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Quasitopological electromagnetism has an important influence on the strong gravity of dyonic black
holes. For example, three photon spheres, with one being stable, are found, and we wish to test them with
the observed black hole shadow. We are primarily concerned with the thermodynamics and phase transition
for a dyonic anti–de Sitter (AdS) black hole when quasitopological electromagnetism is included. Unlike in
a black hole solution without quasitopological electromagnetism, we observe a triple point phase structure
by varying the coupling parameters. Of particular interest, for certain parameter values, two separate
coexistence curves are present, which is an additional novel phase structure that is absent in a black hole
solution without quasitopological electromagnetism. The critical exponents share the same values as mean
field theory. These results uncover the intriguing properties of dyonic AdS black holes with quasitopo-
logical electromagnetism from a thermodynamic point of view.
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I. INTRODUCTION

Thermodynamics and phase transition have composed
one of the most active fields in the study of black holes.
This suggests that black holes not only have standard
thermodynamic variables, such as temperature and entropy
[1–3], but also demonstrate a rich phase transition and
phase diagrams. The pioneering work of Hawking and Page
stated that there is a first-order black hole phase transition
between large stable black holes and thermal radiation in
anti–de Sitter space [4]. This work opened the study of
thermodynamic phase transitions in black holes. Inspired
by the anti–de Sitter/conformal field theory (AdS/CFT)
literature [5–7], the Hawking-Page phase transition is
interpreted as the gravitational dual of the confinement/
deconfinement phase transition of gauge fields [8]. The
study was also generalized to the charged and rotating AdS
black holes [9–11].
Recently, the thermodynamics of AdS black holes has

been generalized to the extended phase space, where the
cosmological constant was treated as thermodynamic
pressure [12–16]. It was soon realized that a small-large
black hole phase transition of the first order occurs in four-
dimensional Reissner-Nordström (RN) AdS black holes,
which is analogous to a liquid/gas phase transition of the

van der Waals (vdW) fluid. They also share the same
critical phenomena [17]. Subsequently, different typical
phase transitions and phase structures, including the re-
entrant phase transition, the triple point, and the superfluid
phase were discovered in the extended phase space [18–44]
(for a recent review, see Ref. [45] and references therein). A
study of the black hole phase transition was also applied to
a test of the black hole microstructure. Novel dominated
attractive and repulsive interactions have been discovered
[42,46–50].
The study of thermodynamics indicates that the small-

large black hole phase transition is universal for the charged
AdS black holes in general relativity, modified gravity, or
even high dimensions. Some phase transitions beyond the
vdW-like one were also discovered. For example, the
reentrant phase transition can be found in four-dimensional
Born-Infeld AdS black hole coupling with nonlinear
electrodynamics [18], and triple point in six-dimensional
charged Gauss-Bonnet black holes [29,51].
Quite recently, a black hole solution using quasitopolog-

ical electromagnetism has attracted great interest [52]. This
theory is a new higher-order extension constructed with the
bilinear norm ofMaxwell’s theory.When they are combined
with global polarization, it was found that these additional
terms do not contribute to theMaxwell equation and energy-
momentum tensor. This is the reasonwhy the theory is called
quasitopological electromagnetism. Although the quasito-
pological termmakes no contribution to the purely electric or
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magnetic RN black holes, it indeed affects dyonic black hole
solutions. For black hole solutions with quasitopological
electromagnetism [52], it was found that the dominant, null,
and weak energy conditions are satisfied, while the strong
energy condition can be violated in the matter sector. This
modified black hole solution exhibitsmany novel features. In
certain parameter regions, this black hole solution can
possess four horizons and three photon spheres, with one
being stable. It also provides us with a nontrivial test of the
topological charge of the black hole photon sphere [53]. In
odd dimensions, the black hole solution was also discovered
in Ref. [54]. There may be five black hole phases, where two
of them are unstable, while others are stable. Chaotic
behaviors involving particle motion were explored in
Ref. [55]. The results indicated that the chaos bound will
be violated for this quasitopological electromagnetism.
Scalarized black holes in the Einstein-Maxwell-scalar theory
with a quasitopological term were constructed in Ref. [56].
Interestingly, it was found that the fundamental black hole is
stable, but these excited ones are not. Black strings were also
obtained in Ref. [57] in Einstein and Lovelock gravities.
These studies shed new light on understanding the black hole
solution with quasitopological electromagnetism.
Although dyonic black hole solutions with quasitopo-

logical electromagnetism exhibit some interesting results,
the thermodynamic phase transition and phase diagram still
remain to be studied. Since in some parameter regions there
are four horizons and more than one photon sphere, one
expects that phase transitions beyond the vdW-like type
may exist, which reveals the particularly interesting proper-
ties of black holes with quasitopological electromagnetism.
Motivated by this, in this paper focus mainly on its
thermodynamics, especially in the extended phase space.
The outline of this paper is as follows. In Sec. II, we

review the dyonic AdS black hole solution and give the
corresponding thermodynamic quantities in four-dimen-
sional Einstein gravity minimally coupling to standard
Maxwell electromagnetism and quasitopological electro-
magnetism. In Sec. II, we investigate the phase transitions
and critical behaviors of dyonic AdS black holes by
studying the characteristic behaviors of the temperature
and the Gibbs free energy. Moreover, we depict the
coexistence curve in a P-T diagram. In Sec. IV, we
calculate the critical exponents near the critical points.
Section V is devoted to conclusions and discussions.

II. THERMODYNAMICS OF
DYONIC BLACK HOLES

The Lagrangian of four-dimensional Einstein gravity
minimally coupled to Maxwell electromagnetism and
quasitopological electromagnetism is

L ¼ ffiffiffiffiffiffi
−g

p ðR − 2ΛÞ þ α1LM þ α2LQ; ð1Þ

where negative Λ is the cosmological constant in an AdS
space. The parameter α1 is a dimensionless coupling

constant, while α2 is a coupling constant of the dimension
½length�2. The standard Maxwell Lagrangian LM and the
quasitopological electromagnetic Lagrangian LQ in four
dimensions are given by

LM ¼ −
ffiffiffiffiffiffi
−g

p
F2; ð2Þ

LQ ¼ −
ffiffiffiffiffiffi
−g

p ððF2Þ2 − 2Fð4ÞÞ; ð3Þ

where F2 ¼ −Fμ
νFν

μ, Fð4Þ ¼ Fμ
νFν

ρFρ
σFσ

μ, and the
Maxwell field strength reads Fμν ¼ ∂μAν − ∂νAμ, with Aμ

the vector potential. On the other hand, as a nonlinear
electrodynamics, Euler-Heisenberg theory has also attracted
significant attention recently. It was proposed by Euler and
Heisenberg [58] and derived directly from quantum electro-
dynamics to a one-loop approximation. And the Schwinger
fields are significantly modified accordingly [59]. However,
the quasitopological electromagnetism studied in this work
aims at another important property. With the ansatz of the
global polarization, such term ensures that the standard
Maxwell equation and the energy-momentum tensor are
not changed. As a result, this theory is not the most general
gauge field theory of the second-order equations.
The energy-momentum tensor of a system with quasi-

topological electromagnetism reads

Tμν¼ α1T
ð1Þ
μν þα2T

ð2Þ
μν ;

Tð1Þ
μν ¼ 2FμρFν

ρ−
1

2
F2gμν;

Tð2Þ
μν ¼ 4F2FμρFν

ρ−8FμρFρ
σFσ

λFλ
ν−

1

2
ððF2Þ2−2Fð4ÞÞgμν;

ð4Þ

with the trace given by

Tμ
μ ¼ 2α2ððF2Þ2 − 2Fð4ÞÞ: ð5Þ

The Bianchi identity and the Maxwell equation of motion
are given, respectively, by

∇½μFνρ� ¼ 0; ð6Þ

∇μF̃μν ¼ 0; ð7Þ

where

F̃μν ¼ 4α1Fμν þ 8α2ðF2Fμν − 2FμρFσ
ρFσ

νÞ: ð8Þ

With the ansatz of the global polarization

Aμ ¼ ξμϕðxÞ; ð9Þ

where ξμ is a constant vector with ∇μξν ¼ 0, the Maxwell
field strength can be written as
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Fμ
ν ¼ ∇μAν −∇νAμ

¼ ∇μðϕξνÞ −∇νðϕξμÞ
¼ ∇μϕξν þ ϕ∇μξν −∇νϕξ

μ − ϕ∇νξ
μ

¼ ∂μϕξν − ∂νϕξ
μ: ð10Þ

Furthermore, we can obtain the following equations:

Fð4Þ ¼ 1

2
ðF2Þ2

¼ 2∂μϕ∂μϕ∂ρϕ∂ρϕξ
νξνξ

σξσ − 4∂μϕ∂μϕ∂ρϕ∂σϕξ
νξνξ

σξρ þ 2∂μϕ∂νϕ∂ρϕ∂σϕξ
νξμξ

σξρ; ð11Þ

FμρFσ
ρFσ

ν ¼ 1

2
F2Fμν

¼ ∂αϕ∂αϕξ
βξβð∂μϕξν − ∂νϕξμÞ þ ∂αϕξα∂βξ

βð∂νϕξμ − ∂μϕξνÞ; ð12Þ

FμρFρ
σFσ

λFλ
ν ¼

1

2
F2FμρFν

ρ

¼ ∂αϕ∂αϕξ
βξβξ

ρξρ∂μϕ∂νϕ − ∂αϕξα∂βϕξ
βξρξρ∂μϕ∂νϕþ ∂αϕξα∂βϕξ

βξρ∂ρϕξμ∂νϕ

− ∂αϕ∂αϕξ
βξβξ

ρ∂ρϕξμ∂νϕþ ∂αϕξα∂βϕξ
βξρ∂ρϕ∂μϕξν − ∂αϕ∂αϕξ

βξβξρ∂ρϕ∂μϕξν

þ ∂αϕ∂αϕξ
βξβ∂ρϕ∂ρϕξμξν − ∂αϕξα∂βϕξ

β∂ρϕ∂ρϕξμξν: ð13Þ

Thus, it is easy to verify that the quasitopological electro-
magnetic Lagrangian LQ makes no contribution to the
Maxwell equation and the energy-momentum tensor by

substituting Eqs. (11), (12), and (13) into LQ, T
ð2Þ
μν , and F̃μν

[52]. However, quasitopological electromagnetism can
affect the global polarization, which leads to a black hole
solution with the coupling α2.
Analogous to those in the Einstein-Born-Infeld theory

[60,61], dyonic black holes can be constructed in even
dimensions. In particular, in four dimensions, the following
exact solution for spherically symmetric and static dyonic
black holes was obtained [52]:

ds2 ¼ −fdt2 þ f−1dr2 þ r2ðdθ2 þ sin2 θdϕ2Þ; ð14Þ

fðrÞ ¼ −
1

3
Λr2 þ 1 −

2M
r

þ α1p2

r2

þ q2

α1r2
2F1

�
1

4
; 1;

5

4
;−

4p2α2
r4α1

�
: ð15Þ

TheMaxwell field for a dyonic particle located at the origin is

F ¼ −ϕ0ðrÞdt ∧ dr − p sin θdθ ∧ dϕ; ð16Þ

ϕ0ðrÞ ¼ −
qr2

α1r4 þ 4α2p2
: ð17Þ

According to the definition of mass [61–63] in asymptoti-
cally AdS space, we achieve

MADT ¼ M ð18Þ

by theAbbott-Deser-Tekin formalism. The parametersp and
q are related to the electric charge Qe and magnetic charge
Qm of the black hole as follows [52]:

Qe ¼
1

4π

Z
F̃0r ¼ q; Qm ¼ 1

4πα1

Z
F ¼ p

α1
: ð19Þ

The outer horizon is located at the largest root of fðrhÞ ¼ 0.
Employing this with the horizon radius rh, one can express
the black hole temperature and entropy as

T ¼ −
q2rh

4πð4α2p2 þ α1r4hÞ
−
α1p2

4πr3h
−
Λrh
4π

þ 1

4πrh
; ð20Þ

S ¼ πr2h: ð21Þ

Interpreting the cosmological constant as pressure P ¼ − Λ
8π

[14], the thermodynamic volume, mass, temperature, and
electric and magnetic potentials of the black hole can be
further reexpressed as
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V ¼ 4

3
πr3h; ð22Þ

M¼
3r2hα1þ8Pπr4hα1þ3Q2

mα
4
1þ3Q2

e2F1

h
1
4
;1;5

4
;−4Q2

mα1α2
r4h

i
6rhα1

;

ð23Þ

T ¼ 1

4πrh
þ 2Prh −

Q2
mα

3
1

4πr3h
−

Q2
erh

4πðr4hα1 þ 4Q2
mα

2
1α2Þ

; ð24Þ

Φe ¼
Qe2F1

h
1
4
; 1; 5

4
;− 4Q2

mα1α2
r4h

i
α1rh

; ð25Þ

Φm ¼ −
Q2

e2F1

h
1
4
; 1; 5

4
;− 4Q2

mα1α2
r4h

i
4α1Qmrh

þ Q2
er3h

4Qmð4α2α21Q2
m þ α1r4hÞ

þ α31Qm

rh
: ð26Þ

Since parameter α2 has dimensions, we treat it as a thermo-
dynamical variable, and thus it is straightforward toverify the
first law of thermodynamics,

dM ¼ TdSþΦedQe þΦmdQm þΦα2dα2 þ VdP; ð27Þ

where

Φα2 ¼
Q2

er3h
8α1α2ðr4h þ 4α1α2Q2

mÞ
−
Q2

e2F1

h
1
4
; 1; 5

4
;− 4Q2

mα1α2
r4h

i
8α1α2rh

ð28Þ

is the corresponding quantity conjugate to α2. Moreover, the
following Smarr relation also holds:

M ¼ 2TS − 2PV þΦeQe þΦmQm þ 2α2Φα2 : ð29Þ

From the differential form (27), it is obvious that the black
hole mass here plays the role of enthalpy rather than the
internal energy of the system. As a result, the Gibbs free
energy G ¼ M − TS reads

G ¼ 1

12rhα1ðr4h þ 4Q2
mα1α2Þ

�
3Q2

er4h þ α1ð3r3h − 8Pπr4h þ 9Q2
mα

3
1Þðr4h þ 4Q2

mα1α2Þ

þ 6Q2
eðr4h þ 4Q2

mα1α2Þ2F1

�
1

4
; 1;

5

4
;−

4Q2
mα1α2
r4h

��
: ð30Þ

In general, the system always prefers the phase of lowest free
energy. Thus, the Gibbs free energy G is an important
quantity to study the phase transition. For example, it is
well known that the swallowtail behavior of the Gibbs free
energy indicates a first-order phase transition of the system.
In the following sections, we shall clearly show this for the
black hole phase transition.

III. PHASE TRANSITIONS AND PHASE
DIAGRAMS

In this section, we would like to study the phase
transitions and phase diagrams by varying the coupling
parameters α1 and α2, respectively. Reformulating the black
hole temperature (24), we obtain the following equation of
state for the black hole system:

P ¼ T
2rh

−
1

8πr2h
þQ2

mα
3
1

8πr4h
þ Q2

e

8πα1ðr4h þ 4Q2
mα1α2Þ

: ð31Þ

Obviously, the parameters α1 and α2 have a potential
influence on this equation. As expected, we can define
the specific volume v ¼ 2rh, with which the pressure is cast

in the standard form P ¼ T
v þOðvÞ. On the other hand,

since the thermodynamical volume V ∝ r3h, the critical
point can be determined by�∂P

∂rh
�

T
¼ 0;

�∂2P
∂r2h

�
T

¼ 0 ð32Þ

or, alternatively,

�∂T
∂rh

�
P
¼ 0;

�∂2T
∂r2h

�
P

¼ 0: ð33Þ

Now let us examine the heat capacity CP at constant
pressure, which measures the local thermodynamical sta-
bility of the black holes. A positive or negative value of the
heat capacity indicates that the system is locally stable or
unstable. After a simple algebraic calculation, we have

CP ¼ T

�∂S
∂T

�
P
¼ T

�∂rhS

∂rhT

�
P

∝ ð∂rhTÞ−1P ; ð34Þ

where we have used the conditions T > 0 and ð∂rhSÞP > 0

for the black hole system. Therefore, in the T − rh plane,
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the black hole branch with a positive or negative slope is
thermodynamically stable or unstable. We shall distinguish
them by solid or dashed curves in the following.
Here we note that the four-dimensional charged RN-AdS

black hole will be obtained by setting α1 ¼ 1 and
α2 ¼ p ¼ 0. The equation of state (31) reduces to [17]

P ¼ T
2rh

−
1

8πr2h
þ Q2

e

8πr4h
: ð35Þ

Employing this with the condition (32), the critical point
will be obtained as

Pc ¼
1

96πQ2
e
; Tc ¼

ffiffiffi
6

p

18πQe
; rhc ¼

ffiffiffi
6

p
Qe: ð36Þ

As shown in Ref. [17], only one small-large black hole
phase transition exists, which is reminiscent of the liquid/
gas phase transition of the vdW fluid.
Next, we shall focus on the black hole phase transition

by setting the electric charge Qe ¼ 5 and the magnetic
charge Qm ¼ 2.5. Then different characteristic patterns of
the phase transitions and phase diagrams will be displayed
by varying α1 and α2. Here we briefly describe our process:
(i) By making use of Eq. (32) or (33), we obtain the critical
points first. (ii) Then we examine the local stability for
these black hole branches along each isobaric curve in the
T-rh plane. These black hole branches, with positive and
negative slopes marked with solid and dashed curves, are
thermodynamically stable and unstable, respectively. The
extremal points of the temperature correspond to the
nonsmooth points in the G-T plane. (iii) Next, the phase
transition points for each given pressure will be obtained by
analyzing the swallowtail behavior of the Gibbs free
energy. Here one should be very careful to ensure that
only the swallowtail behaviors constructed by two stable
black hole branches indicate the phase transitions.
(iv) Varying the pressure freely, we shall obtain the
coexistence curves of the phase transition, with which
the phase diagrams can also be explicitly shown in different

parameter spaces. And in this paper we are concerned
mainly with the pressure-temperature diagram. (v) Finally,
critical exponents will be calculated for the critical points
that we consider.

A. Phase transitions by varying α2

In this subsection, we would like to study the phase
transition and phase diagram for the black hole by fixing
α1 ¼ 1 while varying α2. In order to show the characteristic
behaviors of the phase transition, we take α2 ¼ 15, 45, and
75, respectively.

1. α2 = 15

Adopting the condition (32), we find that there is one
critical point at

Tc ¼ 0.00781870; Pc ¼ 0.00010836: ð37Þ

The behaviors of the temperature T and the Gibbs free
energyG are plotted in Figs. 1(a) and 1(b). In Fig. 1(a), one
can find that, for each isobaric curve with pressure P < Pc,
there are two extremal points which divide the isobaric
curve into three branches: the stable small and large black
hole branches (described with the solid curves), and the
unstable intermediate black hole branch (described with the
dashed curves). These stable and unstable black hole
branches are shown accordingly in Fig. 1(b). Meanwhile,
the two extremal points at each isobaric curve also
correspond to the nonsmooth points in the G − T diagram.
When P < Pc, the swallowtail behaviors are present. Since
they are constructed using the stable small and large black
hole branches, this indeed indicates the phase transitions.
For each isobaric curve, we can find that, with an increase
in temperature, the system prefers a small black hole phase
first, then turns to a large black hole phase after the
intersection point is approached.
With an increase in the pressure P, these two extremal

points of temperature along the isobaric curve get closer,
and they coincide at the critical point at which the critical

(a) (b) (c)

FIG. 1. (a) T vs rh. (b) G vs T. The pressure P ¼ 0.00001 (blue curves), 0.00004 (green curves), 0.00010836 (red curves), and
0.00025 (purple curves), displayed from bottom to top in (a) and from left to right in (b). The unstable and stable branches are described
using dashed and solid curves, respectively. (c) P − T phase diagram. Coupling parameter α1 ¼ 1 and coupling parameter α2 ¼ 15.
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pressure is approached. The swallowtail behavior of the
Gibbs free energy disappears at the critical case. For
P > Pc, the temperature monotonically increases with
the radius of the black hole horizon, and the Gibbs free
energy monotonically decreases with the temperature, so
no phase transitions can be observed.
Finally,we illustrate the coexistence curve of the small and

large black hole phases in the P − T diagram in Fig. 1(c).
Obviously, the pressure increases monotonically with the
temperature, and it terminates at a critical point at which the
black hole undergoes a second-order phase transition. This is
a typical small-large black hole phase transition of the
vdW type.

2. α2 = 45

Unlike the previous case, when the parameter α2 ¼ 45,
we observe three critical points,

Tc1 ¼ 0.00617553; Pc1 ¼ 0.00001478; ð38Þ

Tc2 ¼ 0.00799143; Pc2 ¼ 0.00011414; ð39Þ

Tc3 ¼ 0.00780718; Pc3 ¼ 0.00015547: ð40Þ

At first, let us focus on the behavior of the temperature. For
different values of the pressure, we plot the temperature as a
function of the horizon radius rh in Figs. 2(a) and 2(b). For
P < Pc1, which is shown in Fig. 2(b), there are two
extremal points along each isobaric curve. And they divide
the isobaric curve into three parts, respectively, correspond-
ing to the stable small black hole branch, the unstable
intermediate black hole branch, and the stable large black
hole branch. Further increasing the pressure such that
Pc1 < P < Pc2, an extra new phase and two extremal
points emerge, as seen in Fig. 2(b). Considering their local
stability and size, we can name these five branches the
stable small black hole branch, the unstable small black
hole branch, the stable intermediate black hole branch, the

unstable large black hole branch, and the stable large black
hole branch. As a result, the novel behavior of the isobaric
curve allows us to construct two pairs of equal areas.
Taking P ¼ Pt ¼ 0.00008189 as an example, we show
these two pair areas in Fig. 2(c). Each pair area is
constructed using the Maxwell equal area law, while the
values of these two pair areas are not required to be the
same. Moreover, one can find that these two pair areas
share the same temperature T t ¼ 0.00705331, which indi-
cates that there are two black hole phase transitions at the
same temperature and pressure. This feature actually
implies a triple point, where the small, intermediate, and
large black holes coexist. On the other hand, it is also worth
pointing out that the Maxwell equal area law holds in the
T − S plane but does not in the T − rh plane.
At P ¼ Pc2, the system undergoes an intermediate-large

black hole phase transition of second order. Above this
value, i.e., Pc2 < P < Pc3, two black hole branches dis-
appear and only three are left: the stable small and
intermediate black hole branches and the unstable inter-
mediate black hole branch. This result suggests that there
is, at most, only the stable small-intermediate black hole
phase transition. This first-order phase transition turns to a
second-order one when the pressure tends to P ¼ Pc3,
beyond which the temperature becomes a monotonic
function of rh. Thus, only one black hole branch is left,
and no phase transition exists.
Next, we turn to the Gibbs free energy G. Its character-

istic behaviors are shown in Fig. 3. It is worth pointing out
that the nonsmooth points of G correspond exactly to the
extremal points shown in Figs. 2(a) and 2(b). Similarly,
the stable and unstable black hole branches are plotted with
the solid and dashed curves, respectively. For a small
pressure with P ¼ 0.00001 < Pc1, the Gibbs free energy G
is plotted as a function of the temperature in Fig. 3(a).
Obviously, there is a swallowtail behavior, thus indicating
the existence of the small-large black hole phase transition,
which is similar to the liquid/gas phase transition of vdW
fluid. Taking Pc1 < P ¼ 0.00007 < Pt, we exhibit the

(a) (b) (c)

FIG. 2. (a) Behavior of T with respect to rh for P ¼ 0.00001 < Pc1 (orange curve). (b) Behavior of T with respect to rh (pressure
larger than P ¼ Pc1 ¼ 0.00001478) for 0.00008189 (pink curve), 0.00011414 (blue curve), 0.00012 (gray curve), 0.00015547 (green
curve), and 0.0002 (purple curve) displayed from bottom to top. (c) T-S diagram for “double”Maxwell equal area laws with a pressure
P ¼ Pt ¼ 0.00008189. The horizontal line has a temperature T ¼ T t ¼ 0.00705331 and parameters α1 ¼ 1, α2 ¼ 45. The unstable and
stable branches are indicated by dashed and solid curves, respectively.
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Gibbs free energy in Fig. 3(b). Interestingly, two swallow-
tail behaviors can be observed. At first glance, it appears
that there may be two phase transitions. However, we note
that one of them has a higher free energy. Thus, it will be
suppressed by the black hole branch with lower free energy

and not participate in the black hole phase transition. As a
result, there is still only one small-large black hole phase
transition. When the pressure is further increased, this
swallowtail behavior is shifted to the left. When P ¼ Pt, as
shown in Fig. 3(c), these two intersection points of the

(a) (b)

(c) (d)

(e) (f)

FIG. 3. Behaviors of the Gibbs free energy G with respect to the temperature T with α1 ¼ 1 and α2 ¼ 45. The red, green, and blue
curves represent small, intermediate, and large black holes, respectively. (a) P ¼ 0.00001. (b) P ¼ 0.00007. (c) P ¼ Pt ¼ 0.00008189.
(d) P ¼ 0.00009. (e) P ¼ 0.00012. (f) P ¼ 0.0002.
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swallowtail behaviors coincide exactly. Meanwhile, the
three stable black hole branches intersect at that point. This
result strongly indicates that the stable small, intermediate,
and large black holes can coexist at the point—namely, a
triple point ðT t; PtÞ. This is also the most distinctive feature
of the dyonic AdS black holes.
In Fig. 3(d), we take Pt < P ¼ 0.00009 < Pc2. Two

swallowtail behaviors are also observed. However, unlike
in the case shown in Fig. 3(b), both of them can participate
in phase transitions. Namely, there will be a first-order
small-intermediate black hole phase transition and an
intermediate-large black hole phase transition at the same
pressure but at different temperatures.
Moreover, the intermediate-large black hole phase tran-

sition tends to disappear at P ¼ Pc2. When the pressure is
further increased such that Pc2 < P ¼ 0.00012 < Pc3, one
of the swallowtail behaviors disappears; see Fig. 3(e). Thus,
for each pressure, there is only one first-order phase
transition. Detailed study reveals that this phase transition
extends to the third critical point at P ¼ Pc3. While beyond
the third critical point, i.e., P ¼ 0.0002 > Pc3 [displayed in
Fig. 3(f)], the free energy is a monotonic function of the
temperature. Thus, no phase transition exists anymore.
The corresponding phase diagram is displayed in the P-T

diagram in Fig. 4. It exhibits the characteristic triple
point feature. Below Pt, the black hole system undergoes

a first-order small-large black hole phase transition. And at
P ¼ Pt, the stable small, intermediate, and large black hole
phases coexist. Furthermore, we can also find that the
small-intermediate black hole phase transition emerges at
Pt and terminates at Pc3, while the intermediate-large black
hole phase transition starts at Pt and ends at Pc2.

3. α2 = 75

If we increase the parameter such that α2 ¼ 75, the
number of critical points returns to 1. The value of the
critical point is

Tc ¼ 0.01200427; Pc ¼ 0.00040458: ð41Þ

The behaviors of the temperature and the Gibbs free energy
are exhibited in Figs. 5(a) and 5(b) for different pressure
values. When the pressure is below its critical value, there
are the nonmonotonic behavior of the temperature and the
swallowtail behavior of the Gibbs free energy, which
indicates the existence of the standard small-large black
hole phase transition. The coexistence curve is also shown
in Fig. 5(c), which starts at the origin and ends at the critical
point (marked with a black dot). Above the curve is the
small black hole region and below it is the large black hole
region, as expected.
In summary, besides the smal-large black hole phase

transition, we also observe a triple point for the dyonic AdS
black holes. This feature is quite different from that of the
four-dimensional charged RN-AdS black hole, where only
the small-large black hole phase transition has been
discovered [17].

B. Phase transition when varying α1

In the previous subsection, we showed that there is a
small-large black hole phase transition and triple point
when α1 is fixed but α2 is varied freely. Since α1 is also an
important parameter of the dyonic AdS black hole, in this
subsection we shall vary the parameter α1 instead while
keeping α2 ¼ 50. One can also see that novel interesting
phase transitions will be disclosed.

FIG. 4. Phase diagram for a dyonic AdS black hole (BH) with
α1 ¼ 1 and α2 ¼ 45. The characteristic triple point is present.

(a) (b) (c)

FIG. 5. (a) T vs rh. (b) G vs T. Pressures P ¼ 0.0001 (blue curve), 0.0002 (green curve), 0.00040458 (red curve), and 0.0006 (purple
curve), displayed from bottom to top in (a) and from left to right in (b). (c) P-T phase diagram. The parameters α1 ¼ 1 and α2 ¼ 75.
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1. α1 = 0.4

We first take α1 ¼ 0.4. After solving Eq. (32), we have
two critical points

Tc1 ¼ 0.00548121; Pc1 ¼ 0.00005316; ð42Þ

Tc2 ¼ 0.06782108; Pc2 ¼ 0.01299062: ð43Þ

Since the values of these two critical points are quite
different, they are located far away from each other in the
phase diagram.

(a) (b)

(c) (d)

(e) (f)

FIG. 6. Behaviors of the Gibbs free energy G with respect to the temperature T with α1 ¼ 0.4 and α2 ¼ 50. The red, green, and blue
curves represent small, intermediate, and large black holes, respectively. The purple dashed vertical lines indicate vanishing temperature.
(a) P ¼ 0.00002. (b) P ¼ Pc1 ¼ 0.00005316. (c) P ¼ 0.00006. (d) P ¼ P0 ¼ 0.00010129. (e) P ¼ 0.005. (f) P ¼ 0.03.

TRIPLE POINTS AND NOVEL PHASE TRANSITIONS OF … PHYS. REV. D 105, 104048 (2022)

104048-9



The interesting behaviors of Gibbs free energy G are
displayed in Fig. 6. When the pressure P < Pc1, as shown
in Fig. 6(a), two swallowtail behaviors are present.
However, one of them is located in the negative temperature
region, and thus it is unphysical. As a result, only the other
swallowtail behavior is available, which indicates an
intermediate-large black hole phase transition of the first
order. In Fig. 6(b), we plot G as a function of the
temperature T at the critical pressure P ¼ Pc1. The
swallowtail behavior with positive temperature tends to
disappear. For this case, only a second-order phase tran-
sition exists. Increasing the pressure such that
Pc1 < P < P0 ¼ 0.00010129, we can see in Fig. 6(c) that
the intersection point of the swallowtail behavior is still
located at the negative temperature, and thus such behavior
does not indicate a phase transition. With detailed study, we

find that the intersection point is shifted to the right. Exactly
at P ¼ P0, as shown in Fig. 6(d), the intersection point has
a vanishing temperature. If we continue to slightly increase
the pressure [see Fig. 6(e)], the intersection point has a
positive temperature, thereby indicating a first-order phase
transition. At last, by setting P > Pc2, the G described in
Fig. 6(f) is only a monotonically decreasing function of
temperature. Thus, the system has only one black hole
branch and no phase transition is allowed.
Considering these different behaviors of the Gibbs free

energy, we calculate the phase transition for each temper-
ature. Finally, we clearly exhibit the phase diagram of the
dyonic AdS black hole with α1 ¼ 0.4 and α2 ¼ 50 in the
P-T diagram in Fig. 7. In the figure, it is easy to see that this
phase diagram is significantly different from that of the
vdW fluid. There are two separate coexistence curves.

(a) (b)

FIG. 7. Phase diagram for a dyonic AdS black hole with α1 ¼ 0.4 and α2 ¼ 50. (a) Entire phase diagram. (b) Magnification of (a) near
(Tc1, Pc1).

(a) (b)

FIG. 8. (a) Behavior of T with respect to rh for P ¼ 0.00003 (orange curve), P ¼ 0.00005078 (Red curve), P ¼ 0.00009608 (pink
curve), P ¼ 0.00011537 (blue curve), P ¼ 0.00015 (gray curve), P ¼ 0.00022122 (green curve), and P ¼ 0.0003 (purple curve),
displayed from bottom to top. (b) The Maxwell equal area laws constructed at the isobaric curve with pressure P ¼ Pt ¼ 0.00009608 in
the T-S diagram. The horizontal line has a temperature T ¼ T t ¼ 0.00750572. The parameters α1 ¼ 1 and α2 ¼ 50.
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One of them starts at the origin and ends at ðTc1; Pc1Þ, while
the other extends from ð0; P0Þ and terminates at the second
critical point ðTc2; Pc2Þ. This novel phase structure has not
been observed for the charged RN-AdS black hole [17] and
can be treated as a new feature of dyonic AdS black holes
with quasitopological electromagnetism.

2. α1 = 1

For the second example, we take α1 ¼ 1. Interestingly,
we obtain three critical points by solving the condition (32)

Tc1 ¼ 0.00681279; Pc1 ¼ 0.00005078; ð44Þ

(a) (b)

(c) (d)

(e) (f)

FIG. 9. Behaviors of the Gibbs free energy G with respect to the temperature T with α1 ¼ 1 and α2 ¼ 50. The red, green, and blue
curves represent small, intermediate, and large black holes, respectively. (a) P ¼ 0.00003. (b) P ¼ 0.00009. (c) P ¼ Pt ¼ 0.00009608.
(d) P ¼ 0.000105. (e) P ¼ 0.00015. (f) P ¼ 0.0003.
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Tc2 ¼ 0.00802675; Pc2 ¼ 0.00011537; ð45Þ

Tc3 ¼ 0.00884366; Pc3 ¼ 0.00022122: ð46Þ

The number of critical points indicates that there must be
some phase transitions beyond the vdW type. To determine
them, we plot the behavior of temperature T with respect to
the horizon radius rh in Fig. 8(a). Obviously, at some values
of the pressure, there will be four extremal points for the
temperature. In particular, when P ¼ Pt ¼ 0.00009608, we
construct two pairs of the equal areas described in Fig. 8(b).
Although these two pair areas have different values, they
share the same pressure and temperature. This strongly
indicates the existence of the triple point. In order to make
this point more clear, we show the Gibbs free energy in
Fig. 9. For different cases, one or two swallowtail behaviors
can be discovered. Moreover, these two characteristic
swallowtail behaviors emerge, move, and disappear with
the pressure. This pattern demonstrates a triple point phase
structure at P ¼ Pt ¼ 0.00009608.
The corresponding phase diagram is given in Fig. 10,

where the triple point is clearly exhibited. Another differ-
ence from the previous case is that these coexistence curves
are not separate, but instead joined at the triple point.

3. α1 = 1.6

When α1 ¼ 1.6, the system admits only one critical
point,

Tc ¼ 0.00683463; Pc ¼ 0.00008292: ð47Þ

In this case, the behaviors of the temperature and the Gibbs
free energy are shown in Figs. 11(a) and 11(b). All these
behaviors indicate that there is only one typical small-large
black hole phase transition, which is reminiscent of the
liquid/gas phase transition of the vdW fluid. Finally, the
phase diagram is exhibited in Fig. 11(c).

IV. CRITICAL EXPONENTS

Critical exponents describe the behavior of thermody-
namical quantities near the critical points and provide a
universal property of the system phase transition. In this
section, we would like to numerically calculate the critical
exponents for the black hole systems with quasitopological
electromagnetism.
It is convenient to define the reduced thermodynamic

temperature, volume, and pressure as

τ ¼ T
Tc

; ν ¼ V
Vc

; p ¼ P
Pc

: ð48Þ

Furthermore, we denote

t ¼ T
Tc

− 1 ¼ τ − 1; ω ¼ V
Vc

− 1 ¼ ν − 1: ð49Þ

Then the critical point is shifted to t ¼ 0 and ω ¼ 0. To
calculate the critical exponents, we first obtain the corre-
sponding equation of state by substituting the reduced
parameters introduced in Eqs. (48) and (49) into Eq. (31).
Near the critical points, the reduced pressure can be
expanded as

FIG. 10. Phase diagram for a dyonic AdS black hole with
α1 ¼ 1 and α2 ¼ 50.

(a) (b) (c)

FIG. 11. (a) T vs rh. (b) G vs T. Pressures P ¼ 0.00001 (blue curve), 0.00003 (green curve), 0.00008292 (red curve), and 0.0002
(purple curve), displayed from bottom to top in (a) and from left to right in (b). The unstable and stable branches are indicated by dashed
and solid curves. (c) P-T phase diagram. The parameters α1 ¼ 1.6 and α2 ¼ 50.
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p¼ a0þa1ωþa2ω2þa3ω3þb0tþb1tωþOðtω2;ω4Þ:
ð50Þ

In our black hole systems, we find that the coefficients a1
and a2 vanish and that a0 ¼ 1. Thus, the reduced pressure
becomes

p ¼ 1þ a3ω3 þ b0tþ b1tωþOðtω2;ω4Þ: ð51Þ

Near the critical points that we considered in the above
section, we numerically obtain the values of the coefficients
a3, b0, and b1 by expanding the equation of state. The
results are listed in Tables I and II. Although these
coefficients closely depend on the couplings α1 and α2,
we find the universal result that b0 is positive, while a3 and
b1 are negative.
Next, we attempt to calculate the critical exponents α, β,

γ, and δ by using the expanded form (51).
(a) Exponent α describes the behavior of the specific heat

at constant volume:

CV ¼ T
∂S
∂T jV ∝ jtj−α: ð52Þ

Since S ∼ V2=3, one easily obtains CV ¼ 0. Thus, the
exponent α ¼ 0.
(b) Exponent β governs the behavior of the order

parameter η ¼ V l − Vs measuring the difference in thermo-
dynamic volume between the coexistence large and small
black holes for a given isotherm:

η ¼ V l − Vs ∝ jtjβ: ð53Þ

Considering the fact that the coexistence small and large
black holes satisfy the equation of state, we have

p ¼ 1þ a3ω3
s þ b0tþ b1tωs ¼ 1þ a3ω3

l þ b0tþ b1tωl:

ð54Þ

Differentiating the reduced pressure in Eq. (51) for a fixed
t < 0, we have

dp ¼ ð3a3ω2 þ b1tÞdω: ð55Þ

In the reduced parameter space, it is easy to verify that
the Maxwell’s equal area law

H
ωdp ¼ 0 holds, and it

reduces to

Z
ωl

ωs

ωð3a3ω2 þ b1tÞdω ¼ 0; ð56Þ

where ωs and ωl are the reduced volumes of the small and
large black holes, respectively. Solving Eqs. (54) and (56),

we have ωs ¼ −ωl ¼ −
ffiffiffiffi
b1
a3

q ffiffiffiffiffi
−t

p
. Hence, the order param-

eter η is

η ¼ Vcðωl − ωsÞ ¼ 2

ffiffiffiffiffi
b1
a3

s
Vc

ffiffiffiffiffi
−t

p
; ð57Þ

indicating that the exponent β ¼ 1
2
.

(c) Exponent γ describes the behavior of the isothermal
compressibility κT defined as

κT ¼ −
1

V
∂V
∂P

����
T
∝ jtj−γ: ð58Þ

From the expressions of the reduced pressure in Eq. (51),
one can easily get

∂V
∂P

����
T
¼ 1

b1

Vc

Pc

1

t
þOðωÞ: ð59Þ

As a result,

κT ¼ −
1

V
∂V
∂P

����
T
∝ −

1

b1

Vc

Pc

1

t
; ð60Þ

so one gets γ ¼ 1.
(d) Exponent δ characterizes the following behavior on

the critical isotherm T ¼ Tc:

jP − Pcj ∝ jV − Vcjδ: ð61Þ

Setting t ¼ 0 in Eq. (51), one arrives at

p − 1 ¼ a3ω3; ð62Þ

which leads to δ ¼ 3.

TABLE I. Corresponding values of the expanded coefficients in
Eq. (51) with a fixed α1.

α1 α2 a3 b0 b1

1 15 −0.0461524 2.6921452 −0.8973817
1 45 −0.0369044 2.7714244 −0.9238081
1 45 −0.4079453 5.1006002 −1.7002001
1 75 −0.1533660 2.8650946 −0.9550316

TABLE II. Corresponding values of the expanded coefficients
in Eq. (51) with a fixed α2.

α1 α2 a3 b0 b1

0.4 50 −0.0481278 2.6764140 −0.8921380
0.4 50 −0.0363386 1.7104065 −0.5701355
1 50 −0.0346722 2.7920014 −0.9306672
1 50 −0.2914387 4.0208934 −1.3402978
1.6 50 −0.0449899 2.7030386 −0.9010129
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In summary, the four critical exponents are obtained as

α ¼ 0; β ¼ 1

2
; γ ¼ 1; δ ¼ 3; ð63Þ

which is the same as that of the mean field theory and the
four-dimensional charged RN-AdS black hole system [17].

V. DISCUSSIONS AND CONCLUSIONS

In this paper, by treating the cosmological constant as the
thermodynamic pressure in the extended phase space, we
studied the thermodynamics and phase transition for the
dyonic AdS black hole with quasitopological electromag-
netism. The results show that, compared to charged RN-
AdS black holes, there are more rich black hole phase
structures, such as a triple point and a separate coexist-
ence curve.
Considering the coupling α2 as a new thermodynamic

variable, we obtained the first law and the Smarr formula
and found they are consistent with each other. By freely
varying the parameters α1 and α2, respectively, we studied
the phase transition and phase diagram via the behaviors of
the temperature and Gibbs free energy along the isobaric
curves.
We first considered the case in which α1 ¼ 1, while α2

was 15, 45, or 75. When α2 ¼ 15, we observed the small-
large black hole phase transition. The phase diagrams are
similar to that of the vdW fluid. For α2 ¼ 45, four extremal
points of the temperature and two swallowtail behaviors of
the Gibbs free energy along certain isobaric curves can be
found. These imply rich phase structures. Detailed study
shows that there is a triple point at which three black hole
phases coexist, just like that of water with coexisting ice,
liquid, and vapor phases. This phase diagram has not been
found in charged RN-AdS black holes. And thus it is a
novel phenomenon for black holes with quasitopological
electromagnetism. When the coupling is further increased
such that α2 ¼ 75, we observed only one swallowtail
behavior, so only the small-large black hole phase tran-
sition is present in this case.

Then we varied α1 while instead keeping α2 fixed at 50.
For α1 ¼ 0.4, we found a novel phase structure. Although
in these cases there are two swallowtail behaviors, some
parts of them fall in the negative temperature regions,
indicating that they are unphysical. After detailed study, we
discovered that there are two separate coexistence curves in
the phase diagrams. One starts at the origin and ends at a
critical point, while the other one starts at a certain point
with vanishing temperature, then extends to another critical
point. This is also a novel diagram for a dyonic AdS black
hole with quasitopological electromagnetism. When α1 is
increased such that α1 ¼ 1, a characteristic triple point is
observed. When α1 approaches 1.6, there is only a small-
large black hole phase transition of the vdW type.
After obtaining the phase diagrams, we calculated the

critical exponents for each case. Employed with the
expansion of the pressure near the critical points, we
obtained the exponents α ¼ 0, β ¼ 1

2
, γ ¼ 1, and δ ¼ 3,

which display the same values as in mean field theory.
These results uncover intriguing thermodynamic proper-

ties and phase diagrams for dyonic AdS black holes with
quasitopological electromagnetism. The study is also worth
generalizing to higher-dimensional cases. Furthermore,
black hole microstructure still remains to be tested by
constructing the Ruppeiner geometry. These are valuable to
further disclose the influence of quasitopological electro-
magnetism on the black hole thermodynamics. It is also
worth further examining the emergent new black hole
phases on the dynamical stability of the black holes, as well
as in the dual field theories according to the AdS=CFT.
Furthermore, since there are two unstable photon spheres,
novel features imprinted in the black hole shadow should
be uncovered [64].
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