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Ringing black holes are superradiant: The case of ultralight scalar fields
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Superradiance has been studied quite extensively in the context of static (charged) and rotating black
hole spacetime. In this paper, we report for the first time that for a minimally coupled scalar field, the
absorption cross section of a Schwarzschild black hole in its ringdown phase can be superradiant. Treating
the scattered scalar field as axion, we further computed its observable effects on the rotation of the plane of
polarization of photon, neutron dipole moment, and fermionic spin precession. All those observables
turned out to have interesting time dependence induced by the ringing black hole background. Our present
result opens up an intriguing possibility of observing the black hole merging phenomena through other

fundamental fields.
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I. INTRODUCTION

Classical and quantum aspects of superradiance have
been the subject of intense research in the context of black
hole (BH) physics [1-7]. Though this fascinating phe-
nomenon has not been observed yet, recent observation of
gravitational waves by LIGO and Virgo [8—-19] has paved
an interesting possibility of observing such phenomena.
LIGO has observed a large number of BH-BH or BH-
neutron star merging phenomena which sets the beginning
of a new era of gravitational-wave astronomy. After such
observation, a surge of theoretical works has been devoted
toward understanding the nature of spacetime in the strong
gravity regime. In this parlance we ask the following
question: Along with the gravitational waves, are there
any complementary observables that can shed further light
on the nature of black holes? Motivated by this question in
this paper we shall study the scattering of a scalar field
minimally coupled with the gravitational wave(ringing)
black hole background.

After two black holes merge, it undergoes different
phases of evolution. The most significant one is the ring
down phase through which the merged black hole settles
down to its equilibrium states. During this phase, the black
hole undergoes damped oscillation which has been exten-
sively studied using the method of BH perturbation theory.
Because of inherent dissipation, the oscillation frequency is
quasinormal. Quasinormal mode (QNM) analysis of BHs
has been studied extensively in the literature [20-26]. In
this paper, we study the wave scattering phenomena to see
the response of such ringing black holes when interacting
with the incoming scalar waves. Scattering of various
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fundamental fields has been widely studied in the static
BH background [27-31]. However, understanding the
ringing BHs interacting with the external waves not only
sheds light on how black holes react with their environ-
ment, further, it could also lead to observable signatures
which are complementary to the gravitational wave. Putting
it in a different perspective, the present study has got an
interesting resemblance with the well-known “preheating”
mechanism in inflationary cosmology where oscillating
inflaton field in the vacuum imparts its energy to daughter
fields through parametric resonance [32]. This leads to the
growth of outgoing flux of the daughter fields. The present
study shows similar phenomena where the out going flux is
enhanced compared to the incoming one after the inter-
action with the ringing black holes. In the present context,
we call it superradiance which is quantified by the
momentum-dependent negative absorption cross section.
As pointed out before, the flux of those resonant modes can
act as complementary observables along with the gravita-
tional waves during the ringing phase of the black holes.
Hence, our present study opens up possibilities of under-
standing BH merging phenomena with other fundamental
fields.

The present study will be confined to the ultralight scalar
field, which can be identified as an axion or axionlike
particle, which is of particular interest as a possible
candidate for dark matter. The detectability of dark matter
has been a pertinent issue and there have been several
proposals and experiments [33-35] dealing with the pos-
sible signature of the presence of dark matter. We have
considered in this paper various observables which contain
the signature of the oscillating scalar field arising due to the
ringing background. Such a time-varying effect would be
easier to detect. Throughout our paper, we use GW back-
ground and ringing background interchangeably.

© 2022 American Physical Society
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We have organized the paper as follows. In Sec. II, we
have described the background space-time in the ringing
phase of the Schwarzschild black hole. For more quanti-
tative details of the ringing background metric, one may
refer to Appendix A. Then we have presented the governing
equation of the scalar field propagating on this type of
oscillating space-time. In Sec. III, we have discussed the
way we define the absorption cross section in terms of
energy flux for an oscillating background like the ringing
Schwarzschild black hole, more details on this are also
outlined in Appendix. C. In Sec. IV, we have presented the
numerical results of the absorption cross section. Finally, in
Sec. V we have depicted the possibility of observing the
effect of oscillating scalar waves on the ringing back-
ground, giving rise to the superradiance.

II. BACKGROUND AND FRAMEWORK

For simplicity we consider ringing Schwarzschild BH
with metric, g,, = g, + h,,, where g, is the standard
Schwarzschild metric. £, is the gravitational wave (GW)
perturbation. We further consider the quadrupole oscilla-
tion, [, = 2, and azimuthal mode, m, = 0 (QNM frequency
does not depend on m [36]), of the Schwarzschild metric.
The oscillating (ringing) metric (see Appendix. A for
details) is expressed in radiation gauge [37], which entails
the correct asymptotic behavior of the GW flux,

1

h,, = Ee_i“”
Hf(r)YS  HY) 0 0
HY)  Hf(r)7'YY 290,79 1l s,0,Y0
. 0 W99Y)  RTY LY
0 h7sp8YS ImIy P31
+h.c. (2.1)

where, symbols are, 79 = (cp0pY9 — 5403Y9), T9 =
KMYY 4+ GMa2YY, and T9 = KY9 + cot0GI,YY. sy =
sin®, cy = cos@ and Y, is the spherical harmonics. The
time dependent part of the ringing fluctuation is expressed
as e~'®', with @ being quasinormal frequency. The pertur-

bation variables are divided into parity odd (hi‘?), h,) and
parity even (h@,H,H 1, K, G) function which are func-
tions of radial coordinate r. The Einstein’s equation
governing the ringing perturbation variables boils down

to the well known Regge-Wheeler equations [36,38,39]
d’Z;

2
drs

+ (= V,)Z =0, (2.2)

where, i = (€,0) are associated with Even and Odd
perturbation. r* = r+2MIn(r/2M — 1) is the tortoise

coordinate. For quadrupole oscillation, the potentials
assume the following form,

8(3r +3Mr*) + 18M>*(2r + M

Ve = i) r3(rZi+3M)2(r |
6 6M

V(’):f(r><_2_—3)’

r r

(2.3)

where, f(r)=1-2M/r is the Schwarzchild metric
function and. M is mass of the black hole. The func-
tional dependence of odd parity variables on Z,4q(r) and
even parity variables on Z.,(r) are explicitly derived
in [37,39]. The near horizon values of the ringing
fields will be parametrized by (|Zogq(r = 2M)| = O,
|Zeven(r - 2M)| = gh)'

Our goal is to compute the absorption cross section of the
ultralight scalar field in the ringing Schwarzchild back-
ground just described. The equation of a minimally coupled
scalar field is

Oy + 12 = 0. (2.4)
where yu is the mass of the scalar field. Importantly, in our
analysis we can always maintain scalar field amplitude
¢ < W, by multiplying small number as (2.4) remains
invariant under constant scaling. Using such scaling, scalar
energy momentum tensor can always be made subleading
compared to that of the GW background. With this
assumption we solve scalar field perturbativly in terms
of GW fluctuation, h,,. For simplicity, most of our dis-
cussion will be for ¢ = 0. One of the potential candidate
scalar fields could be ultralight axion which is of interest as
a potential dark matter [40] candidate. Considering the
spherical harmonic expansion of the scalar field, ¢ =
SON WE™ (2, 7)Y (0, ¢), where N, being normalization
constant, (2.4) can be transformed into,

ﬁsélm =+ lelmcy(h)fcy + Z,]_)lmcy(h*)écy =0. (25)
cy cy

Where L, is the radial differential operator corresponding
to static Schwarzschild space-time;

L,gm = =07 (1.7) + f(r) %@{ rf(r)d,&" (1, r)}

s D g

and lecy,f’;mcy, (see Appendix B for detail expression)
are the differential operators dependent on the first-order
complex and its conjugate part of the metric fluctuation “h”
respectively. Gravitational-wave background naturally
breaks spherical symmetry, due to which different angular
momentum modes of the scalar field will be coupled to
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each other. Following perturbative approach, the field & is
expanded as,

Em(t,r) = Em(t,r) + aéé’l’g(t, r)+---, (2.6
where, a counts the order of 4,,. Now, we solve
LEm =0,
(2.7)

'ng??) + Zplmcyg(c)y + Zﬁlmcyé(c)y =0.
cy cy

By using the properties of the inhomogeneous differential
equation, we decomposed, é‘i’?) = 511’" + &lm such that,

‘Cséllm + Z,lecyg(c)y =0 »Cséllm + Zf)lnlcyfgy =0.
cy cy

(2.8)

The above set of equations can be thought of as scalar
waves propagating in the static Schwarzschild (g,,) back-
ground with oscillatory source term [41]. Therefore, to
solve this we set the following ingoing initial boundary
condition near the horizon of the static black hole,

. (16MK2 —1(1+1)) .,
N"(l M) @ik = 1) 3+"')

(2.9)

with arbitrary normalization constant (", N =
e~ f(r)=2Mk " which corresponds to the ingoing mode
near the Schwarzschild horizon of momentum k.

III. DEFINING THE ABSORPTION
CROSS SECTION

Usually one defines the absorption cross section in the
asymptotic flat space region. To compute such quantity for
the ringing black hole we propose the following method:
Spatial section is divided into region-I (shaded) with ringing
background and region-II with pure Schwarzschild (see
Fig. 1). Between the regions, a hypothetical surface, named
as “interaction surface,” is defined at r = r;,, where at
t = tiy = Ij» the incoming scalar wave interacts with the
gravitational wave. Considering Eq. (2.9), we numerically
solve for each mode of the scalar field up to the first order in /
in the region-I described as,

& (r.r) (3.1)

In the region-II, since we consider the pure Schwarzschild
background, the solution will be

=& A e

Gty =&m with L= (3.2)

,»""f' ‘\\\. I I

FIG. 1. Interaction of the scalar wave with the gravitational
wave. The shaded region(I) represents the spatial extent of
ringing fluctuation, outside (II) is considered to be static
Schwarzschild space-time.

The above equation is a second order partial differential
equation. To solve such Eq. (3.2) in region-1I, the natural
time-dependent boundary condition can be taken as,

(1) oy, = S

D, (1) 1y, = O E (1) gy,

E (1) oo r = S ()| oo s

DE (1.1 1w = K" (1 )|, (3.3)

Within the light cone the quasinormal oscillation is expo-
nentially decaying in time. Hence, in # — oo fluctuation part
of the scalar field (£, &™) at the interaction surface
vanishes. This essentlally sets our last two boundary con-
ditions which make sure that the scalar field absorption cross
section of ringing BH boils down to static Schwarzschild
value within the characteristic time scale of the oscillation
7 ~ 27/ w. Using the boundary condition Eq. (3.3), we solve
Eq. (3.2) within the region ¢ > r,, of the box bounded in (7, 7)
plane as ([riy, ], [fin;, ]). Asymptotically, the gravita-
tional wave propagates along the outgoing null coordinate.
Hence, once solution is obtained, we transform it into
outgoing null coordinate (¢, r) — (u = ¢ — r*, r) and define
the absorption cross section, which will naturally be ry
dependent.

A. Energy flux

In outgoing null coordinate, the energy flux (see
Appendix C for details) measured by a stationary observer
at r —> oo 18,

aug = /erz[Tm - Tuu] (34)

and associated absorption cross section for individual k
mode is defined as
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o au gkl

ring(l’t’ Fint) = 5 e (35)

O

where 7's are the components of the energy-momentum
tensor. 9,EX is the energy flux of the incoming plane wave
defined at the infinity. The methodology we adopted to
solve time dependent system is not particularly suitable to
identify the appropriate normalization. To proceed, we note
the approximate asymptotic solution as,

kim (1 ) = Al (1. Tint) emiklur2r,) 4 By, (i, rint) o—iku
s ’ .
r r

(3.6)

The ingoing/outgoing coefficients (LAY /B will match
with that of the static Schwarzschild case in u — oo
limit. Following the standard procedure [29], assumption
of incoming wave along z-direction in the asymptotic

infinity sets the constant normalization factor (see
Appendix C for details) to be, Ny, = /4x(2l +1)8%,/
(2ikAX (u — o0, riy)). Using this, the ingoing plane wave
at the asymptotic infinity is assumed as,

szklmAl[(m(”v rint) Ylm (Q)d‘inke—ik(u—&-Zz*) .

[ \/Ar(21+1)Y?(Q)dQ

Where, time dependent amplitude is averaged over angle.
With all these ingredients we will now numerically com-

: : k!
pute the absorption cross section Oing-

Pin ~ (37)

IV. NUMERICAL COMPUTATION OF ¢/

ring

As mentioned earlier, the gravitational wave background
is assumed to be quadrupole oscillation [Eq. (2.2)] with
the QNMfrequency @ = (0.74734 —i0.17792)(r;)~"! [42],
where, Schwarzschild horizon radius r;, = 2M. We express
all physical parameters in unit of r,,. Anyway, the frequency
is known to be the same for both even and odd parity
perturbation [42-44]. Ringdown phase in general should
contain all possible QNM modes[43]. However, we

100 A — =10 ]
o ~ — fnt =15
< 50 & 1
\E’ N 20 20— fint= 20
_E Tint
S 0 — fnt=25

— fine= 30
-50 .
0 5 10 15 20 25 30
U/rh

consider the one which is long-lived. The background
ringing field solutions are so chosen that the perturbative-
ness defined as 8g/g, « M}, < 1 is maintained for a wide
range of initial parameters. Given the ringing black hole
background with a specific QNM frequency, we solve for
the scalar field Eq. (2.5). Importantly, we should reproduce
the well known static value of the absorption cross section
[45] associated with Schwarzschild black hole in the limit,
lim,, o 08, (1, 7in) = 0°(k, ). Hence, before the static

k!
Gring

also undergo a ring down phase. It is during the ring-down
phase, when the superradiance is observed.

Elaborating more on the numerics, our final solutions
have been observed to be stable for a wide range of initial
conditions parametrized by ¢4" within ~1072 — 20. Up to a
small fluctuation our results are also stable for a range of
asymptotic radial infinity within r» = 757, — 100r,. This
fluctuation may be arising due to our approximate nor-
malization. Nonetheless, the characteristic features of
absorption cross section for different angular momentum
modes have been observed to be the same. Hence, we
particularly focus on / = 0 mode. As emphasized in the
beginning the most important characteristics emerged out
from our study is the superradiant(negative) absorption
cross section in its ringing phase for all angular momentum
mode (see Figs. 2, 3, and 4).

For the given @ and (&, O},), the maximum superradiant
absorption cross section amplitude symbolized as o-ﬁiaxN (k),
decreases with increasing momentum k. We also deri-
ved a fitting formula ok/=00(k) = —1021 + 20065k —
131798k> + 292061k?, within the range (k=0.06—0.14).
Following our expectation, we observe the existence of a
maximum value of k., above which superradiance van-
ishes. However, absorption cross section will still remains
oscillatory with a positive magnitude, and attains its static
Schwarzschild value in ring down timescale (see Fig. 2). The
physical reason behind vanishing of superradiance can be
attributed to the decoupling of higher momentum modes
from the gravitational wave fluctuations. Our numerical
analysis provides: [ = 0,k ~0.13; [ =1,k ~ 0.45;

limit is reached over the timescale 7 ~ 40, (u, rip) will

400
300
200}
100§
0
—100¢
—200¢

Uklring/(rh)2

u/ry

FIG. 2. Left panel: we have plotted o']r‘i’ng with respect to time considering [ = 0, k = 0.1 for different r;,.. In the inset the variation of

maximum negative value symbolized as 6t/

The inset shows the variation of maximum negative value ¢

maxN

N 18 plotted with respect to r;, Right panel: we have plotted the same for / = 0 and vary k.
(k) with respect to k. All plots are from y = 0.
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200 k=0.2
o 100} — =0
S JaN — =t
) 4 ///—\v
= — =2
—-100¢ — |=3
-200

0 5 10 15 20 25 30
u/ry

FIG. 3.
different /. All plots are from u = 0.

I =2, Kpax ~ 1.0; 1 =3, Ky ~ 1.5 1 =4, Ko ~ 1.8 for
(€, ~0;, ~1073 and ry, = 20). Of course decreasing the
background amplitude would make k., lower.

As our methodology suggests, the ringing phase of the
absorption cross section and its amplitude depend on the
location of the interaction surface ry, shown in Fig. 2.
For each (/,k) value, there exists a maximum possible
superradiant amplitude [6X!, «(7in)] as one varies ry,. For
example, for [ = 0 it occurs approximately at r;,, ~ 20, for
higher range k values. In the low k region this location
of maximum superradiant amplitude shift toward higher
Fint ~ 30 —40. This behavior can again be fitted as
ok=0 (Fin) = 63.7 — 1445y, + 0.6r2, — 0.007r3, within
the range (r;,; = 10 — 30). Each superradiant mode has
been observed to be saturated to a particular negative value
of the absorption cross section for large r;,. So far we
discussed about the absorption cross section for fixed value
of £,~0, ~1073. However, background gravitational
wave amplitude plays a crucial role in enhancing the out-
going amplitude of the scalar wave compared to the
incoming one. This fact motivates us to look into the
variation of ¢y, with respect to (£, 0,) as shown Fig. 4.
Decreasing background amplitude of (£, O,,) reduces the
overall amplitude of oy, in its ringing phase as shown in
the Fig. 4, and finally superradiance ceases to exist at
around &,, O, = 10~* (in units of black hole mass) for
[ = 0. This conclusion has been observed to be true for
higher / mode as well. Thus far we discussed a particular

200f"
150}

o 100}
S
® 50}
® o
— 1=0.066
-50¢ — p=0.071 |

—100kL . . . e
0 5 10 15 20 25 30
u/ry,

FIG. 4. Leftpanel: we have plotted 6X!

ring

a0l k=0.4

o 20f — =0
<
SN AL _
£ 0 N
% — =2
—20} — =3 1
40 .
0 5 10 15 20 25 30

u/ry

The partial absorption cross section is plotted with respect to time for two frequencies k = 0.2 (left) and k = 0.4 (right) for

angular momentum mode [ = 0. Behavior of o-lr‘i;g(u, Fint)

for different / is important. For a given location of the
interaction surface (r;,, = 20), the left panel of Fig. 3 shows
that in the lower momentum region (k = 0.2) the super-
radiant amplitude first increases up to / =2 and then
become suppressed after [ = 3. This does not hold true
for all the momentum mode as can be seen in the right panel
of Fig. 3 for k = 0.4. Because of nontrivial dependence on
rine described before, maximum superradiant amplitude
happens to be at different location of the interaction surface
rin for different (I, k). Hence, overall our study suggests
that with increasing [/ the enhancement of superradiance
amplitude can be attributed to “mode-mixing” and an
increasing number of modes contributing as a background
source term in Eq. (2.7). A similar kind of feature has been
observed for moving black holes where absorption cross
section has been shown to diverge logarithmically with
angular momentum / [4].

Finally, we perform preliminary analysis for (Fig. 4)
massive scalar. What we observed is that for a given mode,
(@ = \/k* + u?,1) and ryy, as we increase the mass of the
scalar field, superradiant amplitude increases toward a
maximum value and then after it decreases toward zero
for a critical value of y.; < @. For example p; ~ 0.071 in
(Fig. 4) for [ = 0,® = 0.1, rint = 20. Our primary obser-
vation is that along with the increasing [/, the pg; is
increasing approximately linearly. Detailed study for the
massive scalar and it bound will be reported elsewhere.

100

— &4,0,=0.0002
% sof — 8p,0,=0.0004 |
E — &1,0,=0.0006
o — &1,0,=0.0008 |
— 81,0,=0.0010

-50k

0 5 10 15 20 25 30
u/r,,

with respect to time for [ = 0, \/k*> + u> = 0.1, ry,, = 20 for different mass of the scalar field.

Right panel: we have plotted the same for / = 0,k = 0.1, r;,, = 20 and vary &, = O, for massless case, 4 = 0.
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V. OBSERVABLES EFFECTS OF THE
OSCILLATING SCALAR FIELD

Superradiance phenomena is known to occur in the
context of static Kerr and charged black hole [6]. However,
most striking feature of our present study is its oscillatory
nature which is observed to carry the information of black
hole though their quasinormal modes. Any time varying
observable is always physically motivating when it comes
to observation compared to the static one. Identifying
the ringing scalar field as axion, we calculate multiple
observables, which can in principle be observed in labo-
ratory [46,47]. Treating axion field as time varying back-
ground, and considering well known interaction term,
Lin ~ gpF WF”’“, we calculated time varying induced rota-

tion of linear photon polarization expressed as 6 = —i(&ﬁ -
&j},) ~ g¢(t) (see Appendix D). Where, A, = [1g0,¢,
with axion-photon coupling taken as, g~ 10713 —

10~'* GeV~! [48]. Experimental searches of such rotation
due to background axion has been extensively studied
in the literature [49,50]. Our analysis suggests, there
would be an extra time varying contribution originating
from the ringing oscillation, that can in principle be observed
in near future. The time varying nucleon electric dipole
moment (N,,,), is calculated as N,g, = h¢(t), con-
sidering the following nucleon(N)-axion-photon interaction
L~ —%hqﬁN 0, ¥sNF" . The value of axion-nucleon cou-
pling A, is typically set from decay constant for QCD axion
[35]. The time profile of the above mentioned two observ-
ables are depicted in the left panel of Fig. 5 for different
momentum of the axion.

Finally we consider axial axion-fermion type coupling
L~ —%Caﬂdnpy"fy/, which describes a physical system
where spin of the fermion will be precessing around the
direction of local momentum, v0,¢, of the axion, as can be
seen from the Hamiltonian arising due to this coupling,
H ~{0,¢v - 6,, where 6, is the fermion spin operator.
That leads to a shift in the energy levels of the fermions
(nuclear or electron), AE,,,(t) ~{|v|0,¢ due to its axial
moment. The coupling parameter { ~ 107 GeV~!, [51] is

0.002f ' ' '
0.001 @ A — keo1 ]
—_ — k=0.2
£ 0.000
s \/  — 03
-0.001} o4 ]
-0.002{ ‘ ‘ ‘ ‘ ‘ ‘
0 5 10 15 20 25 30

2M

FIG. 5.

constrained from supernova cooling rates, and v is the
relative velocity (in astrophysical context galactic virial
velocity |v| ~ 1073 may be used) between axion and fermion
[35]. The time variation of this energy shift is shown in right
panel of the Fig. 5. Detecting such extra time varying
contribution to the energy shift is promising given the several
existing proposal of measuring those quantities [52] using the
method of “precision magnetometry” using cold molecules
[53]. In order to show oscillating features of all the observ-
ables, we consider s-wave (/ = 0) outgoing mode of the
ringing axion and subtracted the effect due to static black
hole. Time is measured from a point #;,; = r;,; on the light
cone, where the detector is assumed to be placed [54,55].

VI. CONCLUSIONS

In spite of being widely discussed in the literature, recent
observation of gravitational waves has led to a resurgence of
exploring the phenomena of black hole superradiance in a
more general gravitational setting. Such phenomena were so
far shown to exist in Kerr and charged black hole back-
ground. In this paper, we report for the first time that the black
hole in its ringing phase can also lead to superradiance when
interacting with an incoming scalar wave. Apart from
detecting gravitational waves, our present study opens up
interesting possibilities of observing black hole merging
phenomena through the complementary observables in terms
of other fundamental fields. The basic mechanism behind
this superradiance is simple. When an incoming scalar wave
passes through the ringing GW background, gravitational
energy can be transferred into the scalar wave leading to the
enhancement of its out-going flux. This is precisely what
makes the scalar field absorption cross section alkilng also
going through the ringing phase. Before settling down to its
standard Schwarzschild value, 6§, in its ringing phase
assumes the negative value indicating the superradiance
phenomena in the ringing black hole background. Finally
we computed different possible time varying observables
through axion-photon, axion-fermion coupling. All the
observables namely, rotation of photon polarization (6(t)),

0.0010¢
0.0005¢

£ 0.0000
< k=03
< —o.ooos»f ‘v

~0.0010} 04

—0.0015¢

Real part of the outgoing axion wave, subtracting the contribution from static black hole, has been plotted in the left panel, with

respect to time for a fixed frequency, k = (0.1,0.2,0.3,0.4). And the time derivative of the same quantity has been plotted in the right
panel. Time is measured from a point f,,; = ry,y on the light cone. The location of the interaction surface is taken as ry, = 30.
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nucleon electric dipole moment (N4, (7)) and shifting of the
energy levels (AE,,, (7)) due to fermionic axial moment,
naturally encode the ringing oscillation through the axion
coupling.
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APPENDIX A: METRIC CORRESPONDING TO
BLACK HOLE RING DOWN PHASE IN
RADIATION GAUGE

In this section, we will discuss how the metric describing
the ringing black hole came about, mainly following two
defining papers [36,37] (for corrected typos one may refer
to [38]) of black hole perturbation theory. We consider

|

i 1
hgr(:l) = % Zl(l + 1) |:ih01m(t’ ”)cggl) + hllm(t7 r)clm - Z V (l - 1)(1 + 2)h2lm(tv r)dlm:|

and

e 2M
hle) = (1 —) Hop(1, 1)
r

2001+ D)(in) (1. 1)) +in)

r

+ \/{l I+ 1) =1)(1+2)/2}Gy, (1, r)E,, —l—\[{Klm(t r) —lG,m(t r)}glm

The explicit form of the basis (aﬁSZ .o

gravitational perturbation, 4,,, on a static Schwarzschild

metric (g;,) as,

()

G = G + P (A1)
Regge-Wheeler [36] found that the perturbation, 4, ca

be decomposed into even and odd parity and it was shown
that the odd parity perturbation equations would boil down
to a Schrodinger like second order differential equation.
Zerrili [37] found the same type of equation for even parity
perturbation. Here we will briefly review the gauge choice
given in Zerilli, keeping up the notations (suppressing the
space-time index, u, v, all the tensorial quantity written in
bold format using spherical harmonics index, I, m, of the
tensor perturbation) intact. Putting together, the even (“e”)
and odd parity (“o0”) perturbation can be written as

hy = (i + b (A2)
Im
where,
(A3)
2MN\ -1
\/_IH”m(l r)agm> + <1 —r> H21m(t, r)alm
(t r)blm)
(A4)

g,,,) can be found in [37]. However, for completeness let us provide the expressions of

those ten independent basis tensors in terms of g"/” (5“6ﬁ + 8 ,07) as,

0 1 1 i -
(agm) )/w -5 Ylmg;tlw (a§m>)/w =5 Ylmg/tw’

2 V2
ir
(bgi)n))m/ = \/Tfl) (0pY 1,51 + 5¢Yzmgfgi),
r 1
(cgi)n)) = m ( Y 1 Gl — Sé‘aeylmgi£>a
ir rg)
(clm);w m < ad) lmg;w st‘)ab‘ylm (l)
2
—1r
d,,),., =
(Ain)y V200 + D=1 +2)

2

r
(glm);w = m (Ylmggg + S%)Ylmg;fl?),

2

(alm)

(blm);u/

r 1 P s Pq
(5 WGt + leng/ - Wlmgd/>

1
w = E Ylmg;:’

r

:78Ym r?/"—aYm ri&,
21(1+1)(9lgﬂ ¢lgﬂ)

1
< 2 lmg;w + sé)Wlmgm/ +— legq‘mﬁ)
So
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where, X, =20, (0 —cotd)Y,, and W, = (95— cot0d,—
(1/sin?6))Y,,,, also. Now there are 10 components (3 for
odd parity and 7 for even parity) according to the
symmetric condition of the gravitational metric. Under
diffeomorphism, x, — x, + ¢, the perturbation hy,, trans-
forms as

h;, =hy, - 2[v€lm]s (A6)
where, the symmetric covariant derivative acts as,
Vel = (VSim +V,8m) /2. So we can fix total 4
components out of the 10 components of the perturbation.

For the odd parity part of the perturbation we consider
the gauge transformation as,

o) 1
Cind =~ Am(t.1)(0.0.LY; (@) (A7)
where, L = —i{e;0y — ¢y(1/sin0)0,}, &y and &, are the
unit vectors along 0 and ¢ respectively. Consequently the
components of the perturbation transform (A6) as

:im{i{hwﬂ“ g ‘835m}

r

e =2 2 (%) femi@)

S AT 2) (ha(1.7)

r

+ 27, (1, r))dy, (9)}

e (Q)

Im

h((’)

Im

(A8)

One of the components can be fixed to be zero by adjusting
Ay, (t,r). To get the suitable asymptotic behavior of the
gravitational wave flux the asymptotic nature of the
components should be fixed in such a way that they behave
as 1/r [56] near spatial infinity. For which we resort to fix
LN

the temporal part of the perturbation has been taken as
e At this moment we want to state that in the following
discussion “N” signifies the transformed component and
the quantities without “N” denote the components in
Regge-Wheeler’s [36] gauge. The motivation for the
modification of gauge transformation stems from the fact
that one would get the suitable asymptotic behavior of the
gravitational wave flux in » — co. Now coming back,
because of the new gauge we get the components as

W (1 7) = hyg (£, 7) + 280, (£,7) = 24, (1, )

2
_EhOIm(t? r)

= (A10)
(for the functional form of the perturbation parameters
written in Regge-Wheeler gauge, look at [37]) and another
nonzero component

, 0

Ain
) = (e =2 (S) ()

1lm

o

Einstein equation [38] in Regge-Wheeler gauge, governing
the odd parity perturbation gives

iodh 2iwh
w2y, — @ Olm 1011
dr r
h
—(r=2M)(I-1)(1+2)"22 =0 (Al2)
r
Substituting K, (¢, r) = —iwA,;,, (1, 7),
dA 2
[0 hllm - w2¢ + (l)Z—Alm
dr r
h
—(r=2M)(I-1)(1+2)—"2 =0 (Al3)
r

using A = (I —1)({ +2)/2, we get from this equation

oim (2, 1) to be zero, 22 2M
W () =55 (1 =22 ) by (A14)
DA, °r r
h(()]l\lrr)l(t’r):0:>h01m(t’r): == A
Considering only the quadrupole perturbation (/ = 2) and
_ _.L hop (1, 7) (A9) chqosing m= Q, we get t'hé metric corresponding to odd
1 parity perturbation in Zerilli gauge as,
|
0 0 0 0
(N) 0
0 0 0 h] (t, V)S983Y2
,0dd _ AlS5
w 0 0 0 LI (1, 1) (cpDp Y3 — 5902Y9) (A13)
N N
0 WM (5, r)sp0YY LR (1, 7) (coDp Y — 5002Y9) 0
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For the even parity part of the perturbation we consider the following gauge transformation,
S = Mo(t. )Y 1 (@2, + M (1. )Y 1y ()2, + M5 (0, VY ) (A16)

where, V = 2,0, + ¢,(1/sin@)d,,, consequently the even parity components of the perturbation transform (A6) as

(e) 2M oM M (0)
hj¢) = (1—7>{H0,m(z,r)—2<1—7> <at0—ﬁ(r—2M)/\/ll a,

. OM, oM,  2M )
_ﬁl{H”'"(t’r)_< o or (r—2M)M0>}a’m

(2 - )
2(1+ 1 ){hg,zn(z r) - <8342+M0)} by,
2001+ ){hg,}n(t r) — (32;{2—%/\42 +M1>}blm
+\/{l(l+1)(l—1)(l+2)/2}{G1m(t, r)—rzzMz}flm

+ {\/E{Klm(t, ) —%(r - 2M)M1} A ;L ) {Gm(t, r) = %MzH 8im (A17)

So we can fix three components of the even-parity-components of perturbation by adjusting M, M,, and M,. Like we
said in the odd parity case, here also we choose the gauge in the following manner. We have found that for the following
choice

1 2MN\ ! M
M]([, r) _§r<1—7) |:1(1)—W1|Z(l‘, r) (AIS)
the perturbation parameter
2
K;Z)(t, r) :Klm(t’ r)__g(r_ZM)Ml (A19)
r

(for the functional form of the perturbation parameters written in Regge-Wheeler gauge, look at [37]) goes as 1 /rin r — oo,

excluding the plane wave part e~ *(""+) (as Z ~ ¢'®’+). Form the Einstein equation, governing the perturbation, one can find

that having no source term, Hy, = H, = H, accordingly we also fix H(() ) = HgN)

(1=3) O -Re-ama) = (-0 (55 4 2 )
:>6M0:<1__> 8M1+(1_%)¥M1

r or r r

:>M0:—£0{<1—W)28M1+<1 21”) Ml} (A20)

= H™), which implies

r or

(remember time dependence of the perturbation assumed to be e~") which fixes M, in terms of M. Making héj}n(N )

would lead (A17) to

= (8242 + Mo) =) (.r) (A21)

104045-9
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as we had h((ﬁzn(t, r) = 0 in Regge-Wheeler gauge, so

oM,
o~ Mo
1
10

Substituting M, in terms of M; (A20) in (A22) M, gets fixed as

1 1 2M\ 2 2MN\ 2M
Mzz.—[—.—{(l——> 6M1+<1——)—2M1H. (A23)
iw| iw r or r r

To summarize, we have fixed M, (A18) in terms of the background solution, so that K ,, behaves as O(1/r) asymptotically,
and we have fixed other two gauge parameters, M, M,, in terms of M. Finally we get for even parity perturbation in
Zerilli gauge considering only quadrupole perturbation (I = 2) and choosing m = 0 as

HM (2, r)(1 - 24)Y9 2N (1, r)Y? 0 0
N _ e)(N
o HM (1, r)YY HM (1, r)(1 =201y 2™ o,v9 0 (A24)
o=
0 W™ 9,19 P79 0
0 0 0 r’sin?079

where, 79 = K™ (1, r)Y + GWN) (2, r)05Y9 and T3 = K™ (2, r) Y9 4 cot 6G™) (1, r)3,Y9. Keep in mind that the terms
containing d,Y3(= 0) has been omitted. We list here the nonzero components

2MN\ ' (0 M
HWN(t,r) = H,,(t, 1) — 2<1 - —> ( Mo _ — (r— 2M)/\/l1> (A25)
r ot r
(N) BM] aMO 2M
H =H - - A2
) = Huntrr) = (T4 250 2y (A26)
P 0 2
HOW :_< Mz——/\/lerMl) (A27)
or r
2
K™ =K, (t.r) == (r—2M)M, (A28)
r
V) 2
G (t.r) = —pMz (A29)
[
One can check the trace of the perturbation behaves as We have dropped the “N” indices of the metric components

when using in Sec. IL

1
Ry~ [KN) — (24 1)GWN)] ~ 0(—3> (A30) APPENDIX B: EXPRESSION OF THE SOURCE

d TERMS P,,., AND P,,., OF THE MAIN TEXT

near r — oco. Finally putting together the metric corre- Thanks to our adopted perturbative approach which
sponding to even and odd parity perturbation and adding it ~ helps us use the separation of variable as grn(t.r) -
with the ordinary Schwarzschild metric we have obtained e~ 1(®*X/&!m (1) Using this, the first equation of Eq. (2.8)
the metric describing the ringing Schwarzschild black hole.  can be transformed into

|

B(r) + 3 Pran(r) =0 B1)

10 50P 030} + { ko - ) D
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where we see that the term, Y., P, & = e &Py, (r), with

2

Py (

= 3f(r)” (wk + K)GNE (r)

1. e 1
- plkamzﬂﬁmmr» + 65 f(r)hy"

1 2
-3 (N)
35 0Pf()G

(e)a E

ZAW[ P kKR (HIY + KB (1) + 50,2 1) (<H®) + K09, (1))

0,E (1)} —i(w +K)HM0,E (r)

() — c(c —24— 1) G(N)E(")V(r>:|

|:22 Acylm + 3\/>Z \/ C - ctr+ 1) A((7+1))lm:|

x [0 ()M OE (1)} + £ ()R

+£(r) \/

wa AL [6 {F(r)n

+f(r)p E

15 oA

The A" is related to Wigner 3-jm symbol, originating

Imcy
from the following spherical harmonics identity,

Y7(0,9)Y (0,¢9) = ZAW Y20, 9).

M1+ 1)Em(r) -

(B3)

Similarly for the other part of the perturbative solution, &,
we will have associated operator P,,,., which is the func-
tion of the complex conjugate of metric fluctuation, /. For

s uve
this case ), lew‘f ' emik=e)tp (1), where Py, (1)
can be obtained by replacmg @ — —* in the expression of
Py, (r) and simultaneously taking the complex conjugate of

the radial part of the fluctuation components.

APPENDIX C: CALCULATION OF ABSORPTION
CROSS SECTION

According to the construction described in Sec. III, we
have considered the space-time outside the interaction sur-
face to be static Schwarzschild. This particular fact enables us
to define the conserved quantity associated with the energy
momentum tensor at the asymptotic infinity. We have used
the outgoing null coordinate to maintain the causality
condition in our calculation, specifically during the identi-
fication of the ingoing part by matching the scalar field
solution and its r-derivative at spatial infinity. We shall now
briefly discuss the procedure to obtain the energy flux in
(u, r) coordinate, with u = ¢ — r,, in which Schwarzschild
metric is given by

[%22 Acylm + 2\/523A 17111 Im

C 4 E=C 1 E=C
U8 0+ 1O 0 E () + 5 0

& ()} + F(hy

= GWE (1)

Vet 1>}yéz¥<r>

ﬁ

0,&" (r) = GME" (r)). (B2)
ds?> = —f(r)du® — 2dudr + r*dQ (C1)

From the conservation law,
V”P” =0 (C2)

where P# = T# &, T#  is the energy-momentum tensor and
& is the Killing vector, we obtain the conserve quantity as

£— / P /=GP, (€3)
Taking time derivative on both side we get
0, = / d*x0,(\/—gP°) = — / dx0;(\/—gP")  (C4)
Now choosing a r-constant hypersurface will lead to
0, = —/erQPr
= —/rdeT’uéu
= - / r2dQT’",

= —/erQg’“TW

- - / rde[_Tuu +f(r)Tru]
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The energy flux measured by a stationary observerat r — oo,
per unit time is

0, = / dQP(T, ~ T, (C6)

For massless scalar field stress energy tensor 7 ,,, is given by

(8 ¢* I/¢ + 0 ¢8v¢ ) _gpwaagb* a¢ (C7)
where scalar field is expanded as ¢ = > N, & (u, r) x
Y (0, @) with Ny, being constant. We have solved the
scalar field modes starting from the black hole horizon to the
interaction surface (r;, ) with an ingoing boundary condition.
For this, the ringing Schwarzschild metric is playing as a
source. Then using that solution as the time dependent initial
condition at the interaction surface, we solve the same mode
equation in the static Schwarzschild background. This
procedure renders it difficult to identify the plane wave
component at the asymptotic infinity. Therefore, in order
to identify the incoming scalar wave propagating along
‘z-direction, we first use the well known Rayleigh expansion
of the plane wave in terms of the partial wave as

s VaAr2I+ 1HY(Q)

—ik
—ik(u+z,) ,—ikz, —ik(usr,) €
eTirelenie o ) et o
(C8)

+ Outgoing

where z, = r,cosf (recall that we have transformed,
t — u+z,). Considering the asymptotic solution Eq. (3.6),
we first choose the time independent normalization con-
dition as,

Ar(21+1)
= 8.
Nian 2ikAX (u = 00, i) "

(C9)

Using this normalization factor, we approximately define
following incoming scalar wave of momentum k propagating
along z-direction,

K I N A (., @)Y ,,(0, ¢) sin 0do
) sin OdO

" [ /422 + 1)Y9(Q

x 2ikeikluta) g ik,

(C10)

The time dependent amplitude is defined in such a way that
in the u — oo limit, it reduces to unity. With this approxi-
mated ¢;,, we obtain the total rate of ingoing flux for a given
mode k as,

0.8~ [doriTs-Tal  (c1

With all these ingredients we define the total absorption cross
section for every individual mode (k) as

fmg(u rmt)

d,E 9,E
DuEE =25,

Zgrmg u, th
(C12)

We have discussed our numerical results of ormg(u, Fint)s
which is the partial absorption cross section.

APPENDIX D: TIME VARYING ROTATION OF
THE PLANE OF POLARIZATION OF PHOTON

In this section we will study the conversion of axion to
photon (vice versa), specifically focusing on the axion
background. Although to start with we will consider a
constant magnetic field along with the time dependent
axion background. In the later part we will only consider
the axion part only, having additional effects in the final
results. Taking the following action, where axion couples
(94yy 1s the coupling constant) with photon,

/ \/_d4 |:__( /J¢aﬂ¢ + m¢¢2) - ZF/WF”D

1 -
- 4g¢y7¢F/4uF”D:| (Dl)

we obtain the inhomogeneous Maxwell equation by vary-
ing the action with respect to A, as,
OuF™ + Gy F0up = 0 (D2)

and inhomogeneous scalar equation by varying the action
with respect to ¢ as,

1 -

aﬂaﬂ¢ — m5)¢ — Zg(PVYFMUFﬂD =0 (D3)
Considering the radiation gauge, V-A= 0,Ay, = 0, both
the scalar (D3) and Maxwell equation (D2) can be

simplified as,

,E -V x B - g4,B0,p - g4,V x E=0

—0ip + V2p — myp + g4, B - 0,A =0 (D4)
Symmetry of the background-fields motivate us to consider
the propagation direction of the axion and photon fluc-
tuation along z, for simplification. So, expressing the scalar
and em field as background with fluctuation,

P(1.2) = ¢o(t) + P(1.2)

B=B,+VxA(t,2) (D5)

we can derive the linearized equation governing the
evolution of fluctuation as,

104045-12



RINGING BLACK HOLES ARE SUPERRADIANT: THE CASE OF ...

PHYS. REV. D 105, 104045 (2022)

_azA + VZA gqﬁyy{BOaij(t Z) + 0 ¢0( ) A] =0

(D6)
and

~0}p + V2 —mid + g4,By- 0,A=0 (D7)
Assuming the time scale of variation of background field is
much larger than the axion-photon wavelength. Also we
consider w ~ k, so that we can write the fluctuation as plane
waves like

P(1.2) = ¢, (1)e7 e
=1 Z’(Z) ot e—iwz
At z) = ( A(1)e —1wt> (D8)

We obtain the fluctuation equation of the fourier modes of
axion and photon, like Schrodinger equation as,

. 1 i .

la[Aﬁi(t) = _§g¢yyBS¢w(t) +59¢yy¢0(t)Az)(t)

. 1 i .

latAZ)(t) = _§g¢7yBEV)¢w([) _Egzﬁyygb()(t)AiJ(t)

, A 1 I
18!¢a}( ) - (/ ¢w( ) g¢yyB Aj ( ) _g(/ﬁyyBoAb)(t)

2
(D9)
|

In matrix form these equations can be assembled as

b (1) Ap A AN [9,(0)

0, As(t) [ =1 A 0 Ay || As() | (D10)
Ai)(t) A)‘ _A¢ 0 Ai’(t)

where A 2w’ A - 2g¢yyB (l - X, y) Alﬁ 29¢77§'b0'

Considering ¥(7) = {¢, (1), A5 (1), A
above equation

»(1)}, we rewrite the

i0,¥ = [H0+H( )| (D11)
where,
0 A, A
Hty=|[A, 0 A, (D12)
Ay, -Ay O

In the following discussion we will work in interaction
picture

Wol) =U'(09(), Hip = U (OA@U), U =7 [0 (D13)
so that the Eq. (D11) becomes
iathint(t) = HinWine,
=W (1) = 7 S IO (0) 5 Wi () = i / Hin(1)d? ¥, (7). (D14)
Taking up to second order (considering the coupling g,,, is very small) we get
t t 4
Vo= (11 [ Bttt = [ tatrar [ 1 ) vio) (D15)
to to f
After substituting this expression we get
- t t I3 -
A1) :AX(O)—iAXAmqﬁ‘”(O)—i/ A(/)dt’A‘y"(O)—/ dt’A¢/ di"A,A.9”(0)
t t - t t 5 7 B
—/ dr’ <AxAm/ di"AA,, — A¢/ dt”A¢>A§’(0) —/ dt’AxAm/ dr"AyA,,AP(0)
- t . t t -
Ay (1) = A,(0) —iA A,,¢”(0) +i/ A,dr'AY(0) +/ dt’A¢/ dr"A,A,¢”(0)
t . v - v t . v .
—/ dr’ <A)Am/ dt"A A, — A(/,/ dt”A,,,)A;‘,’(O) —/ dt’AyAm/ di"AA,,A%(0) (D16)
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where, we have used ¥, (0) = ¥(0) and A,, = [* A,,df' (D10). Up to second order in the perturbative evaluation of stokes
parameters we have found that the magnetic field background contributes separately with the axion background. We will
consider the contribution coming solely from axion background. So, without magnetic field background. We have found the

expression of Stokes parameters (considering A, =0 =A))

I(t) = 1(0){1 +AGA, + /t dr' (AyA, + c.c)} + (Ay + A3)V(0)

(1) = Q(O){l —-AjA, + /t di'(AyA, + c.c) p —i(A, — Ay)U(0)

-
—
~
~—
I

<
—

~
~—

|

0(r) £iU(r) = {1 F (8, = A}) {Q(0) £iU(0)) ~ e¥(Q(0) £ iU(0)).

}
U(O){l - AjA,+ /tdt’(A¢A¢ + c.c)} +iQ(0)(A, - AY)
}

V(O){l —AjA, + /t di'(AyA, + c.c) ¢ +1(0)(Ay + Aj)

(D17)

It can be checked from the above expressions of stokes parameters that, ¢ being real, there will be no conversion between
axion and photon. But different helicity states will be affected and time dependence of the axion field would lead to
distinguishable effects. The rotation (up to first order in the coupling constant) of the plane of linear polarization, for very
small 6, can be identified as 6 ~ (ﬁlﬁ — &(’Z) /1. And the interesting point is that because of the ringing oscillation we will see

time varying rotation of the linear polarization.
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