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We study the consistency of the decoupling limit of the generalized SU(2) Proca theory (GSU2P). Namely,
we study the healthiness of those terms whose analysis in the scalar limit was not originally established in the
reconstruction of the full theory (see thework by Gallego Cadavid et al. [Phys. Rev. D 102, 104066 (2020)]).
Those terms are the parity-violating L̃1

4;2 and the parity-conserving beyond SU(2) Proca terms L3
4;2 andL

4
4;2.

Using the3þ 1Arnowitt-Deser-Misner formalism,wewrite down thekineticLagrangian of these terms in the
decoupling limit and show that their corresponding kinetic matrices are degenerate. This degeneracy is a
necessary condition for the propagation of the right number of degrees of freedom, as required by the primary

constraint-enforcing relation. Interestingly, the L̃1
4;2 term, which is purely non-Abelian, does not contribute to

the kinetic Lagrangian of the theory, so its contribution is trivially degenerate. Similarly, but not trivially in
these cases, the contributions of theL3

4;2 andL
4
4;2 terms to the kinetic Lagrangian turn out to be degenerate as

well. The results presented in this paper represent progress in the construction of the fully healthy GSU2P.

DOI: 10.1103/PhysRevD.105.104051

I. INTRODUCTION

Lovelock’s theorem [1,2] gave us a very strong message:
general relativity (GR) is the unique gravity theory in four
dimensions, written in terms of the metric and up to its
second-order derivatives, that is free of instabilities because
its field equations are of second order. However, we always
have in mind the possibility of modifying GR because it is
an effective theory [3,4] (unless it can be shown that it is
nonperturbatively renormalizable [5–8]). Therefore, to con-
structmodifications of gravity,we need to find away to avoid
Lovelock’s theorem. And the way to avoid a theorem is by
relaxing one or more of the hypotheses which it is laid on.

The literature on gravity theories is full of papers that
break, in some way or the other, the body of hypotheses
of Lovelock’s theorem. One of the taken avenues consists of
adding more gravitational degrees of freedom in the form of
scalar, fermion, vector, or rank-2 tensor fields. Perhaps, the
most significant work in such a direction is that ofHorndeski,
who built in the 1970s the most general scalar-tensor field
gravity theory whose field equations are second order [9].
Since then, the line of thought of this work has been followed
in order to replace the scalar field either by a vector field
enjoying a U(1) gauge symmetry [10], multiple scalar fields
[11–14] (the multi-Galileons theory), a vector field free of
gauge symmetries [15–19] [the generalized Proca theory
(GP)], or a vector field enjoying a global SU(2) symmetry
[20–22] [the generalized SU(2) Proca theory (GSU2P)],
among other possibilities.1
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1The Horndeski theory was forgotten for many years until it
was rediscovered around 2010 [23–27]. The equivalence between
the new “Galileon” theory and that of Horndeski’s was estab-
lished in Ref. [28]. For nice reviews, see Refs. [29–31].
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All the previously mentioned theories follow the idea of
producing second-order field equations, both in the full
theory and in its decoupling limit, to avoid theOstrogradski’s
instability [32]. This instability refers to the situation when
there is no ground state in a physical system [33,34].
However, the second-order nature of the field equations is
just a sufficient, but not a necessary, condition to avoid the
Ostrogradski’s instability. Indeed, it was later recognized
that such an instability, which is intimately connected to the
propagation of unphysical degrees of freedom, could be
appropriately removed by imposing a high enough number
of constraints in the Hamiltonian that are conserved in time
(following Dirac’s Hamiltonian constraints algorithm
[35,36]). The key, therefore, was the kinetic matrix whose
degeneracy becomes the primary constraint-enforcing rela-
tion. Thus, several theories of higher-order naturewere born:
the beyond Horndeski theory [37,38], the extended scalar-
tensor theory (or degenerate higher-order scalar-tensor
theory [39–42]), the beyond Proca theory [43,44], the
beyond SU(2) Proca theory [20], the extended vector-tensor
theory [45], and the extended SU(2) Proca theory [46].
It is very important to highlight that the full versions of

the GP and the GSU2P are degenerate by construction to
suppress the propagation of a fourth degree of freedom in
the vector fields2 (incompatible with the Poincaré group
representations). Additionally, the decoupling limit of the
GP as well as the same limit of most of the Lagrangian
pieces that compose the GSU2P follow the idea of
producing second-order field equations.
The GSU2P was built in Ref. [21], implementing the

degeneracy constraint for the propagation of the right
number of degrees of freedom. This constraint, however,
is not the end of the story; the constraints algebra can be
multidimensional, which means that a gravity theory must
be constructed by having in mind that the other n − 1
constraints, n being the dimension of the constraints
algebra, must be satisfied as well. Unfortunately, neither
the GP nor the GSU2P was constructed by having in mind
this consideration. Indeed, Refs. [47,48] showed that, for
Maxwell-Proca theories, the constraints algebra is two
dimensional. The secondary constraint turned out to be
trivially satisfied by the already constructed GP but not by
the GSU2P. A delicate analysis of the GSU2P constructed
in Ref. [21] revealed that many terms were discarded as
redundant via total derivatives in the Lagrangian that did
not satisfy the secondary constraint. Of course, this ruined
the entire construction, forcing the rebuilding of the theory
from scratch. This was properly done in Ref. [20] with the
additional advantage of getting the beyond SU(2) Proca
terms following the technique devised in Ref. [44]. The
reconstructed GSU2P in Ref. [20] is composed of 14
Lagrangian pieces, eight of them being parity conserving,
five being parity violating, and the other one being a

mixture of both parity-conserving and parity-violating
terms. The terms belonging to the beyond SU(2) Proca
theory are included in this list, they being five of the 14, two
parity conserving and three parity violating. The decou-
pling limits were analyzed for the 14 pieces, and it was
found that 11 of them either vanish or lead to second-order
field equations for the scalar fields representing the
longitudinal modes of the vector fields. The remaining
three pieces, the purely non-Abelian3 and parity-violating
L̃1
4;2 and the two parity-conserving beyond SU(2) Proca

termsL3
4;2 andL

4
4;2, lead to higher-order field equations that

put their healthiness into question. The purpose of this
paper is to check whether the decoupling limits of L̃1

4;2,
L3
4;2, and L4

4;2 satisfy the degeneracy condition and, there-
fore, implement the primary constraint. As we will see, the
answer is positive; they do pass the test.
The layout of the paper is as follows. In Sec. II, we

present the decoupling limits of the three Lagrangian
pieces under consideration. In Sec. III, we briefly review
the 3þ 1 Arnowitt-Deser-Misner (ADM) decomposition
(see Ref. [49]) in the decoupling limit for a general
Lagrangian containing an SU(2) vector field Ba

μ. Then,
we perform a basis transformation in order to simplify the
kinetic Lagrangian and block diagonalize the correspond-
ing kinetic matrix. In Sec. IV, we apply the former
procedure to each of the Lagragian pieces of interest.
Here, we show that the respective kinetic matrices of the
beyond SU(2) Proca terms are degenerate and that the
respective kinetic Lagrangian of L̃1

4;2 is identically zero.
Finally, the conclusions are presented in Sec. V.
Throughout the text, we use greek indices as space-time

indices which run from 0 to 3, while the first letters of the
latin alphabet label the internal SU(2) group indices. On the
other hand, the letters i, j, and k are used to label the vectors
in the two basis introduced in the text; all these latin indices
run from 1 to 3. The sign convention is the (+++) according
to Misner et al. [50]. We set Ba

μB
μ
a ≡ Ba · Ba ≡ B2.

II. GSU2P

As discussed in the Introduction, the GSU2P is com-
posed of 14 Lagrangian pieces that propagate the right
number of degrees of freedom (three among four for a
vector field) and produce second-order field equations for
the vector fields. It is described by the action4 (to see
complete details about its construction, see Ref. [20])

2The temporal component of each vector field, to be precise.

3Here, “purely non-Abelian”means that it vanishes when strip-
ped out of the internal group indices.

4The conventions have been changed a bit with respect to those
in Ref. [20] to increase clarity; there, the symbol A has been
employed to denote both the vector field and the antisymmetric
part of twice its covariant derivative, and, here, the symbol A is
reserved for the mentioned antisymmetric part, while the symbol
B now denotes the vector field.
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S¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
LE−HþL2þα4;0L4;0þL4;2þ

α5;0
m2

P
L̃5;0

�
;

ð1Þ

where

LE−H ≡m2
P

2
R; ð2Þ

L2 ≡ L2ðAa
μν; Ba

μÞ; ð3Þ

L4;0 ≡GμνBμaBν
a; ð4Þ

L4;2 ≡
X6
i¼1

αi
m2

P
Li
4;2 þ

X4
i¼1

α̃i
m2

P
L̃i
4;2; ð5Þ

L̃5;0 ≡ BνaRσ
νρμ Bb

σÃ
μρcϵabc; ð6Þ

and

L1
4;2 ≡ ðBb · BbÞ½Sμaμ Sννa − Sμaν Sνμa�

þ 2ðBa · BbÞ½Sμaμ Sνbν − Sμaν Sνbμ �;
L2
4;2 ≡ Aa

μνS
μb
σ Bν

aBσ
b − Aa

μνS
μb
σ Bν

bB
σ
a þ Aa

μνS
ρb
ρ Bμ

aBν
b;

L3
4;2 ≡ BμaRα

σρμ BαaBρbBσ
b þ

3

4
ðBb · BbÞðBa · BaÞR;

L4
4;2 ≡ ½ðBb · BbÞðBa · BaÞ þ 2ðBa · BbÞðBa · BbÞ�R;

L5
4;2 ≡GμνBμaBν

aðBb · BbÞ;
L6
4;2 ≡GμνBμaBνbðBa · BbÞ; ð7Þ

L̃1
4;2 ≡ −2Aa

μνS
μb
σ BαaBβbϵ

νσαβ þ SaμνSνbσ BαaBβbϵ
μσαβ;

L̃2
4;2 ≡ Aa

μνS
μb
σ BαaBβbϵ

νσαβ − Ãαβ
a SbραBρaBβb þ Ãαβ

a SρρbB
a
αBb

β;

L̃3
4;2 ≡ Bb

βR
α
σρμBa

αðBa · BbÞϵμρσβ;
L̃4
4;2 ≡ BβaRα

σρμBa
αðBb · BbÞϵμρσβ: ð8Þ

In these expressions, g is the determinant of the metric; mP
is the reduced Planck mass; R is the Ricci scalar; Ba

μ is the
vector field that belongs to the Lie algebra of the SU(2)
group; Aa

μν ≡∇μBa
ν −∇νBa

μ is the Abelian version of the
non-Abelian gauge-field strength tensor Fa

μν, where ∇μ is
the space-time covariant derivative operator; Saμν ≡∇μBa

ν þ
∇νBa

μ is the symmetric version of Aa
μν; Gμν is the Einstein

tensor; Rσ
νρμ is the Riemann tensor; Ãμν

a ≡ 1
2
ϵμνρσAρσa is the

Hodge dual of Aμν
a ; ϵabc is the structure-constant tensor of

the SU(2) group; α4;0, α5;0, αi, and α̃i are arbitrary
dimensionless constants; and ϵμνρσ is the Levi-Civita tensor
of the space-time manifold. It is worth noting that those
Lagrangians with a tilde on top explicitly violate parity,
while those without a tilde do not. The exception is L2,
which is an arbitrary function of Aa

μν and Ba
μ; i.e., it can be

any scalar built from contractions of the latter two objects
with the metric and Levi-Civita tensors of the space-time
and SU(2) group manifolds and, therefore, may include
both parity-conserving and parity-violating terms.
Eleven of the Lagrangians in Eqs. (2)–(6) present

decoupling limits that either vanish or produce second-
order field equations for the (scalar) longitudinal modes of
the vector fields. The other three Lagrangian pieces present
decoupling limits that produce higher-order field equations
and, therefore, would give way to the Ostrogradski’s
instability if they are nondegenerate.
Two of the latter are parity-conserving beyond SU(2)

Proca terms and are present in Eq. (7):

L3
4;2 ≡ BμaRα

σρμBαaBρbBσ
b þ

3

4
ðBb · BbÞðBa · BaÞR; ð9Þ

and

L4
4;2 ≡ ½ðBb · BbÞðBa · BaÞ þ 2ðBa · BbÞðBa · BbÞ�R: ð10Þ

The other Lagrangian piece is the purely non-Abelian
and parity-violating term, which is present in Eq. (8):

L̃1
4;2 ≡ −2Aa

μνS
μb
σ BαaBβbϵ

νσαβ þ SaμνSνbσ BαaBβbϵ
μσαβ: ð11Þ

We now proceed to write these three Lagrangian pieces
in their decoupling limits in order to study the healthiness
of their longitudinal modes.

A. Decoupling limit

The decoupling limit of the GSU2P is found by using the
replacement Ba

μ → ∇μϕ
a, with ϕa being a scalar field living

in the adjoint representationof theSU(2) group.Nonetheless,
to simplify the calculations, instead of using the decoupling
limits of the beyond SU(2) Proca Lagrangian pieces in
Eqs. (9) and (10), we will use their equivalent forms in the
decoupling limit given, respectively, by5

L3
4;2jsl ¼

1

4
½3L10

4 þ 3L11
4 − 4L12

4 − 2L13
4 − 3L14

4

− 3L15
4 þ 4L16

4 þ L17
4 þ L18

4 � ð12Þ

and

L4
4;2jsl ¼ −2½−L10

4 − 2L11
4 þ L12

4 þ 2L13
4 þ L14

4

þ 2L15
4 − L16

4 − L17
4 − L18

4 �; ð13Þ

where the Li
4 are given by the corresponding decoupling

limits of the following Lagrangians (see Ref. [20]):

5For more details, see Eqs. (52), (56), (62), (63), and (66) of
Ref. [20].
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L1
4 ≡ Aa

μνS
μ
σaBνcBσ

c;

L2
4 ≡ Aa

μνS
μb
σ Bν

aBσ
b;

L3
4 ≡ Aa

μνS
μb
σ Bν

bB
σ
a;

L4
4 ≡ Aa

μνS
ρb
ρ Bμ

aBν
b;

L5
4 ≡ Aa

μνSνbσ BαaBβbϵ
μσαβ;

L6
4 ≡ Aa

μνS
ρb
ρ BαaBβbϵ

μναβ;

L7
4 ≡ Aa

μνSρσaBρcBβcϵ
μνσβ;

L8
4 ≡ Aa

μνSbρσB
ρ
aBβbϵ

μνσβ;

L9
4 ≡ Aa

μνSbρσB
ρ
bBβaϵ

μνσβ;

L10
4 ≡ Sμaμ SρρaðBc · BcÞ;

L11
4 ≡ Sμaμ Sρbρ ðBa · BbÞ;

L12
4 ≡ Sμaμ SρσaBρcBσ

c;

L13
4 ≡ Sμaμ SbρσB

ρ
aBσ

b;

L14
4 ≡ SaμνS

μν
a ðBc · BcÞ;

L15
4 ≡ SaμνSμνbðBa · BbÞ;

L16
4 ≡ SaμνS

μ
σaBνcBσ

c;

L17
4 ≡ SaμνS

μb
σ Bν

aBσ
b;

L18
4 ≡ SaμνS

μb
σ Bν

bB
σ
a;

L19
4 ≡ SaμνSνbσ BαaBβbϵ

μσαβ: ð14Þ
It is worth mentioning that, in Eqs. (12) and (13), we have neglected terms proportional to the Einstein tensor Gμν, to L2

4;2 in
Eq. (7) and to

L̂1;h
4 ≡ 1

4
ðBb · BbÞ½Sμaμ Sννa − Sμaν Sνμa − RðBa · BaÞ� þ

1

2
ðBa · BbÞ½Sμaμ Sνbν − Sμaν Sνbμ − RðBa · BbÞ�;

(see Eq. (57) of Ref. [20]), since they are healthy in the decoupling limit.
Thus, in the decoupling limit, the beyond SU(2) Proca terms in Eqs. (12) and (13) can be written, respectively, as

L3
4;2jsl ¼ 3ð∇αϕ

bÞð∇αϕaÞð∇μ∇μϕaÞð∇ν∇νϕbÞ þ 3ð∇αϕaÞð∇αϕaÞð∇μ∇μϕbÞð∇ν∇νϕbÞ
− 4ð∇αϕaÞð∇μ∇αϕ

bÞð∇μϕaÞð∇ν∇νϕbÞ − 2ð∇αϕaÞð∇μ∇αϕaÞð∇μϕbÞð∇ν∇νϕbÞ
þ ð∇αϕaÞð∇μϕbÞð∇ν∇μϕbÞð∇ν∇αϕaÞ þ 4ð∇αϕaÞð∇μϕaÞð∇ν∇μϕbÞð∇ν∇αϕ

bÞ
þ ð∇αϕaÞð∇μϕbÞð∇ν∇αϕbÞð∇ν∇μϕaÞ − 3ð∇αϕ

bÞð∇αϕaÞð∇ν∇μϕbÞð∇ν∇μϕaÞ
− 3ð∇αϕaÞð∇αϕaÞð∇ν∇μϕbÞð∇ν∇μϕbÞ ð15Þ

and

L4
4;2jsl ¼ 16ð∇αϕ

bÞð∇αϕaÞð∇μ∇μϕaÞð∇ν∇νϕbÞ þ 8ð∇αϕaÞð∇αϕaÞð∇μ∇μϕbÞð∇ν∇νϕbÞ
− 8ð∇αϕaÞð∇μ∇αϕ

bÞð∇μϕaÞð∇ν∇νϕbÞ − 16ð∇αϕaÞð∇μ∇αϕaÞð∇μϕbÞð∇ν∇νϕbÞ
þ 8ð∇αϕaÞð∇μϕbÞð∇ν∇μϕbÞð∇ν∇αϕaÞ þ 8ð∇αϕaÞð∇μϕaÞð∇ν∇μϕbÞð∇ν∇αϕ

bÞ
þ 8ð∇αϕaÞð∇μϕbÞð∇ν∇αϕbÞð∇ν∇μϕaÞ − 16ð∇αϕ

bÞð∇αϕaÞð∇ν∇μϕbÞð∇ν∇μϕaÞ
− 8ð∇αϕaÞð∇αϕaÞð∇ν∇μϕbÞð∇ν∇μϕbÞ: ð16Þ
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For the term L̃1
4;2, we have the following expression for

the decoupling limit:

L̃1
4;2jsl ¼ 4ϵαβρσð∇αϕaÞð∇βϕbÞð∇ρ∇λϕaÞð∇σ∇λϕbÞ: ð17Þ

The purpose of the following sections is to study the
degeneracy of the kinetic matrices associated to the decou-
pling-limit Lagrangians shown in Eqs. (15)–(17). To do this,
we follow the procedure described inRef. [46] employing the
3þ 1 ADM formalism [49].

III. 3 + 1 DECOMPOSITION

To study the degeneracy properties of a general
Lagrangian containing an SU(2) vector field Ba

μ in the
decoupling limit, we introduce an auxiliary field Za

μ which
leads to an action with first-order derivatives only.6

Therefore, we write Za
μ ≡∇μϕ

a to not confuse the auxiliary
field with the original field Ba

μ. Then, we split the time
derivatives from the spatial ones using the covariant 3þ 1
decomposition of the space-time [39,45,46]. To do so, we
introduce a timelike unit vector nμ normal to the spatial
hypersurfaces Σt. This foliation induces a three-dimensional
metric hμν ≡ gμν þ nμnν on the spatial hypersurfaces
Σt [39,45,46,49]. Thus, the SU(2) field Za

μ can be decom-
posed as

Za
μ ¼ −Za�nμ þ Ẑa

μ; ð18Þ

where Za� ≡ nμZa
μ and Ẑ

a
μ ≡ hνμZa

ν are the normal and spatial
projections of Za

μ, respectively. The “time derivative” of any
spatial tensor, denoted by a dot, is defined as the spatial
projection of its Lie derivative with respect to the time
direction vector tμ ≡ ∂=∂t, the latter being associated with
a time coordinate t that labels the slicing of spacelike
hypersurfaces.
Now, using the above definitions, a kinetic Lagrangian

consisting of SU(2) vectors in the decoupling limit can be
written in terms of _Za

� and the extrinsic curvature Kμν only
as [46]

Lkin ¼ Ãab
_Za
� _Z

b
� þ F̃ αβρσKαβKρσ þ 2C̃αβa _Za

�Kαβ: ð19Þ

This kinetic Lagrangian does not depend on _̂Z
a
μ, which can

be removed via the relation ∇μZa
ν ¼ ∇νZa

μ [39,45,46]. In
general, this action can bewritten in amatrix form as follows:

Lkin ¼ ½ _Za� Kρσ �
�
Ãab C̃αβa
C̃ρσb F̃ αβρσ

�� _Zb
�

Kαβ

�
: ð20Þ

Our first task is to calculate the determinant of the kinetic
matrix given in Eq. (20). We will diagonalize the three
resulting matrices in Eq. (20), at least partially, by perform-
ing two basis transformations. In the next section, with the
block-diagonal matrix, it will be easier to calculate the
determinant for each of the corresponding Lagrangians of
interest.

A. Change of basis

Following the methodology outlined in Ref. [46], we
introduce a pair of basis vectors: one for the internal SU(2)
space and another one for the spatial hypersurface Σt. For
the internal space, we have the set of basis vectors

fWa
i g ¼

�
Wa

1 ¼
Za�
jZa�j

;Wa
2;W

a
3

�
fulfilling Wa

i W
j
a ¼ δji :

ð21Þ

Notice that the i index labels the vectors in the basis. On the
hypersurfaces, we define three basis vectors Vi

μ orthogonal
to nμ,

fVi
μg ¼

�
V1
μ ¼

Ẑ1
μ

jẐ1
μj
; V2

μ; V3
μ

�
fulfilling

Vi
μV

μ
j ¼ δij; V

i
μnμ ¼ 0; ð22Þ

where again the i index in the Vi
μ corresponds to the

labeling of the three basis vectors.
Thus, using the two bases in Eqs. (21) and (22), we can

now decompose the vector field Za
μ as

Za� ¼ Z̃�iWa
i and Ẑa

μ ¼ ˜̂Z
k
iWa

kV
i
μ; ð23Þ

where i, j, and k run from 1 to 3. Following Ref. [46], from

now on, we set Z̃�i ¼ ˜̂Z
k
i ¼ 0 for i ≠ 1.

Finally, we define six independent symmetric matrices
(UI

μν; I ¼ 1;…; 6),

U1
μν ≡ V1

μV1
ν; U2

μν ≡ 1ffiffiffi
2

p ðhμν − U1
μνÞ;

U3
μν ≡ 1ffiffiffi

2
p ðV2

μV2
ν − V3

μV3
νÞ; U4

μν ≡ 1ffiffiffi
2

p ðV2
μV3

ν þ V2
νV3

μÞ;

U5
μν ≡ 1ffiffiffi

2
p ðV2

μV1
ν þ V2

νV1
μÞ; U6

μν ≡ 1ffiffiffi
2

p ðV3
μV1

ν þ V3
νV1

μÞ;

ð24Þ

such that Kμν can be decomposed as Kμν ¼ KIUI
μν [46].

With all the previous definitions, we can rewrite the
kinetic Lagrangian in Eq. (20) as

6To avoid confusion, we follow the notation of Ref. [46] in the
decoupling-limit case throughout this paper.
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Lkin ¼
�
ũT1 ũT2

��
M̃1 0

0 M̃2

��
ũ1
ũ2

�
; ð25Þ

where the vector components are ũ1 ≡ ð _̃Z1
�;
_̃Z
2
�;
_̃Z
3
�; K1; K2Þ

and ũ2 ≡ ðK5; K6; K3; K4Þ.
Hence, by performing the outlined change of basis, we

have been able to partially diagonalize the kinetic matrix. In
this form, it will be easier to calculate its determinant.

IV. DETERMINANT OF THE KINETIC MATRICES

We calculate in this section the kinetic matrix determi-
nant for each of the three relevant Lagrangian pieces

discussed in the Introduction. In the process, we show
explicitly the entries of the kinetic matrices given by
Eqs. (20) and (25) corresponding to the matrices before
and after the change of basis, respectively.

A. Kinetic Lagrangian for L3
4;2

			
sl

Let us begin with the Lagrangian piece L3
4;2jsl. In

this case, the elements in the matrix of Eq. (20) are
given by

Ãab ≡ 0; ð26Þ

C̃ρσa ≡ −4ẐbρẐσ
bZ�a − ðẐbρẐσ

a þ Ẑρ
aẐbσÞZ�b þ 6ðẐ2 − Z2�ÞZ�ahρσ þ 6Ẑb

αẐ
α
aZ�bhρσ; ð27Þ

and

F̃ αβρσ ≡ −
5

2
Ẑα
cẐ

β
bẐ

bρẐcσ −
5

2
Ẑα
cẐ

β
bẐ

cρẐbσ − Ẑα
cẐ

cβẐbρẐσ
b − Z2�ẐbρẐσ

bh
αβ

þ 4Ẑρ
bẐ

σ
cZb�Zc�hαβ þ

3

2
Ẑ2Ẑβ

cẐcσhαρ þ 3

2
Ẑλ
bẐ

c
λẐ

bβẐσ
chαρ − 3Ẑβ

bẐ
σ
cZb�Zc�hαρ

þ 3

2
Ẑ2Ẑβ

cẐcρhασ þ 3

2
Ẑλ
bẐ

c
λẐ

β
cẐbρhασ − 3Ẑβ

cẐ
ρ
bZ

c�Zb�hασ þ
3

2
Ẑ2Ẑα

cẐ
cσhβρ

þ 3

2
Ẑλ
bẐ

c
λẐ

α
cẐ

bσhβρ − 3Ẑα
cẐ

σ
bZ

c�Zb�hβρ −
3

2
Ẑ2Z2�hασhβρ þ 3Z4�hασhβρ

−
3

2
Ẑλ
cẐbλZc�Zb�hασhβρ þ

3

2
Ẑ2Ẑα

cẐ
cρhβσ þ 3

2
Ẑc
λẐ

bλẐα
cẐ

ρ
bh

βσ − 3Ẑα
cẐ

ρ
bZ

b�Zc�hβσ

−
3

2
Ẑ2Z2�hαρhβσ þ 3Z4�hαρhβσ −

3

2
ẐcλẐ

λ
bZ

b�Zc�hαρhβσ − Z2�Ẑα
cẐ

cβhρσ

þ 4Ẑα
cẐ

β
bZ

c�Zb�hρσ þ 3Ẑ2Z2�hαβhρσ − 6Z4�hαβhρσ þ 3ẐbλẐ
λ
cZc�Zb�hαβhρσ: ð28Þ

Now, after the change of basis in Sec. III A, we get the
structure given in Eq. (25) with the submatrices

M̃1 ¼

0
BBBBBB@

0 0 0 C̃1 C̃2
0 0 0 C̃3 C̃4
0 0 0 C̃5 C̃6
C̃1 C̃3 C̃5 F̃ 1 F̃ 2

C̃2 C̃4 C̃6 F̃ 2 F̃ 3

1
CCCCCCA
; ð29Þ

and

M̃2 ¼

0
BBB@

F̃ 4 0 0 0

0 F̃ 4 0 0

0 0 F̃ 5 0

0 0 0 F̃ 5

1
CCCA; ð30Þ

where each entry of these submatrices is given in the
Appendix A.
From the form of M̃1, it is easy to check that its

determinant is zero. Thus, the L3
4;2jsl Lagrangian is

degenerate.

B. Kinetic Lagrangian for L4
4;2jsl

In a similar way, the L4
4;2jsl Lagrangian generates the

following kinetic matrix elements:

Ãab ≡ 0; ð31Þ

C̃ρσa ≡ −8ẐbρẐσ
bZ�a − 8ðẐbρẐσ

a þ Ẑρ
aẐbσÞZ�b

þ ð16Ẑ2 − 24Z2�ÞZ�ahρσ þ 32Ẑb
αẐ

α
aZ�bhρσ; ð32Þ

and
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F̃ αβρσ ≡ −8Ẑα
cẐ

β
bẐ

bρẐcσ − 8Ẑα
cẐ

β
bẐ

cρẐbσ − 8Ẑα
cẐ

cβẐρ
bẐ

bσ þ 4Z2�Ẑ
ρ
cẐcσhαβ

þ 8Ẑρ
cẐσ

bZ
b�Zc�hαβ þ 4ðẐ2 − Z2�ÞẐβ

cẐcσhαρ þ 8Ẑλ
cẐbλẐ

cβẐbσhαρ − 8Ẑβ
cẐσ

bZ
c�Zb�hαρ

þ 4ðẐ2 − Z2�ÞẐβ
cẐcρhασ þ 8ẐcλẐb

λ Ẑ
β
cẐ

ρ
bh

ασ − 8Ẑβ
cẐ

ρ
bZ

b�Zc�hασ þ 4ðẐ2 − Z2�ÞẐα
cẐ

cσhβρ

þ 8Ẑc
λẐ

bλẐα
cẐ

σ
bh

βρ − 8Ẑα
cẐ

σ
bZ

b�Zc�hβρ − 4Ẑ2Z2�hασhβρ þ 12Z4�hασhβρ − 8Ẑλ
cẐbλZc�Zb�hασhβρ

þ 4ðẐ2 − Z2�ÞẐα
cẐ

cρhβσ þ 8ẐcλẐb
λ Ẑ

α
cẐ

ρ
bh

βσ − 8Ẑα
cẐ

ρ
bZ

c�Zb�hβσ − 4Ẑ2Z2�hαρhβσ þ 12Z4�hαρhβσ

− 8ẐcλẐ
λ
bZ

c�Zb�hαρhβσ þ 4Z2�Ẑα
cẐ

cβhρσ þ 8Ẑα
cẐ

β
bZ

c�Zb�hρσ þ 8Ẑ2Z2�hαβhρσ − 24Z4�hαβhρσ

þ 16Ẑλ
cẐbλZc�Zb�hαβhρσ: ð33Þ

Now, after the change of basis in Sec. III A, we get the
structure given in Eq. (25) with the submatrices

M̃1 ¼

0
BBBBBB@

0 0 0 C̃7 C̃8
0 0 0 C̃9 C̃10
0 0 0 C̃11 C̃12
C̃7 C̃9 C̃11 F̃ 6 F̃ 7

C̃8 C̃10 C̃12 F̃ 7 F̃ 8

1
CCCCCCA
; ð34Þ

and

M̃2 ¼

0
BBB@

F̃ 9 0 0 0

0 F̃ 9 0 0

0 0 F̃ 10 0

0 0 0 F̃ 10

1
CCCA; ð35Þ

where each entry of these submatrices is given in
Appendix B.
From the form of M̃1, we conclude again that det

M̃1 ¼ 0 and, hence, the L4
4;2jsl Lagrangian is also

degenerate.

C. Kinetic Lagrangian for L̃1
4;2jsl

In this case, we get

Ãab ≡ 0; ð36Þ

C̃ρσa ≡ −4ϵαβλγẐα
aẐ

β
bẐ

bσhργnλ − 4ϵαβλγẐ
α
aẐ

β
bẐ

bρhσγnλ; ð37Þ

and

F̃ αβρσ ≡ −ϵμνλγẐ
μ
cẐν

bẐ
cβẐbσhαλhργ − ϵμνλγẐ

μ
cẐν

bẐ
cαẐbσhβλhργ − ϵμνλγẐ

μ
cẐν

bẐ
cβẐbρhαλhσγ

− ϵμνλγẐ
μ
cẐν

bẐ
cαẐbρhβλhσγ − ϵμνλγẐ

μ
bẐ

bσẐβ
cZc�hαλhργnν þ ϵμνλγẐ

μ
cẐcβẐσ

bZ
b�hαλhργnν

− ϵμνλγẐ
μ
bẐ

bσẐα
bZ

b�hβλhργnν þ ϵμνλγẐ
μ
cẐcαẐσ

bh
βλhργnν − ϵμνλγẐ

μ
bẐ

bρẐβ
cZc�hαλhσγnν

þ ϵμνλγẐ
μ
cẐcβẐρ

bZ
b�hαλhσγnν − ϵμνλγẐ

μ
bẐ

bρẐα
cZc�hβλhσγnν þ ϵμνλγẐ

μ
cẐcαẐρ

bZ
b�hβλhσγnν

− ϵμνλγẐ
μ
cẐcσẐν

bZ
b�hαρhβγnλ − ϵμνλγẐ

μ
cẐcρẐν

bZ
b�hασhβγnλ − ϵμνλγẐ

μ
cẐcσẐν

bZ
b�hαγhβρnλ

− ϵμνλγẐ
μ
cẐcρẐν

bZ
b�hαγhβσnλ − ϵμνλγẐ

μ
cẐcβẐν

bZ
b�hασhργnλ − ϵμνλγẐ

μ
cẐcαẐν

bZ
b�hβσhργnλ

− ϵμνλγẐ
μ
cẐcβẐν

bZ
b�hαρhσγnλ − ϵμνλγẐ

μ
cẐcαẐν

bZ
b�hβρhσγnλ: ð38Þ

Finally, after the change of basis in Sec. III A, we get the
structure given in Eq. (25). For L̃1

4;2jsl, we get submatrices
with zero in all the entries. Therefore, L̃1

4;2jsl is trivially
degenerate.

V. CONCLUSIONS

The GSU2P was built as a natural extension of the GP
and, therefore, of the Horndeski theory to the case where
the new gravitational degree of freedom is not only a vector
field but one whose action enjoys a global SU(2) symmetry.

Its construction requires the implementation of the algebra
constraint-enforcing relations to avoid the propagation of a
fourth degree of freedom in thevector field. It also requires its
decoupling limit to be healthy, i.e., that it either produces
second-order field equations for the longitudinal degrees of
freedom or that the resulting action satisfies in turn a
constraint algebra to avoid the propagation of unphysical
scalar degrees of freedom. Among the 14 Lagrangian pieces
for theGSU2P constructed inRef. [20], the decoupling limits
of 11 of them were very easy to analyze, leading to the
conclusion that they either vanish or produce second-order

DECOUPLING-LIMIT CONSISTENCY OF THE GENERALIZED … PHYS. REV. D 105, 104051 (2022)

104051-7



field equations. The other threewere the subject of this paper
because they produce higher-order field equations and,
therefore, the analysis of their decoupling limits required
the reconstruction of their kinetic matrices via a 3þ 1ADM
decomposition. The results are satisfactory because the
decoupling limits of these Lagrangian pieces turn out to
satisfy the degeneracy condition, which is the primary
constraint-enforcing relation. This, in particular, is very
reassuring since the parity-conserving beyond SU(2)
Proca terms play an important role in the successful con-
stant-roll inflationary scenario studied in Ref. [51].
Regarding the other members of the constraint algebra, it
is not known whether they are satisfied. A definite answer to
this question will only come with a dedicated and delicate
Hamiltonian analysis, as was done for the degenerate higher-
order scalar-tensor theory in Ref. [52], which is not an easy
task in curved space-time.
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APPENDIX A: KINETIC MATRIX
ENTRIES OF L3

4;2jsl
The kinetic matrix entries in Eq. (29) are given by

C̃1 ≡
ffiffiffiffiffi
Z2�

q
ðẐ2 þ 2ð ˆ̃Z1

1Þ2 − 3Z2�Þ; ðA1Þ

C̃2 ≡ 3

ffiffiffiffiffiffiffiffi
2Z2�

q
ðẐ2 þ ð ˆ̃Z1

1Þ2 − Z2�Þ; ðA2Þ

C̃3 ≡ 2ð ˆ̃Z1
1Þð ˆ̃Z1

2Þ
ffiffiffiffiffi
Z2�

q
; ðA3Þ

C̃4 ≡ 3

ffiffiffiffiffiffiffiffi
2Z2�

q
ð ˆ̃Z1

1Þð ˆ̃Z1
2Þ; ðA4Þ

C̃5 ≡ 2ð ˆ̃Z1
1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2�ðẐ2 − ð ˆ̃Z1

1Þ2 − ð ˆ̃Z1
2Þ2Þ

q
; ðA5Þ

C̃6 ≡ 3ð ˆ̃Z1
1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Z2�ðẐ2 − ð ˆ̃Z1

1Þ2 − ð ˆ̃Z1
2Þ2Þ

q
; ðA6Þ

F̃ 1 ≡ 6Ẑ4 − 2Ẑ2Z2� − 4ð ˆ̃Z1
1Þ2Z2�; ðA7Þ

F̃ 2 ≡
ffiffiffi
2

p
Z2�ð2Ẑ2 þ 7ð ˆ̃Z1

1Þ2 − 6Z2�Þ; ðA8Þ

F̃ 3 ≡ 3Z2�ðẐ2 þ ð ˆ̃Z1
1Þ2 − 2Z2�Þ; ðA9Þ

and those in Eq. (30) are given by

F̃ 4 ≡ 6Ẑ4 − 3Ẑ2Z2� − 9ð ˆ̃Z1
1Þ2Z2� þ 6Z4�; ðA10Þ

F̃ 5 ≡ 3Z2�ð−Ẑ2 − ð ˆ̃Z1
1Þ2 þ 2Z2�Þ: ðA11Þ

APPENDIX B: KINETIC MATRIX
ENTRIES OF L4

4;2jsl
The kinetic matrix entries in Eq. (34) are given by

C̃7 ≡ 4

ffiffiffiffiffi
Z2�

q
ðẐ2 þ 2ð ˆ̃Z1

1Þ2 − 3Z2�Þ; ðB1Þ

C̃8 ≡ 4

ffiffiffiffiffiffiffiffi
2Z2�

q
ð2Ẑ2 þ 4ð ˆ̃Z1

1Þ2 − 3Z2�Þ; ðB2Þ

C̃9 ≡ 8

ffiffiffiffiffi
Z2�

q
ð ˆ̃Z1

1Þð ˆ̃Z1
2Þ; ðB3Þ

C̃10 ≡ 16

ffiffiffiffiffiffiffiffi
2Z2�

q
ð ˆ̃Z1

1Þð ˆ̃Z1
2Þ; ðB4Þ

C̃11 ≡ 8ð ˆ̃Z1
1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2�ðẐ2 − ð ˆ̃Z1

1Þ2 − ð ˆ̃Z1
2Þ2Þ

q
; ðB5Þ

C̃12 ≡ 16ð ˆ̃Z1
1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Z2�ðẐ2 − ð ˆ̃Z1

1Þ2 − ð ˆ̃Z1
2Þ2Þ

q
; ðB6Þ

F̃ 6 ≡ 8ð3Ẑ4 − Ẑ2Z2� − ð ˆ̃Z1
1Þ2Z2�Þ; ðB7Þ

F̃ 7 ≡ 12
ffiffiffi
2

p
Z2�ðẐ2 þ 2ð ˆ̃Z1

1Þ2 − 2Z2�Þ; ðB8Þ

F̃ 8 ≡ 8Z2�ðẐ2 þ 2ð ˆ̃Z1
1Þ2 − 3Z2�Þ; ðB9Þ

and those in Eq. (35) are given by

F̃ 9 ≡ 8ð3Ẑ4 − 2Ẑ2Z2� þ Z2�ð−4ð ˆ̃Z1
1Þ2 þ 3Z2�ÞÞ; ðB10Þ

F̃ 10 ≡ −8Z2�ðẐ2 þ 2ð ˆ̃Z1
1Þ2 − 3Z2�Þ: ðB11Þ

GALLEGO CADAVID, NIETO, and RODRÍGUEZ PHYS. REV. D 105, 104051 (2022)

104051-8



[1] D. Lovelock, The Einstein tensor and its generalizations,
J. Math. Phys. (N.Y.) 12, 498 (1971).

[2] D. Lovelock, The four-dimensionality of space and the
Einstein tensor, J. Math. Phys. (N.Y.) 13, 874 (1972).

[3] J. F. Donoghue, General relativity as an effective field
theory: The leading quantum corrections, Phys. Rev. D
50, 3874 (1994).

[4] C. P. Burgess, Quantum gravity in everyday life: General
relativity as an effective field theory, Living Rev. Relativity
7, 5 (2004).

[5] M. Reuter and F. Saueressig, Renormalization group flow of
quantum gravity in the Einstein-Hilbert truncation, Phys.
Rev. D 65, 065016 (2002).

[6] D. F. Litim, Fixed Points of Quantum Gravity, Phys. Rev.
Lett. 92, 201301 (2004).

[7] K. Falls, D. F. Litim, K. Nikolakopoulos, and C. Rahmede,
Further evidence for asymptotic safety of quantum gravity,
Phys. Rev. D 93, 104022 (2016).

[8] A. Eichhorn, An asymptotically safe guide to quantum
gravity and matter, Front. Astron. Space Sci. 5, 47 (2019).

[9] G.W. Horndeski, Second-order scalar-tensor field equations
in a four-dimensional space, Int. J. Theor. Phys. 10, 363
(1974).

[10] G.W. Horndeski, Conservation of charge and the Einstein-
Maxwell field equations, J. Math. Phys. (N.Y.) 17, 1980
(1976).

[11] A. Padilla and V. Sivanesan, Covariant multi-galileons and
their generalisation, J. High Energy Phys. 04 (2013) 032.

[12] V. Sivanesan, Generalized multiple-scalar field theory in
Minkowski space-time free of Ostrogradski ghosts, Phys.
Rev. D 90, 104006 (2014).

[13] A. Padilla, P. M. Saffin, and S.-Y. Zhou, Multi-galileons,
solitons and Derrick’s theorem, Phys. Rev. D 83, 045009
(2011).

[14] E. Allys, New terms for scalar multi-Galileon models and
application to SO(N) and SU(N) group representations,
Phys. Rev. D 95, 064051 (2017).

[15] G. Tasinato, Cosmic acceleration from Abelian symmetry
breaking, J. High Energy Phys. 04 (2014) 067.

[16] L. Heisenberg, Generalization of the Proca action,
J. Cosmol. Astropart. Phys. 05 (2014) 015.

[17] E. Allys, P. Peter, and Y. Rodríguez, Generalized Proca
action for an Abelian vector field, J. Cosmol. Astropart.
Phys. 02 (2016) 004.
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