
Energy for accelerating observers in black hole spacetimes

Seth A. Major
Department of Physics, Hamilton College, Clinton, New York 13323, USA

(Received 11 March 2022; revised 20 April 2022; accepted 2 May 2022; published 24 May 2022)

Energies for constantly accelerating observers in Bañados, Teitelboim, and Zanelli; Schwarzschild; and
Schwarzschild–de Sitter spacetimes are derived. The expressions are in terms of acceleration, cosmological
constant, and area, quantities measurable by the observers. Based on results from quantum fields in curved
spacetime for the redshifted Hawking temperature, quasilocal entropy and thermodynamic-like laws are
briefly explored in the three spacetimes.
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I. INTRODUCTION

The definition of energy is notoriously subtle in gravi-
tational physics. Although no notion of local energy exists
in general spacetimes, there are useful notions of quasilocal
energy for regions of spacetime (for a reviews see [1,2].)
Choices such as slicing and boundary conditions have led
to a plethora of possible definitions, quasilocal energies
and masses, e.g. [3–18]. These choices are aspects of
formulation: Defining energy is a matter of choice and, in
particular, physical characterization: of what and for whom
are we defining energy. Considerations in that characteri-
zation are as often practical as foundational: Capturing the
energy content in gravitational waves suggests different
choices than definitions of energy best suited to static or
stationary spacetimes. More broadly, in statistical models
the energy of frozen degrees of freedom is rightly
neglected. Choosing the “correct” energy is often a matter
of selecting the best approximate form to capture the
relevant physics. Additionally in the context of general
relativity, “…the formulation of meaningful global or
quasi-local mass and angular momentum notions in
General Relativity always needs the introduction of some
additional structure in the form of symmetries, quasi-
symmetries or some other background structure” [2].
This paper reports a definition of energy for constantly
accelerating observers (CAOs) in black hole spacetimes
with a timelike Killing vector field.1 This energy is
“quasilocal” in the sense that there is a sufficient number
of observers positioned on a surface to perform the
measurements rather than, for instance, a curvature expres-
sion integrated over the bounding surface of a compact
spatial region. This choice of observers limits the generality

of the resulting structure but the hope is that the operational
perspective will yield new tools and views into statistical
models of black hole spacetimes.
The spacetimes considered here all have a timelike Killing

vector field, ξa. The existence of this symmetry offers
enough structure to tie a local definition of mass to the
asymptotic mass, when such an asymptotic region exists. In
these spacetimes the Killing field has unit normalization,
ξaξa ¼ −1 in the asymptotically flat region, so that ξa

coincides with the 4-velocity of inertial observers there. Due
to Killing’s equation and the geodesic motion of a particle in
free fall with momentum pa, the energy E ¼ −paξ

a is
conserved along the particle’s history. A local observer with
4-velocity ua measures the energy of this particle to be E ¼
−paua anywhere in the spacetime. Relying as it does on the
relative motion of the observer and particle, this expression
may not seem to be a promising expression to learn about the
energy of the spacetime [21]. Nevertheless, this expression
can capture relevant aspects of the spacetime when the
observers’ 4-velocity of these accelerating observers is
proportional to the Killing field ξa, ua ¼ ξa=V with the
“redshift factor” V ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

−ξaξa
p

. Given these relations the
change in the locally measured energy dE due to the flow of
energy-momentum by the observers’ surface is proportional
to the conserved energy dE,

dE ¼ −paua ¼ −pa
ξa

V
¼ dE

V
: ð1Þ

This relation ties the observers’ local energy dE to both the
conserved energy dE and the spacetime geometry through V.
For example, when considering black holes accumulating
mass/energy dM infalling from far away, we can consider
changes to the local energy, dE ¼ dM=V.2 Of course, this
construction is made possible by the existence of the timelike1I assume that these observers are not unlike us. In addition to

the usual garden variety meter sticks and clocks, I assume that
they have access more sophisticated equipment e.g. accelerom-
eters, radar or laser ranging, bolometers, and telescopes.

2We’ll see that directly integrating this gives the Brown-York
quasi-local energies.
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Killing vector field and depends on the choice of norm of ξa.
This energy is also well known, often called the “shell”
energy. One can arrive at this simple form of energy dE ¼
dM=V by considering the conserved flux δTa

bξ
b of test

matter fields with stress-energy tensor δTab, as shown in
Appendix A.
The strategy to define the (quasi-)local energy for these

accelerated observers is the following: In each class of
spacetime geometry the locally measured energy differ-
ential of Eq. (1) is reexpressed in terms of the magnitude of
the constant acceleration g. Although it is technically easier
to integrate the areal radius, conceptually this expression
is integrated from zero mass to the final mass M. The
resulting expressions, denoted Eg, are the locally measured
energies in the spacetimes. In every case the energy is
expressed in terms of measurable quantities accessible to
the CAOs. These energies for constantly accelerating
observers in the black hole spacetimes are the primary
results of this work.
To explore possible (quasi-)local thermodynamics for

these observers, possible expressions for local entropy
functions Sg are derived based on the expressions for
temperature, assuming a first law. In the different space-
times, the local temperatures Tg from the literature are a
necessary input in the derivation of the local entropy Sg. In a
first look into the viability of these expressions, consistency
checks are performed such as third law and additivity
properties. These entropies are compared to existing
entropy expressions. Additionally, in each spacetime one
can check that the mass integration at constant radius yields
the Brown-York quasilocal energy, which is given by the
spatial integration of the trace of the extrinsic curvature k,
compared to a reference spacetime curvature kjo [13]:

EBY ¼ 1

8π

Z
∂Σ
ðk − kjoÞ

ffiffiffi
σ

p
d2x; ð2Þ

where σab is the induced metric on the two-surface ∂Σ. This
constant-radius energy is denoted Er.
Part of the motivation for this work arises from the first

law of black hole mechanics,

δM ¼ κ

8π
δAH þ ΩδJ:

Somewhat curiously, this thermodynamic description
employs quantities that span the spacetime from the
horizon, with quantities of surface gravity κ and area
AH, to quantities well defined in “asymptopia” (the
asymptotic region), with quantities of the mass M and
angular momentum J. This article initiates work on
whether there is a meaningful version of this law using
(quasi-)local quantities centered on the quantities’ accel-
eration, area, etc., accessible to CAOs.

There are several threads of work closely related to the
approach taken here. For external observers in the near-
horizon limit the membrane paradigm of black holes (see
[24] and references therein) offers a view on the rich
structure of electromagnetic fields and spacetime geometry
for observers perched just outside the black hole. In
spherical symmetric spacetimes prior work on definitions
of energy or mass include the Misner-Sharp-Hernandez
mass [19,20]. In constructing statistical models of near-
horizon geometry, Frodden et al. [25] find striking sim-
plicity in the form of the near-horizon energy and resulting
statistical mechanics. In exploring a similar energy, Mäkelä
pointed out the role of changing mass for constantly
accelerating observers [22,23].
A perspective on the construction of energy can be seen

from Newtonian mechanics. A constantly accelerating
observer outside a mass M has an acceleration with
magnitude gN ¼ jg⃗j ¼ M=r2. (Units are such that c, G,
and k are set to 1.) Since this acceleration is constant,
dg ¼ 0, dM ¼ ð2M=rÞdr. As a bit of mass dM is added to,
or removed from, the central mass M we have

dM ¼ M
r2

2rdr ¼ gN
4π

dA; ð3Þ

with change in area dA at the observers’ radius. Integrating
givesM ¼ gNA=4π, which can also be found directly from
the expression for g. The result holds everywhere away
from the origin. The remainder of this paper generalizes
similar analyses for Eg in black hole spacetimes.
In the next section energies and entropies in the non-

rotating and rotating cases of Bañados, Teitelboim, and
Zanelli (BTZ) spacetimes are derived. In Sec. III the
analysis is repeated in Schwarzschild spacetimes. The
energy and entropy in Kottler (or Schwarzschild–de
Sitter) spacetimes are explored in Sec. IV. The energy is
found but the lack of an asymptotically flat region
complicates the derivation of the entropy. Kottler space-
times have a spacetime characterizing mass/energy param-
eter (SCM) defined as that mass which characterizes the
influence of an isolated object on distant (but not too distant
or the gravitational effects of the black hole may be
occluded by the background spacetime) test objects.
Following the paradigmatic example of the Newtonian
limit of the Schwarzschild, I denote this mass as M
throughout, although in the cases where asymptopia con-
sists of (anti–)de Sitter spacetime, the grounding in asymp-
totic Minkowski space is not available.3 In each of these
spacetimes an energy for CAOs is defined and the energies
are all expressed in terms of quantities that CAOs may

3I have the case in mind in which an effective asymptotia is
“far away” but not at infinity so that there is an effective
Newtonian limit between the black hole region and the surround-
ing cosmological region. For spacetimes with cosmological
constant this means M < 1=

ffiffiffiffi
Λ

p
.
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measure. The simplest derivation in general relativity is that
of a black hole in (2þ 1) dimensions.

II. BTZ SPACETIMES

Despite the lack of local degrees of freedom, thirty years
ago BTZ showed that a black hole solution in (2þ 1)-
dimensional gravity exists when there is a cosmological
constant [31]. These spacetimes have constant curvature,
neighborhoods of every event are isometric to anti–de Sitter
(AdS) spacetime, and the solution is asymptotically anti–de
Sitter black hole with cosmological constant Λ ¼ −1=l2

[28,31]. In Schwarzschild-like coordinates, the (2þ 1)-
dimensional spacetime metric is

ds2 ¼ −N2dt2 þ N−2dr2 þ r2ðdφþ NφdtÞ2; ð4Þ

with

N ¼
�
−8M þ r2

l2
þ 16J2

r2

�
1=2

and Nφ ¼ −
4J
r2

with jJj ≤ Ml: ð5Þ

The cosmological constant provides the required physical
scale for a horizon.4 There are black hole solutions that
have two horizons, an outer horizon, rþ, and an inner
Cauchy horizon, r−, where

r2� ¼ 4Ml2½1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðJ=MlÞ2

q
�: ð6Þ

The mass and angular momentum are related to these
radii as

M ¼ ðr2þ þ r2−Þ=8l2 and J ¼ r−rþ=4l: ð7Þ

Due to the dimensional reduction and lack of local degrees
of freedom, BTZ black hole spacetimes are considerably
simpler than higher-dimensional black holes. Local temper-
ature [27,32,34], boundary terms [27,31], and entropy
[40–42] have been determined.
In the nonrotating case (J ¼ 0 ¼ r−) CAOs outside the

black hole, when r > rþ, have an acceleration ab ¼
uc∇cub with magnitude, g ¼

ffiffiffiffiffiffiffiffiffiffi
abab

p
,

g ¼ r

l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − r2þ

p : ð8Þ

As expected, this proper acceleration diverges near the
horizon; g ≃ ðl ffiffiffiffiffi

2ϵ
p Þ−1 when r ¼ rþð1þ ϵÞ, ϵ ≪ 1. In the

asymptotic limit r → ∞, the acceleration is approximately

g ≃ 1=l, its minimum value. The Killing vector field ξμ ¼
ð∂tÞμ has norm

ffiffiffiffiffiffiffiffiffiffiffiffi
−ξνξν

p ¼ N ¼ V ¼ l=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − r2þ

p
.

To obtain the energy measured by CAOs for a black hole
of mass M one can integrate over mass m from 0 to M,
keeping the acceleration fixed,

Eg ¼
Z

M

0

dmjg
V

: ð9Þ

Since the acceleration of Eq. (8) is constant, it is useful to
express the SCMM ¼ Mðg; rÞ in terms of the acceleration,

M ¼
�

r2

8l2

�
ð1 − 1=g2l2Þ: ð10Þ

We can see that, at finite r, the mass goes to zero as
g → 1=l. The mass remains finite in the asymptotic limit if
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1=g2l2

p
¼ rþ remains finite.

Constantly accelerating observers have dg ¼ 0 and so�∂M
∂r

�
g
¼ 2M

r
¼

�
r

4l2

�
ð1 − 1=ðglÞ2Þ: ð11Þ

The change in energy measured by these observers is most
easily compared to the changing circumferential radius r,

dEg ¼
dmjg
V

¼ 1

V

�∂m
∂r

�
g
dr

¼
�

g
2π

��
2πdr
4

��
1 −

1

ðglÞ2
�
: ð12Þ

The integration is immediate, giving

Eg ¼
Z

r

0

dEg ¼
�

g
2π

��
2πr
4

�
ð1 − 1=ðglÞ2Þ; ð13Þ

the energy for CAOs at circumferential radius r. The
expression for the energy Eg may be expressed in terms
of the acceleration, local geometry, and the cosmological
constant.
The local temperature may be found using quantum

fields on curved spacetime techniques. In the case of BTZ
black holes, the quotient construction in higher dimensions
significantly simplifies the computation of both Green’s
functions (see e.g. [28] and references therein) and the
transition rate formula for Unruh-DeWitt detectors [34]. To
compute these quantities one must choose a vacuum state
for the field, such as the Hartle-Hawking state which is
thermal far from the black hole. In particular, Hodgkinson
and Louko consider Unruh-DeWitt detectors and a mass-
less conformally coupled scalar field in a Hartle-Hawking
vacuum state with a complete slate of boundary conditions
at the asymptotically anti–de Sitter spatial infinity [34]. The
Unruh-DeWitt detector approach provides an operational

4Since Newton’s constant, the speed of light, and mass do not
create a length in (2þ 1)-dimensional gravity, the model must
have an additional scale [35].
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definition of the particle content of the configuration.
Generally one finds for this case that the observers measure
a redshifted temperature given by the surface gravity κ,
where ξa∇aξ

b ¼ κξb on the horizon, and the redshift factor
V, sometimes called the Tolman factor. In the nonrotating
case [27–30]

Tg ¼
ℏκ
2π

1

V
¼ ℏrþ

2π

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − r2þ

p ¼ ℏg
2π

�
1 −

1

g2l2

�
1=2

: ð14Þ

As expected, this temperature diverges with the acceler-
ation near the black hole horizon. The temperature vanishes
when the acceleration reaches its minimum value of 1=l,
due to the vanishing mass in this limit.
A candidate expression for the local entropy may be

obtained from a local form of the first law,

dEg ¼ TgdSg: ð15Þ

From Eqs. (12) and (14) this suggests

dSg ¼
2πdr
4ℏ

ð1 − 1=ðglÞ2Þ1=2; ð16Þ

which integrates to

Sg ¼
�
2πr
4ℏ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1=ðglÞ2

q
: ð17Þ

This entropy is related to the local circumference as
Sg ¼ ðA=4ℏÞð1 − 1=ðglÞ2Þ, where the leading term
remains in the Bekenstein-Hawking “A=4” form, where
now the “area” is circumference at the observer’s radius,
A ¼ 2πr, rather than at the horizon r ¼ rþ.
As a consistency check one may note that as a function

of the energy the entropy is

Sg ¼
2π

ℏg

Egffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1=ðglÞ2

p : ð18Þ

The temperature from T ¼ ð∂S=∂EÞ−1 is equal to
ðℏg=2πÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1=ðglÞ2

p
, as in Eq. (14).

Some additional thermodynamics-like relations hold:
The temperature is trivially constant due to the choice of
observers. As one can see from Eg, as the acceleration
reaches its minimum value (and T → 0), the entropy
vanishes. Although whether the entropy is nondecreasing
in physical processes remains to be seen, the simple
proportionality of Eq. (18) is promising: the entropy
satisfies additivity and is a nondecreasing function of Eg.
In this case, the entropy Sg is equivalent to the

Bekenstein-Hawking entropy. (This will not be the case
in higher dimensions.) Presumably due to the lack of local
degrees of freedom, the entropy (17) is also a simple
reexpression of the Bekenstein-Hawking entropy on the

horizon rþ, SBH ¼ Aþ=4ℏ, where Aþ ¼ 2πrþ is the
circumference of the horizon.5 To see this, one may use
the relation between the circumferential radius and the
acceleration, r ¼ rþ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1=ðglÞ2

p
.

One may also find a possible expression for the entropy
by calculating the circumference in the global embedding
Minkowski spacetime (GEMS) construction. In the GEMS
construction the entropy is determined by the area found
in the higher-dimensional embedding spacetime [32].
(For work on the applicability of the GEMS construction
see [33].) This is done in Appendix B for these accelerating
observers with the result that the circumference is

AGEMS ¼ 2πrð1 − 1=ðglÞ2Þ−1=2; ð19Þ

which has a limiting value of Aþ ¼ 2πrþ as g → ∞. The
circumference AGEMS diverges as g reaches its minimum
value, which is expected from the geometry as the area in
the higher-dimensional space becomes unbounded in AdS3
[32]. However, were we to generalize the Bekenstein-
Hawking entropy in the form AGEMS=4 then the entropy
of these observers would also diverge, contrary to third-
law-like behavior.
As can be seen through the quasilocal constructions of

Brown and York [13], work terms might arise. In this case
however, choosing AdS3 as the reference spacetime and
identically accelerating observers in AdS3, the pressure
vanishes. This is briefly discussed in Appendix C.
We can also integrate the expression for the energy

keeping the radius—and not the acceleration—fixed.
Integrating the energy dEr ¼ dmjr=V with respect to mass
m from 0 to M, one obtains the energy at constant radius

Er ¼
Z

M

0

dm
V

¼
Z

M

0

�
l
r

��
1 −

8ml2

r2

�−1=2
dm

¼
�
2r
l

��
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r2þ
r2

r �
; ð20Þ

which is the Brown-York quasilocal energy EBY of Eq. (2)
for observers at fixed r, when the background is chosen
so that Er ¼ 0 when M ¼ 0 (when ϵo ¼ −1=πl in the
notation of [27]).
In the rotating (J ≠ 0) case, the literature contains results

on the temperature for exterior observers rigidly corotating
with the horizon, having a (coordinate) angular velocity
of Ω ¼ r−=ðrþlÞ. (There is evidence both in the Unruh-
DeWitt detector [34] and GEMS [32] approaches that there
is not a well-defined thermal state for stationary observers
in the general rotating case.) With these results for the
temperature, the derivation of the energy and possible
entropy focuses on the case of rigidly corotating observers.

5The entropy is “constant” in the sense that Sg ¼ SBH for all g.
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The corotating observers’ motion satisfies dφ=dt ¼ Ω
and they follow the Killing vector field χμ ¼
ð∂tÞμ þ Ωð∂φÞμ. Using angular velocity Ω in the metric
of Eq. (4), thereby adapting the metric for these observers,
makes the calculation of the acceleration, g ¼

ffiffiffiffiffiffiffiffiffiffi
abab

p
,

straightforward. The result is

g ¼ 1

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − r2−
r2 − r2þ

s
: ð21Þ

As in the nonrotating case, the acceleration diverges at the
horizon and has a minimum value of 1=l far from the
black hole.
The calculation of energy dEg ¼ ð1=VÞdmjg follows

similar steps as in the nonrotating case. The constant
acceleration means

dmjg ¼ −
∂g=∂r
∂g=∂mdr −

∂g=∂J
∂g=∂mdJ: ð22Þ

The change in energy becomes

dEg ¼
�

g
2π

��
2πdr
4

��
1 −

1

ðglÞ2
��

1 −Ω2=g2

1þ Ω2=g2

�

þ Ω
ð1þ g2l2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − 1=ðglÞ2Þð1 − ðΩ=gÞ2Þ

p
rþð1 − ðΩlÞ2Þð1þ ðΩ=gÞ2Þ dJ:

ð23Þ

When the observers are rigidly corotating with the
horizon, Hodgkinson and Louko [34] find that the tran-
sition rate of their Unruh-DeWitt detectors is thermal (in the
sense of satisfying the Kubo-Martin-Schwinger (KMS)
condition) with the local temperature of

Tg ¼
ℏ
2πl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ − r2−
r2 − r2þ

s
¼ ℏg

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1=ðglÞ2

q
; ð24Þ

which, in terms of g, is the same as the nonrotating case.
This expression agrees with the temperature derived with
the GEMS construction [32].
A first law of the form dEg ¼ TgdSg − Ω̃dJ, where Ω̃ is

Ω̃ ¼ −Ω
ð1þ g2l2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − 1=ðglÞ2Þð1 − ðΩ=gÞ2Þ

p
rþð1 − ðΩlÞ2Þð1þ ðΩ=gÞ2Þ ; ð25Þ

from Eq. (23). This suggests that the integrated entropy is

Sg ¼
�
2πr
4ℏ

��
1 −

1

ðglÞ2
�

1=2
�
1 −Ω2=g2

1þ Ω2=g2

�
: ð26Þ

This entropy has similar properties to the entropy in the
nonrotating case. The apparent vanishing when g → Ω

would occur on the inner horizon, when r ¼ r−, which is
inside the region under consideration. As shown in
Appendix B, the GEMS construction gives the same
expression for the area as before.
If one ensures that both the acceleration and the angular

velocity are constant then dJ ¼ −J=MdM and the energy
may be integrated, yielding

Eg ¼
�

g
2π

��
2πr
4

��
1 −

1

ðglÞ2
�

×

�
1 − ð1 − 1=ðglÞ2 − Ω2=g2ÞΩ2l2

1þ 3ð1þ 1=ðglÞ2 þΩ2=ð3g2ÞÞΩ2l2

�
: ð27Þ

The entropy in this case is this expression divided by the
temperature in Eq. (24),

Sg ¼
�
2πr
4ℏ

��
1 −

1

ðglÞ2
�

1=2

×

�
1 − ð1 − 1=ðglÞ2 −Ω2=g2ÞΩ2l2

1þ 3ð1þ 1=ðglÞ2 þ Ω2=ð3g2ÞÞΩ2l2

�
: ð28Þ

III. SCHWARZSCHILD SPACETIMES

The Schwarzschild metric is

ds2 ¼ −
�
1 −

2M
r

�
dt2 þ

�
1 −

2M
r

�
−1
dr2 þ r2dΩ2

2:

The norm of the timelike Killing vector field gives
V ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

−ξaξa
p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2M=r
p

. For constantly accelerating
observers as the asymptotic mass of the spacetime changes,
the radial location of the observers changes as well. As
before, it is useful to consider variable massm as a function
of radius. Since the magnitude of the proper acceleration

g ¼ m
r2

�
1 −

2m
r

�
−1=2

¼ gN

�
1 −

2m
r

�
−1=2

ð29Þ

is constant, the mass changes as

m
r
¼ uð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
− uÞ with u ¼ gr: ð30Þ

(This is the positive and physical root of the quadratic,
m2 þ 2g2r3m − g2r4 ¼ 0.) Similarly the measure dmjg
becomes [23]

dmjg ¼
m
r

�
2r − 3m
r −m

�
dr; ð31Þ

and the integration of the energy dEg ¼ dmjg=V becomes
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Eg ¼
Z

rgðMÞ

0

�
1 −

2m
r

�
−1=2

�
m
r

��
2r − 3m
r −m

�
dr: ð32Þ

It is handy to reexpress the masses in terms of u ¼ sinh x
and note the following:

�
2r − 3m
r −m

�
¼ 2 − tanh x: ð33Þ

The resulting integration yields

Eg ¼ g
A
4π

−
1

2g

�
ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðgrÞ2

q
− gr

�
þ gr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðgrÞ2

q �
:

ð34Þ

The quasilocal energy Eg for constantly accelerating observ-
ers in Schwarzschild spacetime can be expressed in terms of
the areal radius of the CAOs, r ¼ ffiffiffiffiffiffiffiffiffiffiffi

A=4π
p

and the accel-
eration. In the high-acceleration, near-horizon limit, the
energy simplifies, reaching the expected limit Eg≃
gA=ð8πÞ. This limiting energy can be written in terms of
the proper distance to the horizon d (since g and 1=d diverge
in the same manner near the horizon), Eg ≃ A=ð8πdÞ [25].
When the acceleration is low, far from the black hole, the
energy goes to Eg ≃ gr2 ≃M as expected.6 Other ways to
express Eg are discussed in Appendix D.
To define an entropy function with the first law dEg ¼

TgdSg we can compare the differential dEg to local
temperature, the change in entropy (and work, if relevant).
The temperature is well studied. For instance, Unruh-
DeWitt detectors responding to fields in Hartle-Hawking
and Unruh (modeling mode behavior expected for a
collapsing star) states lead to a thermal response in
Schwarzschild spacetime [39]. Static detectors have a
thermal response with temperature T loc ¼ TH=V where
TH ¼ ℏð8πMÞ−1 [37,39]. Hence,

Tg ¼
ℏκ
2π

ð1 − 2M=rÞ−1=2 ¼ ℏg
8π

�
r
M

�
2

¼ ℏg
8π

h
gr
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðgrÞ2
q

− gr
�i−2

: ð35Þ

The energy differential may be written as

dEg ¼ ðgrdrÞ
�
2 −

grffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðgrÞ2

p �
: ð36Þ

With the temperature in Eq. (35) the entropy differential has
the form

dSg ¼
dEg

T
¼
�
8πrdr
ℏ

�� ðgrÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðgrÞ2

p ��
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðgrÞ2

q
− gr

�

×

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðgrÞ2

q
− gr

�
2

; ð37Þ

which integrates to

Sg¼
Z

r

0

dSg¼
�
A
ℏ

�
ðgrÞ2

h
1þ2ðgrÞ2

�
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ1=ðgrÞ2

q �i
;

ð38Þ

where A ¼ 4πr2. As ϵ → 0 in r ¼ 2Mð1þ ϵÞ, this entropy
goes to ðAH=4ℏÞwhere AH ¼ 16πM2. Thus, the entropy Sg
agrees with the Bekenstein-Hawking entropy on the hori-
zon. (The acceleration g diverges as 1=ð4M ffiffiffi

ϵ
p Þ in this

limit.) The entropy vanishes as g approaches its minimum
value of 0. As shown in Fig. 1, the entropy is a non-
decreasing function of the energy Eg. Examples indicate
that it satisfies additivity; for two systems with energies Eg1
and Eg2 satisfying Eg ¼ Eg1 þ Eg2 , then Sg ≥ Sg1 þ Sg2 .
As in the BTZ case, the expression for the energy

differential dEjr ¼ dmjr=V integrating from m ¼ 0 to
m ¼ M yields7 [23]

0.2 0.4 0.6 0.8 1.0 1.2 1.4
E

2

4

6

8

Sg

FIG. 1. The entropy ℏSg for Schwarzschild spacetime as a
function of Eg. The (dashed, solid, and dotted-dashed) curves are
for g ¼ 1=2, g ¼ 1 and g ¼ 2, respectively. To obtain this plot,
the interpolation function in MATHEMATICA was used to obtain
rðEgÞ and Sg½rðEgÞ� was plotted.

6In the Newtonian limit when r ≫ 2M we have g≃
gNð1þM=rÞ. Expanding,

Eg ≃
gNA
4π

�
1þ gN

ffiffiffiffi
A

p

3
ffiffiffi
π

p
�

¼ M

�
1þ 2

3

M
r

�
:

7As pointed out in [14] for more general situations with local
matter density ρ and black hole mass M the expression of the
energy is the same but now the mass is given by

MðrÞ ¼ 4π

Z
r

0

ρðr̄Þr̄2dr̄þM:
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Er ¼
Z

M

0

�
1 −

2m
r

�
−1=2

dm ¼ r

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
r

r �
; ð39Þ

which is the Brown-York quasilocal energy EBY of Eq. (2)
in Schwarzschild spacetime [13]. This is the quasilocal
energy for nonconstant acceleration at fixed areal radius.
In summary, one may construct thermodynamic-like

quantities Eg and Sg for the accelerating observers in
Schwarzschild spacetimes. The entropy, derived from the
first law, has other thermodynamic properties. There is no
independent check—as far as I am aware—in the literature
on the validity of the expression for the entropy, Eq. (38).
Possible work terms are discussed in Appendix C.

IV. KOTTLER OR SCHWARZSCHILD–DE SITTER
SPACETIMES

Adding a positive cosmological constant Λ results in the
Kottler [36] or Schwarzschild–de Sitter spacetimes with
metric

ds2 ¼ −N2dt2 þ N−2dr2 þ r2dΩ2
2; ð40Þ

where

N ¼
�
1 −

2M
r

−
Λr2

3

�
1=2

:

When 0 < M < ð3 ffiffiffiffi
Λ

p Þ−1 there are two physical horizons,
one black hole horizon

rH ¼ 2ffiffiffiffi
Λ

p cos

�
1

3
arccos ð−3M

ffiffiffiffi
Λ

p
Þ þ 4π

3

�
; ð41Þ

and one cosmological horizon

rΛ ¼ 2ffiffiffiffi
Λ

p cos

�
1

3
arccos ð−3M

ffiffiffiffi
Λ

p
Þ
�
; ð42Þ

corresponding to the two physical roots of the lapse.
The magnitude of the acceleration of the CAOs is

g ¼ M=r2 − Λr=3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M=r − Λr2=3

p : ð43Þ

The acceleration vanishes when the gravitational reach of
the black hole dissipates, when r0 ¼ ð3M=ΛÞ1=3. This
radius can be surprisingly “close” to the black hole. For
instance, for a solar mass black hole and a background
cosmological constant of our universe, Λ ≃ 1 × 10−52 m−2,
the radius is r0 ≃ 350 l yr, only a couple orders of
magnitude beyond the sun’s gravitational neighborhood
[21]. Outside this radius the de Sitter background domi-
nates. This makes sense in that gravitational effects of the
black hole fade into the noise on the scale of the next

gravitational structure, such as a galaxy or wider cosmo-
logical setting. For the region r > r0, the CAOs would be
accelerating toward, rather than away from, the black hole.
The infinite acceleration surface is at the cosmological
horizon. As the observers approach this surface the local
temperature would be that of the radiation from the
cosmological horizon. For these reasons, the following
analysis is confined to the exterior region with radius,
rH < r < r0.
Proceeding with the derivation of energy as in the

Schwarzschild case, the mass may be expressed as a
function of gr and Λ,

M ¼ gr2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðgrÞ2ð1 − Λ=g2Þ
q

− gr

�
1 −

Λ
3g2

��
: ð44Þ

The energy differential is

dEg¼
�

gr
1−r3Λ=ð3MÞ

��
2r−3M−2r3Λþr4Λ=ð3MÞ

r−M−2r3Λ=3

�
dr;

ð45Þ

which simplifies to

dEg ¼ ðgrdrÞ
�
2 −

grð1 − Λ=g2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðgrÞ2ð1 − Λ=g2Þ

p �
; ð46Þ

using the solution for the mass in Eq. (44). Integration is
essentially the same as the Schwarzschild case, but here
gr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Λ=g2

p
¼ ũ ¼ sinh x is a better choice for the

integration of the second term. The result is

Eg ¼ g
A
4π

þ 1

2g

�
ln ðgr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Λ=g2

p
þ βÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − Λ=g2
p − grβ

�
; ð47Þ

with

β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðgrÞ2ð1 − Λ=g2Þ

q
:

Again, the energy is expressed in terms of quantities
accessible to CAOs, acceleration, area, and cosmological
constant.
In the large acceleration limit Eg ¼ gA=ð8πÞ þOð1=gÞ.

For small cosmological constant, the low acceleration limit
of the energy can readily obtained with a double expansion,

Eg ≃
gA
4π

�
1 −

gr
3

�
1 −

Λ
g2

��
; ð48Þ

which goes to M as g → 0 when r → r0.
As in the previous examples the direct integration of

dEr ¼ dMjr=V with respect to mass and neglecting the
constancy of g yields
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Er ¼ r

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r2Λ
3

r
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
r

−
r2Λ
3

r �
; ð49Þ

which is the Brown-York quasilocal energy with respect to
a de Sitter background.
Due to the de Sitter background the derivation of the

entropy is more subtle in this case, in part due to the lack
of well-defined physical temperature and well-developed
effective asymptotics for Kottler spacetimes. Even if the
temperature is again of the form T loc ¼ TH=V then there
remains an additional question about the norm of the
Killing vector ξa. There are two obvious possibilities:
One may consider the Killing vector field ξμ ¼ ð∂tÞμ, as
one would naturally use in the asymptotically flat case [38].
This yields a surface gravity of

κ ¼ 1

2
N0jrH ¼ 1

2

�
1

rH
− rHΛ

�
: ð50Þ

Alternatively, one may note [43] that there is an “asymp-
totically flatlike” region in that at r0 the acceleration
vanishes and the Killing vector field

ξ̃μ ¼ 1

N

				
r0

ð∂tÞμ ð51Þ

is geodesic in this region. Let us consider the first case
and assume that in the relevant region, rH < r < r0, the
temperature takes the redshifted Hawking form, Tg ¼
TH=V. Due to presence of rH in the temperature, which
is a function of both g and r via the mass, the integration of
entropy defined by S ¼ R

dE=T is not as straightforward as
the previous cases. The second choice of the normalization
of the Killing vector field results in an additional factor that
is independent of g and r.
Finally a quick comment on the anti–de Sitter case, when

Λ ¼ −3=l2 < 0 and there is only one black hole horizon,

rH ¼ ðMl2Þ1=3
��

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2

27M2

r �
1=3

þ
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2

27M2

r �
1=3

�
: ð52Þ

The acceleration does not vanish at finite radius. However,
the calculation of the energy proceeds as before, with the
same result (47). The temperature is known to be of
redshifted Hawking form [44,45]. As in the de Sitter case
the horizon radius rH in the surface gravity makes the
calculation of the entropy less straightforward.

V. DISCUSSION

In their work on energy for observers perched in the
near-horizon geometry of black holes, Frodden et al. [25]

and Mäkelä [23] found remarkably simple expressions;
energy was proportional to area. This initial exploration
was motivated by asking whether this expression general-
izes to the exterior region. It seems to, although the
expressions are not quite as simple.
Often we say that a definition of energy exists when a

mass-dimension quantity is conserved under dynamical
evolution. Here the perspective is different: The energy is
measured by CAOs, which are not undergoing geodesic
motion, as the mass of the black hole changes. The energy
tracks the flow of stress-energy observed by these observ-
ers. The definition of energy Eg for constantly accelerating
observers is extended to the exterior regions in BTZ,
Schwarzschild, and Kottler spacetimes. In every case these
energies are expressed in terms of geometric quantities
accessible to these observers. The expressions of the energy
appear to be novel in that, instead of integrals of 2-forms on
a surface, these are integrals over the flow of energy as the
central mass is formed. As the energy Eg is constructed
from local geometric quantities accessible to observers,
it might be useful in constructing quasilocal descriptions
of these spacetimes. Additionally in the BTZ and
Schwarzschild cases, candidate expressions for the entro-
pies associated with these observers are defined.
All these expressions depend on the existence of a

normed timelike Killing vector field. For the energies to
be meaningful, the Killing field must have unit norm, and
thus be the 4-velocity of geodesic observers, in some
(asymptotic) region of the spacetime. While clearly the case
for black hole spacetimes with flat asymptotic geometries,
this has to be more carefully defined for the asymptotically
de Sitter and anti–de Sitter spacetimes.
One way of testing these quantities is in (quasi-)local

expressions of laws analogous to black hole thermody-
namics. By analogy we would expect that these definitions
should result in the following:
(1) The temperature Tg is constant on the surface

containing the observers. In the cases considered
here this is trivial by choice of CAOs.

(2) First law: dEg ¼ TgdSg þ work terms. This was
used to find candidate expressions for the entropy Sg.

(3) Second law: dSg ≥ 0, which is as yet largely unex-
plored.

(4) Third law: As the acceleration decreases to its
minimum value determined by ambient curvature
or 0, the entropy settles to S ¼ 0 (or to the minimum
value of the frozen-in residual entropy) as shown in
the nonrotating BTZ and Schwarzschild cases.

Although there are indications that in the case of the
nonrotating BTZ and Schwarzschild spacetimes that these
may hold, further study is required.
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APPENDIX A: NORMALIZING Eloc ON THE
HORIZON

In the context of general relativity, it is well known that if
there is a Killing vector field ξa then there is a conserved
energy flux ϵa ¼ Ta

nξ
b. On a Cauchy surface Σwith normal

na, the associated energy

E ¼
Z
Σ
ϵanad3x

is independent of the choice of Σ. This has many of the
desired properties we would like—e.g. for an isolated
gravitational body, the energy E agrees with the asymptotic
expression M; here I focus on CAOs. For a fleet of
(constantly accelerating) observers O on a black hole
spacetime with timelike Killing vector field ξa, radially
propagating test matter-energy with stress-energy tensor
δTab has the conserved energy flux εa ¼ δTa

bξ
b. The world

sheet of the observers WO divides the external part of the
spacetime into two regions, R1 and R2, where R1 is
between the horizonH and the world sheet of the observers
WO, and R2 is bounded by the world sheet and spatial
infinity. The spatial hypersurfaces bounding the regions to
the past and future are Σ1 and Σ2, respectively.
Given an energy flux with compact support it is

always possible to find a spacetime region R1 such that
εajΣi

¼ 0 so

Z
WO

εadΣa ¼
Z
H
εadΣa:

Or,

Z
WO

δTabξanbdτdS ¼
Z
H
δTabξbkadvdS; ðA1Þ

where τ is the observers’ proper time, ka is the null normal
to the horizon satisfying kb∇bka ¼ κHkb with parameter v,
na is the inwardly pointing normal on the observers’ spatial
2-surface S, and dS is the measure on the spatial surfaces.
For the observers O the measured change in energy is

δEloc ¼
Z
WO

δTabuanbdτdS:

The observers’ 4-velocity is related to the Killing vector
field via the redshift factor V, ua ¼ ξa=V. For example in
Schwarzschild spacetime,

jξj ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
−ξαξα

p
¼ V with V ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
r

r
:

While this norm is not constant all along the world sheet
WO, I work at first order in the change due to the addition

of the test stress-energy δTab. At leading order the energy
may be written asZ

WO

δTabξanbdτdS ≃ V
Z
WO

δTabuanbdτdS ¼ VδEloc:

Comparing stationary states before and after the perturba-
tion and using Raychaudhuri’s equation at first order, the
usual arguments (e.g. see Ref. [26]) giveZ

H
δTabξbkadvdS ≃

κH
8π

δAH:

So,

δEloc ≃
1

V
κH
8π

δAH ¼ 1

V
δM; ðA2Þ

where the surface gravity and area expressions were used.
This expression relates the change in the observers’
quasilocal energy and the parameter M that characterizes
the spacetime. When the spacetime has an asymptotically
flat region, this argument works in a similar manner for
the spacetime region R2. The form of Eloc is the same
as Eq. (1).

APPENDIX B: GEMS CIRCUMFERENCE
CALCULATION FOR ACCELERATING

OBSERVERS

Following [28], three-dimensional anti–de Sitter space-
time, AdS3, can be expressed as a submanifold in the
higher-dimensional space R2;2 with coordinates
ðT1; T2; X1; X2Þ and two-time metric

dS2 ¼ −dT2
1 − dT2

2 þ dX2
1 þ dX2

2

when

−T2
1 − T2

2 þ X2
1 þ X2

2 ¼ −l2:

The BTZ exterior geometry of Eq. (4) arises as a quotient of
an open region in AdS3 by the discrete group Z realized in
the identification ðt; r;φÞ ∼ ðt; r;φþ 2πÞ when

T1 ¼ l
ffiffiffi
α

p
cosh

�
rþ
l
φ −

r−
l2

t

�
;

T2 ¼ l
ffiffiffiffiffiffiffiffiffiffiffi
α − 1

p
sinh

�
rþ
l2

t −
r−
l
φ

�
;

X1 ¼ l
ffiffiffi
α

p
sinh

�
rþ
l
φ −

r−
l2

t

�
;

X2 ¼ l
ffiffiffiffiffiffiffiffiffiffiffi
α − 1

p
cosh

�
rþ
l2

t −
r−
l
φ

�
; ðB1Þ

where
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α ¼ r2 − r2−
r2þ − r2−

¼ ð1 − 1=ðglÞ2Þ−1: ðB2Þ

As computed in [32], the entropy is the area of the
“transverse” surface,

T2
1 − X2

1 ¼ l2α; ðB3Þ

with the appropriate periodicity condition. The calculation
done here includes rotation, when the observer is corotating
with the horizon, but the result is the same when there is
no rotation. Choosing a strip between −π and π one can
compute the area I on this surface at constant acceleration,

I ¼
Z

dT1dX1δð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
1 − X2

1

q
− l

ffiffiffi
α

p Þ: ðB4Þ

Using the δ function to eat the T1 integration one finds

I ¼
Z

l
ffiffi
α

p
sinh ðrþπ=l−r−t=l2Þ

l
ffiffi
α

p
sinh ð−rþπ=l−r−t=l2Þ

dX1

l
ffiffiffi
α

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2αþ X2

1

p ¼ 2πr
ffiffiffi
α

p
:

ðB5Þ

This “circumference” I gives the result in Eq. (19). The
calculation here generalizes the one in [32] to any exterior
radius.

APPENDIX C: PRESSURE TERMS

Possible work terms in the first law may be explored with
the expected boundary terms in the Brown-York construc-
tion [13,27]. In the BTZ case the surface pressure is given
by [27]

P ¼ σabsab ¼ σφφsφφ ¼ g
π
þ ∂ðrϵoÞ

∂r ; ðC1Þ

where σab is the metric on ∂Σ, sab is the surface pressure
density, and ϵo is the reference energy surface density. Were
the black hole to decay, the spacetime would be AdS3 so it
seems clear that anti–de Sitter is the correct background,
ϵo ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2=l2

p
=ðπrÞ [27]. Choosing reference observ-

ers accelerating at the same magnitude g in AdS3, one finds
that the reference term is −g=π and so the surface pressure
vanishes in this case.

For Schwarzschild black holes there is a nonvanishing
work term −PdA derived in [13] yielding a pressure of

P ¼
�

1

8πr

��
1 −M=rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M=r

p − 1

�
; ðC2Þ

when the reference spacetime is Minkowskian. The work
term becomes

−PdA ¼ ðgrdrÞð1 − r=M þ 1=ðgrÞÞ ðC3Þ

for the accelerating observers. Including this in a first law,
however, results in an entropy with incorrect limits both at
high and vanishing accelerations. Furthermore, unlike the
case in [13] where the work term scales with dA and the
entropy scales as dM, the work and entropy terms are
redundant in that they both scale as dA.

APPENDIX D: EXPRESSIONS FOR Eg

The energy in the Schwarzschild case can be expressed
in a variety of ways,

Eg ¼
Z

rgðMÞ

0

sinhx

�
1þ e−x

coshx

�
dr

¼ g
Z

rgðMÞ

0

rdrþ 1

g

Z
xgðMÞ

o
e−x sinhxdx

¼ g
A
8π

−
1

2g
lnV −

1

2g
M
r

¼ g
A
8π

−
1

2g
lnV −

V
ffiffiffiffi
A

p

4
ffiffiffi
π

p

¼ g
A
8π

þ 1

4

X∞
n¼2

�
gn−1

n

�h
2r
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þðgrÞ2
q

− gr
�in

: ðD1Þ

These are equivalent to the expression in Eq. (34). The
splitting of the integral this way organizes the divergence as
the observers approach the horizon. Letting r ¼ 2Mð1þ ϵÞ
the terms scale with ϵ as ϵ−1=2, ϵ1=2 ln ϵ, and ϵ1=2,
respectively. The last term, −M=2gr, can be also expressed
as (1=2) the “TrK” portion of the Brown-York quasilocal
energy, −r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M=r

p
.
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