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Thermodynamics of black holes in anti–de Sitter (AdS) spacetimes typically contain critical points in the
phase diagram, some of which correspond to the first order transition ending in a second order one.
Following the recent proposal in [Phys. Rev. D 105, 104003 (2022)] on using Duan’s ϕ-mapping theory, we
classify the critical points of six dimensional charged Gauss-Bonnet black holes in AdS spacetime. We find
that the higher derivative curvature terms in the form of Gauss-Bonnet gravity do not change the
topological class of critical points in charged black holes in AdS, unlike the case of Born-Infeld corrections
noted earlier. The connection between the topological nature of critical points and existence of first order
phase transitions breaks down in a certain parameter regime. A resolution is proposed by treating the novel
and conventional critical points as phase creation and phase annihilation points, respectively. Examples are
provided to support the proposal.
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I. INTRODUCTION

Black holes provide a rich arena to explore the effects of
strong gravity [1]. Black hole thermodynamics in particular
gives us deep insights to understand the nature of degrees of
freedom of gravity [2]. Classically, black holes can be
assigned an entropy S which is a constant times the surface
area of the even horizon A [3], and this leads to the
identification of laws of mechanics with the corresponding
laws of thermodynamics [4]. The formal analogy with
thermodynamics comes to life only after invoking quantum
effects where the temperature T is identified with surface
gravity κ [5]. Black hole mass M on the other hand is
related to internal energy U. Hawking and Page discovered
a remarkable transition which happens between a self-
gravitating hot radiation and Schwarzschild black hole,
albeit in asymptotically anti–de Sitter (AdS) spacetime [6].
The Hawking-Page (HP) transition of course has an alter-
nate interpretation as a confinement/deconfinement tran-
sition in the dual conformal field theory (CFT) [7–9]. In the
case of charged black holes in AdS, there exists a first-order
phase transition between the small and large black holes
analogous to liquid-gas phase transitions of van der Waals
(VdW) fluid [10]. The situation becomes interesting in the
black hole chemistry paradigm [11–16], where the cosmo-
logical constant Λ is assumed to be giving rise to a pressure
P ¼ −Λ=8π, with its conjugate thermodynamic volume
denoted as V. One also realizes that the erstwhile first law

dM ¼ TdSþΦdQ; ð1:1Þ

can now include the traditional work terms appearing in
standard thermodynamics, when written as [12]

dM ¼ TdSþ VdPþΦdQ; ð1:2Þ

whereQ is the charge andΦ the conjugate potential, withM
now reinterpreted as enthalpy H. This novel extended
thermodynamics ensures for the charged AdS black holes
that, the small-large black hole transition has an exact map
to the liquid-gas type phase transition, including the
presence of a critical region where first order phase
transition terminates in a second order one [10,11,17].
Criticality in phase transitions, especially in black holes is
an interesting topic on its own due to several universal
phenomena which occur together with the scaling of
thermodynamic quantities. Very recently, a remarkable idea
was put forward in [18], where a topological approach
following Duan’s ϕ-mapping theory was used to classify
the nature of critical points for charged and Born-Infeld
black holes.
It is interesting as well as important to test whether the

proposal [18] is valid just for VdW’s liquid-gas type
transitions or extendable to more general situations when
there are multiple critical points. In fact, apart from the
small black hole (SBH) to large black hole (LBH) tran-
sition, there are further intriguing phenomena akin to day to
day thermodynamic systems, such as reentrant phase
transitions, multiple solid-liquid-gas type transitions which
occur in a variety of black holes, especially in six or larger
dimensions [19]. The black hole systems involve Gauss-
Bonnet, Born-Infeld and other higher derivative curvature
terms added to the Einstein action, in addition to multiple
rotating Kerr-AdS black hole systems. The latter in fact also
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display tricritical points in certain range of parameters,
including the interesting superfluid phenomena [19–30].
While there is an independent understanding emerging for
several of these phase transitions and critical behavior from
a thermodynamics point of view, it is important to look for
other possible methods to make inroads into the classi-
fication of such transitions.
With the above motivations, we look for a tractable

system which presents us with multiple critical points in
the phase diagram of black holes, i.e., the Gauss-Bonnet
(GB) theory in six dimensions [31–33]. Higher derivative
curvature terms from gravity sector, such as Gauss-Bonnet
and Lovelock terms are important, in the discussions of
semiclassical quantum gravity, and from the point of view of
low-energy effective action of superstring theories. The
particular interest in these higher curvature terms comes
from the fact that they result in field equationswhich contain
nomore than second derivatives of themetric for dimensions
higher than five, topological in four and vanishing identi-
cally for dimension less than three. Other Lovelock terms
behave similarly with respect to their critical dimension and
thus have the advantage of absence of ghost-like modes. In
the context of AdS=CFT correspondence, Gauss-Bonnet
terms can be understood as providing corrections in the large
N expansion of boundary gauge theories, in the strong
coupling limit. In the past, such terms have given crucial
contributions to the viscosity to entropy ratio and novel
bounds [34]. Although, in general in the Gauss-Bonnet
theory, the small to large black hole type phase transition
exists in anynumber of dimensions, the six dimensional case
is special. This is because there could either be one, two or
even three critical points with presence of multiple swallow
tail behavior, notwithstanding the narrow range of param-
eters. This still gives us a rich range of parameters to explore
the phase diagram and put the proposals in [18] to test.
Another motivation is the surprising result pointed out in
[18], that the charged black holes and Born-Infeld black
holes are thermodynamically classified into two different
topological classes. This raises the question as towhether the
higher derivative curvature corrections in gravity sector,
such as, the Gauss-Bonnet etc., would change the topologi-
cal nature of critical points of black holes too.
The rest of the paper is organized as follows. In Sec. II, we

closely follow [18,31–33,35,36] and collect salient aspects

of thermodynamics of Gauss-Bonnet AdS black holes in six
dimensions and present the topological approach, necessary
for performing the calculations in Sec. III. Section III
contains the main results of calculations on topological
classification of critical points of GB black holes in AdS in
various charge ranges. Section IV, contains a discussion on
the nature of critical points, were we identify a parameter
range where the classification of critical points as conven-
tional or novel, proposed in [18] breaks down. We end this
section by giving a new proposal on classifying the critical
points as phase creation and phase annihilation, to resolve
the ambiguity. Remarks and conclusions are given in Sec. V.
Appendix A contains the calculation of topological charge
for black holes in six dimensions when the Gauss-Bonnet
parameter α is set to zero, which shows that our results are in
conformity with the earlier solutions [18] in the Einstein-
Maxwell system. In Appendix B, we reason that our novel
proposal for understanding topology of critical points
presented in Sec. IV, is consistent and works for the case
of black holes in third order Lovelock gravity as well.

II. THERMODYNAMICS OF GAUSS-BONNET
BLACK HOLES AND TOPOLOGY

We start with the thermodynamics of charged-Gauss-
Bonnet (GB) black holes in AdS. As mentioned earlier, this
system in six dimensions exhibits a rich phase structure
compared to its lower and higher dimensional counterparts
[31–33]. The corresponding thermodynamic quantities,
i.e., the temperature T, entropy S, specific heat CP, and
the Gibbs free energyG in the extended phase space (where
we treat the cosmological constant Λ as the pressure P and
its conjugate quantity as thermodynamic volume V [12]),
are given by [31,33]:

T ¼ 8πPr8h þ 6r6h þ 2αr4h −Q2

8πr5hðr2h þ 2αÞ ; ð2:1Þ

S ¼ r4h
4

�
1þ 4α

r2h

�
; ð2:2Þ

CP ¼ ðr3h þ 2αrhÞ2ð8πPr8h þ 6r6h þ 2αr4h −Q2Þ
Q2ð7r2h þ 10αÞ þ 2r4hð4πPr6h þ 3r4hð8πPα − 1Þ þ 3αr2h − 2α2Þ ; ð2:3Þ

G ¼ 5Q2ð7r2h þ 20Þ − 6r4hð4πPr6h þ r4hð48πP − 5Þ þ 5r2h − 20Þ
480πr3hðr2h þ 2Þ ; ð2:4Þ

where, rh is the horizon radius, Q is the charge of the black hole and α is the Gauss-Bonnet (GB) coupling parameter.
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A. Phase structure

The equation of state (obtained by rewriting Eq. (2.1) in
terms of pressure) exhibits various phase structures depend-
ing on the charge parameterQ [31,33]. This can be seen from
the behavior of critical1 pressurePcwith chargeQ, as shown
in Fig. 1. Behavior of critical pressure Pc shows the
existence of three critical points for Q < QB, two critical
points for Q ¼ QB, and one critical point for Q > QB.
However, for caseQ ¼ QB, the critical point atB in Fig. 1 is
not a true critical point, as it is not an inflection point but an
undulation point. Thus, we have only one critical point
for Q ¼ QB.
Further, in the caseQ ≥ QB, the critical points are related

to the van der Waals type small/large black hole phase
transitions, whereas in the case Q < QB, the critical points
are related to a rich phase structure involving the triple points
(where, the three phases, i.e., small/intermediate/large black
hole phases, can coexist). In fact, all the critical points may
not globally minimize the Gibbs free energy, and thus may
not appear in the phase diagram. The nature of the critical
points actually depends on the fixed charge ranges, viz.
Q < QC,QC < Q < QD,QD < Q < QB, andQB < Q. For
the detailed discussion of phase structures related to these
critical and triple points, one can refer [31,33].Our aim in the
next subsection, is to present the concept of topology in
thermodynamics, which can be used to study properties
associated with these critical points that belong to different
fixed charge ranges.

B. Topology of thermodynamical functions

Recently, it is shown in [18] that, the critical points in the
phase diagram of a thermodynamic system (black holes in
particular) could be classified into conventional and novel

critical type, based on the topological charges they carry. In
the extended thermodynamic framework, typically the
temperature T of a thermodynamic system is given as a
function of the entropy S, pressure P, and other parameters
xi, i.e.,

T ¼ TðS; P; xiÞ: ð2:5Þ

It is well known that the critical point, where the second
order transition happens in the phase diagram, can be
obtained by solving the condition for stationary point of
inflection, i.e.,

ð∂STÞP;xi ¼ 0; ð∂S;STÞP;xi ¼ 0: ð2:6Þ

Now, the interesting suggestion put forward in [18] is to
construct a scalar thermodynamic function as

Φ ¼ 1

sin θ
TðS; xiÞ: ð2:7Þ

In practice, this is found by eliminating one of the variables
in Eq. (2.5), through the first of the conditions in Eq. (2.6),
and adding an additional factor of 1= sin θ for the ease of
analysis. The set up of Duan’s ϕ-mapping theory proceeds
by constructing a new vector field ϕ ¼ ðϕS;ϕθÞ, where
ϕS ¼ ð∂SΦÞθ;xi and ϕθ ¼ ð∂θΦÞS;xi . ϕ has an important
property that, its zero points always lie at θ ¼ π=2, and can
be identified with the presence of the critical points of the
thermodynamic system. The horizontal lines at θ ¼ 0 and π,
act as the boundaries of the parameter space, where the
vector field ϕ is perpendicular to these lines. An important
property of the above construction is the presence of a
topological current jμ, whose nonzero contribution only
comes from the zero points of the vector field ϕa, i.e.,
ϕaðxiÞ ¼ 0. Let there be N solutions of ϕa, whose ith
solution is denoted as x⃗ ¼ z⃗i. Qt ¼

R
Σ j

0d2x thus gives the
corresponding charge, which can be computed as [18,35,36]

Qt ¼
Z
Σ
ΣN
i¼1βiηiδ

2ðx⃗ − z⃗iÞd2x

¼ ΣN
i¼1βiηi ¼ ΣN

i¼1wi: ð2:8Þ

Here, βi is the positive integer (Hopf index) measuring the
number of loops thatϕamakes around the ith zero point ofϕ.
ηi ¼ signðJ0ðϕ=xÞziÞ ¼ �1 is called the Brouwer degree
and wi is the winding number for ith zero point of ϕ. Since,
Qt is nonzero only at the zero points of ϕ, one can assign a
topological charge (given by the winding number) for each
critical point, where the vector field ϕ is zero. Since, the
Brouwer degree ηi can be positive or negative, the critical
points were proposed to be further divided into two different
topological classes, i.e., the conventional (where ηi ¼ −1)
and the novel (where ηi ¼ þ1) [18]. Further proposal is that,
allowing Σ to span the entire parameter space for a given

A

D

C

B

0.05 0.10 0.15 0.20 0.25 0.30
Q0.0180

0.0185

0.0190

0.0195

0.0200

0.0205

0.0210
Pc

FIG. 1. Behavior of critical pressure Pc with charge Q. The
charges at the points A, B, C, and D are QA ¼ 0.1914,
QB ¼ 0.2018, QC ¼ 0.1705, and QD ¼ 0.1946 respectively.
We have three critical points for Q < QB, and one critical point
for Q > QB. The line segment CD denotes the triple points.
(Here, we set α ¼ 1).

1The expression for Pc can be find in [31,33].
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thermodynamic system, the topological properties of differ-
ent thermodynamic systems can be divided into different
classes from thermodynamics point of view.

III. TOPOLOGY OF CRITICAL POINTS IN SIX
DIMENSIONAL CHARGED GAUSS-BONNET

BLACK HOLES IN AdS

First we obtain the general expression for topological
charge which can be used to analyze the critical points of
black holes in six dimensional charged-Gauss-Bonnet
theories in AdS spacetime.

A. Topological charge

Starting from the temperature2 T in Eq. (2.1) and
following the discussion in Sec. II B, we now compute
the thermodynamic function Φ, as

Φ ¼ 1

sin θ
Tðrh; Q; αÞ; ð3:1Þ

¼ 1

sin θ
ð3r6h þ 2r4hα − 2Q2Þ

2πr5hðr2h þ 6αÞ : ð3:2Þ

The vector field ϕ ¼ ðϕr;ϕθÞ is obtained to be

ϕr¼∂rhΦ¼ cscθð2Q2ð7r2hþ30αÞ−3r4hðr2h−2αÞ2Þ
2πr6hðr2hþ6αÞ2 ; ð3:3Þ

ϕθ ¼ ∂θΦ ¼ −
cot θ csc θð3r6h þ 2r4hα − 2Q2Þ

2πr5hðr2h þ 6αÞ : ð3:4Þ

The normalized vector field is thus n ¼
�

ϕr

jjϕjj ;
ϕθ

jjϕjj
�
. In order

to calculate the topological charge associated with a critical
point (where ϕ ¼ 0), one is required to find its winding
number wi. We know from the topology that if a given
contour encloses a critical point then its winding number
(i.e., the topological charge) is nonzero, otherwise it is zero
[18,37–40].
In the orthogonal θ − r plane, we consider a contour C,

that is piece-wise smooth and positive oriented. Let the
contour C, for simplicity, be an ellipse centered at ðr0; π2Þ,
parametrized by the angle ϑ ∈ ð0; 2πÞ as [18,39]:

�
r ¼ a cos ϑþ r0;

θ ¼ b sin ϑþ π
2
:

ð3:5Þ

Then, following [18,37–39], one can compute the topo-
logical charge (i.e., winding number) by measuring the
deflection ΩðϑÞ of the vector field ϕ along the given
contour as

Qt ¼
1

2π
Ωð2πÞ; ð3:6Þ

where,

ΩðϑÞ ¼
Z

ϑ

0

ϵabna∂ϑnbdϑ: ð3:7Þ

In the following subsections, we compute the topological
charges corresponding to the critical points of various fixed
charge ranges given in Tables I and II. Case 1 in the Table I
below corresponds to the Einstein-Maxwell case with a
single critical point, where the Gauss-Bonnet parameter
α ¼ 0. The calculation of topological charge for this case is
given in Appendix A and shows that the classification of
critical points matches the earlier considerations in lower
dimensions [18].

TABLE I. Parametric coefficients of contours.

Case C1 C2 C3 C4 C5

Case-1 a 0.07 0.07 … … …
b 0.4 0.4 … … …
r0 0.69 0.9 … … …

Case-2 a 0.15 0.15 0.15 0.15 0.7
b 0.2 0.2 0.2 0.2 0.5
r0 1.2 1.55 0.67 2.2 1.1

Case-3 a 0.15 0.15 0.15 0.6 …
b 0.4 0.4 0.4 0.7 …
r0 1.15 1.55 0.8 1.2 …

Case-4 a 0.1 0.1 0.1 0.6 …
b 0.4 0.4 0.4 0.8 …
r0 1.1 0.87 1.55 1.2 …

Case-5 a 0.2 0.2 … … …
b 0.4 0.4 … … …
r0 1.61 2.2 … … …

TABLE II. Critical values.

Critical point (CP)

Case CP1 CP2 CP3

Case-2 rc 1.21313 1.53448 0.676405
Pc 0.0195571 0.0197829 0.0321348
Tc 0.11228 0.112424 0.115055

Case-3 rc 1.13426 1.55453 0.792783
Pc 0.0192661 0.0197442 0.021548
Tc 0.11208 0.112381 0.11271

Case-4 rc 1.06666 0.87761 1.5642
Pc 0.0190022 0.0193334 0.0197237
Tc 0.111932 0.11203 0.11236

Case-5 rc 1.62636 … …
Pc 0.0195648 … …
Tc 0.11217 … …2Here, for a given α, entropy S ¼ SðrhÞ from Eq. (2.2).
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B. Case 2: Q < QC

For simplicity, now onward we set the Gauss-Bonnet
parameter α ¼ 1. In this case, we have three critical points
(see Table II for the critical values at Q ¼ 0.15) related to
rich phase structure of small/large black hole phase
transitions and the Gibbs free energy also exhibits the
double swallow tail behavior [31,33]. For this case, the
vector field n is plotted in Fig. 2(a), where it clearly shows
the presence of three critical points. We construct five
contours C1, C2, C3, C4, and C5, such that the contours C1,
C2, and C3 enclose the critical points CP1, CP2, and CP3,
respectively, while the contour C4 does not enclose any
critical point. The contour C5 encloses all the three critical
points (see the Table I for parametric coefficients of the
contours.).
The behavior of the deflection angle ΩðϑÞ for these

contours is as shown in Fig. 2(b), which gives Ωð2πÞ ¼
2π;−2π;−2π; 0, and −2π, for the contours C1, C2, C3, C4,
and C5, respectively. Then, the topological charges asso-
ciated with the critical points are given by QtjCP1 ¼ þ1,
QtjCP2 ¼ −1, and QtjCP3 ¼ −1. Again the topological
charge for the contour C4 is zero as it does not enclose
the critical point, whereas the topological charge for the
contour C5 is −1, as it encloses all the three critical points
and since its topological charge is additive.
Again, following the proposal in [18], CP1 is now a novel

critical point, while CP2, and CP3, are conventional critical
points. Therefore, in this case, the total topological charge of
the system is Qt ¼ QtjCP1 þQtjCP2 þQtjCP3 ¼ −1.

C. Case 3: QC < Q < QD

In this case, we have three critical pointswhich give rise to
a nice phase structure consisting of small/intermediate/large
black hole phase transitions, including the appearance of
triple3 points [31,33]. The vector field n plotted in Fig. 3(a)
shows the three critical points (see Table II for critical values
at charge Q ¼ 0.18).
We construct four contours C1, C2, C3, and C4, such that

the contours C1, C2, and C3 enclose the critical points CP1,
CP2, and CP3, respectively, while the contour C4 encloses
all the three critical points. The behavior of the deflection
angleΩðϑÞ along these contours is shown in Fig. 3(b), from
where we obtain that Ωð2πÞ ¼ 2π;−2π;−2π;−2π, for the
contours C1, C2, C3, and C4, respectively. Then, the
topological charges corresponding to the critical points
areQtjCP1 ¼ þ1,QtjCP2 ¼ −1, and QtjCP3 ¼ −1. Thus, the
critical point CP1 is a novel one, while the critical points
CP2, and CP3, are conventional critical points.
Therefore, in this case also, the total topological charge

of the system (given by the contour C4) is Qt ¼ −1.

D. Case 4: QD < Q < QB

In this case also we have three critical points with the
existence of small/large black hole phase transitions
[31,33]. The vector field n, showing these critical points
(see Table II for critical values at charge Q ¼ 0.195), is
plotted in Fig. 4(a).

(a) (b)

FIG. 2. For case-2: (a) The blue arrows represent the vector field n on a portion of the θ − r plane. The critical points CP1, CP2, and CP3
are located at ðr; θÞ ¼ ð1.21; π

2
Þ; ð1.53; π

2
Þ, and ð0.67; π

2
Þ marked with black dots, and they are enclosed with the contours C1, C2 and C3,

respectively. The contour C4 does not enclose any critical point, while the contour C5 encloses all the three critical points. (b)Ω vs ϑ for
contours C1 (green curve), C2 (yellow curve), C3 (red curve), C4 (brown curve), and C5 (gray curve).

3Here, we do not pursue the case of triple points.
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The critical points CP1, CP2, and CP3, are enclosed
by the contours C1, C2, and C3, respectively, and
the contour C4 encloses all the three critical points.
For these contours C1, C2, C3, and C4, the deflection
angle ΩðϑÞ behavior is as shown in Fig. 4(b),

from where we note that Ωð2πÞ ¼ þ2π;−2π;−2π,
and −2π, respectively. Then, the corresponding topo-
logical charges of the critical points are QtjCP1 ¼ þ1

(novel), QtjCP2 ¼ −1 (conventional), and QtjCP3 ¼ −1
(conventional).

(a) (b)

FIG. 3. For case-3: (a) The blue arrows represent the vector field n on a portion of the θ − r plane. The critical points CP1, CP2, and CP3
are located at ðr; θÞ ¼ ð1.13; π

2
Þ; ð1.55; π

2
Þ, and ð0.79; π

2
Þmarked with black dots, and they are enclosed with the contours C1, C2, and C3,

respectively. The contour C4 encloses all the three critical points. (b) Ω vs ϑ for contours C1 (green curve), C2 (yellow curve), C3 (red
curve), and C4 (gray curve).

(a) (b)

FIG. 4. For case-4: (a) The blue arrows represent the vector field n on a portion of the θ − r plane. The critical points CP1, CP2, and CP3
are located at ðr; θÞ ¼ ð1.06; π

2
Þ; ð0.87; π

2
Þ, and ð1.56; π

2
Þmarked with black dots, and they are enclosed with the contours C1, C2, and C3,

respectively. The contour C4 encloses all the three critical points. (b) Ω vs ϑ for contours C1 (green curve), C2 (red curve), C3 (yellow
curve), and C4 (gray curve).
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The total topological charge of the system isQt ¼ −1, as
in the previous case.

E. Case 5: QB < Q

In this case, there is only one critical point. The situation
is similar to the van der Waals system, where the first order
small/large black hole phase transition which terminates at
this second order critical point [31,33].
For this case (see the Table II for critical values at charge

Q ¼ 0.3), the vector field n is plotted in Fig. 5(a), showing
the critical point CP1. We construct two contours C1, and
C2, such that the contour C1 encloses the critical point,
while the contour C2 does not. The topological charge must
be nonzero for the contour C1 and zero for the contour C2.
The plot of the deflection angle ΩðϑÞ for the contours C1,
and C2, is as shown in Fig. 5(b). The angle ΩðϑÞ decreases
to reach −2π for the contour C1, whereas it decreases first,
then increases and finally vanishes for the contour C2.
Thus, as we expected, the topological charge for the
contour C1 is −1, and for the contour C2 it is zero.
Therefore, in this case, the topological charge of the

critical point CP1 is QtjCP1 ¼ −1 (conventional critical
point), which is the total topological charge of the system
as well.

IV. NATURE OF THE CRITICAL POINTS

According to the proposal in [18], we have two types of
critical points from the topological classification. The
conventional critical point (for which the topological charge
is Qt ¼ −1), and the novel critical point (for which the

topological charge isQt ¼ þ1). A further proposal of [18] is
that, the conventional critical point indicates the presence of
first-order phase transitions near it, while the novel critical
point cannot serve as an indicator of the presence of a first-
order phase transition. However, this notion of the presence
or absence of first-order phase transitions based on the
classification of the critical point as conventional or novel,
does not seem to be true in general. This can be inferred, for
example, from our results in case-2 (i.e., Sec. III B).
In case-2, we obtained the topological charges of the

three critical points CP1, CP2, and CP3, as QtjCP1 ¼ þ1
(novel), QtjCP2 ¼ −1 (conventional), and QtjCP3 ¼ −1
(conventional), respectively. As shown in Fig. 6(a), only
the critical point CP3 appears in the phase diagram, while
the other two critical points do not appear, as they do not
globally minimize the Gibbs free energy [31,33]. There
exist a first-order phase transitions near the critical point
CP3 (conventional), and there are no first-order phase
transitions near the critical point CP1 (novel). However,
even though the critical point CP2 is a conventional one,
there is no first-order phase transitions near it, which
disaccords with the proposal in [18].
We can resolve this disagreement, if we classify the

critical points in the following way. As the pressure
increases, the novel critical point is the one from which
new phases (stable or unstable) appear, whereas, the
conventional point is the one at which the phases disappear,
as can be seen from Figs. 6(b) and 7.
From the Fig. 6(b), we have three black hole phases

(small, unstable intermediate, and large) when the pressure
P < Pc1. We see the appearance of new phases from the

(a) (b)

FIG. 5. For case-5: (a) The blue arrows represent the vector field n on a portion of the θ − r plane. The critical point CP1 is located at
ðr; θÞ ¼ ð1.63; π

2
Þmarked with black dot, and is enclosed with the contourC1. The contourC2 does not enclose the critical point. (b)Ω vs

ϑ for contours C1 (red curve), and C2 (green curve).

TOPOLOGY OF BLACK HOLE THERMODYNAMICS IN GAUSS- … PHYS. REV. D 105, 104053 (2022)

104053-7



critical point CP1 (novel) when we just increase the
pressure P > Pc1, and we now have five phases (small,
unstable intermediate, stable intermediate, unstable inter-
mediate, large). On further increasing the pressure P to Pc2,

two phases among five are disappearing at the critical point
CP2 (conventional), and we are left with three phases only.
If we further increase the pressure P to Pc3, two phases
among three are disappearing at the critical point CP3

(a) (b)

FIG. 6. For case-2: (a) Phase diagram showing the first-order phase transitions near the conventional critical point CP3. (b) T as a
function of rh for different pressures (Inset: for P > Pc2.), showing the appearance of new phases (stable or unstable) near the novel
critical point CP1 (green dot), and disappearance of phases near the conventional critical points CP2, and CP3 (red dots). Dashed curves
denote unstable black hole branches and solid curves denote stable black hole branches. Pressure of the isobars increases from bottom to
top, where the critical pressures are Pc1, Pc2, Pc3 with Pc1 < Pc2 < Pc3.

P Pc1

0.110 0.111 0.112 0.113 0.114 0.115
T0.018
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0.022

0.024

0.026
G

(a)

T

G

P   P  P

(b)

P = Pc2

0.1110 0.1115 0.1120 0.1125 0.1130 0.1135 0.1140 0.1145
T0.0210

0.0215

0.0220

0.0225

0.0230

0.0235
G

(c)

Pc2 P Pc3 P = Pc3 P Pc3

0.1135 0.1140 0.1145 0.1150 0.1155 0.1160
T0.0212

0.0214

0.0216

0.0218

0.0220

0.0222

G

(d)

0.110 0.111 0.112 0.113 0.114 0.115
0.018

0.020

0.022

0.024

0.026

T

G

FIG. 7. For case-2: Behavior of the Gibbs free energy as a function T for different pressures, showing the appearance of new (stable or
unstable) phases near the novel critical point CP1 (with pressure Pc1), and disappearance of phases near the conventional critical points
CP2 (with pressure Pc2), and CP3 (with pressure Pc3), on increase of pressure. (a) P ¼ 0.0192, (b) P ¼ 0.01968,
(c) P ¼ Pc2 ¼ 0.01978, (d) P ¼ 0.025, Pc3 ¼ 0.0321, 0.034.
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(conventional). This appearance/disappearance of phases
near the critical points can be seen clearly from the Gibbs
free energy behavior shown in Fig. 7.
For the cases 3 and 4, the appearance/disappearance of

phases at the critical points can be seen from the Figs. 8(a),
and 8(b), respectively. It can be checked that our novel
proposal of the appearance/disappearance of phases from
the nature of critical points is also valid for the Born-Infeld
case [18] and the third order Lovelock gravity presented in
Appendix B.

V. CONCLUSIONS

In this paper, we considered six dimensional charged AdS
black holes in Gauss-Bonnet gravity in the extended phase
space, where the black holes exhibit a rich phase structure
admitting multicritical points, depending on the range of the
black hole charge Q. We computed the topological charges
corresponding to the critical points by following Duan’s
topological current ϕ-mapping theory and the proposal in
[18]. Our findings are summarized below.

We first considered the case of charged AdS black hole
by switching-off the Gauss-Bonnet (GB) coupling α (cal-
culation presented in Appendix A). In this case, we have
only one critical point for which the topological chargeQt is
found to be QtjCP1 ¼ −1, and thus this critical point is a
conventional one, following the classification in [18].
Next, we considered the effect of GB coupling on the

topological charge. Depending on the range of the black
hole charge Q, we now have three critical points for
Q < QB, and one critical point for Q > QB (where, QB ¼
0.2018 at α ¼ 1.), and the corresponding topological
charges are given in the Table III. Among the three critical
points forQ < QB, we have one novel critical point and the
other two are conventional critical points, while the critical
point for Q > QB is a conventional one. However, the total
topological charge of the system is −1 independent of the
range of the black hole charge Q.
Therefore, we find that the topological charge of the

charged AdS black hole system is (Qt ¼ −1) unaltered due
to the Gauss-Bonnet coupling, unlike the Born-Infeld
coupling [18]. Further, we found that as the pressure

CP2
CP3

CP1

0.5 1.0 1.5 2.0 2.5
rh0.1110

0.1115

0.1120

0.1125

0.1130

0.1135

0.1140
T

(a)

CP2

CP1

CP3

0.5 1.0 1.5 2.0 2.5
rh0.1110

0.1115

0.1120

0.1125

T

(b)

FIG. 8. T as a function of rh for different pressures, showing the appearance of new phases (stable or unstable) near the novel critical
point CP1 (green dot), and disappearance of phases near the conventional critical points CP2, and CP3 (red dots). Dashed curves denote
unstable black hole branches and solid curves denote stable black hole branches. Pressure of the isobars increases from bottom to top,
where the critical pressures are Pc1, Pc2, Pc3 with Pc1 < Pc2 < Pc3. (a) for case-3, (b) for case-4.

TABLE III. Summary of the results.

Case Number of critical points Topological charge Total topological charge Qt

Case 1: α ¼ 0 1 QtjCP1 ¼ −1 −1
Case 2: Q ¼ 0.15 < QC 3 QtjCP1 ¼ þ1 −1

QtjCP2 ¼ −1
QtjCP3 ¼ −1

Case 3: QC < Q ¼ 0.18 < QD 3 QtjCP1 ¼ þ1 −1
QtjCP2 ¼ −1
QtjCP3 ¼ −1

Case 4: QD < Q ¼ 0.195 < QB 3 QtjCP1 ¼ þ1 −1
QtjCP2 ¼ −1
QtjCP3 ¼ −1

Case 5: QB < Q ¼ 0.3 1 QtjCP1 ¼ −1 −1
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increases in phase space, new phases (stable or unstable)
appear from the novel critical point, whereas the phases
disappear at the conventional critical point. Thus, we name
the novel critical point as the phase creation point, and the
conventional critical point as the phase annihilation point.
This removes some ambiguity in the connection between
existence/absence of first order phase transition and clas-
sification of critical points based on topology.
First observation is with regards to the parity of critical

points. Black holes in two different systems with same
parity (odd-odd or even-even type) of the number of
critical points, have the total topological charge matching
with the parity. Examples to support this view are charged
AdS black hole (1 critical point) and charged GB AdS
black hole (1 or 3 critical points), where the parity of the
number of critical points (odd in both cases) is same
irrespective of the sign of topological charge. On the other
hand, in the case of charged black holes in AdS (1 critical
point) and Born-Infeld AdS black hole (2 critical points),
the parity of the number of critical points is different, i.e.,
odd in the first and even in the same case, respectively.
Correspondingly, the total topological charge in these
cases matches the parity of number of critical points,
i.e., odd (-1) for charged black holes and even (0) with
Born-Infeld corrections. This trend continues for black
holes in the third order Lovelock theories (Appendix B),
where for odd (even) number of critical points the total
topological charge is an odd (even) number. Of course, our
study is preliminary and more examples are required to
settle these claims.
An important result concerns the observations in [18],

where for black holes in the Einstein-Maxwell system and
their counterparts in the Einstein-Born-Infeld system, the
critical points were shown to belong to different topologi-
cal classes, as their topological charges are different. On
the other hand, as we found in this work, that the charged
black holes in the Gauss-Bonnet gravity belong to the
same topological class as their counterparts in the Einstein-
Maxwell system. As shown in Appendix B, for black holes
in Lovelock theories of gravity up to third order the
topological class of critical points remains unaltered.
Naively, it appears that the higher derivative curvature
corrections in the gravity sector do not change the
topological class of black hole critical points, where as
the gauge corrections do. There might be a deeper reason
for this which requires further study, possibly by studying
black holes in theories with both higher curvature gauge
and gravity corrections side by side in the action. It would
be interesting to explore this issue further from topology
point of view, as it may teach us something new about the
phase structure of black holes, which has been missed from
standard thermodynamic treatments. There is no doubt
that, the above conjectures require more scrutiny in
systems having multiple critical points and with other
gauge/gravity corrections, possibly involving rotating

black hole solutions [33,41–45]. Further, it would be nice
to have a mechanism to study the topological properties
associated with the triple points in black holes as well
[31,33,46].
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APPENDIX A: CASE-1 (α= 0): TOPOLOGY
OF EINSTEIN-MAXWELL SYSTEM IN SIX

DIMENSIONS

The aim here is to compute the topological charge Qt
associated with the Einstein-Maxwell system by switching-
off the Gauss-Bonnet parameter (i.e., α ¼ 0) in Eq. (2.1) and
this will help validate our results when the charge parameter
is introduced in Sec. III A. This system has only one critical
point, showing the van derWaals type small/large black hole
phase transitions, given by [31,47]

Tc ¼
9

7πrc
; Pc ¼

9

16πr2c
; rc ¼

�
14Q2

3

�
1=6

: ðA1Þ

For this case, the vector field n is plotted in Fig. 9(a), where it
shows the critical point at ðr; θÞ ¼ ðrc; π2Þ. We then construct
two contoursC1 andC2 such that the contourC1 encloses the
critical point, while the contour C2 does not (see Table I for
parametric coefficients of the contours.).
The deflection angle ΩðϑÞ [using Eq. (3.7)] of the vector

field ϕ along the contours C1 and C2 is plotted in Fig. 9(b).
It shows the following features. For contour C1, it decreases
and reaches Ωð2πÞ ¼ −2π, while for the contour C2, it
decreases first and then increases, before finally vanishing,
i.e., Ωð2πÞ ¼ 0. Therefore, the topological charge Qt ¼
1
2πΩð2πÞ for the contour C1 is −1, while for the contour C2

it is zero. These results are consistent with our expectations
that, if a given contour encloses the critical point then its
topological charge is nonzero. Therefore, the topological
charge corresponding to the critical point CP1 is
QtjCP1 ¼ −1. According to the classification of the critical
points from topology proposed in [18], this critical point is a
conventional critical point. Since there exists only one
critical point, the total topological charge of the Einstein-
Maxwell system would be Qt ¼ −1.

APPENDIX B: TOPOLOGY OF CRITICAL
POINTS IN THIRD ORDER LOVELOCK

GRAVITY

Following the computation of topological charge and
analysis in Secs. III and IV, we found that in the case of
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Gauss-Bonnet black holes in AdS, the nature of critical
points needs to be understood as phase creation and phase
annihilation points. Here, our aim is to give a prefatory
computation that the arguments in Sec. IV continue to hold
in Lovelock theories of gravity as well. As an example, we
consider the third-order Lovelock gravity but generaliza-
tion to higher order should also be possible. Following [33],
it is known that the third-order Lovelock coupling to
Einstein-Maxwell system shows the standard van der
Waals behavior with one critical point in seven dimensions,
and thus its (total) topological charge would be −1
(conventional critical point). However, this system in
higher dimensions (≥ 8) exhibits the rich phase structure
with multicritical points [33]. In eight dimensions, this
system can have up to three critical points (depending on

the charge q and Lovelock coupling parameter α), having
the equation of state given by [33]:

p ¼ t
v
−

15

2πv2
þ 2αt

v3
−

9α

2πv4
þ 3t
v5

−
3

2πv6
þ q2

v12
; ðB1Þ

where, v is the specific volume. The corresponding phase
diagramswith one, two, and three critical points (seeTable IV
for critical values) are as shown in Figs. 10(a), 10(b), and 11,
respectively.
In Figures 10(a), 10(b), and 11, the critical points

shown in red color correspond to the phase annihilation
points and thus their topological charge is −1. Where as,
the critical point shown in green color corresponds to
the phase creation point and hence its topological charge

TABLE IV. Critical values for Lovelock gravity.

Critical point (CP)

Parameters ðq; αÞ Number of critical points CP1 CP2 CP3

(0.01,2.6) 2 vc 2.36519 0.4213 …
pc 0.090224 2.46059 …
tc 0.745863 0.72603 …

(0.01,2.8) 3 vc 0.8172 2.0874 0.423
pc 0.039 0.08996 2.7776
tc 0.7206 0.7304 0.7442

(0.01,3) 1 vc 0.4241 … …
pc 3.1603 … …
tc 0.7621 … …

)b()a(

FIG. 9. For case-1: (a) The blue arrows represent the vector field n on a portion of the θ − r plane. The critical point CP1 is located at
ðr; θÞ ¼ ðrc; π2Þ marked with a black dot. The contour C1 encloses the critical point, while the contour C2 does not. (b) Ω vs ϑ for
contours C1 (red curve) and C2 (green curve). (Here, we set the charge Q ¼ 0.15).
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is þ1. Therefore, the total topological charge of the
Einstein-Maxwell system with Lovelock coupling
would be −1ðwith one or three critical pointsÞ; or ;−2
ðwith two critical pointsÞ. Thus, similar to cases of

Gauss-Bonnet theories discussed in Sec. IV, we can
advance the argument that the Lovelock coupling also
does not alter the topological class of the critical points for
black holes in Einstein-Maxwell system.
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t
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FIG. 10. For Lovelock gravity: t as a function of v for different pressures. The critical points shown in red color are phase annihilation
points. Dashed curves denote unstable black hole branches and solid curves denote stable black hole branches. Pressure of the isobars
increases from bottom to top. (a) with one critical point, (b) with two critical points (Inset: for p > pc1).
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FIG. 11. For Lovelock gravity: t as a function of v for different pressures. The critical points shown in red (green) color are phase
annihilation (phase creation) points. Dashed curves denote unstable black hole branches and solid curves denote stable black hole
branches. Pressure of the isobars increases from bottom to top, with three critical points (Insets: for p > pc2).
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