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We study the consistency of the decoupling limit of the generalized SU(2) Proca theory (GSU2P). Namely,
we study the healthiness of those terms whose analysis in the scalar limit was not originally established in the
reconstruction of the full theory (see the work by Gallego Cadavid et al. [Phys. Rev. D 102, 104066 (2020)]).

Those terms are the parity-violating Zl}u and the parity-conserving beyond SU(2) Proca terms 543&.2 and Ciz.

Using the 3 + 1 Arnowitt-Deser-Misner formalism, we write down the kinetic Lagrangian of these terms in the
decoupling limit and show that their corresponding kinetic matrices are degenerate. This degeneracy is a
necessary condition for the propagation of the right number of degrees of freedom, as required by the primary

constraint-enforcing relation. Interestingly, the Zl}u term, which is purely non-Abelian, does not contribute to
the kinetic Lagrangian of the theory, so its contribution is trivially degenerate. Similarly, but not trivially in
these cases, the contributions of the 5431,2 and £, terms to the kinetic Lagrangian turn out to be degenerate as
well. The results presented in this paper represent progress in the construction of the fully healthy GSU2P.

DOI: 10.1103/PhysRevD.105.104051

I. INTRODUCTION

Lovelock’s theorem [1,2] gave us a very strong message:
general relativity (GR) is the unique gravity theory in four
dimensions, written in terms of the metric and up to its
second-order derivatives, that is free of instabilities because
its field equations are of second order. However, we always
have in mind the possibility of modifying GR because it is
an effective theory [3,4] (unless it can be shown that it is
nonperturbatively renormalizable [5—8]). Therefore, to con-
struct modifications of gravity, we need to find a way to avoid
Lovelock’s theorem. And the way to avoid a theorem is by
relaxing one or more of the hypotheses which it is laid on.
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The literature on gravity theories is full of papers that
break, in some way or the other, the body of hypotheses
of Lovelock’s theorem. One of the taken avenues consists of
adding more gravitational degrees of freedom in the form of
scalar, fermion, vector, or rank-2 tensor fields. Perhaps, the
most significant work in such a direction is that of Horndeski,
who built in the 1970s the most general scalar-tensor field
gravity theory whose field equations are second order [9].
Since then, the line of thought of this work has been followed
in order to replace the scalar field either by a vector field
enjoying a U(1) gauge symmetry [10], multiple scalar fields
[11-14] (the multi-Galileons theory), a vector field free of
gauge symmetries [15-19] [the generalized Proca theory
(GP)], or a vector field enjoying a global SU(2) symmetry
[20-22] [the generalized SU(2) Proca theory (GSU2P)],
among other possibilities.'

'"The Horndeski theory was forgotten for many years until it
was rediscovered around 2010 [23-27]. The equivalence between
the new “Galileon” theory and that of Horndeski’s was estab-
lished in Ref. [28]. For nice reviews, see Refs. [29-31].
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All the previously mentioned theories follow the idea of
producing second-order field equations, both in the full
theory and in its decoupling limit, to avoid the Ostrogradski’s
instability [32]. This instability refers to the situation when
there is no ground state in a physical system [33,34].
However, the second-order nature of the field equations is
just a sufficient, but not a necessary, condition to avoid the
Ostrogradski’s instability. Indeed, it was later recognized
that such an instability, which is intimately connected to the
propagation of unphysical degrees of freedom, could be
appropriately removed by imposing a high enough number
of constraints in the Hamiltonian that are conserved in time
(following Dirac’s Hamiltonian constraints algorithm
[35,36]). The key, therefore, was the kinetic matrix whose
degeneracy becomes the primary constraint-enforcing rela-
tion. Thus, several theories of higher-order nature were born:
the beyond Horndeski theory [37,38], the extended scalar-
tensor theory (or degenerate higher-order scalar-tensor
theory [39-42]), the beyond Proca theory [43,44], the
beyond SU(2) Proca theory [20], the extended vector-tensor
theory [45], and the extended SU(2) Proca theory [46].

It is very important to highlight that the full versions of
the GP and the GSU2P are degenerate by construction to
suppress the pro;z)agation of a fourth degree of freedom in
the vector fields” (incompatible with the Poincaré group
representations). Additionally, the decoupling limit of the
GP as well as the same limit of most of the Lagrangian
pieces that compose the GSU2P follow the idea of
producing second-order field equations.

The GSU2P was built in Ref. [21], implementing the
degeneracy constraint for the propagation of the right
number of degrees of freedom. This constraint, however,
is not the end of the story; the constraints algebra can be
multidimensional, which means that a gravity theory must
be constructed by having in mind that the other n — 1
constraints, n being the dimension of the constraints
algebra, must be satisfied as well. Unfortunately, neither
the GP nor the GSU2P was constructed by having in mind
this consideration. Indeed, Refs. [47,48] showed that, for
Maxwell-Proca theories, the constraints algebra is two
dimensional. The secondary constraint turned out to be
trivially satisfied by the already constructed GP but not by
the GSU2P. A delicate analysis of the GSU2P constructed
in Ref. [21] revealed that many terms were discarded as
redundant via total derivatives in the Lagrangian that did
not satisfy the secondary constraint. Of course, this ruined
the entire construction, forcing the rebuilding of the theory
from scratch. This was properly done in Ref. [20] with the
additional advantage of getting the beyond SU(2) Proca
terms following the technique devised in Ref. [44]. The
reconstructed GSU2P in Ref. [20] is composed of 14
Lagrangian pieces, eight of them being parity conserving,
five being parity violating, and the other one being a

*The temporal component of each vector field, to be precise.

mixture of both parity-conserving and parity-violating
terms. The terms belonging to the beyond SU(2) Proca
theory are included in this list, they being five of the 14, two
parity conserving and three parity violating. The decou-
pling limits were analyzed for the 14 pieces, and it was
found that 11 of them either vanish or lead to second-order
field equations for the scalar fields representing the
longitudinal modes of the vector fields. The remaining
three pieces, the purely non-Abelian® and parity-violating
z}u and the two parity-conserving beyond SU(2) Proca
terms L3 , and L} ,, lead to higher-order field equations that
put their healthiness into question. The purpose of this
paper is to check whether the decoupling limits of Z}Lz,
L35, and Lj , satisfy the degeneracy condition and, there-
fore, implement the primary constraint. As we will see, the
answer is positive; they do pass the test.

The layout of the paper is as follows. In Sec. II, we
present the decoupling limits of the three Lagrangian
pieces under consideration. In Sec. III, we briefly review
the 3 4+ 1 Arnowitt-Deser-Misner (ADM) decomposition
(see Ref. [49]) in the decoupling limit for a general
Lagrangian containing an SU(2) vector field Bj. Then,
we perform a basis transformation in order to simplify the
kinetic Lagrangian and block diagonalize the correspond-
ing kinetic matrix. In Sec. IV, we apply the former
procedure to each of the Lagragian pieces of interest.
Here, we show that the respective kinetic matrices of the
beyond SU(2) Proca terms are degenerate and that the
respective kinetic Lagrangian of L}, is identically zero.
Finally, the conclusions are presented in Sec. V.

Throughout the text, we use greek indices as space-time
indices which run from O to 3, while the first letters of the
latin alphabet label the internal SU(2) group indices. On the
other hand, the letters i, j, and k are used to label the vectors
in the two basis introduced in the text; all these latin indices
run from 1 to 3. The sign convention is the (+++) according
to Misner ef al. [50]. We set B4B,; = B“ - B, = B>.

II. GSU2P

As discussed in the Introduction, the GSU2P is com-
posed of 14 Lagrangian pieces that propagate the right
number of degrees of freedom (three among four for a
vector field) and produce second-order field equations for
the vector fields. It is described by the action® (to see
complete details about its construction, see Ref. [20])

*Here, “purely non-Abelian” means that it vanishes when strip-
ped out of the internal group indices.

The conventions have been changed a bit with respect to those
in Ref. [20] to increase clarity; there, the symbol A has been
employed to denote both the vector field and the antisymmetric
part of twice its covariant derivative, and, here, the symbol A is
reserved for the mentioned antisymmetric part, while the symbol
B now denotes the vector field.
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In these expressions, g is the determinant of the metric; mp
is the reduced Planck mass; R is the Ricci scalar; By is the
vector field that belongs to the Lie algebra of the SU(2)
group; A5, =V, Bj —V, By is the Abelian version of the
non-Abelian gauge-field strength tensor F7,, where V,, is
the space-time covariant derivative operator; S5, = V,Bj +
V, B is the symmetric version of A§,; G,, is the Einstein
tensor; R?,,, is the Riemann tensor; Al = %e””p"ApM is the
Hodge dual of A%’; €, is the structure-constant tensor of
the SU(2) group; a4, asg, a;, and @; are arbitrary
dimensionless constants; and ¢#**° is the Levi-Civita tensor
of the space-time manifold. It is worth noting that those
Lagrangians with a tilde on top explicitly violate parity,
while those without a tilde do not. The exception is £,,
which is an arbitrary function of A,‘jy and B,‘j; 1.e., it can be

any scalar built from contractions of the latter two objects
with the metric and Levi-Civita tensors of the space-time
and SU(2) group manifolds and, therefore, may include
both parity-conserving and parity-violating terms.

Eleven of the Lagrangians in Egs. (2)—(6) present
decoupling limits that either vanish or produce second-
order field equations for the (scalar) longitudinal modes of
the vector fields. The other three Lagrangian pieces present
decoupling limits that produce higher-order field equations
and, therefore, would give way to the Ostrogradski’s
instability if they are nondegenerate.

Two of the latter are parity-conserving beyond SU(2)
Proca terms and are present in Eq. (7):

L}, = B"R"

3
(WBWBPZ’BZ + 1 (B, - B®)(B*- B,)R, (9)

and

Li,=[(By B")(B"-B,)+2(B, By)(B"-B")|R. (10)

The other Lagrangian piece is the purely non-Abelian
and parity-violating term, which is present in Eq. (8):

L}, =—2A8,54"BBype™ + S8,S% By Byre'™ . (11)

We now proceed to write these three Lagrangian pieces
in their decoupling limits in order to study the healthiness
of their longitudinal modes.

A. Decoupling limit

The decoupling limit of the GSU2P is found by using the
replacement Bj; — V,¢“, with ¢ being a scalar field living
in the adjoint representation of the SU(2) group. Nonetheless,
to simplify the calculations, instead of using the decoupling
limits of the beyond SU(2) Proca Lagrangian pieces in
Egs. (9) and (10), we will use their equivalent forms in the
decoupling limit given, respectively, by5

1
Claly =g BLY +3Cy —aLp - 20y -3

—3LP +4L0 + L) + L8] (12)
and

Lhlg = —2[-LP - 2L + L + 2L + £l
F 2L - LI6 — £l — 18, (13)

where the £ are given by the corresponding decoupling
limits of the following Lagrangians (see Ref. [20]):

3For more details, see Egs. (52), (56), (62), (63), and (66) of
Ref. [20].
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L, = A4,S5.BB?,
L2 =A%, S BYBY,
L3 = A4, S4By B,
L4=As SV BLBY,
L3 = A5, S BooBypet™?,
£ = A8, BBy,
L} = A%,S,u B’ By,
L} = A}, S} BuBy,e .

L3 = A4,Sh B)By,c"P,

L} = Si"Spa(B° - B,),

Ezltl = Sﬁasﬁb(Ba “By),

L= 83"S,aB" B,

L} = S,"Sh,BLBS,

Lyt =S;,80 (B - B,),

Ly =S;,8""(B, - By),

L)% = 8¢, S5.B*BY,

Ly = 5,85 B4 Bj,

Li¥ =S¢, By BY,

L) = 84,8 B, Bj,e" . (14)
It is worth mentioning that, in Egs. (12) and (13), we have neglected terms proportional to the Einstein tensor G,,, to [Zﬁl in

Eq. (7) and to

1

s a a 1 a a
Ly = i (B, - BY)[Si"SY, — SU“Sk, — R(B* - B,)] + 3 (B, - By)[Si"St> — S4“Svb — R(B* - BY)),

(see Eq. (57) of Ref. [20]), since they are healthy in the decoupling limit.
Thus, in the decoupling limit, the beyond SU(2) Proca terms in Eqgs. (12) and (13) can be written, respectively, as

Lisla = 3(Ved®) (Vi) (V,VF9,) (V. V) + 3(Votp) (V) (V, Vi ") (V, V¥ b
—4(Vep)(V,Va”) (Vo) (V. Vo y) = 2(V) (V, Vi) (VF9") (V, V)
+ (Vap) (V") (VoY) (Vo Vo) + 4(Ve0p") (Vi) (V. V) (VP Vo0h”)

+ (Vap) (V") (Vo Vb)) (VY ,ba) = 3(Vodp”) (V) (V. V3 ) (V VR, )

)

= 3(Vata) (V) (V. V0, ) (V*VF ) (15)
and
Lisla = 16(Vag”) (Vi) (V, V¥ ) (V,V ) + 8(Vatpa) (Vi) (V, V") (V, Vo)
= 8(Vegp)(V, Ved") (V¥ ) (V, V' y) = 16(V9*)(V, Vb)) (VF$") (V, V¥ )
+8(Vep?) (VFp") (V, V) (VP Vo) + 8(Vh) (Vipy) (V. Vi, ) (VI 1 8)
+ 8(V(z¢a)(v;t¢h) (vbva¢h) (vyvy¢a) -1 6(v(1¢h) (V{z¢u) (vuvyd)b) (VDVﬂ¢u)
— 8(Vaho) (Vi) (V, V) (V*VF D). (16)
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For the term Z}LZ’ we have the following expression for
the decoupling limit:

‘Zéll,2|sl = 4€aﬁp6(va¢a)(vﬂd’b)(v/]vﬂqﬁa)(vgvﬂbb)' (17)

The purpose of the following sections is to study the
degeneracy of the kinetic matrices associated to the decou-
pling-limit Lagrangians shown in Egs. (15)—(17). To do this,
we follow the procedure described in Ref. [46] employing the
3+ 1 ADM formalism [49].

III. 3+1 DECOMPOSITION

To study the degeneracy properties of a general
Lagrangian containing an SU(2) vector field By in the
decoupling limit, we introduce an auxiliary field Z; which
leads to an action with first-order derivatives only.6
Therefore, we write Z;; = V ,¢“ to not confuse the auxiliary
field with the original field By. Then, we split the time
derivatives from the spatial ones using the covariant 3 + 1
decomposition of the space-time [39,45,46]. To do so, we
introduce a timelike unit vector n* normal to the spatial
hypersurfaces Z,. This foliation induces a three-dimensional
metric  h,, = g,, +n,n, on the spatial hypersurfaces
2, [39,45,46,49]. Thus, the SU(2) field Z,‘j can be decom-
posed as

Z4 = ~Z%n, + 22, (18)

where Z¢ = n*Z; and Zl‘j = hy,Z; are the normal and spatial
projections of Z¢, respectively. The “time derivative” of any
spatial tensor, denoted by a dot, is defined as the spatial
projection of its Lie derivative with respect to the time
direction vector # = 0/0t, the latter being associated with
a time coordinate ¢ that labels the slicing of spacelike
hypersurfaces.

Now, using the above definitions, a kinetic Lagrangian
consisting of SU(2) vectors in the decoupling limit can be
written in terms of Z¢ and the extrinsic curvature K L only
as [46]

Lign = A 2970 + FPK (yK py + 2CP 70K . (19)

This kinetic Lagrangian does not depend on ZZ which can
be removed via the relation V,Z{ =V, Z{ [39,45,46]. In
general, this action can be written in a matrix form as follows:

Aw  CT ] [ z

. P— y a

] . (20)

To avoid confusion, we follow the notation of Ref. [46] in the
decoupling-limit case throughout this paper.

Our first task is to calculate the determinant of the kinetic
matrix given in Eq. (20). We will diagonalize the three
resulting matrices in Eq. (20), at least partially, by perform-
ing two basis transformations. In the next section, with the
block-diagonal matrix, it will be easier to calculate the
determinant for each of the corresponding Lagrangians of
interest.

A. Change of basis

Following the methodology outlined in Ref. [46], we
introduce a pair of basis vectors: one for the internal SU(2)
space and another one for the spatial hypersurface Z,. For
the internal space, we have the set of basis vectors

74 . .
{Wg}:{w?:u—z,wg,wg} fulfilling W{W; =]

(21)

Notice that the 7 index labels the vectors in the basis. On the
hypersurfaces, we define three basis vectors V!, orthogonal
to n#,

| 21 _
{Vit = {V}, = lz’f ,V,%,Vf,} fulfilling
U
ViVj =8, Vi =0, (22)

where again the i index in the V!, corresponds to the
labeling of the three basis vectors.

Thus, using the two bases in Eqgs. (21) and (22), we can
now decompose the vector field Zj as

Z4e=7,We and Z¢=ZWiVi,  (23)
where i, j, and k run from 1 to 3. Following Ref. [46], from

o Xk .
now on, we set Z,' =27, =0 for i # 1.
Finally, we define six independent symmetric matrices

(UL, 1=1,...,6),
1
U}w = V}JV,f, Uﬁy = ﬁ(hlw - U}w),
1 1
U;, = %(Viv,% -Vivi)., U= ﬁ (VaVi +ViV3),
1 1
U;ysji(v,%vg+vﬁv},), USDETE(V2VL+V2V},),

(24)

such that K,, can be decomposed as K, = K; U;’w [46].
With all the previous definitions, we can rewrite the
kinetic Lagrangian in Eq. (20) as

104051-5
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e ) 2)(E)

where the vector components are ii; = (Zi Zi Zi K, K,)
and 122 = (Ks, K6’ K3, K4)

Hence, by performing the outlined change of basis, we
have been able to partially diagonalize the kinetic matrix. In
this form, it will be easier to calculate its determinant.

IV. DETERMINANT OF THE KINETIC MATRICES

We calculate in this section the kinetic matrix determi-
nant for each of the three relevant Lagrangian pieces

Clo=—42b757,, — (28025 + 202b) 2., + 6(2% — Z2)Z, . h*° + 625287, ,h*°,

and

discussed in the Introduction. In the process, we show
explicitly the entries of the kinetic matrices given by
Egs. (20) and (25) corresponding to the matrices before
and after the change of basis, respectively.

A. Kinetic Lagrangian for L3}, |
s

Let us begin with the Lagrangian piece L3,|y. In
this case, the elements in the matrix of Eq. (20) are
given by

Tafpo 5’\’\3’\ “co 5’\(’\’\0’\0 Gatycp4bp o “bp 7o
Fobeo = -Ezgzgz"f’z - EZ;ZQZ PP - 222V I 7Y — 2327 Z5hP

s s 3 00sps 3 4 bt 554
+AZZZLZND + S LZN + S 2T ZTh - 32, 2720 2

3 0rips 3 0055 o5 3 pp s
+ S LI+ SIS Z T = SZZY 2 + S 2 L2

3 a1 Actas A 3.
+3 2175787 wr — 378757578 — 3 2272 heohPr + 3Z3heo he

3/\/\ 3/\/\/\, 3A_A A A A A
- Ezﬁzhﬂznghwh/”ﬂ + EZQZgZWh/f‘f + EZjZ“Z‘jZZh/"’ — 3787075 7¢hPe

- %ZZZzhaﬂh/’” +3Zth e —

;‘ab = O, (26)
|
(27)
3, A 7b7c B 2 aiyep
27,207z hee b — 72707 hoo
2
(28)

+AZEZZSZEN + 3222 WP 1T — 6ZEh hC + 32, 2L ZSZ h P e

Now, after the change of basis in Sec. III A, we get the
structure given in Eq. (25) with the submatrices

0 0 0 C G
0 0 0 C C
M=o o o ¢ ¢ | (29)
C, G C F, F,
and
F, 0 0 0
s 0 F, 0 0
M2: ! ~ ’ (30)
0 Fs 0
0 0 0 Fs

|
where each entry of these submatrices is given in the
Appendix A.

From the form of M,, it is easy to check that its
determinant is zero. Thus, the Ei.2|sl Lagrangian is
degenerate.

B. Kinetic Lagrangian for £2,2|s1

In a similar way, the £},|; Lagrangian generates the
following kinetic matrix elements:

./ztab =0, (31)
Crr = 870707, —8(2b 78 + 2074°)Z.,
+ (1622 = 2472)Z, ,h*° + 3225227, hve,  (32)

and
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Foboo = 877070 70 — 87070 70 2P0 — 873 7P 70 7P 4 472707 heb
+8ZLLTZVZEh D + A(22 — Z2)ZEZh + 8212, 2P 20 hw — 820257520 h
+ A2 = 222020 h + 8ZAZL 2L 2NN — 8ZLZLZ0ZShC + (2P — Z2) 2827 WP
+ 8Z57M 7075 WP — 8727570 ZChPP — AZ2 72 W PP 4 1224 h WP — 8717, 7570 h*o hPr
+4(Z2 = Z2)Z28ZP WP + 8ZAZE 2070 WP — 8207 7S Z0 WP — AZPZ2h W WP + 1224 he e
— 82, 2L 7Sk hPo + 472727V hee 4 877D ZEZ0 o 4 822 Z2h P ho — 2474 h hoo

+16222,,Z5Z0 h*P hre (33)

[
where each entry of these submatrices is given in
Appendix B.

From the form of M, we conclude again that det

Now, after the change of basis in Sec. IIl A, we get the
structure given in Eq. (25) with the submatrices

s U, =0 and, hence, the agrangian is also
o0 & G M; =0 and, h he £,y L |
0 0 Co Cio degenerate.
Mi=10 0 Cn Cp | (34)
¢, C Cy Fo¢ Fy C. Kinetic Lagrangian for £} ,|,,
Cs Cio Cn Fy Ty In this case, we get
and ~
Awp =0, (36)
9 O 0 0
./\~/l2 = 0 .7:9 0 0 (35) Ca’ = _4€aﬁ17232§2b6hpyn/1 - 4€aﬁiy222€2bphwni, (37)
0 Fyo ~O and
0 0 0 Fyp
Fabro = _ iy Z}Ct ZLI; ZeB7bo pad oy _ iy Zlcl ZZ geagbo pfipoy _ €ty Z}Cl le; 7P 7bp pad poy

ZEZE 2T WA — €, Zh 2P ZEZERP WO - €, 20 2P 25 Z0 A WP
— € Ly 2P ZEZE WA T Y + €, 282 ZG WP WY — eﬂM},Z’;prngih‘”hwn”

t € ZEZPZNZE W h Y — €,,,,, ZL 2P ZEZSWPA T Y + €, 28270 Z) 28 WP het
ZEZZLZh W — €, 2820 24 ZEhe Wit — €, 2250 24 28 h PP
ZEZPZEZPhT WP — €0, 2L ZP 2L ZE WO W 0 — €, ZE 2 28 Z0 P Wi

vy
— €, Lo L2 Zh P horn? — €, 282728 ZE WP hot i

= Cuviy

~ Cuviy

~ Cuvly

(38)

|
Its construction requires the implementation of the algebra
constraint-enforcing relations to avoid the propagation of a

Finally, after the change of basis in Sec. Il A, we get the
structure given in Eq. (25). For L} ,|y, we get submatrices

with zero in all the entries. Therefore, 2411.2|51 is trivially
degenerate.

V. CONCLUSIONS

The GSU2P was built as a natural extension of the GP
and, therefore, of the Horndeski theory to the case where
the new gravitational degree of freedom is not only a vector
field but one whose action enjoys a global SU(2) symmetry.

fourth degree of freedom in the vector field. It also requires its
decoupling limit to be healthy, i.e., that it either produces
second-order field equations for the longitudinal degrees of
freedom or that the resulting action satisfies in turn a
constraint algebra to avoid the propagation of unphysical
scalar degrees of freedom. Among the 14 Lagrangian pieces
for the GSU2P constructed in Ref. [20], the decoupling limits
of 11 of them were very easy to analyze, leading to the
conclusion that they either vanish or produce second-order

104051-7



GALLEGO CADAVID, NIETO, and RODRIGUEZ

PHYS. REV. D 105, 104051 (2022)

field equations. The other three were the subject of this paper
because they produce higher-order field equations and,
therefore, the analysis of their decoupling limits required
the reconstruction of their kinetic matrices viaa 3 + 1 ADM
decomposition. The results are satisfactory because the
decoupling limits of these Lagrangian pieces turn out to
satisfy the degeneracy condition, which is the primary
constraint-enforcing relation. This, in particular, is very
reassuring since the parity-conserving beyond SU(2)
Proca terms play an important role in the successful con-
stant-roll inflationary scenario studied in Ref. [51].
Regarding the other members of the constraint algebra, it
is not known whether they are satisfied. A definite answer to
this question will only come with a dedicated and delicate
Hamiltonian analysis, as was done for the degenerate higher-
order scalar-tensor theory in Ref. [52], which is not an easy
task in curved space-time.
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APPENDIX A: KINETIC MATRIX

ENTRIES OF 3,

The kinetic matrix entries in Eq. (29) are given by

¢ = \/;3(22 +2(2,' 2 -322), (A1)
=322 + (2, - 2. (A2)
& =222 2, (43
Co=3y 222N, (A%)

G =22 W2 -2 -2, (as)

Co=32 W22 -2 P - 2P (A6)
Fo =624 — 222722 —4(2,' 222, (A7)
Fr=\222022 +7(2,' 2 -622).  (A8)
Fy =322 + (2, ) -223), (49)

and those in Eq. (30) are given by
Fo=624-32222-9(2,' 22 + 624, (Al0)
Fs=322(-22 - (Z,')? +222). (A11)

APPENDIX B: KINETIC MATRIX
ENTRIES OF L1,

The kinetic matrix entries in Eq. (34) are given by

G=a /2222 P -322),  (BY)
Gy =M /222222 + 4(2,' ) =322).  (B2)
&y =8/22"2)). (B3)
Cio=161/222(2,")(2,"), (B4)
Ch=8EWRZ -2 - @), (89)
G =162 W22 - (2 - (27P).  (B6)
Fe=80324 - 2222 — (2,' 222, (B7)
Fo=12V222(22 +2(2,' ) -222),  (BS)
Fo=822(22 +2(2,')? - 322). (B9)

and those in Eq. (35) are given by
Fo=8(32* - 22272 + 22(—4(2,")? +322)), (B10)
Fio=-8ZA2* +22,'?-32).  (BI)
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