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The study of the generation of metric perturbation in the laboratory presents an opportunity to observe
and understand more easily the mechanisms at work in gravitation. The present study will focus on the
metric perturbation generated by a light pulse, as it could be generated by a current ultrahigh power laser.
Although of very small magnitude, the potential thus generated has advantages over that generated by mass
acceleration, such as the absence of noise due to nonuniform acceleration or the ability to scale up the
experiment. It is indeed easier to scale up an electromagnetic oscillation compared to a mechanical
oscillator, which must either be made with a large accelerated mass or a lot of small masses, all in sync,
which acceleration must furthermore be quadripolar. Generation of metric deformation by laser could
therefore prove useful in the long-term establishment of a laboratory experiment for the generation and
detection of gravitational waves.
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I. INTRODUCTION

The detection of metric perturbations limited in time is
for the scientific community a chance to better understand
the subtleties of the gravitational force and to confirm, or
complete, its description by general relativity, theorized by
Einstein between 1907 and 1915. Propagative transverse
deformations of the space-time metric, the gravitational
waves are themselves theorized by Einstein [1].
The first gravitational waves are detected indirectly for

the first time in 1974 thanks to the observations by Hulse
and Taylor of a binary system of a pulsar and a neutron star,
whose orbital period was affected by the radiation of a
gravitational wave [2]. As for the first direct detection, it
took place at the end of 2015 [3]. It was made possible by
the construction of giant interferometers such as LIGO,
whose very high sensitivity has allowed the observation of
changes in the length of its arms of the order of ΔL=L ¼
10−22 for frequencies on the ∼100 Hz range. This new
observation has rekindled the scientific community’s inter-
est in gravitational waves and what they can tell us about
the physics of gravitation.
During the century that separates the prediction of

gravitational waves from their observation, many methods
of generating gravitational waves and metric perturbations
in the laboratory have been studied. Indeed, such a source
would have the advantage of being more reproducible and
adaptable to the desired observations than the observation
of very intense astrophysical phenomena, even though
they are more commonly observed nowadays [4–7].

Two approaches are favored for the generation of a large
enough to be detected time varying gravitational potential
in the laboratory. They both require powerful sources to
generate a significant deformation. The first is the explosive
acceleration of a quantity of mass, which would generate a
deformation of space-time through the quadrupolar accel-
eration of mass. This deformation can be conceived by the
means of a laser striking a target [8–10] or in a more extreme
manner by the explosion of a thermonuclear bomb [11]. The
second is the generation of a metric deformation by an
electromagnetic wave, whose coherence is an advantage in
the generation of an important deformation [12].
Indeed, the generation of a powerful electromagnetic

wave is a process that, in lasers, forces the coherence of the
electromagnetic oscillation. Such a wave thus has a clear
direction of propagation at any point of its existence, and a
determined spectrum. Unlike its purely electromagnetic
counterpart, mass acceleration by laser is a chaotic process,
since it involves the deposit of an important amount of
energy on a material, which then causes the mass accel-
eration. Such acceleration is thus not only quadripolar and a
lot of energy can be lost not contributing to the generation
of a detectable metric perturbation, either through dipolar
acceleration or material heating.
The observation in astrophysics of the deviation of the

ray of light by Dyson and Eddington [13] constitutes one
of the first important tests of general relativity. This test
confirms the influence the variation of the gravitational
potential has on the trajectory of light in space. From the
point of view of general relativity, it confirms that the
deformation of space-time generated by a massive object
(in this case the Sun) changes the trajectory of light which*paul.lageyre@net-c.fr
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then follows the geodesic in this new space-time. From a
Newtonian point of view, we can say that the Sun exerts
an influence on light through the gravitational force,
which implies, by reciprocity of action, that light has
itself an influence on gravity. This analogy suggests that
light must generate locally its own gravitational field, that
is to say a deformation of space-time. From the relativ-
istic point of view, light carries energy, and must therefore
generate a gravitational potential. The first to be inter-
ested in the gravitational potential produced by light were
Tolman, Ehrenfest, and Podolsky [14] who studied the
deformation generated by an infinitesimally thin ray of
light on the surrounding space-time. Gravitational gen-
eration by light is an old problem and has been considered
by several authors [15–18]. This study of the metric
deformation generated by a beam of light of zero spatial
extension has more recently been taken up and completed
by Rätzel et al. [19], but the absence of a spatial extension
for this beam of light prevents the complete study of
metric deformation.
In this paper, we shall consider the generation of a metric

perturbation inside a light beam, where it should be the most
important. Moreover, we will present an exact solution of the
Einstein equations on the light cylinder axis and consider
both in the laboratory and astrophysical situations. In Sec. II,
we will summarize linearized general relativity for small
deformations of space-time, and apply it to the case of an
electromagnetic wave. In Sec. III, we will present the
analytical method used to solve this problem, and, in
Sec. IV, we will check the compatibility of our solution
with the already known case of the linearized Schwarzschild
[20] metric. In Sec. V, we will apply this calculation method
to a simple model of a light pulse of circular polarization: the
cylinder of light, of constant energy density and moving at
the speed of light in vacuum c. In Sec. VI, we will analyze
the results obtained by keeping in mind the characteristics
of the laser sources that could be used in a laboratory
experiment. We will expand this study to the case of a
linearly polarized light pulse by first studying the oscillatory
term thus introduced alone in Sec. VII, before analyzing the
whole solution in Sec. VIII. In Sec. IX, we will compare our
results with those obtained by Ribeyre and Tikhonchuk [8],
Gelfer et al. [9], and Kadlecová et al. [10] in the case of a
massive source. We will also mention the future develop-
ments of this paper, as well as give some insight on the
possibility of detection of the gravitational phenomenon
studied here, both in laboratory and in astrophysical settings.
Section X will in the end highlight the most important points
pulled from this study.

II. METRIC DEFORMATION GENERATED
BY AN ELECTROMAGNETIC FIELD

We assume the existence of a plane space-time described
by the Minkowsky metric ημν ¼ diagð−1; 1; 1; 1Þ, corre-
sponding to the approximation of a Galilean frame of

reference, where the local distance traveled on the interval
ds by an object can be described as

ds2 ¼ ημνdxμdxν ¼ −c2dt2 þ dx2 þ dy2 þ dz2: ð1Þ

By analogy, the metric of a deformed space-time can be
written as gμν, which can be written for a space-time where
the metric perturbation with respect to the planar space-
time is negligible as

gμν ¼ ημν þ hμν: ð2Þ

Where hμν ≪ 1 is the perturbation in the gμν metric in
respect to the Minkowsky metric ημν. In such a framework,
Einstein’s equations [21], which relate the structure of the
space-time studied with the stress-energy tensor of the
various elements involved, can be written as

Gμν ¼ χTμν: ð3Þ

WhereGμν is the Einstein’s tensor which describes the local
space-time curvature. Tμν is the stress-energy tensor, and
χ ¼ 8πG=c4 is Einstein’s constant which depends on
the gravitational constant G and on the speed of light in
vacuum c. Applying the Lorentz gauge condition, we get

∂μhμν ¼ 0: ð4Þ

Which gives us the linearized Einstein equations:

□hμν ¼ −2χTμν; ð5Þ

which are none other than d’Alembert equations, i.e., wave
equations. The stress-energy tensor can be rewritten as the
sum of matter’s stress-energy tensor Tmat

μν and electromag-
netic field’s stress-energy tensor Tem

μν .
We are interested here in the generation of a metric

perturbation by a light pulse, so we will take

Tmat
μν ¼ 0 et Tem

μν ¼ −σμν: ð6Þ

Where σμν is the Maxwell stress-energy tensor in 4 × 4

dimension, symmetrical such that in, International System
of Units (SI) notation [22],

− σ00 ¼ ϵ0
E2 þ c2B2

2

as the energy density; ð7Þ

− σ0k ¼ −σk0 ¼
ϵijkEiBj

cμ0
ð8Þ

as the energy flux in the direction xk ðk ¼ 1; 2; 3Þ, and
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σij ¼ ϵ0EiEj þ
BiBj

μ0
− δijϵ0

E2 þ c2B2

2

as the 3DMaxwell constrain tensor; ð9Þ

with i, j, k ¼ 1, 2, 3 as the spatial components’ indices and
δij as the Kronecker symbol.
Armed with Eqs. (5) and (6) which predict a deformation

of the space-time in the presence of an electromagnetic
field, we can study the metric perturbation generated by a
light pulse propagating in an initially flat space-time.
Let us take the example of a plane progressive wave of

linear polarization traveling towards the positive z axis:

E ¼ Eex and B ¼ Bey

E ¼ cB: ð10Þ

The tensor σμν can then be written as

σμν ¼ −ϵ0

0
BBB@

E2 0 0 E2

0 0 0 0

0 0 0 0

E2 0 0 E2

1
CCCA: ð11Þ

We are thus expecting a metric perturbation of space-time
hμν propagating longitudinally according to the direction of
the source progressive electromagnetic wave:

h00 ¼ h03 ¼ h30 ¼ h33 ≡ ϕ; ð12Þ

hμν ¼ 0 for μ ≠ 0; 3 or ν ≠ 0; 3: ð13Þ

This deformation profile is to be contrasted with that of the
commonly studied gravitational waves, which propagate
at long distances only in deformations transverse to their
propagation [23].
Let us clarify the source E2 present in the d’Alembert

equation (5):

E ¼ E0 cosðkðz − ctÞÞ; ð14Þ

where E0 is the amplitude of the wave’s electric field, and
k ¼ 2π=λ the wave vector of the electromagnetic wave
propagating towards positive z. Hence with Eq. (11):

□ϕ ¼ −2χϵ0E2
0cos

2ðkðz − ctÞÞ; ð15Þ

¼ −χϵ0E2
0ð1þ cosð2kðz − ctÞÞÞ: ð16Þ

The expression (16) seems trivial but shows explicitly
that we can decompose the source term into its constant
part and its oscillating part, and solve these two parts
separately since the d’Alembertian is a linear operator.
We here interest ourselves in solving the linearized

Einstein equation (16) first for the nonoscillatory part,
then for the oscillatory part of the source term.
The constant alone in the electromagnetic stress-energy

tensor also happens to correspond to the energy density of a
circularly polarized electromagnetic wave. The following
study thus provides a complete solution for the longitudinal
metric deformation generated in this specific physical case.
The Einstein equation for the study of a light pulse of
circular polarization can be written as

−□ϕ ¼ 2χS; ð17Þ
where S is the local source function link to the electro-
magnetic stress-energy tensor. For the case of a circularly
polarized light, S ¼ ϵ0E2

0=2 is the mean energy density of
the light pulse.
In such case, we will write the ϕ thus studied as ϕ0, as it

describes a nonoscillating solution. In a similar way, we
will note ϕk the metric perturbation caused by an oscillating
source term of wave vector k. For the case of linearly
polarized light as described in Eq. (16), we can thus
write ϕ ¼ ϕ0 þ ϕ2k.
We will write equations with ϕ as long as they stay true

for any studied source term.
Please note that when the source term S is a constant,

Eq. (17) devolves into the classical gravitational Poisson
equation for a static gravitational potential as the
D’Alembertian operator □ becomes in absence of time
dependance the Laplacian operator Δ. We investigate the
solution of Eq. (17) for a light pulse of finite spatial and
temporal extension, such as it could be emitted by a laser
system. This case is, as such, time dependant and thus cannot
be reduced to the gravitational Poisson equation. This uni-
form localized source term allows us to propagate gravita-
tional influence like a “soliton.” This light pulse will be
modeled by a cylinder of constant energy density of length L
and radius Rmoving at the speed of light c in the direction of
positive z. We propose to study an intermediate case, that of
the static cylinder, in order to illustrate in a simpler case the
methods used and to verify the compatibility of ourmethod of
resolution with the well-known solution of the metric of
Schwarzschild [20] for a stationary isolated mass.

III. RESOLUTION IN THE SIMPLE CASE
OF A STATIC CYLINDER

Equation (17) is a partial differential equation on four
dimensions. The solution of the homogeneous equation is
the set of functions of ρ − ct or ρþ ct, where ρ is the
position vector of a point in space only. Since the particular
solution of this equation is not apparent, we have to use
Green’s function G□ of the d’Alembertian operator to
determine a solution.

□G□ðx − x0Þ ¼ δðx − x0Þ ð18Þ
and
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ϕðxÞ ¼ −2χ
Z
R4

dx0G□ðx − x0ÞSðx0Þ; ð19Þ

where x≡ ðct; ρÞ is the observer’s time space position
vector and x0 is another vector describing a position in
space-time. Thankfully, the d’Alembertian’s Green func-
tion is well known [24] and can be written in spherical
coordinates for a retarded potential as

G□ðcðt − t0Þ; jρ − ρ0jÞ ¼ −
δðcðt − t0Þ − jρ − ρ0jÞ

4πjρ − ρ0j : ð20Þ

We can then focus on solving the successive integrals of
Eq. (18). As the following calculation highlights some
techniques, we will pass by the example of a cylinder of
constant energy density to illustrate them.
We represent the theoretical physical situation in Fig. 1.

We will here take a cylinder of radius R and length L so that
the axis Oz is the axis of symmetry of the cylinder. The
cylinder starts on this axis at z ¼ 0 and ends at z ¼ L. This
cylinder appears at time t ¼ 0 in a previously planar space-
time. It generates a deformation which must be, at a long
time and far from the source, the one described by
Newtonian physics for an object of equivalent mass density
ρm ¼ A=c2. For this cylinder of homogeneous energy
density, we have the following:

Sðct; z; rÞ ¼ AHðctÞHðzÞHðL − zÞHðR − rÞ: ð21Þ

Where A is the constant energy density inside the
cylinder, and HðzÞ is the Heaviside function. We will
note the metric perturbation thus generated as ϕc. It is
interesting to remark that the light cylinder appears in
the space-time at t ¼ 0 as it is the case in Ref. [19], this
allows us to study the nonstationary nature of the solution.
We can then rewrite Eq. (18) in cylindrical coordinates.
Taking into account that, in Eq. (20) we have jρ − ρ0j ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz − z0Þ2 þ ðr2 þ r02 − 2rr0 cos θ0Þ

p
, and we get

ϕðct; z; r; θÞ ¼ 2χ

4π

Z
∞

−∞
cdt0

Z
∞

−∞
dz0

Z
∞

0

r0dr0
Z

2π

0

dθ0Sðct0; z0; r0; θ0Þ δðcðt − t0Þ − jρ − ρ0jÞ
jρ − ρ0j ð22Þ

ϕðct; z; r; θÞ ¼ χ

2π

Z
∞

−∞
dz0

Z
∞

0

dr0
Z

2π

0

dθ0S
�
ct −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz − z0Þ2 þ ðr − r0Þ2

q
; z0; r0; θ0

� r0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz − z0Þ2 þ ðr2 þ r02 − 2rr0 cos θ0Þ

p :

ð23Þ

For the sake of simplicity, we only calculate the gravitational influence of the cylinder on the Oz axis, the axis of
symmetry of the cylinder. We thus have r ¼ 0, which leads us to note ϕðct; z; r; θÞ ¼ ϕðct; zÞ. By introducing Eq. (21), we
then obtain

ϕcðct; zÞ ¼
χA
2π

Z
∞

−∞
dz0Hðz0ÞHðL − z0Þ

Z
∞

0

H
�
ct −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r02 þ ðz0 − zÞ2

q �
HðR − r0Þ r0dr0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðz − z0Þ2 þ r02
p : ð24Þ

Heaviside functions exhibit conditions for integration. Among these conditions, the condition to linearize with respect to
r0 to perform the integration is

ct −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r02 þ ðz0 − zÞ2

q
≥ 0 ⇒

�
r02 ≤ c2t2 − ðz0 − zÞ2
c2t2 − ðz0 − zÞ2 ≥ 0

: ð25Þ

By studying the different conditions, we reach the expression:

(b)

(a)

FIG. 1. (a) Schematic representation of the studied static
cylinder of energy density and (b) presentation of the thought
experiment modeling the establishment of the gravitational
potential of said cylinder at t ¼ 0 and t ≫ 0.
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ϕcðct; z; 0Þ ¼ Aχ

Z
∞

−∞
dz0Hðz0ÞHðL − z0ÞHðz0 − ðz − ctÞÞHððzþ ctÞ − z0Þ

h
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz − z0Þ2

qzfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{lower integration bound

þH
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2t2 − ðz − z0Þ2
q

− R
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðz − z0Þ2 þ R2

q
þH

�
R −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2t2 − ðz − z0Þ2

q �
ct
i

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
upper integration bound

: ð26Þ

The integration can be carried out “by hand,” but the
analytical solution is difficult to interpret. It is therefore
preferable to linearize the conditions on z0, find the
functions’ primitives, and provide them to a PYTHON

program [25] that will compare the different terms and
conditions to plot the solution of Eq. (26).

IV. VISUALIZATION AND STUDY OF THE
ANALYTICAL SOLUTION

In order to model what a current petawatt-class power
laser could produce [26], we take the following values:
A × c ¼ I ¼ 1022 W=cm2;E ¼ 525 J which correspond
to the following dimensions of the static cylinder:

L ¼ 20 μm;R ¼ 5 μm. The solution is shown in Fig. 2.
This visualization highlights the establishment (zones I
and II) of the stationary solution (zone III) for the metric
deformation of a static cylinder of constant energy density.
We thus have the exact solution for an out of equilibrium
space-time, a point which will be very useful for the study
of the cylinder moving at the speed of light.
This transient regime leads to a stationary deformation in

time which corresponds to a gravitational potential. The
stationary potential thus established in zone III is the
gravitational potential of the cylinder of stationary energy
density. This potential is the strict analog of the potential
which would be generated by a massive object of cylin-
drical shape along its axis. This potential behaves at long
distance as 1=z, i.e., like the gravitational potential of a
massive object at long distance. Indeed let us take for
example z large and negative, in order to have a clearly
readable development of the gravitational potential far from
the source. We obtain by Taylor expansion:

ϕcðz; L; RÞ=χA
¼ −LðL − 2zÞ þ ðL − zÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ ðz − LÞ2

q

þ R2arcsh

�
L − z
R

�
þ z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ z2

p
− R2arcsh

�
−z
R

�

≈
LR2

−z
: ð27Þ

Be careful, here the potential thus generated is positive,
for z is negative. We therefore find a potential similar to
the 1=r gravitational potential found in the linearized
Schwarzschild [20]’s metric model.
If we study cylinders of different aspect ratios L=R at

constants I and E, it appears that the maximum metric
deformation on the Oz axis varies. This maximum is
plotted as a function of the aspect ratio Fig. 3. The abscissa
of the maximum of metric deformation as a function of
the aspect ratio Fig. 3 cannot be explained only by a
geometrical argument, we will stop there in the study of the
case of a static cylinder, which already gives us a reliable
result. In our example the maximum of the perturbation ϕ
is 8 × 10−37 for L=R ∼ 1.77 with I ¼ 1022W=cm2 and
E ¼ 525 J. Armed with the observations made and the
tools developed in this section, we will extend this study to
the more realistic case of a cylinder of light moving at the
speed of light c.

FIG. 2. 3D representation according to two angles [“head-on”
and “front-on”] of the solution on the plane ðO; z; ctÞ for a laser
intensity I ¼ 1022 W=cm2 and dimensions of the light cylinder
L ¼ 20 μm;R ¼ 5 μm. The numbers indicate the solution’s
regimes. Zone I: the transient regime inside the source, zone
II: the transient regime outside the source, zone III: the permanent
regime, zone 0: unperturbed space-time.
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V. LIGHT PULSE MODEL: CYLINDER
MOVING AT SPEED C

We repeat here the method presented previously for a
static cylinder. We now consider the cylinder of light
moving at the speed of light c. This problem is illustrated
in Fig. 4. This cylinder moves in the direction of positive z
in such a way that the cylinder of light is located at time t
between z ¼ ct and z ¼ ctþ L. It appears at t ¼ 0 in a
planar space-time. The energy density in space-time can
therefore be written as

Sðct; z; r; θÞ
¼ AHðctÞHðR − rÞHðrÞHðz − ctÞHðL − ðz − ctÞÞ:

ð28Þ
A first rough analogy would be to compare this case of a
longitudinal deformation propagating at the same speed as
the object that generates it with the already known case of
an object moving at the speed of sound in a medium. This
analogy highlights the particularity of a case where the
source and the perturbation propagate at exactly the same
speed as compared to another case simply moving at any

speed, as well as the interest that such a phenomenon would
have in obtaining an important metric deformation. An
illustration of the difference between these two cases is
proposed in Fig. 4(b).
Note.—In any other case where the cylinder moves at

speed v < c, one could have applied a Lorentz transform to
the static case in order to take into account the new relative
speed of the cylinder. However, this transform produces
divergent values for v ¼ c. We cannot use the Lorentz
transform, so it is imperative to solve the problem by
convolution product of the Sourceðct; z; rÞ term with the
D’Alembertian Green function.
In order to simplify the calculations, we will place

ourselves in the comoving frame of reference in respect
to the cylinder of light, that is to say:

ðO; ct; z; z0Þ ↦ ðO; ct; Z; z̃Þ such as

�
Z ¼ z − ct

z̃ ¼ z0 − z
: ð29Þ

We take the expression of the solution given by the
expression (23), and we now introduce the source term
corresponding to a cylinder of light moving at c:

ϕ0ðct; zÞ ¼ Aχ

Z
∞

−∞
dz̃

Z
∞

0

Hðct − ρ0ÞHðz̃þ Z þ ρ0ÞHðL − Z − z̃ − ρ0ÞHðR − r0Þ r
0dr0

ρ0
; ð30Þ

where ρ0ðr0; z̃Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z̃2 þ r02

p
. Which leads us, by the same reasoning as the one presented in part III, to

ϕ0ðt; z; 0Þ ¼ Aχ

Z
∞

−∞
dz̃Hðz̃þ ctÞHðct − z̃ÞHðL − ZÞHðL − Z − 2z̃Þ

×

2
64

upper

integration

bound

8>><
>>:

HððL − Z − z̃Þ2 − c2t2ÞHðR2 þ z̃2 − c2t2ÞHðc2t2 − ðz̃þ ZÞ2Þct
þHðc2t2 − ðL − Z − z̃Þ2ÞHðR2 þ z̃2 − ðL − Z − z̃Þ2ÞðL − Z − z̃Þ
þHðc2t2 − z2 − R2ÞHððL − Z − z̃Þ2 − z2 − R2ÞHðR2 þ Zð−Z − 2z̃ÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ z̃2

p

−Hð−ZÞHð−Z − 2z̃Þð−Z − z̃Þ − ðHðZÞ þHð−ZÞHðZ þ 2z̃ÞÞjz̃j|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
lower integration bound

3
75: ð31Þ

FIG. 3. Maximum amplitude of the metric deformation ϕ
generated by a cylinder of constant energy density A ¼ 3.3 ×
1011 W=cm3 and constant energy E ¼ 525 J as a function of the
aspect ratio L=R of the cylinder. The three cylinders represent the
general shape of the cylinder for the different aspect ratio
domains in the figure.

(b)

(a)

FIG. 4. (a) Schematic representation of the cylinder of uniform
energy density moving at the speed of light and (b) illustration of
the expected differences between the metric deformation gen-
erated by the static cylinder previously studied and that generated
by a light pulse of the same cylindrical shape.
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To which equation follows a calculation step applied to a
PYTHON program having the same function of solution
representation as the one presented part III.

VI. RESULTS AND ANALYSIS

A. Study at constant intensity and energy

In order to model again what could be obtained with a
current ultra high power laser [26], we take again as
characteristics I ¼ A × c ¼ 1022 W=cm2, E ¼ 525 J,
which still correspond to the dimensions R ¼ 5 μm and
L ¼ 20 μm. The PYTHON program then gives us the
visualization shown in Fig. 5. The metric perturbation
generated by a cylinder of light moving at speed c has a
characteristic “wave” profile, instead of the symmetrical
profile we had in the static case. Indeed, the fact that we
place ourselves in the comoving frame implies that, by
causality, no perturbation can be present “in front of” the
source, i.e., for Z > L. The maximum is located at the
comoving coordinate Z ¼ 0 in a rather logical way. Indeed,
any perturbation generated in the source at a comoving
coordinate Z1 cannot be observed at a later time at a point
of comoving coordinate Z2 > Z1, because the opposite
would imply that a perturbation has moved faster than the

speed of light. Still, we keep a 1=Z shaped potential in the
“trail” of this wave (zone III). Among the differences that
can be observed between the static case and this new mobile
case, is the growth of the disturbance in the source, which
instead of reaching a stationary regime after a certain time,
seems to continue to grow in zone I. Indeed, a logarithmic
growth now seems to appear after the first growth phase that
we could already observe in the static case. This growth can
be easily isolated in the different terms of contribution to the
perturbation. Thus for Z ¼ 0, at long times such that ct ≫ R
and R ≫ L, one can isolate as the only contribution to the
perturbation the following terms:

ϕ0¼
χA
2

�
R2

2
þR2

	
arcsh

�
L
2R

−
R
2L

�

þarcsh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2t2

R2
−1

r �

þctðct−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2t2−R2

p
Þ
�
; ð32Þ

which nets us through a Taylor expansion:

ϕ0 ≈
χAR2

2

	
1þ ln

�
4Lct
R2

�

: ð33Þ

In order to supplement this expansion carried out for a
limited domain of space-time, we will again be interested in
the impact of the shape of the cylinder on the amplitude at a
given time of this deformation. The goal is finally to find the
optimal configuration to generate the largest possible defor-
mation. For this, wewill study the profile of the maximum of
this deformation, located at Z ¼ 0 for several aspect ratios,
as shown in Fig. 6. We observe that each maximum of metric
deformation seems to evolve in time according to two modes
of growth: in a first period of time, the perturbation sees an
acceleration of its growth (in the broad sense, this growth is
at least linear), followed by a second period, with longer
times, where the growth becomes logarithmic. The duration
of this first period of time is different for each aspect ratio,
and appears to occur later and later as the aspect ratio
decreases. Thus, the cylinder of light with the second largest
aspect ratio (L ¼ 18 μm, R ¼ 5.3 μm), initially generates
the highest maximum. But the slowing of its growth at
longer times means that at ct ¼ 50 μm the largest defor-
mation maximum is now held by another cylinder of light
(L ¼ 1.9 μm, R ¼ 16.2 μm). By the same logic, the cylin-
der of light with the smallest aspect ratio ends up catching up
with the previous cylinder in terms of maximum generated
perturbation. We must therefore expect to see the optimal
aspect ratio of the cylinder of light, i.e., the one which gives
the greatest metric perturbation on the axis, move towards
the small aspect ratios as time increases. This hypothesis is
confirmed by plotting the maximum perturbation at a given
time as a function of the aspect ratio in Fig. 7. We can
observe on this occasion that the maximum of deformation

FIG. 5. Three-dimensional representation according to two
angles (“from the front” and “from the back”) of the solution
on the comoving plane ðO; Z; ctÞ for a laser intensity I ¼
1022 W=cm2 and dimensions of the light cylinder L ¼ 20 μm;
R ¼ 5 μm. Zone I/ the growth regime inside the source, zone II/
the transient regime outside the source, zone III/ the quasistatic
regime outside the source and zone 0/ unperturbed space-time.
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increases with time in a way that cannot only be explained
by the logarithmic growth highlighted earlier. It seems that
taking a cylinder of light of larger radius, and therefore of
smaller length at constant intensity and energy, favors the
generation of a larger metric perturbation. This can be
explained by the fact that such a “light disk” has at long
times more source points, and thus emitting points, close to
the observation point in Z ¼ 0 at the time of the observation.
Thus, in an ideal setting where one could make a light

pulse propagate as a cylinder of energy density over an
indefinite time, the intensity plays an important role since
the amplitude grows linearly with it. Nevertheless, another
way to maximize the metric deformation at constant
intensity could also be to let the perturbation grow by

letting the light propagate as long as possible, under the
explicit condition of adjusting the aspect ratio of the
cylinder to the distance traveled to have the best efficiency.
The amplitude of this deformation will be limited by the
length on which we can experimentally focus the beam.
This deformation’s front has a peculiar wave shape,

which ensures a strong instantaneous variation of the metric
when the metric deformation would reach the observer.
Now the variations of the metric are responsible for some of
the effects observable in gravity potentials, as the deflection
of light. The deformation’s profile has therefore interesting
properties for the measurement of a metric perturbation
generated in the laboratory.

B. Study at constant power

Most laser facilities propose lasers with a fixed maxi-
mum power. We must therefore observe the dependence
of the metric deformation on power.
We thus study the metric deformation generated at fixed

power P ¼ 1 PW, as it is again a realistic power consid-
ering current high-power lasers [26].
In this case, at constant power, L does not change the

intensity of the beam, since P ¼ πR2I. We will however
represent the deformation at different L, to check if the
change of aspect ratio has an influence on the observed
deformation. Equation (33) seems to show that at long time
for R ≫ L the solution could be proportional to IR2 and
thus to the power P.
If this proportionality is proven in a more global

framework, we would end up with a parameter to be
adjusted, the power, not requiring the extreme focusing of
the laser beam and thus avoiding the complications arising
with very high intensity light beams.
At fixed time the maximum of metric perturbation seems

to decrease when the radius increases, as presented in
Fig. 8. This result may seem at first sight contradictory to
the result of Eq. (33), but two differences must be taken into
account here. The plots are done at constant time, as the

FIG. 6. Detail of the growth of the maximum of metric
perturbation until the time such as (a) ct¼50 μm, (b) ct¼5mm.
This perturbation is generated by a cylinder of intensity I ¼
2 × 1022 W=cm2 and energy E ¼ 525 J as a function of time for
cylinders with various aspect ratios.

FIG. 8. Maximum of amplitude at time such that ct ¼ 1 cm of
the metric perturbation of a cylindrical light pulse of fixed length
L (i.e., at fixed time) (L ¼ 5 μm, L ¼ 50 μm, L ¼ 500 μm,
L ¼ 500 μm) and of constant power P ¼ 1 PW as a function of
the radius R of the cylinder.

FIG. 7. Maximum amplitude at fixed time of the metric
perturbation generated by a cylindrical light pulse of intensity
I ¼ 2 × 1022 W=cm2 and energy E ¼ 525 J according to the
aspect ratio L=R of said cylinder.
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radius R of the cylinder is what varies. Now, the equation
includes a term ln ð4L=R2Þ which decreases as R increases.
But there is also a radius R from which we no longer have
ct ≫ R and where the Taylor expansion is no longer valid.
At large Rs, we can relate this decrease to the relation
I ¼ P=ðπR2Þ. Indeed, R being larger than ct, the defor-
mation generated by the edges of the cylinder could not yet
reach the center of the cylinder. So we only decrease the
intensity of the beam without really increasing the volume
of contributions. However, in a situation closer to physical
reality, a light beam does not remain cylindrical ad
eternam. It can only be considered cylindrical over twice
its Rayleigh length, that is, twice the distance it takes for a
focused beam to diffract and see its radius multiplied byffiffiffi
2

p
. This distance depends of course on how focused the

beam is, as well as its wavelength, according to the
designated formula:

zr ¼
πR2

λ
: ð34Þ

Where zr is the Rayleigh length, R the minimum radius
of the beam, and λ the focused light’s wavelength. This
quantity thus introduces an upper limit on the propagation
time of the cylinder of light, which is tr ¼ 2zr=c. There is
therefore a direct link between the maximum propagation
time and the radius R of the cylinder. If we consider that we
want the largest possible perturbation of the space-time
metric, we can then consider that any cylinder of light that
we study generates a metric perturbation over the longest
possible time, that is tr. We can then restudy the results at
constant power, as a function of R, such that the cylinder of
light has generated a metric deformation over 2zr. This new
calculation which takes more into account the experimental
situation, and presented in Fig. 9, shows that the increase of
the cylinder radius is far from being detrimental, contrary to
what was previously thought. As long as the radius R is
sufficiently large compared to the length L of the cylinder,

the metric deformation generated by a cylinder of light is
indeed constant at constant power.
Taking Eq. (33) and introducing tr, we then obtain

ϕ0 ≈
χP
2πc

	
1þ ln

�
8πL
λ

�

: ð35Þ

This last expression is, at constant power P, independent
of R and logarithmically dependent on the ratio L=λ.
These results confirm, in particular, that the determining
physical quantity for the metric deformation is the power
P of our light beam. In practice, this very important result
allows us to get rid of the need for a very focused light
beam, and thus of the quantum electrodynamics effects
appearing at ultra high intensities. It also allows us to
have experiment sizes that can be calibrated to the
detection method used.

VII. RESOLUTION FOR AN OSCILLATORY PART

We then shift our focus to the oscillatory part of the
source energy-stress tensor presented in Eq. (16), which
can be reduced to the oscillatory solution ϕosc of Eq. (36):

−□ϕ2k ¼ χϵ0E2
0 cosð2kðz − ctÞÞ: ð36Þ

A physical interpretation of such an equation can be
seen as the transverse perturbation of the metric generated
by the interaction of an electromagnetic pulse with a
static electromagnetic field such that the extent of the
electromagnetic field is large before the spatial and
temporal extension of the pulse. It is the result of a
Gertsenshtein [15] effect where we take a light pulse of
small finite dimension.
We consider once again a cylinder going at the speed of

light c but which stress moment is now oscillatory. We can
now write the source term in Eq. (17) as

Sðct; z; r; θÞ ¼ A cosðkðz − ctÞÞ
×HðctÞHðR − rÞHðrÞ
×Hðz − ctÞHðL − ðz − ctÞÞ: ð37Þ

Applying the methods of calculations we have seen in
the previous part, it is possible to determine once again
the analytic expression of ϕosc. The results for the
integration on the Heaviside functions is the same as is
described in Eq. (38), only now the integration on the
functions changes and is now dependant on sinus func-
tions. Setting ourselves in the comoving set of coordi-
nates described in expression (29), we thus get after the
first integration the equivalent of, for a cylinder of
oscillatory moment, Eq. (38):

FIG. 9. Maximum of amplitude at set L (L ¼ 5 μm,
L ¼ 50 μm, L ¼ 500 μm, L ¼ 5000 μm) of the metric deforma-
tion at constant power P ¼ 1 PW as a function of the cylinder
radius R and at time such that ct ¼ 2zR.
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ϕkðt;z;0Þ¼
Aχ

k

Z
∞

−∞
dz̃Hðz̃þctÞHðct− z̃ÞHðL−ZÞHðL−Z− z̃Þ

×

2
64

upper

integration

bound

8>><
>>:
HððL−Z− z̃Þ2−c2t2ÞHðR2þ z̃2−c2t2ÞHðc2t2− ðz̃þZÞ2ÞsinðkðZþ z̃þctÞÞ
þHðc2t2− ðL−Z− z̃Þ2ÞHðR2þ z̃2− ðL−Z− z̃Þ2ÞsinðkðZþ z̃þL−Z− z̃ÞÞ
þHðc2t2−z2−R2ÞHððL−Z− z̃Þ2− z2−R2ÞHðR2þZð−Z−2z̃ÞÞsinðkðZþ z̃þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2þ z̃2

p
ÞÞ

−Hð−ZÞHð−Z−2z̃ÞsinðkðZþ z̃−Z− z̃ÞÞ− ðHðZÞþHð−ZÞHðZþ2z̃ÞÞsinðkðZþ z̃þjz̃jÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
lower integration bound

3
75: ð38Þ

Then, applying the same algorithmic method as usual we
obtain the profile Fig. 10 of the metric deformation
generated by an electromagnetic pulse with characteristics
I ¼ A × c ¼ 1022 W=cm2, E ¼ 525 J, and R ¼ 5 μm
as the radius and L ¼ 20 μm as the length of cylinder.
We take the wavelength of the source oscillation as
λ ¼ 2π=k ¼ 5 μm.
We observe a reproduction of the electromagnetic

oscillation as a synchronous oscillation of the metric
perturbation. This differentiates the oscillatory case from
the constant source case as we do not get the same wave-
shaped envelope for the metric deformation in the Z
direction, even though we get the same logarithmic growth
profile in time for both cases. Thus, instead of having the
maximum of deformation in Z ¼ 0, we can study the
overall amplitude of metric perturbation as an estimate of
the maximum of deformation produced.
Let us then study this amplitude for different aspect

ratios, times, and wavelengths, at set intensity and energy,
as we did in the previous part.
First considering the problem at set wavelength such that

it gives the smallest possible number of optical cycles in the
cylinder L=λ ¼ 0.5, we study the influence of time and
aspect ratios on the amplitude of the metric perturbation, as

it was before studied for the constant part of the source in
Fig. 7. What we thus observe in Fig. 11 is fairly similar to
the previously studied constant source case as we get the
same behavior, both in time and in aspect ratio, as in Fig. 7.
As the interaction time grows, so does the maximum of
amplitude, but the position of that maximum shifts towards
lower aspect ratios for which the cylinder radius R gets
larger, and the length L smaller. We can thus safely assume
that this oscillatory case behaves mostly the same way as its
constant source counterpart, for considerations that do not
depend on the wavelength.
Quite naturally, we then study the influence of source

wavelength on this same amplitude of the metric perturba-
tion for a set time. As a dimensionless number linked to
both wavelength and a physical aspect of electromagnetic
oscillation, we will take instead of the wavelength the
number of optical cycles L=λ, which must be integer or
half-integer in order for the corresponding electromagnetic
oscillation to satisfy the boundary conditions (i.e., be zero)
at the edges in the Z direction of the cylinder. The results of
such study are presented Fig. 12.
As the number of optical cycles increases, the amplitude

describes an opposite phenomenon to the one observed
when the time increases: the maximum of amplitude gets

FIG. 10. Three-dimensional representation on the comoving
plane of the solution for an oscillating source term for a laser
intensity I ¼ 1022 W=cm2 and dimensions of the light cylinder
L ¼ 20 μm;R ¼ 5 μm.

FIG. 11. Maximum amplitude at fixed number of optical
cycles L=λ ¼ 0.5, and for varying times, of the metric perturba-
tion generated by a cylindrical light pulse of intensity I ¼
2 × 1022 W=cm2 and energy E ¼ 525 J according to the aspect
ratio L=R of said cylinder.
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smaller as L=λ grows and the position of this maximum
shifts towards higher aspect ratios.
It seems consequently that for set energy and intensity,

we get the highest possible metric deformation for long
times and the largest possible wavelength, which corre-
sponds to an electromagnetic soliton.
As with the constant term, we now study what happens

when we limit the time of propagation of this electromag-
netic cylinder with diffraction, effectively reducing the
domain of existence of the source cylinder to two Rayleigh
lengths 2zR. At set power P ¼ 1 PW and number of optical
cycles L=λ ¼ 0.5, we unsurprisingly observe Fig. 13 the
same behavior as in the previous part. For R > L, the
metric perturbation depends directly on the electromagnetic
pulse power. It also does not seem to be dependent on
neither the source wavelength nor the cylinder length L as
long as their ratio, the number of optical cycles L=λ, stays
the same. This was already hinted by the Taylor expansion
presented in the previous part equation (35), where the

amplitude for the metric perturbation was only dependent
on the power P and the number of optical cycles L=λ, and it
seems this consideration still holds for the oscillatory part.
The study of the oscillatory part brought with it the

idea of the dependence of the deformation amplitude on the
number of optical cycles. We thus want to know if any
difference appears on amplitude when we make the former
vary. Figure 14 evaluates this amplitude for R > L and
shows us that outside of a fairly negligible increase for the
three first number of optical cycles L=λ ¼ 0.5, 1, and 1.5,
the metric perturbation remains constant across all number
of optical cycles L=λ. This result differs from the study
on the constant part where the amplitude at fixed power
clearly depends logarithmically on this factor, as shown
in Eq. (35).
Having determined the behavior of both the constant

and oscillatory part of the source presented in Eq. (16), we
can regroup our findings to determine the metric deforma-
tion generated in the longitudinal direction by a linearly
polarized beam of light.

VIII. METRIC PERTURBATION GENERATED
BY A LINEARLY POLARIZED LIGHT PULSE

To explain how exactly a linearly polarized beam of light
influences the space-time metric around it, we need to go
back to Eq. (16), which describes the local Einstein
equation for the time or z components of the perturbation
metric hμν for a linearly polarized electromagnetic wave.
We thus set the global expression on such a case by

taking example of what we did before in Eqs. (28) and (37):

Sðct; z; rÞ ¼ A½1þ cosð2kðz − ctÞÞ�
×HðctÞHðR − rÞHðrÞ
×Hðz − ctÞHðL − ðz − ctÞÞ: ð39Þ

We already know how to solve analytically the Einstein
equations for the complete source term, as we know the
analytical solution for both the constant part and the

FIG. 14. Maximum of amplitude of the metric deformation for
an oscillating source at constant power P ¼ 1 PW while taking
into account the diffraction limit. Results are plotted as a function
of the number of optical cycles L=λ.

FIG. 12. Maximum amplitude at fixed time such as ct ¼
250 μm and a varying number of optical cycles L=λ ¼ 0.5 of
the metric perturbation generated by a cylindrical light pulse of
intensity I ¼ 2 × 1022 W=cm2 and energy E ¼ 525 J according
to the aspect ratio L=R of said cylinder.

FIG. 13. Maximum of amplitude at set L (L ¼ 5 μm,
L ¼ 50 μm, L ¼ 500 μm, L ¼ 5000 μm) of the metric deforma-
tion at constant power P ¼ 1 PW and number of optical cycles
L=λ ¼ 0.5 as a function of the cylinder radius R and at time such
that ct ¼ 2zR.
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oscillatory part of this source term. We can regroup and
scale our previous answers as the perturbative Einstein
equations are strictly linear:

ϕ ¼ ϕ0 þ ϕ2k: ð40Þ

The analytical solution of the Einstein equations for a
linearly polarized light pulse is thus the half sum of the
analytical solution for a constant source term and for an
oscillating term which frequency is the double of the
electromagnetic oscillation frequency.
We thus get the following metric deformation profile

Fig. 15 for usual laser pulse characteristics I ¼ A × c ¼
1022 W=cm2, E ¼ 525 J, and R ¼ 5 μm, L ¼ 20 μm. For
readability purposes, we take the electromagnetic oscilla-
tion wavelength as λ ¼ 2π=k ¼ 10 μm.
We now have clearly the sum of both space-time metric

deformations we could observe in Figs. 5 and 10, except
that we now get an oscillating metric perturbation at twice
the frequency of that of the source electromagnetic wave.
We will thus consider again the influence of wavelength
and aspect ratio of the source electromagnetic pulse, which
is still modeled as a cylinder of electromagnetic energy
density.
The profile of the maximum of metric perturbation has a

slightly more peculiar shape at low number of electromag-
netic oscillations L=λ, as we can see the contribution of
both the constant and oscillatory part. In Fig. 16, two local
maxima are indeed distinguishable for the three smaller
plotted L=λ. The first maximum, which is the lowest in
aspect ratio, does not see its position change, and even does
not see its amplitude change for the three greater L=λ. It
represents the maximum of deformation introduced by the
constant part of the energy density of the electromagnetic
source. The local maximum located at greater aspect ratios
corresponds to the oscillating part of the electromagnetic
source, we can see it behaves like in Fig. 12, as the value of

the maximum decreases as the number of oscillations L=λ
increases. What this seems to suggest is that depending on
the aspect ratio and frequency of oscillation of the source
electromagnetic energy density, we can observe one of two
physical phenomena. Either we get a metric perturbation
quite similar to the one presented Fig. 15, which denotes
the gravitational influence of both the constant and oscil-
latory part of the electromagnetic energy density, or we get
a metric perturbation that looks greatly like the deformation
at constant energy density presented Fig. 5, with an added
comparatively small oscillatory contribution.
We pursue this study by shifting from the study at

constant energy and intensity, to the one at constant power,
which we have shown previously to be more fitting to the
physical case of a collimated electromagnetic pulse.
Considering the results presented in Figs. 9 and 13, we

unsurprisingly find in Fig. 17 that for a cylinder radius R of
the electromagnetic source large enough before its cylinder
length L, the metric perturbation generated by a pulse
of linearly polarized light is proportional to the source’s
power. This result is true at a fixed L=λ number of

FIG. 17. Maximum of amplitude at set L (L ¼ 5 μm,
L ¼ 50 μm, L ¼ 500 μm, L ¼ 5000 μm) of the metric deforma-
tion at constant power P ¼ 1 PW and number of optical cycles
L=λ ¼ 0.5 as a function of the cylinder radius R and at time such
that ct ¼ 2zR.

FIG. 16. Maximum amplitude at fixed time such as ct ¼
250 μm and a varying number of optical cycles L=λ ¼ 0.5 of
the metric perturbation generated by a cylindrical linearly polarized
light pulse of intensity I ¼ 2 × 1022 W=cm2 and energy E ¼
525 J according to the aspect ratio L=R of said cylinder.

FIG. 15. Three-dimensional representation on the comoving
plane of the solution for a linearly polarized laser of intensity
I ¼ 1022 W=cm2 and dimensions of the light cylinder
L ¼ 20 μm;R ¼ 5 μm.
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oscillation, and we thus need to see if we still can
corroborate the observations made in both Figs. 14
and 16. As such, we make the number of electromagnetic
oscillations L=λ vary at set power P ¼ 1 PW, and observe
the value of the metric deformation thus obtained Fig. 18.
As we can see, we do not obtain a similar result to

Fig. 14, as the oscillatory part of the metric deformation
does not vary with L=λ, but the constant part does. Indeed,
when increasing L=λ, we also increase the Rayleigh length
zR on the double of which the electromagnetic source can
be considered as cylindrical. As the constant part of the
metric deformation does not see its amplitude decrease
when L=λ increases, it actually, at set power, grows
logarithmically with L=λ as suggested by the Taylor
expansion presented in Eq. (35).
We thus can, for a pulse of light, set up two different

experiments, as it was previously stated for our study at
constant energy and intensity. We can, at constant power
either observe a case, at low L=λ, where both a wave shaped
and oscillatory part of the metric perturbation is observable,
which should be advantageous to observe quick variations
of the space-time metric; or we can at high L=λ get a more
important space-time deformation, while sacrificing the
visibility of the oscillatory part of this perturbation,
allowing for a more simple but also smoother shape to
be observed, which could be interesting if the goal is to
observe directly the perturbation ϕ of the space-time
metric, and not its variations.

IX. DISCUSSION

The value of metric deformation ϕ found for a beam
of power P ¼ 1 PW is of the order of 10−37, which is still
small but shows an improvement compared to the gen-
eration of a metric perturbation by matter acceleration. To
recall the results of theorized experiments for generation by
mass acceleration, the paper by Ribeyre and Tikhonchuk
[8] presents the different possible methods of generating
metric deformation from mass ablation by high power laser.
They give an evaluation of the value of such a deformation

for each of the different experiments performed for powers
of the order of a PetaWatt (PW) or energies of the order of a
MegaJoule (MJ). For these values, they find a deformation
of the order of

ϕm ≈ 10−40 ∼ 10−39: ð41Þ
The main limiting factor to these results is the distance at
which the observing device must stand due to the explosive
nature of the mass acceleration. Ribeyre and Tikhonchuk
[8] position in this paper such a detection device at 10 m
from the source, a huge distance compared to those
considered for the study of the direct generation of a
metric deformation by intense light.
The results of Kadlecová et al. [10] confirm this

evaluation by finding for the studied experiment:

ϕm ≈ 5 × 10−40: ð42Þ
These results shall be put in perspective with the result of
this study, which gives us a ratio of at least two orders of
magnitude between the deformation generated by mass
acceleration and that generated by intense light of

ϕ

ϕm
≈ 400: ð43Þ

Note the qualitative difference between the nature of the
metric deformation created by mass acceleration compared
to that created by a beam of light that we have studied here.
While the first one is of chaotic nature because of the

intense and arbitrary nature of the process of ejection and
propulsion of mass by the creation of a plasma, the second
one is directly generated by a laser, that is to say an object
with well determined geometrical properties. Grishchuk [12]
puts forward in his paper this case of establishment of a
coherent gravitational source, compared to a generation by
mass acceleration, whose coherence would be difficult to
establish and maintain in larger scales. Furthermore, cur-
rently observed astrophysical metric deformation are, on one
hand, induced by the quadrupolar moment of acceleration
for the massive case, which greatly reduces the efficiency of
this method, and generates a deformation that is transversal
to its propagation, whereas on the other hand the generation
by light fully uses the displaced energy and nets us a
longitudinal deformation, which constitutes another subtlety
that will have to be taken into account in further experiments.
Obtaining a metric deformation of the order of ϕ ¼

10−37 for a laser of power P ¼ 1 PW allows us to consider
a source of metric deformation which, although still of
weak effect, appears to be coherent, easier to observe and
especially more adaptable to the frequency range of
detection than the generation by matter acceleration. The
perspectives of detection of such a metric deformation
remain to be studied. But we can already lift the veil on
several interesting detection setups. First, methods of
detection of metric perturbations produced by light beams

FIG. 18. Maximum of amplitude of the metric deformation for
a linearly polarized light at constant power P ¼ 1 PW while
taking into account the diffraction limit. Results are plotted as a
function of the number of optical cycles L=λ.
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by using high frequency mechanical detectors are detailed
in the Ref. [27]. Alternatively, the delay induced on an
atomic clock by the repeated exposition to the metric
deformation generated by a beam of light could be
measured, as the extreme sensibility of atomic clocks to
gravitational variations was shown in [28]. The related
experiment would rely on the capacity of some laser
facilities to deliver high power laser pulse at relatively
high frequencies, thus allowing us to measure the defor-
mation created repeatedly by the accumulation of the
induced delay on an atomic clock.
Determining which metric deformation detector would

be best fit requires us to clarify what is the frequency of the
metric deformation generated inside a pulse of light.
Depending on the case we are studying, there are two
possibilities for such a frequency. The first one would be
the frequency associated with the length of the pulse L,
such as the metric deformation observed would virtually
have a frequency ν ¼ c=L. This frequency is associated
with the physical case of a nonoscillating electromagnetic
energy-stress tensor, as in a circularly polarized pulse of
light. The second one is the frequency of the oscillatory
part of the metric deformation, which is associated with the
first mentioned frequency in the physical case of a pulse
of linearly polarized light. As such, a pulse of linearly
polarized light would present two detectable frequencies
for a metric deformation detector. Taking as an example a
pulse of linearly polarized light of wavelength λ ¼ 800 nm
and length L ¼ 4 μm at set power P ¼ 1 PW, we get the
two frequencies for metric deformation ν0 ¼ 7.5 × 1014 Hz
and νosc ¼ 7.5 × 1015 Hz, for a metric deformation
ϕ ∼ 10−37. Detectors at such a frequency band are devised
and are expected to currently have a sensitivity up to 10−30.
Such detectors use the inverse Gertsenshtein effect [29] and
are detailed in the paper of Ejlli et al. [30].
Room for improvement can also be made in the laser

power, as one could envision lasers whowould soon reach a
power in the exawatts. Due to the linear dependence of the
metric deformation on laser power, this would lead to
ϕ ≈ 10−34. This progress could lead to one of the end goal
of the generation of oscillating metric deformations in
the laboratory, which would be the establishment of the
gravitational equivalent to a Hertz experiment, where we
would generate and detect a metric perturbation.
Another physical phenomenon that could be of use in

proving the validity of such a metric deformation gener-
ation would be the gamma ray bursts (GRBs). These
astronomical phenomena indeed generate extremely
powerful light beams 1044–1045 W for a duration up to
a whole second, i.e., L ¼ 3.0 × 108 m [31]. Considering
the GRB photons have a relatively uniform energy around
250 keV, i.e., λ ¼ 50 nm, Eq. (35) gives us ϕ ≈ 10−6 as an
approximate of the amplitude of the metric deformation
inside a cylindric enough GRB. This is an impressive result
that will probably need its own accurate calculation since,

far from its source, a GRB’s shape tends to be more conic.
This result still gives great hope for the detection of metric
deformations induced by light.

X. CONCLUSION

The study of the metric deformation generated by the
electromagnetic stress-energy tensor Tem

μ;ν of a light pulse
gives us several important results. Firstwehaveput into action
a case exhaustion method in order to obtain an analytical
solution for the Einstein equations with a source delimited in
space. It has been proved to give at long distances the result
expected from the Schwarzschild [20] model for a static
cylinder of constant energy density, and gave us more insight
on the establishmentof such ametric deformation in the frame
of the thought experiment of a suddenly appearing amount of
energy. This method will prove useful in the calculation of
further physical cases, which can also be modeled by an
energy density only present in a clearly delimited space. Such
cases actually include most compact massive physical
objects, as well as some directional radiations.
The metric perturbation generated by a cylinder of

constant energy density moving at the speed of light c,
i.e., a circularly polarized pulse of light, presents a singular
profile. This wavelike profile along z gives us good hopes
for the study of the detection of the deformation by a probe
beam, since the light deflection depends on the variation of
the metric. Moreover, the study of an electromagnetic pulse
of linear polarization doubles down on this advantage by
introducing an oscillatory part to the metric, which has
double the frequency of the electromagnetic source.
Thismetric deformation is linearly dependant on the power

of the electromagnetic source, as opposed to its intensity. The
influence of quantum electrodynamics effects can thus be
rendered minimal by not focusing too much the light source.
While the amplitude of the wave-shaped deformation due

to the constant part of the energy density tensor is logarith-
mically dependant on the number of optical cycleL=λ of the
electromagnetic source, the amplitude of the oscillatory part
stays constant. This gives the possibility for future detection
experiments to cater the shape of the metric deformation to
the tools used, depending on if the oscillatory or wave-
shaped part of the deformation is desired to be observed.
Current contenders for the observation of the effect of

metric deformation generated by light-only include high
power lasers for experiments in laboratory for which the
current possible deformation is estimated at ϕ ∼ 10−37, and
gamma ray bursts for astrophysical observations, for which
the deformation is estimated at ϕ ∼ 10−6.
Further study could concern the influence of such metric

deformation on the path and spectrum of a probe light
beam, or the more exact calculation of the metric defor-
mation generated by light in extreme astrophysical events.

The code used to visualize the solutions is accessible in
Paul Lageyre’s github repository [25].

LAGEYRE, D’HUMIÈRES, and RIBEYRE PHYS. REV. D 105, 104052 (2022)

104052-14



ACKNOWLEDGMENTS

This research was supported by the French National
Research Agency (Grant No. ANR-17-CE30-0033-01)
TULIMA Project and by the NSF (Grants No. 1632777 and

No. 1821944) and AFOSR (Grant No. FA9550-17-1-0382).
We thank J. L. Dubois, F. Catoire and P. Gonzalez de Alaiza
Martinez for the interest theyhaveshownin thisstudyandtheir
advice. We finally thank our reviewers for their helpful input.

[1] A. Einstein, Näherungsweise Integration der Feldgleichungen
der Gravitation, Sitzungsber. K. Preuss. Akad. Wiss. Berlin
Jan-Juni 1916 (1916).

[2] R. A. Hulse and J. H. Taylor, Discovery of a pulsar in a
binary system, Astrophys. J. 195, L51 (1975).

[3] B. P. Abbott (LIGO Scientific and Virgo Collaborations),
Observation of Gravitational Waves from a Binary Black
Hole Merger, Phys. Rev. Lett. 116, 061102 (2016).

[4] B. P. Abbott (LIGO Scientific and Virgo Collaborations),
GW170817: Observation of Gravitational Waves from a
Binary Neutron Star Inspiral, Phys. Rev. Lett. 119, 161101
(2017).

[5] B. P. Abbott (LIGO Scientific and Virgo Collaborations),
GWTC-1: A Gravitational-Wave Transient Catalog of
Compact Binary Mergers Observed by LIGO and Virgo
during the First and Second Observing Runs, Phys. Rev. X
9, 031040 (2019).

[6] R. Abbott (LIGO Scientific and Virgo Collaborations),
GWTC-2: Compact Binary Coalescences Observed by
LIGO and Virgo During the First Half of the Third
Observing Run, Phys. Rev. X 11, 021053 (2021).

[7] The LIGO Scientific, the Virgo, and the KAGRA Collab-
orations, GWTC-3: Compact binary coalescences observed
by LIGO and Virgo during the second part of the third
observing run, arXiv:2111.03606.

[8] X. Ribeyre and V. Tikhonchuk, High frequency gravitational
waves generation in laser plasma interaction, in The Twelfth
Marcel Grossmann Meeting (World Scientifc, UNESCO
Headquarters, Paris, France, 2012), pp. 1640–1642.

[9] E. G. Gelfer, H. Kadlecová, O. Klimo, S. Weber, and G.
Korn, Gravitational waves generated by laser accelerated
relativistic ions, Phys. Plasmas 23, 093107 (2016).

[10] H. Kadlecová, O. Klimo, S. Weber, and G. Korn, Gravi-
tational wave generation by interaction of high power lasers
with matter using shock waves, Eur. Phys. J. D 71, 89
(2017).

[11] G. F. Chapline, J. Nuckolls, and L. L. Wood, Gravitational-
radiation production using nuclear explosions, Phys. Rev. D
10, 1064 (1974).

[12] L. P. Grishchuk, Electromagnetic generators and detectors
of gravitational waves, arXiv:gr-qc/0306013.

[13] F. W. Dyson, A. S. Eddington, and C. Davidson, A deter-
mination of the deflection of light by the sun’s gravitational
field, from observations made at the total eclipse of May 29,
1919, Phil. Trans. R. Soc. A 220, 291 (1920).

[14] R. C. Tolman, P. Ehrenfest, and B. Podolsky, On the
gravitational field produced by light, Phys. Rev. 37, 602
(1931).

[15] M. E. Gertsenshtein, Wave resonance of light and gravita-
tional waves, Sov. Phys. JETP 14, 84 (1962).

[16] N. I. Kolosnitsyn and V. N. Rudenko, Gravitational Hertz
experiment with electromagnetic radiation in a strong
magnetic field, Phys. Scr. 90, 074059 (2015).

[17] M. O.Scully,General-relativistic treatment of the gravitational
coupling between laser beams, Phys. Rev. D 19, 3582 (1979).

[18] L. P. Grishchuk, Update on gravitational-wave research,
arXiv:gr-qc/0305051.

[19] D. Rätzel, M. Wilkens, and R. Menzel, Gravitational
properties of light—the gravitational field of a laser pulse,
New J. Phys. 18, 023009 (2016).

[20] K. Schwarzschild, Über das Gravitationsfeld eines Massen-
punktes nach der Einsteinschen Theorie, Sitzungsber. K.
Preuss. Akad. Wiss. Berlin Jan-Juni 1916, 424 (1916).

[21] L. D. Landau and E. M. Lifshitz, The Classical Theory of
Fields, 4th ed., edited by L. D. Landau and E. M. Lifshitz
Course of Theoretical Physics Vol. 2 (Elsevier [u.a.],
Amsterdam [u.a], 2009).

[22] J.-C. Boudenot, Electromagnetisme et Gravitation Rela-
tivistes (Ellipses, 1989).

[23] M. Maggiore, Gravitational Waves, Vol. 1: Theory and
Experiments (Oxford University Press, 2007).

[24] J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley,
New York, 1999).

[25] Paul Lageyre, 2021_plotting_code, 2022, https://github
.com/Paul-Lageyre/2021_plotting_code.

[26] C. N. Danson et al., Petawatt and exawatt class lasers
worldwide, in High Power Laser Science and Engineering
(Cambridge University Press, Cambridge, England, 2019),
Vol. 7.

[27] F. Spengler, D. Rätzel, and D. Braun, Perspectives of
measuring gravitational effects of laser light and particle
beams, arXiv:2104.09209.

[28] W. F. McGrew, X. Zhang, R. J. Fasano, S. A. Schäffer, K.
Beloy, D. Nicolodi, R. C. Brown, N. Hinkley, G. Milani, M.
Schioppo, T. H. Yoon, and A. D. Ludlow, Atomic clock
performance enabling geodesy below the centimetre level,
Nature (London) 564, 87 (2018).

[29] Y. B. Zel’dovich, Electromagnetic and gravitational waves
in a stationary magnetic field, Sov. Phys. JETP 38, 652
(1974).

[30] A. Ejlli, D. Ejlli, A. M. Cruise, G. Pisano, and H. Grote,
Upper limits on the amplitude of ultra-high-frequency
gravitational waves from graviton-photon mixing, Eur.
Phys. J. C 79, 1032 (2019).

[31] T. Piran, The physics of gamma-ray bursts, Rev. Mod. Phys.
76, 1143 (2005).

GRAVITATIONAL INFLUENCE OF HIGH POWER LASER … PHYS. REV. D 105, 104052 (2022)

104052-15

https://doi.org/10.1086/181708
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1103/PhysRevX.9.031040
https://doi.org/10.1103/PhysRevX.9.031040
https://doi.org/10.1103/PhysRevX.11.021053
https://arXiv.org/abs/2111.03606
https://doi.org/10.1063/1.4962520
https://doi.org/10.1140/epjd/e2017-70586-y
https://doi.org/10.1140/epjd/e2017-70586-y
https://doi.org/10.1103/PhysRevD.10.1064
https://doi.org/10.1103/PhysRevD.10.1064
https://arXiv.org/abs/gr-qc/0306013
https://doi.org/10.1103/PhysRev.37.602
https://doi.org/10.1103/PhysRev.37.602
https://doi.org/10.1088/0031-8949/90/7/074059
https://doi.org/10.1103/PhysRevD.19.3582
https://arXiv.org/abs/gr-qc/0305051
https://doi.org/10.1088/1367-2630/18/2/023009
https://github.com/Paul-Lageyre/2021_plotting_code
https://github.com/Paul-Lageyre/2021_plotting_code
https://arXiv.org/abs/2104.09209
https://doi.org/10.1038/s41586-018-0738-2
https://doi.org/10.1140/epjc/s10052-019-7542-5
https://doi.org/10.1140/epjc/s10052-019-7542-5
https://doi.org/10.1103/RevModPhys.76.1143
https://doi.org/10.1103/RevModPhys.76.1143

