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In this work, we deal with the QED interpretation of the Euler-Heisenberg nonlinear electrodynamics
as the effective theory after a one-loop of nonperturbative quantization. It endows the vacuum with an
effective dielectric constant, the polarizability and magnetizability of which are determined by clouds of
virtual charges surrounding the real currents and charges. Therefore, we study the Euler-Heisenberg
nonlinear electrodynamics as a screened Maxwell theory. We generate a rotating electrically charged
Einstein-Euler-Heisenberg black hole solution and interpret it as a Kerr-Newman-like one with screened
electric charge, as it happens for the static electrically charged black hole Einstein-Euler-Heisenberg
solution, which is considered as a Reissner-Nordström-like solution with screened electric charge.
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I. INTRODUCTION

Quantum electrodynamical vacuum corrections to the
Maxwell-Lorentz theory can be accounted for by an effective
nonlinear theory derived by Euler and Heisenberg [1,2],
using the Dirac electron-positron theory. Schwinger refor-
mulated this one–loop effective Lagrangian in the quantum
electrodynamics theory [3]. The vacuum is treated as a
specific type of medium, the polarizability and magnet-
izability properties of which are determined by the clouds of
virtual charges surrounding the real currents and charges.
This fact can be interpreted as an effective dielectric constant
of the vacuum. When the electric fields are stronger than
the critical value, Dc ≡ m2c3

eℏ , spontaneous electron-positron
pair production takes place, lowering the vacuum energy
[1,3,4]. Recently, Bordin et al. [5] proposed a possible direct
measurement of the Euler–Heisenberg effect. This theory is a
valid physical theory [6,7].
It is worthwhile to stress the fact that the QED one-loop

effective Lagrangian obtained by Euler and Heisenberg [1]
predicts rates of nonlinear field interaction processes since
it takes into account vacuum polarization to one loop and is
valid for electromagnetic fields that change slowly com-
pared to the inverse electron mass [8,9].

On the other hand, the existence of black holes is widely
accepted since the observations reported in 2019 by the
Event Horizon Telescope team [10]. Also gravitational
waves and orbits of the S stars around Sgr. A� have been
reported. The interest in Petrov type-D metrics is based on
their physical relevance, as Schwarzschild, Reissner-
Nordström, Kerr, and Kerr-Newman black hole solutions
belong to the type-D metrics.
Furthermore, the static charged black holes solutions in

gravitating nonlinear electrodynamics have been studied
since the 1930’s by Hoffmann et al. [11,12]. Recently,
Ruffini et al. [13] considered the contributions of Euler-
Heisenberg effective Lagrangian in order to formulate the
Einstein-Euler-Heisenberg theory and to study the spheri-
cally symmetric black hole solutions endowed with
electric and magnetic monopole charges. They reduced
the problem to screened Reissner-Nordström solutions
and collected the Euler-Heisenberg corrections in the
screening terms of the electromagnetic charges; i.e., the
Euler-Heisenberg theory is looked at as a screened
Maxwell one. They calculate the QED corrections to
the black hole horizon, entropy, total energy, and max-
imally extractable energy.
A similar approach was studied by Yajima et al. [14] in

which the effective Lagrangian is considered as low-energy
limit of the Born-Infeld theory and the nonlinearity
parameters are treated as free parameters and analyze
either numerically or analytically the properties of
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spherically symmetric black holes solutions of the Einstein-
Euler-Heisenberg theory. Other approaches exist like the
one proposed by Bandos et al. [15,16], the so–called
modified Maxwell approach (ModMax), where the non-
linear corrections to the Maxwell theory are contained in a
constant screening of the electric charges.
In this paper, in the framework of the Einstein-Euler-

Heisenberg theory, we will follow the approach of Ruffini
et al. for studying the conventional electrically charged
rotating black hole, endowed with electric and magnetic
fields, the rotating Kerr-Newman-like black hole. We
assume that the nonlinear effects act only in the screening
of the electric charge generating virtual charges around the
real charges and currents and affects the geometry only
through the screened values of the real charges; i.e., we
study the screened Kerr-Newman black hole.
It is important to mention that when considering the

QED field of the electron, the gravitational and electro-
magnetic background fields of the Kerr-Newman black
hole are stationary [17]. Hence, according to the equiv-
alence principle, phenomena like the Sauter-Euler-
Heisenberg-Schwinger process or vacuum polarization
effects over a flat space-time can be locally applied to
the case of the curved Kerr-Newman-like geometry.
The outline of the paper is as follows: in Sec. II, we

revisit the Einstein-Euler-Heisenberg theory and its formu-
lation in terms of the dual Plebański variables. In Sec. III,
the Einstein-Euler-Heisenberg static electrically charged
black hole solution is presented. In Sec. IV, the Kerr-
Newman spacetime is reviewed. In Sec. V, we deduce the
Einstein-Euler-Heisenberg rotating black hole as a screened
Kerr-Newman one. In Sec. VI, a summary, some con-
clusions, and an outlook are presented.

II. THE EINSTEIN-EULER-HEISENBERG
THEORY AND DUAL VARIABLES

We revisit in this section the basic features of the weak
field one loop QED approximation of the full nonlinear
electrodynamics proposed by Euler and Heisenberg [1] in
the formalism introduced by Plebański [18] for stationary
solutions of Petrov type D.
The action for Einstein gravity minimally coupled to the

Euler-Heisenberg theory reads [1,19,20]

S ¼
Z
M4

d4xLGR þ
Z
M4

d4xLEH ð1Þ

¼ 1

16πG

Z
M4

d4x
ffiffiffiffiffiffi
−g

p
R

þ 1

4π

Z
M4

d4x
ffiffiffiffiffiffi
−g

p �
−Xþ 2α2

45m4
f4X2þ7Y2g

�
; ð2Þ

where R is the Ricci scalar curvature,
ffiffiffiffiffiffi−gp

is the square
root of the determinant of the metric gμν, G is the Newton’s

constant, which we will take G ¼ 1, m the electron mass,
and α the fine structure constant, and the variables X and Y
are the only two independent relativistic invariants con-
structed from the Maxwell field in four dimensions, which
are defined as

X ¼ 1

4
FμνFμν; Y ¼ 1

4
Fμν

�Fμν; ð3Þ

�Fμν is the dual of the Faraday tensor Fμν ¼ Aμ;ν − Aν;μ, and
it is defined as usual �Fμν ¼ 1

2
ffiffiffiffi−gp ϵμνσρFσρ, and ϵμνσρ is the

completely antisymmetric tensor that satisfies ϵμνσρϵμνσρ ¼
−4! [21]. The invariant X ¼ 1

2
ðE2 −B2Þ and the pseudoin-

variant Y ¼ −E · B. Notice that F0i ¼ Ei, is the electric
field, and �F0i ¼ − 1

2
ϵ0ijkFjk ¼ Bi, is the magnetic field

strength.
The equations of motion for the coupled Einstein-Euler-

Heisenberg system: the Faraday, the Maxwell, and the
Einstein equations read [22]

dF ¼ 0; d�P ¼ 0; Rμν −
1

2
Rgμν ¼ 8πTμν; ð4Þ

where d is the standard exterior derivative, F ¼ Fμνdxμ ∧
dxν the electromagnetic two-form, P ¼ Pμνdxμ ∧ dxν

the Plebański two-form that corresponds to the electric
field strength D and to the magnetic field H, and
�Pμν ¼ 1

2
ffiffiffiffi−gp ϵμνσρPσρ. The energy-momentum tensor reads

4πTμν ¼ LXð−Fμ
ρFνρ þ gμνXÞ þ gμνðL − XLX − YLYÞ;

ð5Þ

where L is the Euler-Heisenberg Lagrange density and the
subscripts on L denote differentiation.
Explicitly, the energy-momentum tensor for the Euler-

Heisenberg nonlinear electromagnetic field is given by

4πTμν ¼ ðFμ
βFνβ − gμνXÞ

�
1 −

16α2

45m4
X

�

−
16α2

45m4
gμν

1

2

�
X2 þ 7

4
Y2

�
: ð6Þ

The equations of motion derived from this action are
more easily written in terms of the Legendre dual descrip-
tion of nonlinear electrodynamics [18], which involves the
introduction of the Plebański tensor Pμν defined by

dLðX; YÞ ¼ −
1

2
PμνdFμν; ð7Þ

where LðX; YÞ is the Lagrangian density for the Euler-
Heisenberg nonlinear electrodyna-mics. Note that Pμν

coincides with Fμν for the linear Maxwell theory. In
general, it reads
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Pμν ¼ −
1

4π
ðLXFμν þ LY

�FμνÞ: ð8Þ

In our case, we have

Pμν ¼ 1

4π

�
Fμν −

4α2

45m4
f4XFμν þ 7Y�Fμνg

�
: ð9Þ

Notice that P0i ¼ Di, is the electric field strength, and
�P0i ¼ − 1

2
ϵ0ijkPjk ¼ Hi, is the magnetic field; therefore,

(9) are the constitutive relations of the Euler-Heisenberg
nonlinear electrodynamics. It is interesting to note
that �Pμν ¼ Bμ;ν − Bν;μ.
We denote by s and t the two independent invariants in

terms of the dual Plebański variables Pμν defined in the
following way:

s ¼ −
1

4
PμνPμν; t ¼ −

1

4
Pμν

�Pμν; ð10Þ

where �Pμν ¼ 1
2
ffiffiffiffi−gp ϵμνσρPσρ. The invariant s ¼ 1

2
ðD2 −H2Þ

and the pseudoinvariant t ¼ −D ·H.
The structural function Hðs; tÞ is written as

Hðs; tÞ ¼ −
1

2
PμνFμν − L: ð11Þ

For the Euler-Heisenberg theory, the structural function (up
to terms of higher order in α) reads

Hðs; tÞ ¼ s −
2α2

45m4
f4s2 þ 7t2g: ð12Þ

The equations of the motion for the coupled system
read [22]

d�P ¼ 0; dF ¼ 0; Rμν −
1

2
Rgμν ¼ 8πTμν; ð13Þ

with the energy-momentum tensor,

Tμν ¼
1

4π
½HsPμ

βPνβ þ gμνð2sHs þ tHt −HÞ�; ð14Þ

where subscripts on H denote differentiation. The energy-
momentum tensor for the Euler-Heisenberg nonlinear
electromagnetic field is given by

Tμν ¼
1

4π

�
ðPμ

βPνβ þ gμνsÞ
�
1 −

16α2

45m4
s

�

−
16α2

45m4
gμν

�
1

2
s2 þ 7

8
t2
��

: ð15Þ

To obtain the original variables, we use the constitutive or
material equations that relate Fμν with Pμν. These are

Fμν ¼ HsPμν þHt
�Pμν ¼ Pμν −

16α2

45m4

�
sPμν þ

7

4
t�Pμν

�
:

ð16Þ

III. ELECTRICALLY CHARGED STATIC
EINSTEIN-EULER-HEISENBERG BLACK HOLE

In order to obtain the Einstein-Euler-Heisenberg gener-
alization of the Reissner-Nordström solution, we consider
the following static and spherically symmetric black hole
metric:

ds2¼−
�
1−

2mðrÞ
r

�
dt2þ dr2

1− 2mðrÞ
r

þr2ðdθ2þ sin2θdϕ2Þ;

ð17Þ
and look for electrically charged black hole solutions.
For the electrically charged case, we assume the follow-

ing ansatz for the electromagnetic field [13,23]:

Pμν ¼
Q
r2
ðδ0μδ1ν − δ1μδ

0
νÞ: ð18Þ

This ansatz satisfies the electromagnetic Eq. (13). The
invariant s and the pseudoinvariant t, Eq. (10), read

s ¼ Q2

2r4
; t ¼ 0: ð19Þ

Therefore, integrating the Einstein equations, the electri-
cally charged static black hole solution reads

mðrÞ ¼ M −
Q̃2

2r
; ð20Þ

where the black hole charge is screened due to the Euler-
Heisenberg vacuum polarization effect [13,23],

Q2 → Q̃2 ¼ Q2

�
1 −

α

225π
E2
Q

�
: ð21Þ

This solution is interpreted as a screened Reissner-
Nordström one. When the electric field EQðrÞ≡ Q

r2Ec
of

the charged black hole is overcritical, electron-positron pair
productions take place, and EQ is screened down to its

critical value Ec ≡ m2c3
eℏ . This solution behaves asymptoti-

cally as the Reissner-Nordstrom one.

IV. KERR-NEWMAN SPACE–TIME

In this section, we will revisit the procedure for obtaining
the Kerr-Newman black hole solution without using the

ROTATING STRUCTURE OF THE EULER-HEISENBERG BLACK … PHYS. REV. D 105, 104046 (2022)

104046-3



Newman-Janis algorithm or some other complexification
methods. We write explicitly the ansatz for a Kerr-like
metric, the ansatz for the Maxwell electromagnetic field,
and solve the Einstein equations including the existing
hidden symmetry, which reduces the problem to solve only
two of the ten Einstein equations.

A. Kerr-Newman geometry

We begin with a Kerr-like metric, whose coefficients in
Boyer-Lindquist coordinates are independent of the coor-
dinates t and ϕ. Therefore, the spacetime geometry is
stationary and axially symmetric. The Killing vectors
associated with these two symmetries are ∂

∂t and
∂
∂ϕ. From

[24,25], we write the Kerr–like line element as follows:

ds2 ¼ −
�
1 −

2mðrÞr
Σ

�
dt2 þ Σ

Δ
dr2 −

4mðrÞra sin2 θ
Σ

dtdϕ

þ Σdθ2 þ
�
r2 þ a2 þ 2mðrÞra2 sin2 θ

Σ

�
sin2 θdϕ2;

ð22Þ
where

Σ¼ r2þa2cos2θ; Δ¼ r2þa2−2mðrÞr; ffiffiffiffiffiffi
−g

p ¼Σsinθ;

ð23Þ
a is the angular momentum per unit mass (Kerr parameter),
and the mass–energy function mðrÞ is a function to be
determined from the Einstein equations for the electro-
vacuum Kerr-Newman case.

B. Kerr-Newman electromagnetic field

The Maxwell’s electromagnetic field of the Kerr-
Newman solution is assumed to read [26]

A ¼ Aαdxα ¼ −
Qr
Σ

ðdt − a sin2 θdϕÞ: ð24Þ

The Faraday tensor F ¼ dA is thus the following;

F ¼ Q
Σ2

ðr2 − a2 cos2 θÞdr ∧ ðdt − a sin2 θdϕÞ

þ Q
Σ2

ar sin 2θdθ ∧ ½ðr2 þ a2Þdϕ − adt�; ð25Þ

or in component form and introducing the rotationally
induced magnetic dipole moment M ¼ Qa, they acquire
the form,

F10 ¼
Q
Σ2

ðr2 − a2 cos2 θÞ ¼ Q
Σ2

r2 −
M
Σ2

a cos2 θ; ð26Þ

F20 ¼ −
Q
Σ2

a2r sin 2θ ¼ −
M
Σ2

ar sin 2θ; ð27Þ

F13 ¼ −
Q
Σ2

ðr2 − a2 cos2 θÞa sin2 θ

¼ −
�
Q
Σ2

r2 −
M
Σ2

a cos2 θ

�
a sin2 θ; ð28Þ

F23 ¼
Q
Σ2

ar sin 2θðr2 þ a2Þ ¼ M
Σ2

r sin 2θðr2 þ a2Þ: ð29Þ

The components are not independent; they are related by
F13 ¼ a sin2 θF01 and aF23 ¼ ðr2 þ a2ÞF02. As mentioned
above, F01 ¼ E is the electric field, and �F01 ¼
−F02=ða sin θÞ ¼ B is the magnetic field strength.
It is straightforward to check that the electromagnetic

field Eq. (25) satisfies the field equations,

dF ¼ 0; d�F ¼ 0: ð30Þ

Asymptotically, the electric and magnetic fields have
dominant components,

Er ¼
Q
r2
; ð31Þ

Br ¼
2M cos θ

r3
ð32Þ

Bθ ¼
M sin θ

r3
: ð33Þ

This fact implies that Q is the charge of the black hole, and
M ¼ Qa is the induced magnetic moment [26].

C. The underlying symmetry

The Kerr-Newman spacetime belongs to the Plebański-
Carter [A] family [27,28], characterized by the metric form,

ds2 ¼ W
P
dp2 þ P

W
ðdτ þ q2dσÞ2

þW

R̂
dq2 þ R̂

W
ðdτ − p2dσÞ2; ð34Þ

that can be brought to the Kerr-like form Eq. (22) by
transforming coordinates p ¼ −a cos θ, q ¼ r, τ ¼ tþ aϕ,
σ¼ϕ=a, that gives P¼a2sin2θ, R̂¼ r2þa2−2rmðrÞ¼Δ,
W ¼ p2 þ q2 ¼ r2 þ a2cos2θ ¼ Σ; this means that the
relevant coordinates are only r and θ, and the Kerr-
Newman spacetime is a Petrov type D metric with the
only nonvanishing Weyl scalar being

Ψ2 ¼ −
mðrÞðrþ ia cos θÞ −Q2

ðr − ia cos θÞ3ðrþ ia cos θÞ ; ð35Þ

with an algebraically general electromagnetic field aligned
along the Debever-Penrose directions of the Weyl tensor.
In [29], it is shown that the Hamilton-Jacobi equation is

BRETÓN, LÄMMERZAHL, and MACÍAS PHYS. REV. D 105, 104046 (2022)

104046-4



completely separable for the Kerr-family metrics, due to the
presence of the so-called Carter‘s constant. This is con-
nected with the existence of the Stäckel-Killing tensor Kij

of rank 2 associated with a Killing-Yano tensor Yij [30]
given by

Y ¼ r sin θdθ ∧ ½−adtþ ðr2 þ a2Þdϕ�
þ a cos θdr ∧ ½dt − a sin2 θdϕ�: ð36Þ

Following Visinescu [30], it is straightforward to show
that the condition the electromagnetic field tensor Fμν in
Eq. ((25) fulfils in order to preserve the hidden symmetry of
the system is

Fk½iYk
j� ¼ 0: ð37Þ

The symmetry is manifested in the relations between
the Einstein tensor components Gμν of Eq. (22) and the
fulfilment of the analogous for the energy-momentum
tensor Tμν in Eq. (38), then being this a proof that the
Tμν components from the Kerr-Newman theory are com-
patible with Einstein equations for a Kerr-like metric.
Therefore, solving the equations Grr ¼ 8πTrr and
Gθθ ¼ 8πTθθ, guarantees the fulfilment of the whole set
of the Einstein equations.

D. Kerr-Newman energy-momentum tensor

The energy-momentum tensor of the linear Maxwell
theory is defined as follows:

8πTμν ¼ 2ðFμαFα
ν: þ XgμνÞ: ð38Þ

Hence,

8πTrr ¼ −
Q2

ΔΣ
; ð39Þ

8πTθθ ¼
Q2

Σ
; ð40Þ

8πTtϕ ¼ −
Q2a sin2 θ

Σ3
ðr2 þ ΔÞ −M2a sin2 θ

Σ3
ð41Þ

8πTtt ¼
Q2

Σ3
ΔþM2

Σ3
sin2 θ; ð42Þ

8πTϕϕ ¼ Q2 sin2 θ
Σ3

ðr2 þ a2Þ2 þM2Δ sin4 θ
Σ3

: ð43Þ

It is straightforward to see that the hidden symmetry
implies the following relations for the components of the
Kerr-Newman energy-momentum tensor in terms of the
two independent components Trr and Tθθ,

Ttϕ ¼ Δ2a sin2 θ
Σ2

Trr −
ða2 þ r2Þ

Σ2
a sin2 θTθθ; ð44Þ

Ttt ¼ −
Δ2

Σ2
Trr þ

a2 sin2 θ
Σ2

Tθθ; ð45Þ

Tϕϕ ¼ −
a2 sin4 θΔ2

Σ2
Trr þ

ða2 þ r2Þ2 sin2 θ
Σ2

Tθθ; ð46Þ

and Trr ¼ −Tθθ=Δ.

E. Solving the Einstein field equations

It is easy to check that as a consequence of the hidden
symmetry, the components Gtϕ, Gtt, and Gϕϕ of the
Einstein tensor can be written in terms of Grr and Gθθ

as follows:

Gtϕ ¼ Δ2asin2θ
Σ2

Grr −
ða2 þ r2Þ

Σ2
a sin2θGθθ;

Gtt ¼ −
Δ2

Σ2
Grr þ

a2sin2θ
Σ2

Gθθ;

Gϕϕ ¼ −
a2sin4θΔ2

Σ2
Grr þ

ða2 þ r2Þ2sin2θ
Σ2

Gθθ; ð47Þ

with

Grr¼−
2r2m0ðrÞ

ΣΔ
; Gθθ¼−

1

Σ
½rΣm00ðrÞþ2a2cos2θm0ðrÞ�:

ð48Þ

The Einstein field equations read

Gμν ¼ 8πTμν: ð49Þ

Therefore, the Einstein equation for the ðrrÞ component
reads

Grr ¼ −
2r2m0ðrÞ

ΣΔ
¼ 8πTrr ¼ −

Q2

ΣΔ
; ð50Þ

from which we get

m0ðrÞ ¼ Q2

2r2
; hence m00ðrÞ ¼ −

Q2

r3
: ð51Þ

Replacing Eq. (51) in the Einstein equation for the ðθθÞ
component,

Gθθ ¼ −
1

Σ
½rΣm00ðrÞ þ 2a2 cos2 θm0ðrÞ� ¼ 8πTθθ ¼

Q2

Σ
;

ð52Þ

it is straightforward to see that one obtains an identity.
Thus, the mass-energy function mðrÞ is given by
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mðrÞ ¼ M −
Q2

2r
: ð53Þ

Furthermore, the other Einstein equations are automati-
cally satisfied,

Gtϕ¼8πTtϕ¼−
Q2asin2θ

Σ3
ðr2þΔÞ−M2asin2θ

Σ3
ð54Þ

Gtt ¼ 8πTtt ¼
Q2

Σ3
ΔþM2

Σ3
sin2 θ; ð55Þ

Gϕϕ¼8πTϕϕ¼
Q2 sin2θ

Σ3
ðr2þa2Þ2þM2Δsin4θ

Σ3
: ð56Þ

Finally, replacing mðrÞ, Eq. (53), in Eq. (22), one obtains
the Kerr–Newman line element,

ds2 ¼ −
�
1 −

2Mr −Q2

Σ

�
dt2 −

ð2Mr −Q2Þ2a sin2 θ
Σ

dtdϕ

þ Σ
Δ
dr2 þ Σdθ2

þ
�
r2 þ a2 þ ð2Mr −Q2Þa2 sin2 θ

Σ

�
sin2 θdϕ2;

ð57Þ

where

Σ ¼ r2 þ a2cos2θ; Δ ¼ r2 þ a2 − 2MrþQ2: ð58Þ

It is important to note that by setting a ¼ 0 the static
Reissner-Nordström solution is recovered.

F. Event horizon of the Kerr-Newman black hole

In order to calculate the event horizon, one needs to solve
the equation Δ ¼ 0, this gives the two horizons:
Outer horizon,

rþ ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2 −Q2

p
: ð59Þ

Inner horizon,

r− ¼ M −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2 −Q2

p
: ð60Þ

The surface area of the charged rotating Kerr-Newman
black hole is

A ¼ 4πðr2þ þ a2Þ: ð61Þ

A static limit surface (gtt ¼ 0) is defined as r ¼ rst, with

rst ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2 − a2 cos2 θ

p
: ð62Þ

The static limit surface is located outside the event horizon
and crosses it at two polar points θ ¼ 0 and θ ¼ 2π. The
region rþ < r < rst between the static limit surface and the
horizon is called the ergosphere.

V. ROTATING EINSTEIN-EULER-HEISENBERG
BLACK HOLE

In this section, we will derive the rotating electrically
charged Einstein-Euler-Heisenberg black hole solution.
According to the QED interpretation of the Euler-
Heisenberg nonlinear electrodynamics, we assume that
the nonlinear effects act only in the screening of the
electric charge generating virtual charges around the real
charges and currents and affects the geometry only through
the screened values of the real charges; i.e., we obtain the
screened Kerr-Newman black hole solution [17].

A. Rotating Einstein-Euler-Heisenberg ansatz

We assume that the Einstein-Euler-Heisenberg metric
coefficients in Boyer-Lindquist coordinates are indepen-
dent of t and ϕ. Hence, the spacetime geometry is
stationary and axially symmetric. The Killing vectors
associated with these two symmetries are ∂

∂t and ∂
∂ϕ.

Therefore, we begin with the same ansatz Eqs. (22) and
(23) as for the Kerr-Newman case. This is once again a
Kerr-like type of line element.

B. Euler-Heisenberg electromagnetic field ansatz

The ansatz for the Euler-Heisenberg nonlinear electro-
magnetic potential of the dual Plebański variables reads

B ¼ Bαdxα ¼ −
Qa cos θ

Σ

�
dt −

ðr2 þ a2Þ
a

dϕ

�
: ð63Þ

Hence, the dual Plebański two-form �P ¼ dB is given by

�P ¼ 2Q
Σ2

ar cos θdr ∧ ðdt − asin2θdϕÞ

þ Q
Σ2

ðr2 − a2cos2θÞa sin θdθ ∧ ½dt − ðr2 þ a2Þdϕ�;
ð64Þ

or explicitly in components form and introducing the
rotationally induced magnetic dipole moment M ¼ Qa,

�P01 ¼ −
2Q
Σ2

ar cos θ ¼ −
2M
Σ2

r cos θ; ð65Þ

�P02 ¼ −
Q
Σ2

ðr2 − a2cos2θÞa sin θ

¼ −
Q
Σ2

r2a sin θ þM
Σ2

a2cos2θ sin θ; ð66Þ
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�P13 ¼ −
Q
Σ2

a2r sin 2θ sin θ ¼ −
2M
Σ2

ar cos θsin2θ; ð67Þ

�P23 ¼ −
Q
Σ2

ðr2 − a2cos2θÞðr2 þ a2Þ sin θ ð68Þ

¼−
Q
Σ2

r2ðr2þa2ÞsinθþM
Σ2

acos2θðr2þa2Þsinθ: ð69Þ

The components are not independent; they are related by
�P13 ¼ asin2θ�P01 and a�P23 ¼ ðr2 þ a2Þ�P02.
The Plebański two-form P reads

P ¼ Q
Σ2

ðr2 − a2 cos2 θÞdr ∧ ðdt − a sin2 θdϕÞ

þ Q
Σ2

ar sin 2θdθ ∧ ½ðr2 þ a2Þdϕ − adt�; ð70Þ

or explicitly, in components form,

P01¼−
Q
Σ2

ðr2−a2cos2θÞ¼−
Q
Σ2

r2þM
Σ2

acos2θ; ð71Þ

P02 ¼
Q
Σ2

ra2 sin 2θ ¼ M
Σ2

ar sin 2θ; ð72Þ

P13 ¼ −
Q
Σ2

ðr2 − a2 cos2 θÞa sin2 θ

¼ −
�
Q
Σ2

r2 −
M
Σ2

a cos2 θ

�
a sin2 θ; ð73Þ

P23 ¼
Q
Σ2

ra sin 2θðr2 þ a2Þ ¼ M
Σ2

r sin 2θðr2 þ a2Þ: ð74Þ

The components are not independent; they are related
by P13 ¼ a sin2 θP01 and aP23 ¼ ðr2 þ a2ÞP02. Clearly
when a ¼ 0 the static electromagnetic field is recovered,
P10 ¼ Q=r2. P01 ¼ D is the electric field strength, and
�P01 ¼ −P02=ða sin θÞ ¼ H is the magnetic field.
It is straightforward to check that the electromagnetic

field Eq. (70), its dual Eq. (64), and using Eq. (16) the field
equations,

d�P ¼ 0; dF ¼ 0; ð75Þ

are satisfied.
Asymptotically, the electromagnetic field is given by

Dr ¼
Q
r2
; ð76Þ

Hr ¼
2M cos θ

r3
ð77Þ

Hθ ¼
M sin θ

r3
: ð78Þ

The invariants s and t read

s ¼ 1

2
ðD2 −H2Þ ¼ 1

2

�
P2
01 −

P2
02

a2 sin2 θ

�

¼ Q2

2Σ2
−
4M2r2 cos2 θ

Σ4
; ð79Þ

t ¼ −D ·H ¼ −
P01P02

a sin θ
¼ 2Qr cos θ

Σ4
Mðr2 − a2 cos2 θÞ:

ð80Þ

It is important to mention that according to Ruffini et al.
[17], when considering the QED field of the electron,
gravitational and electromagnetic background fields of the
Kerr-Newman-like black holes are stationary. As far as only
QED phenomena, such as pair production and vacuum
polarization effects, are concerned, it is possible to consider
the electric and magnetic fields defined by Eq. (70) as
constants in the neighborhood of few wavelengths around
any event. Hence, according to the equivalence principle,
phenomena like the Sauter-Euler-Heisenberg-Schwinger
process over a flat spacetime can be locally applied to the
case of the curved Kerr-Newman-like geometry. Therefore,
we would restrict the effects of the vacuum polarization only
to the screening of the electric charge of the Euler-
Heisenberg nonlinear electrodynamics as in flat spacetime.

C. The underlying symmetry

The rotating Einstein-Euler-Heisenberg spacetime
Eq. (22) is assumed to belong to the Plebañski-Carter
[A] family [27], characterized by the metric form Eq. (34),
which can be brought to the Kerr-like form with the same
transformation as for the Kerr-Newman one; this means
that the relevant coordinates are only r and θ, and the
rotating Einstein-Euler-Heisenberg spacetime is a Petrov
type D metric with the only nonvanishingWeyl scalar given
by Eq. (35) with an algebraically general electromagnetic
field aligned along the Debever-Penrose directions of the
Weyl tensor. Moreover, this geometry admits a hidden
symmetry encapsulated in a Stäckel-Killing tensor Kij of
rank 2 associated with a Killing-Yano tensor Yij [30],
which reads as in Eq. (36), and it can be checked in a
straightforward way that the Plebański dual electromag-
netic field Pμν given in Eq. (70) fulfils the sufficient
condition to preserve the hidden symmetry, i.e., consider-
ing the Killing-Yano tensor Yij given by (36). Note that by
using the constitutive or material relation Eq. (16) the
fulfilment of the condition Fk½iYk

j� ¼ 0 reads

Fk½iYk
j� ¼HsPk½iYk

j� þHt
�Pk½iYk

j�

¼Pk½iYk
j� −

16α2

45m4

h
sPk½iYk

j� þ
7

4
t�Pk½iYk

j�
i
¼ 0: ð81Þ
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It can be shown by straightforward calculation that both
conditions,

Pk½iYk
j� ¼ 0; and �Pk½iYk

j� ¼ 0; ð82Þ

are satisfied. Therefore, the Plebański tensor Pμν and its
dual �Pμν, both maintain the hidden symmetry of the Kerr-
like family of metrics.
Conversely, using the constitutive or material relation

Eq. (9), the fulfilment of the conditions Pk½iYk
j� ¼ 0 and

�Pk½iYk
j� ¼ 0 implies that

Pk½iYk
j� ¼Fk½iYk

j�−
4α2

45m4
ð4XFk½iYk

j�þ7Y�Fk½iYk
j�Þ¼0: ð83Þ

Hence, it reduces to the conditions,

Fk½iYk
j� ¼ 0; �Fk½iYk

j� ¼ 0: ð84Þ

The symmetry is manifested in the relations between
the Gμν components Eq. (47) and the fulfilment of the
analogous for the energy-momentum tensor Tμν in
Eqs. (44)–(46), then being this a proof that the Tμν

components from the Euler-Heisenberg theory given
by Eq. (15) are compatible with Einstein equations for a
Kerr-like metric. Therefore, the fulfilment of equations
Grr ¼ 8πTrr and Gθθ ¼ 8πTθθ guarantees the fulfilment of
the whole set of the Einstein equations by the Euler-
Heisenberg matter.

D. Einstein-Euler-Heisenberg
energy-momentum tensor

The energy-momentum tensor for the Euler-Heisenberg
nonlinear electromagnetic field is given by

Tμν ¼
1

4π

�
ðPμ

βPνβ þ gμνsÞ
�
1 −

16α2

45m4
s

�

−
16α2

45m4
gμν

�
1

2
s2 þ 7

8
t2
��

: ð85Þ

First, we calculate the component Trr of the energy-
momentum tensor,

8πTrr ¼ −
1

Δ
Q2

Σ

�
1 −

16α2

45m4
e
s

�
−

16α2

45m4
e

Σ
Δ

�
s2 þ 7

4
t2
�
:

ð86Þ

Let us calculate the Tθθ component of the energy-
momentum tensor,

8πTθθ¼Σ
�
Q2

Σ2

�
1−

16α2

45m4
e
s

�
−
16α2

45m4
e

�
s2þ7

4
t2
��

: ð87Þ

One can easily notice that Ttt; Tϕϕ, and Ttϕ can be
written in terms of Trr and Tθθ as it happens for the case of
Kerr-Newman solution, Eqs. (44)–(46), due to the under-
lying symmetry.

E. Solving the Einstein-Euler-Heisenberg
field equations

According to the QED interpretation of the Euler-
Heisenberg nonlinear electrodynamics, all nonlinear effects
are associated with the dielectric constant of the vacuum,
i.e., clouds of virtual charges surrounding the real charges,
which account for such vacuum dielectric constant.
We calculate the components Grr and Gθθ, the other

three components can be written down from the relation-
ship with these ones as consequence of the hidden
symmetry, namely,

Gtϕ ¼ Δ2a sin2 θ
Σ2

Grr −
ða2 þ r2Þ

Σ2
a sin2 θGθθ;

Gtt ¼ −
Δ2

Σ2
Grr þ

a2 sin2 θ
Σ2

Gθθ;

Gϕϕ ¼ −
a2 sin4 θΔ2

Σ2
Grr þ

ða2 þ r2Þ2 sin2 θ
Σ2

Gθθ; ð88Þ

with

Grr¼−
2r2m0ðrÞ

ΣΔ
; Gθθ¼−

1

Σ
½rΣm00ðrÞþ2a2cos2θm0ðrÞ�:

ð89Þ

The Einstein field equations now read

Gμν ¼ 8πTμν: ð90Þ

The Einstein field equation for the ðrrÞ component reads

Grr ¼−
2r2m0ðrÞ

ΣΔ
¼ 8πTrr

¼−
1

Δ
Q2

Σ

�
1−

16α2

45m4
e
s
�
−
16α2

45m4
e

Σ
Δ

�
s2þ 7

4
t2
�
; ð91Þ

then

m0ðrÞ ¼ Q2

2r2

�
1 −

16α2

45m4
e
s
�
þ 16α2

45m4
e

�
Σ2

2r2

��
s2 þ 7

4
t2
�
:

ð92Þ

Now we prove the consistency between Grr ¼ 8πTrr and
Gθθ ¼ 8πTθθ by deriving the previous expression and
showing that it is consistent with m00 obtained from
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Gθθ ¼ 8πTθθ, remember, as mentioned in the Introduction,
we are considering the nonlinear effects, arising from the
Euler-Heisenberg electrodynamics, i.e., the terms with the
nonlinear parameter of the theory, being quasiconstant
affecting only the electric charge. Therefore, from (92),
one obtains

m00 ¼ −
Q2

r3

�
1 −

16α2

45m4
e
s

�

þ 16α2

45m4
e

�
Σ
r3
ðr2 − a2cos2θÞ

��
s2 þ 7

4
t2
�
: ð93Þ

While from Gθθ ¼ 8πTθθ,

Gθθ ¼ −rm00 −
2a2cos2θm0

Σ
¼ 8πTθθ

¼ Σ
�
Q2

Σ2

�
1 −

16α2

45m4
e
s

�
−

16α2

45m4
e

�
s2 þ 7

4
t2
��

; ð94Þ

clearing out m00 and then replacing m0 from Eq. (92),
one gets

m00 ¼ −
Q2

r3

�
1 −

16α2

45m4
e
s

�

þ 16α2

45m4
e

�
Σ
r3
ðr2 − a2cos2θÞ

��
s2 þ 7

4
t2
�
; ð95Þ

which is exactly the same as Eq. (93), proving the
consistency between Grr ¼ 8πTrr and Gθθ ¼ 8πTθθ and
the fulfillment of the ðθθÞ component of the Einstein field
equations.
Then we obtain the screening of the charge from m0,

Eq. (92), replacing the expressions for s and ðs2 þ 7t2=4Þ
as follows:

�
s2 þ 7

4
t2
�

¼ Q4

4Σ4

�
1þ 12

r2a2cos2θ
Σ4

ðr2 − a2cos2θÞ2
�
;

ð96Þ

then the expression for m0 can be written as

m0 ¼ Q2

2r2

�
1 −

4α2

45m4
e

Q2

Σ2

�
1 − 4

�
7
a2cos2θ

Σ
− 12

a4cos4θ
Σ2

þ 12
a6cos6θ

Σ3

��
1 −

a2cos2θ
Σ

���
; ð97Þ

in such a way that we can identify the charge screening as

Q̃2 ¼ Q2

�
1 −

4α2

45m4

1

Σ2

�
Q2 − 4

M2cos2θ
Σ

�
7 − 12

a2cos2θ
Σ

þ 12
a4cos4θ

Σ2

��
1 −

a2cos2θ
Σ

���
;

¼ Q2

�
1 −

4α2

45m4

Q2

Σ2
þ 16α2

45m4
H2

�
þ 16α2

15m4
Σ2ðD ·HÞ2;

¼ Q2

�
1 −

α

225π
D2

Q þ 4α

45π
H2

Q

�
þ 4α

45π
Σ2ðDQHQÞ2; ð98Þ

where the square of the radial components of the electro-
magnetic fields read

D2
Q ¼ Q2

Σ2D2
c
; H2

Q ¼ M2 cos2 θ
Σ3D2

c
; ð99Þ

and we have expressed the nonlinear parameter of the
theory in terms of the critical field defined in [13] as
Dc ¼ m2c3=ðeℏÞ.
In the Euler-Heisenberg system, it is not proper to make

the integration in Eq. (92), since the integrand comes from
the Euler-Heisenberg effective Lagrangian, which endows
the vacuum with a dielectric constant, and therefore, it is
valid only for quasiconstant fields, we consider it as a kind
of adiabatic correction to the Maxwell charge. Therefore,

m0 ¼ Q̃2

2r2
: ð100Þ

Following Ruffini et al. [13] according with the QED
interpretation, the screening of the Maxwell charge is
provided by the contribution of the Euler-Heisenerg non-
linear electrodynamics. Therefore, we restrict ourselves
only to the geometric contribution to m0ðrÞ and integrate
only the explicit dependence on the r-coordinate, in order
to remain in the framework of the Plebanski-Carter [A]
class of metrics and to have a type D solution. Thus, the
mass-energy function reads

mðrÞ ¼ M −
Q̃2

2r
; ð101Þ

with the screening given by Eq. (98).
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The other Einstein equations are automatically satisfied,

Gtϕ¼8πTtϕ¼−
Q̃2asin2θ

2Σ3
ðr2þΔÞ−M̃2asin2θ

2Σ3
; ð102Þ

Gtt ¼ 8πTtt ¼
Q̃2

2Σ3
Δþ M̃2

2Σ3
sin2 θ; ð103Þ

Gϕϕ¼8πTϕϕ¼
Q̃2 sin2θ
2Σ3

ðr2þa2Þ2þM̃2Δsin4θ
2Σ3

; ð104Þ

with M̃2 ¼ Q̃2a2.
Hence, the rotating Einstein-Euler-Heisenberg black

hole space–time reads

ds2 ¼ −
�
1 −

2Mr − Q̃2

Σ

�
dt2 þ Σ

Δ
dr2

−
ð2Mr − Q̃2Þ2a sin2 θ

Σ
dtdϕþ Σdθ2

þ
�
r2 þ a2 þ ð2Mr − Q̃2Þa2 sin2 θ

Σ

�
sin2 θdϕ2;

Σ ¼ r2 þ a2 cos2 θ;

Δ ¼ r2 þ a2 − ð2Mr − Q̃2Þ;

mðrÞ ¼ M −
Q̃2

2r
: ð105Þ

We have reduced the Einstein-Euler-Heisenberg rotating
black hole solution to a Kerr-Newman-like black hole one.
By setting a ¼ 0, the static screened Reissner-Nordstrom
solution is recovered. In order to gain some physical insight
into the energy-mass function, we could allow Eq. (101)
to vary from point to point in the spacetime. In this
framework, the solution behaves asymptotically as the
Kerr-Newman one.

F. Event horizon of the Einstein-Euler-Heisenberg
black hole

In order to calculate the event horizon, one needs to solve
de equation Δ ¼ 0; this gives the two horizons.
Outer horizon,

rþ ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2 − Q̃2

q
: ð106Þ

Inner horizon,

r− ¼ M −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2 − Q̃2

q
: ð107Þ

The surface area of a charged rotating black hole is

A ¼ 4πðr2þ þ a2Þ: ð108Þ

A static limit surface (gtt ¼ 0) is defined as r ¼ rst, with

rst ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − Q̃2 − a2cos2θ

q
: ð109Þ

The static limit surface is located outside the event horizon
and crosses it at two polar points θ ¼ 0 and θ ¼ 2π. The
region rþ < r < rst between the static limit surface and the
horizon is called the ergosphere.

VI. SUMMARY, CONCLUSIONS, AND OUTLOOK

Quantum electrodynamical vacuum corrections to the
Maxwell-Lorentz theory can be accounted for by the Euler-
Heisenberg effective nonlinear theory. The vacuum is
treated as a specific type of medium, the polarizability
and magnetizability properties of which are determined by
the clouds of virtual charges surrounding the real currents
and charges; this fact can be interpreted as a kind of
dielectric constant of the vacuum.
In this work, in the framework of the QED interpretation

of the Euler-Heisenberg electrodynamics, we have studied
an electrically charged rotating black hole, i.e., the rotating
Kerr-Newman-like black hole. Since when considering the
QED field of the electron, the gravitational and electro-
magnetic background fields of the Kerr-Newman black
hole are stationary, and according to the equivalence
principle, phenomena like the Sauter-Euler-Heisenberg-
Schwinger process or vacuum dielectric constant effects
over a flat space-time can be locally applied to the case of
the curved Kerr-Newman-like geometry. We assume that
the nonlinear effects of the Euler-Heisenberg electrody-
namics influence only the electric charge generating virtual
charges around the real charges and currents by means of a
screening of it and affects the geometry only through the
screened values of the real charges; i.e., we obtained the
screened Kerr-Newman black hole solution.
First, we obtain the Kerr-Newman black hole solution

without using the Newman-Janis algorithm or some other
complexification methods. We write explicitly the ansatz
for a Kerr-like metric, the ansatz for the Maxwell electro-
magnetic field, and solve the Einstein equations, including
the existing hidden symmetry which reduces the problem to
solve only two of the ten Einstein equations. Then, we
assume the same ansatz for a Kerr-like space-time and also
the ansatz for the Euler-Heisenberg electromagnetic field
for the dual Plebański variables. We assume the same
symmetries to the proposed space-time structure in order to
still have the Petrov type D characteristics and proceed to
calculate the screening of the electric charge and solve the
Einstein equations.
The next step would be to analyze the effects of the

screening in the trajectories of the different kinds of
massive particles as well as of the photons and the
modifications of the shape of the shadow of the screened
Kerr-Newman black hole. We are presently working on
that issue.
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