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Superradiance has been studied quite extensively in the context of static (charged) and rotating black
hole spacetime. In this paper, we report for the first time that for a minimally coupled scalar field, the
absorption cross section of a Schwarzschild black hole in its ringdown phase can be superradiant. Treating
the scattered scalar field as axion, we further computed its observable effects on the rotation of the plane of
polarization of photon, neutron dipole moment, and fermionic spin precession. All those observables
turned out to have interesting time dependence induced by the ringing black hole background. Our present
result opens up an intriguing possibility of observing the black hole merging phenomena through other
fundamental fields.
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I. INTRODUCTION

Classical and quantum aspects of superradiance have
been the subject of intense research in the context of black
hole (BH) physics [1–7]. Though this fascinating phe-
nomenon has not been observed yet, recent observation of
gravitational waves by LIGO and Virgo [8–19] has paved
an interesting possibility of observing such phenomena.
LIGO has observed a large number of BH-BH or BH-
neutron star merging phenomena which sets the beginning
of a new era of gravitational-wave astronomy. After such
observation, a surge of theoretical works has been devoted
toward understanding the nature of spacetime in the strong
gravity regime. In this parlance we ask the following
question: Along with the gravitational waves, are there
any complementary observables that can shed further light
on the nature of black holes?Motivated by this question in
this paper we shall study the scattering of a scalar field
minimally coupled with the gravitational wave(ringing)
black hole background.
After two black holes merge, it undergoes different

phases of evolution. The most significant one is the ring
down phase through which the merged black hole settles
down to its equilibrium states. During this phase, the black
hole undergoes damped oscillation which has been exten-
sively studied using the method of BH perturbation theory.
Because of inherent dissipation, the oscillation frequency is
quasinormal. Quasinormal mode (QNM) analysis of BHs
has been studied extensively in the literature [20–26]. In
this paper, we study the wave scattering phenomena to see
the response of such ringing black holes when interacting
with the incoming scalar waves. Scattering of various

fundamental fields has been widely studied in the static
BH background [27–31]. However, understanding the
ringing BHs interacting with the external waves not only
sheds light on how black holes react with their environ-
ment, further, it could also lead to observable signatures
which are complementary to the gravitational wave. Putting
it in a different perspective, the present study has got an
interesting resemblance with the well-known “preheating”
mechanism in inflationary cosmology where oscillating
inflaton field in the vacuum imparts its energy to daughter
fields through parametric resonance [32]. This leads to the
growth of outgoing flux of the daughter fields. The present
study shows similar phenomena where the out going flux is
enhanced compared to the incoming one after the inter-
action with the ringing black holes. In the present context,
we call it superradiance which is quantified by the
momentum-dependent negative absorption cross section.
As pointed out before, the flux of those resonant modes can
act as complementary observables along with the gravita-
tional waves during the ringing phase of the black holes.
Hence, our present study opens up possibilities of under-
standing BH merging phenomena with other fundamental
fields.
The present study will be confined to the ultralight scalar

field, which can be identified as an axion or axionlike
particle, which is of particular interest as a possible
candidate for dark matter. The detectability of dark matter
has been a pertinent issue and there have been several
proposals and experiments [33–35] dealing with the pos-
sible signature of the presence of dark matter. We have
considered in this paper various observables which contain
the signature of the oscillating scalar field arising due to the
ringing background. Such a time-varying effect would be
easier to detect. Throughout our paper, we use GW back-
ground and ringing background interchangeably.
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We have organized the paper as follows. In Sec. II, we
have described the background space-time in the ringing
phase of the Schwarzschild black hole. For more quanti-
tative details of the ringing background metric, one may
refer to Appendix A. Then we have presented the governing
equation of the scalar field propagating on this type of
oscillating space-time. In Sec. III, we have discussed the
way we define the absorption cross section in terms of
energy flux for an oscillating background like the ringing
Schwarzschild black hole, more details on this are also
outlined in Appendix. C. In Sec. IV, we have presented the
numerical results of the absorption cross section. Finally, in
Sec. V we have depicted the possibility of observing the
effect of oscillating scalar waves on the ringing back-
ground, giving rise to the superradiance.

II. BACKGROUND AND FRAMEWORK

For simplicity we consider ringing Schwarzschild BH
with metric, gμν → gsμν þ hμν, where gsμν is the standard
Schwarzschild metric. hμν is the gravitational wave (GW)
perturbation. We further consider the quadrupole oscilla-
tion, l0 ¼ 2, and azimuthal mode,m0 ¼ 0 (QNM frequency
does not depend on m0 [36]), of the Schwarzschild metric.
The oscillating (ringing) metric (see Appendix. A for
details) is expressed in radiation gauge [37], which entails
the correct asymptotic behavior of the GW flux,

hμν ¼
1

2
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×
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where, symbols are, I0
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2. sθ ¼
sin θ, cθ ¼ cos θ and Ylm is the spherical harmonics. The
time dependent part of the ringing fluctuation is expressed
as e−iωt, with ω being quasinormal frequency. The pertur-

bation variables are divided into parity odd (hðoÞ1 ; h2) and

parity even ðhðeÞ1 ; H;H1; K;GÞ function which are func-
tions of radial coordinate r. The Einstein’s equation
governing the ringing perturbation variables boils down
to the well known Regge-Wheeler equations [36,38,39]

d2Z̃i

dr2�
þ ðω2 − ViÞZ̃i ¼ 0; ð2:2Þ

where, i≡ ðE;OÞ are associated with Even and Odd
perturbation. r� ¼ rþ 2M lnðr=2M − 1Þ is the tortoise

coordinate. For quadrupole oscillation, the potentials
assume the following form,

VE ¼ fðrÞ 8ð3r
3 þ 3Mr2Þ þ 18M2ð2rþMÞ

r3ð2rþ 3MÞ2

VO ¼ fðrÞ
�
6

r2
−
6M
r3

�
; ð2:3Þ

where, fðrÞ ¼ 1 − 2M=r is the Schwarzchild metric
function and. M is mass of the black hole. The func-
tional dependence of odd parity variables on Z̃oddðrÞ and
even parity variables on Z̃evenðrÞ are explicitly derived
in [37,39]. The near horizon values of the ringing
fields will be parametrized by ðjZ̃oddðr → 2MÞj ¼ Oh;
jZ̃evenðr → 2MÞj ¼ EhÞ.
Our goal is to compute the absorption cross section of the

ultralight scalar field in the ringing Schwarzchild back-
ground just described. The equation of a minimally coupled
scalar field is

□gϕþ μ2ϕ ¼ 0: ð2:4Þ

where μ is the mass of the scalar field. Importantly, in our
analysis we can always maintain scalar field amplitude
ϕ < hμμ by multiplying small number as (2.4) remains
invariant under constant scaling. Using such scaling, scalar
energy momentum tensor can always be made subleading
compared to that of the GW background. With this
assumption we solve scalar field perturbativly in terms
of GW fluctuation, hμν. For simplicity, most of our dis-
cussion will be for μ ≈ 0. One of the potential candidate
scalar fields could be ultralight axion which is of interest as
a potential dark matter [40] candidate. Considering the
spherical harmonic expansion of the scalar field, ϕ ¼P

N lmξ
lmðt; rÞYlmðθ;ϕÞ, where N lm being normalization

constant, (2.4) can be transformed into,

Lsξ
lm þ

X
cγ

PlmcγðhÞξcγ þ
X
cγ

P̄lmcγðh�Þξcγ ¼ 0: ð2:5Þ

Where Ls is the radial differential operator corresponding
to static Schwarzschild space-time;

Lsξ
lm ¼ −∂2

t ξ
lmðt; rÞ þ fðrÞ 1

r2
∂rfr2fðrÞ∂rξ

lmðt; rÞg

− fðrÞ lðlþ 1Þ
r2

ξlmðt; rÞ

and Plmcγ; P̄lmcγ , (see Appendix B for detail expression)
are the differential operators dependent on the first-order
complex and its conjugate part of the metric fluctuation “h”
respectively. Gravitational-wave background naturally
breaks spherical symmetry, due to which different angular
momentum modes of the scalar field will be coupled to
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each other. Following perturbative approach, the field ξlm is
expanded as,

ξlmðt; rÞ ¼ ξlm0 ðt; rÞ þ αξlmð1Þðt; rÞ þ � � � ; ð2:6Þ

where, α counts the order of hμν. Now, we solve

Lsξ
lm
0 ¼ 0;

Lsξ
lm
ð1Þ þ

X
cγ

Plmcγξ
cγ
0 þ

X
cγ

P̄lmcγξ
cγ
0 ¼ 0: ð2:7Þ

By using the properties of the inhomogeneous differential
equation, we decomposed, ξlmð1Þ ¼ ξlm1 þ ξ̄lm1 , such that,

Lsξ
lm
1 þ

X
cγ

Plmcγξ
cγ
0 ¼ 0; Lsξ̄

lm
1 þ

X
cγ

P̄lmcγξ
cγ
0 ¼ 0:

ð2:8Þ

The above set of equations can be thought of as scalar
waves propagating in the static Schwarzschild (gsμν) back-
ground with oscillatory source term [41]. Therefore, to
solve this we set the following ingoing initial boundary
condition near the horizon of the static black hole,

ξlm0 ¼N 0

�
ζlm0 þ ðr− 2MÞ ð16M

2k2 − lðlþ 1ÞÞ
2Mð4iMk− 1Þ ζlm0 þ � � �

�

ð2:9Þ

with arbitrary normalization constant ζlm0 . N 0 ¼
e−iktfðrÞ−2iMk, which corresponds to the ingoing mode
near the Schwarzschild horizon of momentum k.

III. DEFINING THE ABSORPTION
CROSS SECTION

Usually one defines the absorption cross section in the
asymptotic flat space region. To compute such quantity for
the ringing black hole we propose the following method:
Spatial section is divided into region-I (shaded) with ringing
background and region-II with pure Schwarzschild (see
Fig. 1). Between the regions, a hypothetical surface, named
as “interaction surface,” is defined at r ¼ rint, where at
t ¼ tint ¼ r�int, the incoming scalar wave interacts with the
gravitational wave. Considering Eq. (2.9), we numerically
solve for eachmode of the scalar field up to the first order inh
in the region-I described as,

ξklmI ðt; rÞ ¼ ξlm0 þ ξlm1 þ ξ̄lm1 þ � � � ð3:1Þ

In the region-II, since we consider the pure Schwarzschild
background, the solution will be

ξklmII ðt; rÞ ¼ ξlms with Lsξ
lm
s ¼ 0; ð3:2Þ

The above equation is a second order partial differential
equation. To solve such Eq. (3.2) in region-II, the natural
time-dependent boundary condition can be taken as,

ξklmII ðt; rÞj∀ t;r→rint ¼ ξklmI ðt; rÞj∀ t;r→rint

∂rξ
klm
II ðt; rÞj∀ t;r→rint ¼ ∂rξ

klm
I ðt; rÞj∀ t;r→rint

ξklmII ðt; rÞjt→∞;∀ r ¼ ξklm0 ðt; rÞjt→∞;∀ r

∂tξ
klm
II ðt; rÞjt→∞;∀ r ¼ −ikξklm0 ðt; rÞjt→∞;∀ r ð3:3Þ

Within the light cone the quasinormal oscillation is expo-
nentially decaying in time. Hence, in t → ∞ fluctuation part
of the scalar field ðξlm1 ; ξ̄lm1 Þ at the interaction surface
vanishes. This essentially sets our last two boundary con-
ditions which make sure that the scalar field absorption cross
section of ringing BH boils down to static Schwarzschild
value within the characteristic time scale of the oscillation
τ ∼ 2π=ω. Using the boundary condition Eq. (3.3), we solve
Eq. (3.2)within the region t ≥ r�, of the box bounded in ðr; tÞ
plane as ð½rint;∞�; ½tint;∞�Þ. Asymptotically, the gravita-
tional wave propagates along the outgoing null coordinate.
Hence, once solution is obtained, we transform it into
outgoing null coordinate ðt; rÞ → ðu ¼ t − r�; rÞ and define
the absorption cross section, which will naturally be rint
dependent.

A. Energy flux

In outgoing null coordinate, the energy flux (see
Appendix C for details) measured by a stationary observer
at r → ∞ is,

∂uE ¼
Z

dΩr2½T ru − T uu� ð3:4Þ

and associated absorption cross section for individual k
mode is defined as

FIG. 1. Interaction of the scalar wave with the gravitational
wave. The shaded region(I) represents the spatial extent of
ringing fluctuation, outside (II) is considered to be static
Schwarzschild space-time.
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σklringðu; rintÞ ¼
∂uEkl

∂uEk
in

; ð3:5Þ

where T 0s are the components of the energy-momentum
tensor. ∂uEk

in is the energy flux of the incoming plane wave
defined at the infinity. The methodology we adopted to
solve time dependent system is not particularly suitable to
identify the appropriate normalization. To proceed, we note
the approximate asymptotic solution as,

ξklms ðt; rÞ ¼ Ak
lmðu; rintÞ

r
e−ikðuþ2r�Þ þ Bk

lmðu; rintÞ
r

e−iku:

ð3:6Þ

The ingoing/outgoing coefficients ðAk;ω
lm =Bk;ω

lm Þ will match
with that of the static Schwarzschild case in u → ∞
limit. Following the standard procedure [29], assumption
of incoming wave along z-direction in the asymptotic
infinity sets the constant normalization factor (see
Appendix C for details) to be, N klm ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4πð2lþ 1Þp
δ0m=

ð2ikAk
lmðu → ∞; rintÞÞ. Using this, the ingoing plane wave

at the asymptotic infinity is assumed as,

ϕin∼
R P

N klmAk
lmðu;rintÞYlmðΩÞdΩR P ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4πð2lþ1Þp
Y0
l ðΩÞdΩ

2ike−ikðuþ2z�Þ: ð3:7Þ

Where, time dependent amplitude is averaged over angle.
With all these ingredients we will now numerically com-
pute the absorption cross section σklring.

IV. NUMERICAL COMPUTATION OF σklring

As mentioned earlier, the gravitational wave background
is assumed to be quadrupole oscillation [Eq. (2.2)] with
the QNMfrequency ω ¼ ð0.74734 − i0.17792ÞðrhÞ−1 [42],
where, Schwarzschild horizon radius rh ¼ 2M. We express
all physical parameters in unit of rh. Anyway, the frequency
is known to be the same for both even and odd parity
perturbation [42–44]. Ringdown phase in general should
contain all possible QNM modes[43]. However, we

consider the one which is long-lived. The background
ringing field solutions are so chosen that the perturbative-
ness defined as δg=gs ∝ hμμ ≪ 1 is maintained for a wide
range of initial parameters. Given the ringing black hole
background with a specific QNM frequency, we solve for
the scalar field Eq. (2.5). Importantly, we should reproduce
the well known static value of the absorption cross section
[45] associated with Schwarzschild black hole in the limit,
limu→∞ σklringðu; rintÞ ¼ σsðk; lÞ. Hence, before the static

limit is reached over the timescale τ ∼ 40, σklringðu; rintÞ will
also undergo a ring down phase. It is during the ring-down
phase, when the superradiance is observed.
Elaborating more on the numerics, our final solutions

have been observed to be stable for a wide range of initial
conditions parametrized by ζlm0 within ∼10−2 − 20. Up to a
small fluctuation our results are also stable for a range of
asymptotic radial infinity within r ¼ 75rh − 100rh. This
fluctuation may be arising due to our approximate nor-
malization. Nonetheless, the characteristic features of
absorption cross section for different angular momentum
modes have been observed to be the same. Hence, we
particularly focus on l ¼ 0 mode. As emphasized in the
beginning the most important characteristics emerged out
from our study is the superradiant(negative) absorption
cross section in its ringing phase for all angular momentum
mode (see Figs. 2, 3, and 4).
For the given ω and ðEh;OhÞ, the maximum superradiant

absorption cross section amplitude symbolized as σklmaxNðkÞ,
decreases with increasing momentum k. We also deri-
ved a fitting formula σkl¼0

maxNðkÞ ¼ −1021þ 20065k−
131798k2 þ 292061k3, within the range ðk¼0.06→0.14Þ.
Following our expectation, we observe the existence of a
maximum value of kmax above which superradiance van-
ishes. However, absorption cross section will still remains
oscillatory with a positive magnitude, and attains its static
Schwarzschild value in ring down timescale (see Fig. 2). The
physical reason behind vanishing of superradiance can be
attributed to the decoupling of higher momentum modes
from the gravitational wave fluctuations. Our numerical
analysis provides: l ¼ 0; kmax ∼ 0.13; l ¼ 1; kmax ∼ 0.45;
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FIG. 2. Left panel: we have plotted σklring with respect to time considering l ¼ 0, k ¼ 0.1 for different rint. In the inset the variation of
maximum negative value symbolized as σklmaxN is plotted with respect to rint Right panel: we have plotted the same for l ¼ 0 and vary k.
The inset shows the variation of maximum negative value σklmaxNðkÞ with respect to k. All plots are from μ ¼ 0.
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l ¼ 2; kmax ∼ 1.0; l ¼ 3; kmax ∼ 1.5; l ¼ 4; kmax ∼ 1.8 for
(Eh ≃Oh ∼ 10−3 and rint ¼ 20). Of course decreasing the
background amplitude would make kmax lower.
As our methodology suggests, the ringing phase of the

absorption cross section and its amplitude depend on the
location of the interaction surface rint shown in Fig. 2.
For each ðl; kÞ value, there exists a maximum possible
superradiant amplitude [σklmaxNðrintÞ] as one varies rint. For
example, for l ¼ 0 it occurs approximately at rint ∼ 20, for
higher range k values. In the low k region this location
of maximum superradiant amplitude shift toward higher
rint ∼ 30 − 40. This behavior can again be fitted as
σkl¼0
maxNðrintÞ ¼ 63.7 − 14.4rint þ 0.6r2int − 0.007r3int within

the range ðrint ¼ 10 → 30Þ. Each superradiant mode has
been observed to be saturated to a particular negative value
of the absorption cross section for large rint. So far we
discussed about the absorption cross section for fixed value
of Eh ≃Oh ∼ 10−3. However, background gravitational
wave amplitude plays a crucial role in enhancing the out-
going amplitude of the scalar wave compared to the
incoming one. This fact motivates us to look into the
variation of σklring with respect to ðEh;OhÞ as shown Fig. 4.
Decreasing background amplitude of ðEh;OhÞ reduces the
overall amplitude of σklring in its ringing phase as shown in
the Fig. 4, and finally superradiance ceases to exist at
around Eh;Oh ¼ 10−4 (in units of black hole mass) for
l ¼ 0. This conclusion has been observed to be true for
higher l mode as well. Thus far we discussed a particular

angular momentum mode l ¼ 0. Behavior of σklringðu; rintÞ
for different l is important. For a given location of the
interaction surface (rint ¼ 20), the left panel of Fig. 3 shows
that in the lower momentum region (k ¼ 0.2) the super-
radiant amplitude first increases up to l ¼ 2 and then
become suppressed after l ¼ 3. This does not hold true
for all the momentummode as can be seen in the right panel
of Fig. 3 for k ¼ 0.4. Because of nontrivial dependence on
rint described before, maximum superradiant amplitude
happens to be at different location of the interaction surface
rint for different ðl; kÞ. Hence, overall our study suggests
that with increasing l the enhancement of superradiance
amplitude can be attributed to “mode-mixing” and an
increasing number of modes contributing as a background
source term in Eq. (2.7). A similar kind of feature has been
observed for moving black holes where absorption cross
section has been shown to diverge logarithmically with
angular momentum l [4].
Finally, we perform preliminary analysis for (Fig. 4)

massive scalar. What we observed is that for a given mode,
ðω̃ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ μ2

p
; lÞ and rint, as we increase the mass of the

scalar field, superradiant amplitude increases toward a
maximum value and then after it decreases toward zero
for a critical value of μcri < ω̃. For example μcri ∼ 0.071 in
(Fig. 4) for l ¼ 0; ω̃ ¼ 0.1; rint ¼ 20. Our primary obser-
vation is that along with the increasing l, the μcri is
increasing approximately linearly. Detailed study for the
massive scalar and it bound will be reported elsewhere.
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FIG. 3. The partial absorption cross section is plotted with respect to time for two frequencies k ¼ 0.2 (left) and k ¼ 0.4 (right) for
different l. All plots are from μ ¼ 0.
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FIG. 4. Left panel: we have plotted σklring with respect to time for l ¼ 0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ μ2

p
¼ 0.1; rint ¼ 20 for different mass of the scalar field.

Right panel: we have plotted the same for l ¼ 0; k ¼ 0.1; rint ¼ 20 and vary Eh ¼ Oh for massless case, μ ¼ 0.
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V. OBSERVABLES EFFECTS OF THE
OSCILLATING SCALAR FIELD

Superradiance phenomena is known to occur in the
context of static Kerr and charged black hole [6]. However,
most striking feature of our present study is its oscillatory
nature which is observed to carry the information of black
hole though their quasinormal modes. Any time varying
observable is always physically motivating when it comes
to observation compared to the static one. Identifying
the ringing scalar field as axion, we calculate multiple
observables, which can in principle be observed in labo-
ratory [46,47]. Treating axion field as time varying back-
ground, and considering well known interaction term,
Lint ∼ gϕFμνF̃μν, we calculated time varying induced rota-
tion of linear photon polarization expressed as θ ¼ −iðΔ̃ϕ −
Δ̃�

ϕÞ ∼ gϕðtÞ (see Appendix D). Where, Δ̃ϕ ¼ R
t i
2
g∂t0ϕ,

with axion-photon coupling taken as, g ∼ 10−13 –
10−14 GeV−1 [48]. Experimental searches of such rotation
due to background axion has been extensively studied
in the literature [49,50]. Our analysis suggests, there
would be an extra time varying contribution originating
from the ringing oscillation, that can in principle be observed
in near future. The time varying nucleon electric dipole
moment ðNedmÞ, is calculated as Nedm ¼ hϕðtÞ, con-
sidering the following nucleon(N)-axion-photon interaction
L ∼ − i

2
hϕN̄σμνγ5NFμν. The value of axion-nucleon cou-

pling h, is typically set from decay constant for QCD axion
[35]. The time profile of the above mentioned two observ-
ables are depicted in the left panel of Fig. 5 for different
momentum of the axion.
Finally we consider axial axion-fermion type coupling

L ∼ − i
2
ζ∂μϕψ̄γ

μγ5ψ , which describes a physical system
where spin of the fermion will be precessing around the
direction of local momentum, v∂tϕ, of the axion, as can be
seen from the Hamiltonian arising due to this coupling,
H ∼ ζ∂tϕv · σψ , where σψ is the fermion spin operator.
That leads to a shift in the energy levels of the fermions
(nuclear or electron), ΔEnmðtÞ ∼ ζjvj∂tϕ due to its axial
moment. The coupling parameter ζ ∼ 10−9 GeV−1, [51] is

constrained from supernova cooling rates, and v is the
relative velocity (in astrophysical context galactic virial
velocity jvj ∼ 10−3 may be used) between axion and fermion
[35]. The time variation of this energy shift is shown in right
panel of the Fig. 5. Detecting such extra time varying
contribution to the energy shift is promising given the several
existingproposal ofmeasuring thosequantities [52] using the
method of “precision magnetometry” using cold molecules
[53]. In order to show oscillating features of all the observ-
ables, we consider s-wave (l ¼ 0) outgoing mode of the
ringing axion and subtracted the effect due to static black
hole. Time is measured from a point tinf ¼ rinf on the light
cone, where the detector is assumed to be placed [54,55].

VI. CONCLUSIONS

In spite of being widely discussed in the literature, recent
observation of gravitational waves has led to a resurgence of
exploring the phenomena of black hole superradiance in a
more general gravitational setting. Such phenomena were so
far shown to exist in Kerr and charged black hole back-
ground. In this paper,we report for the first time that the black
hole in its ringing phase can also lead to superradiance when
interacting with an incoming scalar wave. Apart from
detecting gravitational waves, our present study opens up
interesting possibilities of observing black hole merging
phenomena through the complementary observables in terms
of other fundamental fields. The basic mechanism behind
this superradiance is simple. When an incoming scalar wave
passes through the ringing GW background, gravitational
energy can be transferred into the scalar wave leading to the
enhancement of its out-going flux. This is precisely what
makes the scalar field absorption cross section σklring also
going through the ringing phase. Before settling down to its
standard Schwarzschild value, σklring in its ringing phase
assumes the negative value indicating the superradiance
phenomena in the ringing black hole background. Finally
we computed different possible time varying observables
through axion-photon, axion-fermion coupling. All the
observables namely, rotation of photon polarization (θðtÞ),
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FIG. 5. Real part of the outgoing axion wave, subtracting the contribution from static black hole, has been plotted in the left panel, with
respect to time for a fixed frequency, k ¼ ð0.1; 0.2; 0.3; 0.4Þ. And the time derivative of the same quantity has been plotted in the right
panel. Time is measured from a point tinf ¼ rinf on the light cone. The location of the interaction surface is taken as rint ¼ 30.
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nucleon electric dipole moment (NedmðtÞ) and shifting of the
energy levels (ΔEnmðtÞ) due to fermionic axial moment,
naturally encode the ringing oscillation through the axion
coupling.
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APPENDIX A: METRIC CORRESPONDING TO
BLACK HOLE RING DOWN PHASE IN

RADIATION GAUGE

In this section, we will discuss how the metric describing
the ringing black hole came about, mainly following two
defining papers [36,37] (for corrected typos one may refer
to [38]) of black hole perturbation theory. We consider

gravitational perturbation, hμν, on a static Schwarzschild
metric (gsμν) as,

gμν → gsμν þ hμν ðA1Þ

Regge-Wheeler [36] found that the perturbation, hμν, can
be decomposed into even and odd parity and it was shown
that the odd parity perturbation equations would boil down
to a Schrodinger like second order differential equation.
Zerrili [37] found the same type of equation for even parity
perturbation. Here we will briefly review the gauge choice
given in Zerilli, keeping up the notations (suppressing the
space-time index, μ, ν, all the tensorial quantity written in
bold format using spherical harmonics index, l, m, of the
tensor perturbation) intact. Putting together, the even (“e”)
and odd parity (“o”) perturbation can be written as

hlm ¼
X
lm

½hðeÞ
lm þ hðoÞ

lm � ðA2Þ

where,

hðoÞ
lm ¼ i

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lðlþ 1Þ

p �
ih0lmðt; rÞcð0Þlm þ h1lmðt; rÞclm −

1

2r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 1Þðlþ 2Þ

p
h2lmðt; rÞdlm

�
ðA3Þ

and

hðeÞ
lm ¼

�
1 −

2M
r

�
H0lmðt; rÞað0Þlm −

ffiffiffi
2

p
iH1lmðt; rÞað1Þlm þ

�
1 −

2M
r

�
−1
H2lmðt; rÞalm

−
1

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lðlþ 1Þ

p
ðihðeÞ0lmðt; rÞbð0Þ

lm þ ihðeÞ1lmðt; rÞblmÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
flðlþ 1Þðl − 1Þðlþ 2Þ=2g

p
Glmðt; rÞflm þ

ffiffiffi
2

p �
Klmðt; rÞ −

1

2
Glmðt; rÞ

�
glm ðA4Þ

The explicit form of the basis (að0Þlm…glm) can be found in [37]. However, for completeness let us provide the expressions of
those ten independent basis tensors in terms of Gαβ

μν ¼ ðδαμδβν þ δβμδανÞ as,

ðað0Þlm Þμν ¼
1

2
YlmGtt

μν; ðað1Þlm Þμν ¼
iffiffiffi
2

p YlmGtr
μν; ðalmÞμν ¼

1

2
YlmGrr

μν;

ðbð0Þ
lm Þμν ¼

irffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lðlþ 1Þp ð∂θYlmGtθ

μν þ ∂ϕYlmG
tϕ
μνÞ; ðblmÞμν ¼

rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lðlþ 1Þp ð∂θYlmGrθ

μν þ ∂ϕYlmG
rϕ
μνÞ;

ðcð0Þlm Þμν ¼
rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2lðlþ 1Þp
�
1

sθ
∂ϕYlmGtθ

μν − sθ∂θYlmG
tϕ
μν

�
;

ðclmÞμν ¼
irffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2lðlþ 1Þp
�
1

sθ
∂ϕYlmGrθ

μν − sθ∂θYlmG
rϕ
μν

�
;

ðdlmÞμν ¼
−ir2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2lðlþ 1Þðl − 1Þðlþ 2Þp
�
−

1

2sθ
XlmGθθ

μν þ sθWlmG
θϕ
μν þ sθ

2
XlmG

ϕϕ
μν

�
;

ðglmÞμν ¼
r2

2
ffiffiffi
2

p ðYlmGθθ
μν þ s2θYlmG

ϕϕ
μν Þ;

ðflmÞμν ¼
r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2lðlþ 1Þðl − 1Þðlþ 2Þp
�
1

2
WlmGθθ

μν þ XlmG
θϕ
μν −

s2θ
2
WlmG

ϕϕ
μν

�
; ðA5Þ
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where, Xlm¼2∂ϕð∂θ−cotθÞYlm and Wlm¼ð∂2
θ−cotθ∂θ−

ð1=sin2θÞÞYlm, also. Now there are 10 components (3 for
odd parity and 7 for even parity) according to the
symmetric condition of the gravitational metric. Under
diffeomorphism, xμ → xμ þ ζμ, the perturbation hlm trans-
forms as

h̃lm ¼ hlm − 2½∇ζlm�s ðA6Þ

where, the symmetric covariant derivative acts as,
½∇ζlm�s → ð∇μζ

lm
ν þ∇νζ

lm
μ Þ=2. So we can fix total 4

components out of the 10 components of the perturbation.
For the odd parity part of the perturbation we consider

the gauge transformation as,

ζðoÞlm ¼ i
r
Λlmðt; rÞð0; 0;LYlmðΩÞÞ ðA7Þ

where, L ¼ −ifêϕ∂θ − êθð1= sin θÞ∂ϕg, êθ and êϕ are the
unit vectors along θ and ϕ respectively. Consequently the
components of the perturbation transform (A6) as

hðoÞ
lm ¼ i

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lðlþ 1Þ

p �
i

�
h0lmðt; rÞ −

∂Λlm

∂t
�
cð0Þlm ðΩÞ

þ
�
h1lmðt; rÞ − r2

∂
∂r

�
Λlm

r2

��
clmðΩÞ

−
1

2r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 1Þðlþ 2Þ

p
ðh2lmðt; rÞ

þ 2Λlmðt; rÞÞdlmðΩÞ
�

ðA8Þ

One of the components can be fixed to be zero by adjusting
Λlmðt; rÞ. To get the suitable asymptotic behavior of the
gravitational wave flux the asymptotic nature of the
components should be fixed in such a way that they behave
as 1=r [56] near spatial infinity. For which we resort to fix

hðNÞ
0lmðt; rÞ to be zero,

hðNÞ
0lmðt; rÞ ¼ 0 ⇒ h0lmðt; rÞ ¼

∂Λlm

∂t ⇒ Λlm

¼ −
1

iω
h0lmðt; rÞ ðA9Þ

the temporal part of the perturbation has been taken as
e−iωt. At this moment we want to state that in the following
discussion “N” signifies the transformed component and
the quantities without “N” denote the components in
Regge-Wheeler’s [36] gauge. The motivation for the
modification of gauge transformation stems from the fact
that one would get the suitable asymptotic behavior of the
gravitational wave flux in r → ∞. Now coming back,
because of the new gauge we get the components as

hðNÞ
2lmðt; rÞ ¼ h2lmðt; rÞ þ 2Λlmðt; rÞ ¼ 2Λlmðt; rÞ

¼ −
2

iω
h0lmðt; rÞ ðA10Þ

(for the functional form of the perturbation parameters
written in Regge-Wheeler gauge, look at [37]) and another
nonzero component

hðNÞ
1lmðt; rÞ ¼ h1lmðt; rÞ − r2

∂
∂r

�
Λlm

r2

�
ðA11Þ

Einstein equation [38] in Regge-Wheeler gauge, governing
the odd parity perturbation gives

ω2h1lm −
iωdh0lm

dr
þ 2iωh0lm

r

− ðr − 2MÞðl − 1Þðlþ 2Þ h1lm
r3

¼ 0 ðA12Þ

Substituting h0lmðt; rÞ ¼ −iωΛlmðt; rÞ,

ω2h1lm − ω2
dΛlm

dr
þ ω2

2

r
Λlm

− ðr − 2MÞðl − 1Þðlþ 2Þ h1lm
r3

¼ 0 ðA13Þ

using λ ¼ ðl − 1Þðlþ 2Þ=2, we get from this equation

hðNÞ
1lmðt; rÞ ¼

2λ

ω2r2

�
1 −

2M
r

�
h1lm ðA14Þ

Considering only the quadrupole perturbation (l ¼ 2) and
choosing m ¼ 0, we get the metric corresponding to odd
parity perturbation in Zerilli gauge as,

hOddμν ¼

0
BBBBB@

0 0 0 0

0 0 0 hðNÞ
1 ðt; rÞsθ∂θY0

2

0 0 0 1
2
hðNÞ
2 ðt; rÞðcθ∂θY0

2 − sθ∂2
θY

0
2Þ

0 hðNÞ
1 ðt; rÞsθ∂θY0

2
1
2
hðNÞ
2 ðt; rÞðcθ∂θY0

2 − sθ∂2
θY

0
2Þ 0

1
CCCCCA

ðA15Þ
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For the even parity part of the perturbation we consider the following gauge transformation,

ζðeÞlm ¼ M0ðt; rÞYlmðΩÞêt þM1ðt; rÞYlmðΩÞêr þM2ð0;∇YlmÞ ðA16Þ

where, ∇ ¼ êθ∂θ þ êϕð1= sin θÞ∂ϕ, consequently the even parity components of the perturbation transform (A6) as

hðeÞ
lm ¼

�
1 −

2M
r

��
H0lmðt; rÞ − 2

�
1 −

2M
r

�
−1
�∂M0

∂t −
M
r3

ðr − 2MÞM1

��
að0Þlm

−
ffiffiffi
2

p
i

�
H1lmðt; rÞ −

�∂M1

∂t þ ∂M0

∂r −
2M

rðr − 2MÞM0

��
að1Þlm

þ
�
1 −

2M
r

�
−1
�
H2lmðt; rÞ − 2

�
1 −

2M
r

��∂M1

∂r þ M
rðr − 2MÞM1

��
alm

−
i
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lðlþ 1Þ

p �
hðeÞ0lmðt; rÞ −

�∂M2

∂t þM0

��
bð0Þ
lm

þ 1

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lðlþ 1Þ

p �
hðeÞ1lmðt; rÞ −

�∂M2

∂r −
2

r
M2 þM1

��
blm

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
flðlþ 1Þðl − 1Þðlþ 2Þ=2g

p �
Glmðt; rÞ −

2

r2
M2

�
flm

þ
� ffiffiffi

2
p �

Klmðt; rÞ −
2

r2
ðr − 2MÞM1

�
−
lðlþ 1Þ

2

�
Glmðt; rÞ −

2

r2
M2

��
glm ðA17Þ

So we can fix three components of the even-parity-components of perturbation by adjusting M0, M1, and M2. Like we
said in the odd parity case, here also we choose the gauge in the following manner. We have found that for the following
choice

M1ðt; rÞ ¼
1

2
r

�
1 −

2M
r

�
−1
�
iω −

3M
λr2

�
Zðt; rÞ ðA18Þ

the perturbation parameter

KðNÞ
lm ðt; rÞ ¼ Klmðt; rÞ −

2

r2
ðr − 2MÞM1 ðA19Þ

(for the functional form of the perturbation parameters written in Regge-Wheeler gauge, look at [37]) goes as 1=r in r → ∞,
excluding the plane wave part e−iωðt−r�Þ (as Z ∼ eiωr�). Form the Einstein equation, governing the perturbation, one can find

that having no source term, H0 ¼ H2 ¼ H, accordingly we also fix HðNÞ
0 ¼ HðNÞ

2 ¼ HðNÞ, which implies

�
1 −

2M
r

�
−1
�∂M0

∂t −
M
r3

ðr − 2MÞM1

�
¼

�
1 −

2M
r

��∂M1

∂r þ M
rðr − 2MÞM1

�

⇒
∂M0

∂t ¼
�
1 −

2M
r

�
2 ∂M1

∂r þ
�
1 −

2M
r

�
2M
r2

M1

⇒M0 ¼ −
1

iω

��
1 −

2M
r

�
2 ∂M1

∂r þ
�
1 −

2M
r

�
2M
r2

M1

�
ðA20Þ

(remember time dependence of the perturbation assumed to be e−iωt) which fixes M0 in terms ofM1. Making hðeÞðNÞ
0lm ¼ 0

would lead (A17) to

⇒

�∂M2

∂t þM0

�
¼ hðeÞ0lmðt; rÞ ðA21Þ
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as we had hðeÞ0lmðt; rÞ ¼ 0 in Regge-Wheeler gauge, so

∂M2

∂t ¼ −M0

⇒M2 ¼
1

iω
M0: ðA22Þ

Substituting M0 in terms of M1 (A20) in (A22) M2 gets fixed as

M2 ¼
1

iω

�
−

1

iω

��
1 −

2M
r

�
2 ∂M1

∂r þ
�
1 −

2M
r

�
2M
r2

M1

��
: ðA23Þ

To summarize, we have fixedM1 (A18) in terms of the background solution, so thatKlm behaves asOð1=rÞ asymptotically,
and we have fixed other two gauge parameters, M0, M2, in terms of M1. Finally we get for even parity perturbation in
Zerilli gauge considering only quadrupole perturbation (l ¼ 2) and choosing m ¼ 0 as

heμν ¼

0
BBBBB@

HðNÞðt; rÞð1 − 2M
r ÞY0

2 HðNÞ
1 ðt; rÞY0

2 0 0

HðNÞ
1 ðt; rÞY0

2 HðNÞðt; rÞð1 − 2M
r Þ−1Y0

2 hðeÞðNÞ
1 ∂θY0

2 0

0 hðeÞðNÞ
1 ∂θY0

2 r2T 0
2 0

0 0 0 r2sin2θT 0
2

1
CCCCCA

ðA24Þ

where, T 0
2 ¼ KðNÞðt; rÞY0

2 þ GðNÞðt; rÞ∂2
θY

0
2 and T̃ 0

2 ¼ KðNÞðt; rÞY0
2 þ cot θGðNÞðt; rÞ∂θY0

2. Keep in mind that the terms
containing ∂ϕY0

2ð¼ 0Þ has been omitted. We list here the nonzero components

HðNÞðt; rÞ ¼ Hlmðt; rÞ − 2

�
1 −

2M
r

�
−1
�∂M0

∂t −
M
r3

ðr − 2MÞM1

�
ðA25Þ

HðNÞ
1 ðt; rÞ ¼ H1lmðt; rÞ −

�∂M1

∂t þ ∂M0

∂r −
2M

rðr − 2MÞM0

�
ðA26Þ

hðeÞðNÞ
1 ¼ −

�∂M2

∂r −
2

r
M2 þM1

�
ðA27Þ

KðNÞ ¼ Klmðt; rÞ −
2

r2
ðr − 2MÞM1 ðA28Þ

GðNÞ
lm ðt; rÞ ¼ −

2

r2
M2 ðA29Þ

One can check the trace of the perturbation behaves as

hμμ ∼ ½KðNÞ − ðλþ 1ÞGðNÞ� ∼O
�
1

r3

�
ðA30Þ

near r → ∞. Finally putting together the metric corre-
sponding to even and odd parity perturbation and adding it
with the ordinary Schwarzschild metric we have obtained
the metric describing the ringing Schwarzschild black hole.

We have dropped the “N” indices of the metric components
when using in Sec. II.

APPENDIX B: EXPRESSION OF THE SOURCE
TERMS Plmcγ AND P̄lmcγ OF THE MAIN TEXT

Thanks to our adopted perturbative approach which
helps us use the separation of variable as ξlm1 ðt; rÞ →
e−iðωþkÞtξ̃klm1 ðrÞ. Using this, the first equation of Eq. (2.8)
can be transformed into

fðrÞ 1
r2
∂rfr2fðrÞ∂rξ̃

klm
1 ðrÞg þ

�
ðkþ ωÞ2 − fðrÞ lðlþ 1Þ

r2

�
ξ̃klm1 ðrÞ þ 1

2
PklmðrÞ ¼ 0 ðB1Þ
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where we see that the term,
P

cγ Plmcγξ
cγ
0 ¼ 1

2
e−iðkþωÞtPklmðrÞ, with

PklmðrÞ ¼ fðrÞ
X
cγ

Λð2;0Þ
cγlm

�
fðrÞ−1ðωkþ k2ÞðHðNÞ þ KðNÞÞξ̃cγ0 ðrÞ þ

1

r2
∂rfr2fðrÞð−HðNÞ þ KðNÞÞ∂rξ̃

cγ
0 ðrÞg

− 3fðrÞ−1ðωkþ k2ÞGðNÞξ̃cγ0 ðrÞ − 3
1

r2
∂rfr2fðrÞGðNÞ∂rξ̃

cγ
0 ðrÞg − iðωþ kÞHðNÞ

1 ∂rξ̃
cγ
0 ðrÞ

−
1

r2
ik∂rðr2HðNÞ

1 ξ̃cγ0 ðrÞÞ þ 6
1

r2
fðrÞhðNÞðeÞ

1 ∂rξ̃
cγ
0 ðrÞ −

cðcþ 1Þ
r2

GðNÞξ̃cγ0 ðrÞ
�

þ fðrÞ 1
r2

�X
cγ

2γΛð2;0Þ
cγlm þ 3

ffiffiffi
2

3

r X
cγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc − γÞðcþ γ þ 1Þ

p
Λð2;−1Þ
cðγþ1Þlm

�

× ½∂rffðrÞhðNÞðeÞ
1 ξ̃cγ0 ðrÞg þ fðrÞhðNÞðeÞ

1 ∂rξ̃
cγ
0 ðrÞ − GðNÞξ̃cγ0 ðrÞ�

þ fðrÞ 3
2

ffiffiffi
5

π

r
1

r4
hðNÞ
2

� ffiffiffi
π

3

r X
cγ

2γΛð1;0Þ
cγlm þ 2

ffiffiffiffiffiffi
2π

3

r X
cγ

Λð1;−1Þ
cðγþ1Þlm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc − γÞðcþ γ þ 1Þ

p �
iγξ̃cγ0 ðrÞ

þ fðrÞ 1
r2
X
cγ

iγ
ffiffiffiffiffi
15

p
Λð1;0Þ
cγlm

�
∂rffðrÞhðNÞðoÞ

1 ξ̃cγ0 ðrÞg þ fðrÞhðNÞðoÞ
1 ∂rξ̃

cγ
0 ðrÞ þ

1

r2
hðNÞ
2 ξ̃cγ0 ðrÞ

�

þ fðrÞ 1
r2

ffiffiffiffiffiffi
5

4π

r
GðNÞlðlþ 1Þξ̃lm0 ðrÞ − fðrÞ 1

r2
m2GðNÞ 3

2

ffiffiffi
5

π

r
ξ̃lm0 ðrÞ

þ fðrÞ 1
r2
m
2

ffiffiffi
5

π

r
½∂rffðrÞhðNÞðeÞ

1 ξ̃lm0 ðrÞg þ fðrÞhðNÞðeÞ
1 ∂rξ̃

lm
0 ðrÞ −GðNÞξ̃lm0 ðrÞ�: ðB2Þ

The Λðl0;m0Þ
lmcγ is related to Wigner 3-jm symbol, originating

from the following spherical harmonics identity,

Ym
l ðθ;ϕÞYm0

l0 ðθ;ϕÞ ¼
X
cγ

Λðl0;m0Þ
lmcγ Yγ

cðθ;ϕÞ: ðB3Þ

Similarly for the other part of the perturbative solution, ξ̄lm,
we will have associated operator P̄lmcγ which is the func-
tion of the complex conjugate of metric fluctuation, h�μν. For
this case

P
cγ P̄lmcγξ

cγ
0 ¼ 1

2
e−iðk−ω�ÞtP̄klmðrÞ, where P̄klmðrÞ

can be obtained by replacing ω → −ω� in the expression of
PklmðrÞ and simultaneously taking the complex conjugate of
the radial part of the fluctuation components.

APPENDIX C: CALCULATION OF ABSORPTION
CROSS SECTION

According to the construction described in Sec. III, we
have considered the space-time outside the interaction sur-
face to be static Schwarzschild. This particular fact enables us
to define the conserved quantity associated with the energy
momentum tensor at the asymptotic infinity. We have used
the outgoing null coordinate to maintain the causality
condition in our calculation, specifically during the identi-
fication of the ingoing part by matching the scalar field
solution and its r-derivative at spatial infinity. We shall now
briefly discuss the procedure to obtain the energy flux in
ðu; rÞ coordinate, with u ¼ t − r�, in which Schwarzschild
metric is given by

ds2 ¼ −fðrÞdu2 − 2dudrþ r2dΩ ðC1Þ
From the conservation law,

∇μPμ ¼ 0; ðC2Þ
wherePμ ¼ T μ

νξ
ν, T μ

ν is the energy-momentum tensor and
ξν is the Killing vector, we obtain the conserve quantity as

E ¼
Z

d3x
ffiffiffiffiffiffi
−g

p
P0: ðC3Þ

Taking time derivative on both side we get

∂uE ¼
Z

d3x∂uð
ffiffiffiffiffiffi
−g

p
P0Þ ¼ −

Z
d3x∂ið

ffiffiffiffiffiffi
−g

p
PiÞ ðC4Þ

Now choosing a r-constant hypersurface will lead to

∂uE ¼ −
Z

r2dΩPr

¼ −
Z

r2dΩT r
uξ

u

¼ −
Z

r2dΩT r
u

¼ −
Z

r2dΩgrαT αu

¼ −
Z

r2dΩ½−T uu þ fðrÞT ru�: ðC5Þ
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The energy fluxmeasured by a stationary observer at r → ∞,
per unit time is

∂uE ¼
Z

dΩr2½T ru − T uu�: ðC6Þ

For massless scalar field stress energy tensor T μν is given by

T μν ¼
1

2
ð∂μϕ

�∂νϕþ ∂μϕ∂νϕ
�Þ − 1

2
gμν∂αϕ�∂αϕ ðC7Þ

where scalar field is expanded as ϕ ¼ P
N klmξ

lmðu; rÞ ×
Ylmðθ;ϕÞ with N klm being constant. We have solved the
scalar field modes starting from the black hole horizon to the
interaction surface ðrintÞwith an ingoingboundary condition.
For this, the ringing Schwarzschild metric is playing as a
source. Then using that solution as the time dependent initial
condition at the interaction surface, we solve the same mode
equation in the static Schwarzschild background. This
procedure renders it difficult to identify the plane wave
component at the asymptotic infinity. Therefore, in order
to identify the incoming scalar wave propagating along
‘z-direction, we first use thewell known Rayleigh expansion
of the plane wave in terms of the partial wave as

e−ikðuþz�Þe−ikz� ∼
X

e−ikðuþr�Þ e
−ikr�

2ikr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πð2lþ 1Þ

p
Y0
l ðΩÞ

þ Outgoing ðC8Þ

where z� ¼ r� cos θ (recall that we have transformed,
t→uþz�). Considering the asymptotic solution Eq. (3.6),
we first choose the time independent normalization con-
dition as,

N klm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πð2lþ 1Þp

2ikAk
lmðu → ∞; rintÞ

δ0m: ðC9Þ

Using this normalization factor, we approximately define
following incoming scalarwave ofmomentumkpropagating
along z-direction,

ϕk
in ∼

R P
N klmAlmðu; k;ωÞYlmðθ;ϕÞ sin θdθR P ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4πð2lþ 1Þp
Y0
l ðΩÞ sin θdθ

× 2ike−ikðuþz�Þe−ikz� : ðC10Þ
The time dependent amplitude is defined in such a way that
in the u → ∞ limit, it reduces to unity. With this approxi-
mated ϕin, we obtain the total rate of ingoing flux for a given
mode k as,

∂uEk
in ¼

Z
dΩr2½T in

ru − T in
uu�: ðC11Þ

With all these ingredientswe define the total absorption cross
section for every individual mode (k) as

σkringðu; rintÞ ¼
∂uEk

∂uEk
in

¼
X
l

∂uEkl

∂uEk
in

¼
X
l

σklringðu; rintÞ

ðC12Þ

We have discussed our numerical results of σklringðu; rintÞ,
which is the partial absorption cross section.

APPENDIX D: TIME VARYING ROTATION OF
THE PLANE OF POLARIZATION OF PHOTON

In this section we will study the conversion of axion to
photon (vice versa), specifically focusing on the axion
background. Although to start with we will consider a
constant magnetic field along with the time dependent
axion background. In the later part we will only consider
the axion part only, having additional effects in the final
results. Taking the following action, where axion couples
(gϕγγ is the coupling constant) with photon,

S ¼
Z ffiffiffiffiffiffi

−g
p

d4x

�
−
1

2
ð∂μϕ∂μϕþm2

ϕϕ
2Þ − 1

4
FμνFμν

−
1

4
gϕγγϕFμνF̃μν

�
ðD1Þ

we obtain the inhomogeneous Maxwell equation by vary-
ing the action with respect to Aμ as,

∂μFμν þ gϕγγF̃μν∂μϕ ¼ 0 ðD2Þ

and inhomogeneous scalar equation by varying the action
with respect to ϕ as,

∂μ∂μϕ −m2
ϕϕ −

1

4
gϕγγFμνF̃μν ¼ 0 ðD3Þ

Considering the radiation gauge, ∇̄ · Ā ¼ 0; A0 ¼ 0, both
the scalar (D3) and Maxwell equation (D2) can be
simplified as,

∂tĒ − ∇̄ × B̄ − gϕγγB̄∂tϕ − gϕγγ∇̄ϕ × Ē ¼ 0

−∂2
tϕþ∇2ϕ −m2

ϕϕþ gϕγγB̄ · ∂tĀ ¼ 0 ðD4Þ

Symmetry of the background-fields motivate us to consider
the propagation direction of the axion and photon fluc-
tuation along z, for simplification. So, expressing the scalar
and em field as background with fluctuation,

ϕðt; zÞ ¼ ϕ0ðtÞ þ ϕ̃ðt; zÞ
B̄ ¼ B̄0 þ ∇̄ × Āðt; zÞ ðD5Þ

we can derive the linearized equation governing the
evolution of fluctuation as,
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−∂2
t Āþ∇2Ā − gϕγγ½B̄0∂tϕ̃ðt; zÞ þ ∂tϕ0ðtÞ∇̄ × Ā� ¼ 0

ðD6Þ

and

−∂2
t ϕ̃þ∇2ϕ̃ −m2

ϕϕ̃þ gϕγγB̄0 · ∂tĀ ¼ 0 ðD7Þ

Assuming the time scale of variation of background field is
much larger than the axion-photon wavelength. Also we
consider ω ∼ k, so that we can write the fluctuation as plane
waves like

ϕ̃ðt; zÞ ¼ ϕωðtÞe−iωte−iωz

Aðt; zÞ ¼ i

�
Ax
ωðtÞe−iωt

Ay
ωðtÞe−iωt

�
e−iωz ðD8Þ

We obtain the fluctuation equation of the fourier modes of
axion and photon, like Schrodinger equation as,

i∂tAx
ωðtÞ ¼ −

1

2
gϕγγBx

0ϕωðtÞ þ
i
2
gϕγγ _ϕ0ðtÞAy

ωðtÞ

i∂tA
y
ωðtÞ ¼ −

1

2
gϕγγB

y
0ϕωðtÞ −

i
2
gϕγγ _ϕ0ðtÞAx

ωðtÞ

i∂tϕωðtÞ ¼
m2

ϕ

2ω
ϕωðtÞ −

1

2
gϕγγBx

0A
x
ωðtÞ −

1

2
gϕγγBx

0A
y
ωðtÞ

ðD9Þ

In matrix form these equations can be assembled as

i∂t

0
B@

ϕωðtÞ
Ax
ωðtÞ

Ay
ωðtÞ

1
CA ¼

0
B@

Δm Δx Δy

Δx 0 Δϕ

Δy −Δϕ 0

1
CA
0
B@

ϕωðtÞ
Ax
ωðtÞ

Ay
ωðtÞ

1
CA ðD10Þ

where Δm ¼ m2
ϕ

2ω, Δi ¼ − 1
2
gϕγγBiði → x; yÞ, Δϕ ¼ i

2
gϕγγ _ϕ0.

Considering ΨðtÞ ¼ fϕωðtÞ; Ax
ωðtÞ; Ay

ωðtÞg, we rewrite the
above equation

i∂tΨ ¼ ½H0 þ H̃ðtÞ�Ψ ðD11Þ

where,

H̃ðtÞ ¼

0
B@

0 Δx Δy

Δx 0 Δϕ

Δy −Δϕ 0

1
CA ðD12Þ

In the following discussion we will work in interaction
picture

ΨintðtÞ ¼ U†ðtÞΨðtÞ; Hint ¼ U†ðtÞH̃ðtÞUðtÞ; UðtÞ ¼ e−i
R

t H0ðt0Þdt0 ðD13Þ

so that the Eq. (D11) becomes

i∂tΨintðtÞ ¼ HintΨint;

⇒ΨintðtÞ ¼ e−i
R

t Hintðt0Þdt0Ψintð0Þ ⇒ Ψnþ1
int ðtÞ ¼ −i

Z
t
Hintðt0Þdt0Ψn

intðt0Þ: ðD14Þ

Taking up to second order (considering the coupling gϕγγ is very small) we get

Ψint ¼
�
1 − i

Z
t

t0

Hintðt0Þdt0 −
Z

t

t0

Hintðt0Þdt0
Z

t0

t0

Hintðt00Þdt00
�
Ψð0Þ: ðD15Þ

After substituting this expression we get

AxðtÞ ¼ Axð0Þ − iΔxΔ̃mϕ
ωð0Þ − i

Z
t
Δϕdt0Aω

y ð0Þ −
Z

t
dt0Δϕ

Z
t0

dt00Δ̃mΔxϕ
ωð0Þ

−
Z

t
dt0

�
ΔxΔ̃m

Z
t0

dt00ΔxΔ̃m − Δϕ

Z
t0

dt00Δϕ

�
Aω
x ð0Þ −

Z
t
dt0ΔxΔ̃m

Z
t0

dt00ΔyΔ̃mAω
y ð0Þ

AyðtÞ ¼ Ayð0Þ − iΔyΔ̃mϕ
ωð0Þ þ i

Z
t
Δ̃ϕdt0Aω

x ð0Þ þ
Z

t
dt0Δϕ

Z
t0

dt00Δ̃mΔyϕ
ωð0Þ

−
Z

t
dt0

�
ΔyΔ̃m

Z
t0

dt00ΔyΔ̃m − Δϕ

Z
t0

dt00Δϕ

�
Aω
y ð0Þ −

Z
t
dt0ΔyΔ̃m

Z
t0

dt00ΔxΔ̃mAω
x ð0Þ ðD16Þ

RINGING BLACK HOLES ARE SUPERRADIANT: THE CASE OF … PHYS. REV. D 105, 104045 (2022)

104045-13



where, we have usedΨintð0Þ ¼ Ψð0Þ and Δ̃m ¼ R
tΔmdt0 (D10). Up to second order in the perturbative evaluation of stokes

parameters we have found that the magnetic field background contributes separately with the axion background. We will
consider the contribution coming solely from axion background. So, without magnetic field background. We have found the
expression of Stokes parameters (considering Δx ¼ 0 ¼ Δy)

IðtÞ ¼ Ið0Þ
�
1þ Δ̃�

ϕΔ̃ϕ þ
Z

t
dt0ðΔϕΔ̃ϕ þ c:cÞ

�
þ ðΔ̃ϕ þ Δ̃�

ϕÞVð0Þ

QðtÞ ¼ Qð0Þ
�
1 − Δ̃�

ϕΔ̃ϕ þ
Z

t
dt0ðΔϕΔ̃ϕ þ c:cÞ

�
− iðΔ̃ϕ − Δ̃�

ϕÞUð0Þ

UðtÞ ¼ Uð0Þ
�
1 − Δ̃�

ϕΔ̃ϕ þ
Z

t
dt0ðΔϕΔ̃ϕ þ c:cÞ

�
þ iQð0ÞðΔ̃ϕ − Δ̃�

ϕÞ

VðtÞ ¼ Vð0Þ
�
1 − Δ̃�

ϕΔ̃ϕ þ
Z

t
dt0ðΔϕΔ̃ϕ þ c:cÞ

�
þ Ið0ÞðΔ̃ϕ þ Δ̃�

ϕÞ

QðtÞ � iUðtÞ ¼ f1 ∓ ðΔ̃ϕ − Δ̃�
ϕÞghQð0Þ � iUð0Þi ∼ e∓iθhQð0Þ � iUð0Þi: ðD17Þ

It can be checked from the above expressions of stokes parameters that, ϕ being real, there will be no conversion between
axion and photon. But different helicity states will be affected and time dependence of the axion field would lead to
distinguishable effects. The rotation (up to first order in the coupling constant) of the plane of linear polarization, for very
small θ, can be identified as θ ∼ ðΔ̃ϕ − Δ̃�

ϕÞ=i. And the interesting point is that because of the ringing oscillation we will see
time varying rotation of the linear polarization.
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