ¼ 144M; in orange, the
ingoing flux at the two surfaces r ¼ 2M and r ¼ 144M. The two
curves lay on top of each other, consistent with energy con-
servation in the integration region.

FIG. 8. Convergence test of the constant Proca mass simulation.
Blue, orange, and green curves are results obtained with
Δ1 ¼ 0.0208M, Δ2 ¼ 0.0170M, and Δ3 ¼ 0.0144M as coarsest
resolutions, respectively. These resolutions correspond to 144,
176, and 208 boxes in the x- and y-direction (the grid in each
direction extends over 384M). The dashed orange line shows the
superradiant growth rate obtained by East [9].
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where n is the order of the finite-difference scheme used
in the evolution. In Fig. 10 we show that in the late-time
superradiant phase of the evolution, the errors are consis-
tent with convergence between second and third order.
While our finite-difference stencils and time evolution are
fourth order, interpolation at grid boundaries can reduce
this to third order, and we also introduce errors from the
“lego sphere” effect of zeroing cells inside the inner radius
(meaning that the approximation of the volume over which
the density is integrated does not converge at fourth order in
resolution).

3. Richardson extrapolation

In Table II of the main text, the error associated with
the growth/decay rates of the Proca field energy was
estimated using Richardson extrapolation. Given two sets
of solutions with increasing resolutions FΔ1

and FΔ2
, the

error on the higher-resolution result can be estimated as
ϵΔ2

∼ ðFΔ1
− FΔ2

Þ=ðrn − 1Þ, where r ¼ Δ1=Δ2 is the ratio
of the two resolutions, and n is the convergence order of the
evolution scheme used. To estimate the growth rate errors
in Table II we assume n ¼ 4, and we use data from two
resolutions: Δ1 ¼ 2.67M and Δ2 ¼ 2.18M (N ¼ 144
and N ¼ 176).
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