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We consider the motion of nonspinning compact objects orbiting around a Kerr black hole with tidal
couplings. The tide-induced quadrupole moment modifies both the orbital energy and outgoing fluxes, so
that over the inspiral timescale there is an accumulative shift in the orbital and gravitational wave phase.
Previous studies on compact object tidal effects have been carried out in the post-Newtonian (PN) and
effective-one-body (EOB) formalisms. In this work, within the black-hole perturbation framework, we
propose to characterize the tidal influence in the expansion of mass ratios, while higher-order PN
corrections are naturally included. For the equatorial and circular orbit, we derive the leading-order
frequency dependent tidal phase shift which agrees with the post-Newtonian result at low frequencies but
deviates at high frequencies. We also find that such phase shift has weak dependence (< 10%) on the spin
of the primary black hole. Combining this black-hole perturbation waveform with the post-Newtonian
waveform, we have developed a theoretical framework towards a frequency-domain hybrid waveform. The
comparison with a limited number of numerical relativity waveform shows an almost comparable phase
error to the EOB waveform in characterizing the tidal effects, although more systematic tests within the
parameter space are needed to faithfully address the accuracy of this waveform model. Further
improvement is expected as the next-to-leading order in mass ratio and the higher-PN tidal corrections

are included. This hybrid approach is also applicable for generating binary black-hole waveforms.
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I. INTRODUCTION

Inspiraling and coalescing compact-object binary
systems, including black holes and/or neutron stars, are
important sources of ground-based gravitational-wave
(GW) detectors, e.g., Laser Interferometer Gravitational
Wave Observatory (LIGO) [1] and Virgo [2]. Up to the
operation run 3 observation run, advanced LIGO and Virgo
have detected more than thirty binary black-hole mergers,
two binary neutron-star mergers and one possible black-hole
neutron-star merger. The number of events is expected to
increase significantly as advanced LIGO and Virgo reach
their design sensitivities.

Constructing GW waveform models is crucial for effi-
ciently detecting these binary systems, as well as accurately
estimating their source properties based on the observation
data. Since it is computationally expensive to numerically
solve Einstein’s equation (and associated hydrodynamical
equations if a neutron star is involved) for the binary

ffen gxuefeng @amss.ac.cn
"hyang @perimeterinstitute.ca

2470-0010/2022/105(10)/104043(20)

104043-1

evolution across the entire observation frequency band,
especially with the large parameter space needed to
characterize these binaries, several (semi)analytical or
phenomenological methods [3-5] have been developed
to complement the information from numerical simulations
and generate reliable waveforms [6-9].

These methods generally follow different avenues of
analytical approximations in modeling the binary black-
hole inspiral waveform. For example, the low-frequency
inspiral dynamics and associated waveform are treated
within the post-Newtonian (PN) framework in the
“Phenom” waveform series [6,10]. At higher frequency
certain calibrations with numerical waveforms are per-
formed to bridge the gap between the PN inspiral descrip-
tion with the black-hole ringdown. On the other hand, the
PN expansion is restructured in the effective-one-body
formalism [11] through a mapping to an effective spacetime
of the relative motion, so that the resumed PN results may
be better attached to the strong-gravity regime. Calibration
with numerical relativity data has also been used to improve
the accuracy of effective-one-body (EOB) waveforms.

When the mass ratio between the secondary and the
primary black hole is small, we can view the smaller black

© 2022 American Physical Society
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hole as a particle moving in a perturbed spacetime of the
primary black hole, where the metric perturbation and
associated dynamical effects can be evaluated in a system-
atic expansion in the mass ratio. This black-hole perturba-
tion approach is the leading solution to produce waveforms
of extreme mass-ratio inspirals (EMRIs), which are impor-
tant sources for space-borne GW detectors such as Laser
Interferometer Space Antenna (LISA) [12]. Given this
expansion scheme, it is then natural to ask what is its
regime of applicability in mass ratios? Interestingly, recent
studies [9,13-25] on this question have revealed a rather
surprising result: the EMRI-based waveform may be even
applicable for equal-mass binaries. In particular, for the
equatorial and circular orbit, the GW phase can be written
as the postadiabatic expansion [9],

w(w)z""—;f“’)+w<w>+nwl<w>+--~, (1)

where @ is the orbital angular frequency, = mm,/
(m; + m,)? is the symmetric mass ratio, and the function
w;(w) is the coefficient of the order 5’ term. When the mass
ratio is extreme, the symmetric mass ratio is almost the
same as the mass ratio ¢ = m;/m, < 1. The comparison
with numerical relativity waveforms shows that, across the
entire inspiral frequency range, high-order terms (starting
from y, in the expansion) only contribute < 2 radians
phase shift even for equal-mass black-hole binaries (with
n = 1/4) for most of the frequency range, except near the
transition regime from inspiral to plunge.' This observation
indicates that Eq. (1) may be a fast-converging series even
for equal-mass binaries, so that the first several terms may
suffice to produce accurate waveforms.

If at least one of the compact objects in the binary is a
neutron star, then tide-induced neutron-stars deformation
has to be included into the binary dynamics. This effect was
first computed in [28] for the leading-order term in the
waveform, with higher-order PN corrections worked out in
[29]. Later on these PN tidal corrections were incorporated
in the EOB framework, for both the equilibrium tide [30—
32] and the dynamic tide [33].

In this work, we adopt the black-hole perturbation point
of view and evaluate the induced quadrupole moment of a
neutron star moving in a perturbed spacetime of the
primary black hole. In the local rest frame (or more
precisely, within the “asymptotically Cartesian and
mass centered” coordinates [34]2) of the neutron star
and in adiabatic approximation, the induced quadrupole
moment is

"It is expected that an additional correction of order 7~'/> must
be introduced to account for the transition effects [26,27].

In the multipole expansion picture discussed in [35], the
central object can be fully relativistic. As the multipole moments
are derived in the asymptotic zone, Eq. (2) can be viewed as the
definition for the relativistic Love number A.

Qab = _AEalw (2)

where E ,, is the tidal tensor in the local spacetime, and 1 is
the tidal Love number. In the equilibrium tide approxima-
tion, A is assumed to be a constant; with dynamical tide
included, A can be thought of as a function of the orbital
frequency. Additional subtlety comes in if the orbital
evolution crosses one or more mode resonances, where
residual free mode oscillations will be present after these
resonances, and Eq. (2) breaks down [36]. For the purpose
of this study, since the primary mode (f-mode) generally
has a frequency higher than the inspiral frequency, we will
assume that the adiabatic approximation holds in the entire
inspiral frequency range. Discussions on mode resonances
and their detectability with LIGO and future detectors can
be found in [36-40].

In the black-hole perturbation picture, the metric
perturbation generated by the less massive black hole
can be expanded in power laws of the mass ratio
h=h;q+ hyq> + ..., with ¢ = m, /m,, and the less mas-
sive black hole m; can be viewed as moving along
geodesics of the spacetime with metric g, + 2 [41].
This mass-ratio expansion justifies the mass-ratio expan-
sion of y in Eq. (1). When the less massive object is a
neutron star, its motion can be viewed as a perturbed
geodesic of the spacetime gk, + h. This deviation from
geodesic mainly comes from multipole interaction between
the star and its environmental tidal field, while /4 is sourced
by the monopole (“the point-mass” piece), quadrupole, and
all higher-order multipole parts of the stress-energy tensor.
For simplicity, we truncate the multipole expansion at the
quadrupole order and use the Mathisson-Papapetrou-Dixon
prescription [42] to construct the stress-energy tensor of the
star. To the linear order in 4, the tidal energy of the object
and the tidal induced gravitational radiation flux are all 1/¢
or 1/n order lower than those of a point mass, so that the
correction to the gravitational phase starts at ¢~ or 52
order. Both ¢ and # are eligible choices of expansion
parameters in the small mass-ratio limit, but they will give
rise to rather different result as we truncate the series and
apply it in the comparable mass-ratio limit. For binary
black-hole waveforms it seems 7 is a more efficient
expansion parameter [9], but for tidal corrections the
optimal choice is yet to be determined.

The leading-PN-order tidal correction to the gravitational
wave phase is

9 o [[1lmy, M
oy =———— — A +1lo2 3
v 16 uM* K m +’"1) e } ®)

with p being the reduced mass mm,/M = nM, and M is
the total mass M = m + m,. This motivates us to write
down the tide-induced phase shift contributed by the less
massive star (star “1’) as
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- -1 0 n. (n
nyep1 R A4 (CI ]l//1<31>) + l//1<3[2 + Z"I l//](313>’ (4)

n>1

which naturally includes all PN corrections, with the
subscript “BP” denoting “black-hole perturbation.” In
particular, the 1/11(3_1) term can be obtained considering
the tidal deformation of the neutron star due to the back-
ground Kerr spacetime of the primary black hole, and 1/11(3012
corresponds to the extra tidal deformation induced by A,. If
the companion is also a neutron star, then its tidal
contribution to the waveform can be obtained by replacing
g by g~', A, by A,, and keeping 7 to be the same in Eq. (4).
As a result, the total tidal correction is

nygp = NYgp,1 + N¥WeP2

= <q‘lwf{p1> +yp + Zﬂwg’}3>

n>1

+ 4 <ql//](3_P]) + i + Zn”wé”ﬁ)- (5)

n>1

Strictly speaking, if both compact objects are neutron stars,
then there is no horizon absorption of the gravitational
wave flux. Such effect enters the dynamics at 2.5 relative
PN order for rotating black holes and 4PN for nonrotating
black holes [43]. The overall contribution to the phase is
less than 0.1 rad for the point-mass motion terms, which
means for the tidal correction it should be even smaller
[44]. We shall neglect this effect in the waveform con-
struction. Notice that 1//](3013 (w) becomes the leading-order
term for star “2”. In fact, it can be evaluated by computing
the deformation of a star by an orbiting point mass and then
determining the extra energy change and gravitational wave

flux due to the star deformation. This offers an alternative

(and likely easier) way to compute l//l(gog(w). Such calcu-

lation will be carried out in a follow-up study of this work,
where more systematic comparison with numerical wave-
forms will be provided.

The tide-induced phase shift can also be expanded in the

velocity v = /M /r (M is the total mass and r is the orbital
separation) within the PN formalism,

wen = A0 (Wopn + V2w ipn + VP Wisen + vtpopn + ).

(6)

Theoretically speaking, after summing over all PN terms in
Eq. (6) and all mass-ratio terms in Eq. (5), ygp and ypy
should agree. In practice, ywgp and ypy are approximately
obtained in truncated expansions in the black-hole pertur-
bation theory and post-Newtonian formalism, respectively,
as illustrated in Fig. 1. In order to better capture the tidal
effect with these two independent expansions, we propose
to construct a hybrid waveform by using

Y

nYBP

FIG. 1. wpp and wpy approximately obtained in truncated
expansions in the black-hole perturbation theory and post-
Newtonian formalism. The green and blue parts denote wgp,
the green and yellow parts denote ypy, and then the overlap of
wep and wpy is green part.

Yhyd = VPN + wep — Yovp> (7)

where y,,, denotes the contribution from the overlap
regime of the post-Newtonian and black-hole perturbation
methods (the green regime in Fig. 1). As a result, the
difference between this hybrid waveform and the “true”
waveform comes from the blank space in Fig. 1. As the
expansion orders in post-Newtonian and black-hole per-
turbation methods increase, the blank space shrinks, and we
shall obtain a better approximated waveform. Notice that
this construction applies not only to double neutron star and
black-hole neutron-star binaries discussed here, but black-
hole binaries as well. It will be interesting to perform the
exercise combining the EMRI-inspired waveform with the
PN waveform for binary black holes and compare with
other resumed waveforms, such as the EOB templates
[11,26,45-47].

In this work we truncate the series with only 1//](3},1) inypp
and up to y,py in ywpy. The accuracy of the resulting hybrid
waveform is comparable to the state of the art EOB
waveform for the tidal correction, for the numerical wave-
forms that we have used for comparison. The waveform is
naturally expressed in the frequency domain, which allows
fast waveform evaluation. This is because matched filtering
implemented in the frequency domain is computationally
less expensive, whereas the time domain waveforms
usually require solving the equation of motion down to
orbital timescales. The systematic error is understood as the
blank space in the phase diagram as in Fig. 1. The
waveform model is also easily extendible when higher-
order correction terms in wgp and ypy are available. We
plan to update the hybrid waveform with 1//](3012 in the future
and possibly with inspiral-to-plunge corrections and higher
multipoles, if necessary.

104043-3



XUEFENG FENG, ZHENWEI LYU, and HUAN YANG

PHYS. REV. D 105, 104043 (2022)

The paper is organized as follows. In Sec. II, we derive
the explicit equations of motion of an extended body with
nonzero quadrupole moment moving on a circular and
equatorial orbit in the Kerr spacetime. A series of conserved
quantities are discussed here. In Sec. III, we review the
Teukolsky formalism where the asymptotic behavior of
the homogeneous solution, waveforms and fluxes, and the
quadrupole source term are shown. In Sec. IV, we construct
the hybrid waveform and compare it with numerical
relativity waveforms, as well as the EOB waveform. We
summarize in Sec. V. In the Appendix, we list the useful
relations for spin-weighted spherical harmonics and
explicit expressions for the source terms of the
Teukolsky equation used in Sec. II B. Throughout this
paper, we adopt geometrical units G = ¢ = 1, where G
denotes the gravitational constant and c the speed of light,
respectively. The metric signature is (—, +, +, +)

II. CONSERVATIVE ORBITAL MOTION

In this section, we consider a nonspinning body (with
nonzero quadrupolar moment) moving in the Kerr space-
time, focusing on the case of circular equatorial orbits.
Without including the gravitational radiation reaction, the
orbital motion is conservative and easily solvable. We focus
on the conservative piece of motion in this section and leave
the discussion on radiative effects to Sec. III.

The Boyer-Lindquist coordinates (z,r, 0, ¢) are used in
the analysis, in which the Kerr metric takes the following
form:

oM 4aMrsin?0
ds2:_<1— Zr>dt2— a ;Sln dtdep

py
+5 dr? 4+ 2d6?

2a>Mrsin6
e

where M is the mass of the black hole, a is the spin
parameter with |a| < M, and

+ sinZ6 <r2 +a?+

A= —2Mr+d?, ¥ = r2 + a?cos?d. (9)

The Kerr spacetime has two Killing vector fields given by
9, and 9.

A. Equations of motion

The motion of a test body with multipolar structure is
discussed in detail in [48]. Following the same formalism,
considering the influence of quadrupole moment-curvature
coupling, the equation of motion of a spinning extended
body reads

D[Ja 1 c 1 cde
dr = _ERabcdubS d _EvaRbcder d > (10)

DSab
dr

4
_ 2p[aub] + gR[ucder]Cde» (11)

where u“ denotes the 4-velocity of the body along its world
line (normalized to u“u, = 1), 7 is an affine parameter of
the orbit, R,,.; denotes the Riemann tensor of a Kerr
spacetime, p® is the momentum, and J*¢¢ is the quadru-
pole tensor which obeys the following symmetries:

Jabed — ][ab][cd] — chub’ (12)
Jubcd +chad _|_Jcabd =0. (13)

If we only consider the gravitoelectric tidal field, neglecting
the gravitomagnetic tidal field and quadrupole deforma-
tions induced by the spin, then the induced quadrupole
moment is

Q% = —AE®, (14)

where 4 is the tidal Love number, and E, = m]7 R,.pap P®

is the tidal tensor of the spacetime. In addition, the tidal
quadrupole deformations J*¢¢ are related to Q*’ by

3
Jabed — _i?’op[aQb][cpd]’ (15)
my
where
m% = _papav
mO = —paua.

In this paper, we suppose that the extended body has no
spin, then the 4-momenta can be obtained from (11),

4
pa = mou” +§MbR[aCd€Jb]Cde. (16)

The difference between m and m; is at higher multipole
order than the quadrupole [48]. As a result, we shall not
distinguish m from m; in this work, as we only consider
effects by the quadrupole moment. The stress-energy tensor
of the test body can be written in the following form:

o 1 O4)
T — / dr |:u(apb) OB + =R, e(an)edc
/=g ' 3 d V=
2 S(4)
_2y v [ jdtab)e < _ 17
3¢ ( /=3 (17)

B. Conserved quantities

A test particle moving in the Kerr spacetime has four
conserved quantities: energy, angular momentum along the
symmetry axis, the Carter constant, and its rest mass. As a
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result, its motion is integrable for generic geodesic orbits.
When the internal quadrupole moment is included, we can
still construct conserved quantities for extended bodies in
the Kerr spacetime based on the Killing vector fields.
According to [49,50], the quantity,

Q.f :pafav (18)

is conserved if £ is a Killing vector, V(,&,) = 0. We then
decompose energy and angular momentum as E = Eq(r) +
E(r) and J = Jo(r) + J,(r), where E,(r) and J,(r) are
proportional to the tidal Love number 4. As only the first-
order tidal effects included, we just need to substitute Eq(r)
and Jy(r) into Eq. (15) to obtain the momentum p and
quadrupole moment J%*¢_ For the Kerr spacetime, there are
two killing fields, 9,,d,, which lead to

E=-p,

OM?A
mr!? (

x (EgJo— Eja+mda)(2J5—4EyJa+2E}a® + mir?),

1
:;(ZMaud’—ZMu’—i—ru’)— Jo—Eya)

(19)
J=Dpy
1
=—[2Mau' —u?(2Ma® + ra® + 1°)]
p
IOM?2
+ 5 (Jo = Eoa) {25 = 6o Jja + mi(a* + 1)
0
+ J3[6E3a® + m3(2a> + 3r)]
— Jo2Eja® + Egmga(4a® + 517)]}. (20)

As both E, J are conserved and the geodesic contribu-
tions E, J, are not; one can obtain E, J, at any stage of
the orbits as functions of E, J from the above equations.
Notice that both m and m, are no longer constant with the
presence of quadrupole deformation. In fact, as shown in
[50], the following masslike quantity p as

A
W= my + ZEabEab +0(2) (21)

is approximately constant if we neglect the second-order
tidal effects. It is straightforward to show that Eq. (21)
implies

m 3M?A
70 =1- W [m3r4 -+ 3”’%}’2(]0 — an)2
0
+3(Jy = Ega)*] + O(2%). (22)

C. Orbital description

In the Kerr spacetime, the motion of a generic test body
with internal quadrupolar moment is no longer separable as
there are only three conserved quantities: E, J, and p.
However, for equatorial orbits, the inclination angle being a
constant & = 7/2 and the motion in r and ¢ directions are
still separable. In particular, if the orbit is circular, then all
conserved quantities can be expressed as functions of r.
With this understanding, we shall explicitly write down the
orbital equation of motion up to linear order in A for
equatorial orbits. According to the expressions for E, J in
(19), (20), and m3 = m} = —p“p,,, they are

dt E [(rP+a*)?* N al (, r’+a’
bl I 4 -
dr myr* A myr* A

+ Fo,(r,a,E,J)
= Foo(r,a,E,J) + Fo,(r,a,E, J), (23)

ag\ _ J +aE r2—|—az_1 3 a*J
dt)  myr*  mor? A mor’ A

+ F3,(r,a,E,J)

= Fao(r,a,E,J) + F3,(r,a,E, J), (24)
dr\?* [E(F+a*)—al]* Alr’+(J—aE)?
dr) mgrt mirt
+ Fy(r,a,EJ)
= Fo(r,a,E,J)+ F(r,a,E,J), (25)
where
OM?A
FOt(r,a,E,J) = —m(J—Ea)[le —4FEJa —|—2E2a2
0
+m3r?)[2)°Ma+ E*a(2Ma® + a’r+r?)
—EJ(4Ma* +a’r+r?)
—m%ar(az—ZMr+r2)], (26)
M2
Fy(r.a.E.J) =———(J—Ea)[2J* —4EJa+2E*a’
myr A
+m3r?|[-2E*Ma* + EJa(4M —r)
+J2(=2M + r) + m3r(a* = 2Mr+r?)),
(27)
18M?2
Flt(r7 a, E, J) - W<J - Ea)2[2]2 —4FEJa + 2E202
+ m}r*][-4EJMa + J*(2M — r) — m{rA
+ E*(2Ma* + a®r + 1)]. (28)

The terms F, F'g, F3o represent the geodesic motion in
the Kerr spacetime, and Fy,, Fy;, F;3; account for the
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leading-order tidal correction.’ Strictly speaking, the adia-
batic tide approximation [Eq. (14)] breaks down for
eccentric orbits as the environmental tidal tensor E,;, varies
on the orbital timescale. The f-mode excitation and
evolution have to be included into the equations of motion
[38]. However, as the main purpose of this paper is to
generate waveforms for circular orbits, where the adiabatic
approximation still holds, we can view Eq. (23), Eq. (24),
and Eq. (25) as effective equations of motions that are
introduced as intermediate steps to find the circular orbits.

In the remaining part of the paper, for the sake of
convenience, we introduce the following dimensionless
variables:

to replace the unnormalized variables. In this convention,
we can rewrite Eq. (25) in the form,

1dr\?2 J2 m?
-—) = —28-E ——5 0 30
<rd1’) ﬁ tr ( )
where
2 2
a=1+ (r;rr)’ g2
2_» 2
s=1+2 - i r=-1+. (31)

Therefore, we know that Eq. (30) describes a one-
dimensional motion within a potential well. For circular
orbits, we require the radial velocity to be zero at the
equilibrium radius and the radial acceleration to be zero at
the same location. Based on these two requirements, we can
obtain the conserved E, J as functions of the equilibrium
radius r,

1 =202 4+ av?
1 - 302 +2a’
+ A4V 1 =307 + 2av®) " aPg(r) + 2af (r)v

+ (=24 )21 (r) + g(r)r)]. (32)

E(r) =

There are no F5y, F5, terms here as the motion in the 6
direction is not present for equatorial orbits.

() = 120>+ av®

VTS 1 2ar
—|—/1[4(1 — 31)2 + 26”]\)] 32— 5/2 {2(1 g( )
+a*v[3g(r)(r = 1)r +4f£(r)]
+a?[g(r)r((r—=1)r—4) +2f(r)(r=17)]
+3alg(r)(r=2)(r= Dr+4f(r)Vr
+ (r=3)2[g(r)(r = 2)r +2£(r)]}. (33)

where

N
3] 6a’

) = 5@av+ 37 [‘3“4 T T

+i—?—r2(r2—3r+3)}, (34)
184 4 1243 )
g(r) = _m [—Sa +T— 2a°r(2r+3)

4
+—?—r2(r2—2r+2)]. (35)
v

In order to compute the gravitational wave fluxes, we also
need to evaluate the orbital frequency (only prograde orbits
are considered here),

_dpdg/de
" dt dt)de

1 F3(r.a,E\J) Fo(r.a,EJ)
:r3/2+a{ +F30(r a’E’J>_F00(r’a’E’J)
(EJo—EyJ,)r*A
_[Zan+J0(—2+’”)][—2‘110+Eo’”3+a2EO(2+rﬂ}
(36)

If we substitute Eq. (36) into Eq. (32) and Eq. (33), then we
can obtain E(Q) = E(Q)+E,(Q) and J = Jy(Q) +J,(Q),
where Ey(Q), E,(Q), Jo(Q), and J,(Q) are the geodesics
and tidal parts of energy and angular momentum,
respectively.

We have incorporated these explicit tidal corrections in
Eq. (32) and Eq. (36) in an open source Teukolsky code
“Gremlin” within the “Black-Hole Perturbation Toolkit”
project [51], which provides many useful toolboxes for
describing the motion and wave emission of EMRIs. This
tide-modified Gremlin package [52] allows us to evolve the
trajectory of a point particle in a Kerr spacetime, while
counting for the tide-induced corrections. In Sec. III we use
the same code to compute the gravitational radiation
associate with the particle motion.
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D. Dynamic tide

In the low frequency limit, the stars answer to the
adiabatic environmental tidal fields by deforming them-
selves according to Eq. (14), with 4 being a constant. This
scenario is often referred to as the “equilibrium tide” [53].
In the late part of the inspiral, although the orbital
frequency Q is still lower than the frequency w; of the
¢ =2 f-mode, the gradual excitation of the f-mode in the
preresonance stage is no longer negligible. In fact, as
shown in [33], effectively we need to replace the constant
(dimensionless) Love number,

2k, R’
1= (37)
by
b DT QDT
kdyn —k |:a +_l< m=I + m=— >:| , 38
1 1%l 2 ?ﬂil Q?ni— ( )
where
2 2
w05 i

0T~ w2 = (mQP  2(mQ)e, QU (p—y)

;2 e
7 Slzc)ozf\/——emfe‘f<¢_¢/)z / VI iy
m €f —

(o8]

(39)

where the coefficients a, = 1/4, b, =3/4 (only £ =2 is
considered here), Q* = M/r*, and ¢ is the ratio between
the orbital timescales and the gravitational radiation reac-
tion timescales, Q} =3/8 is a rescaled derivative in
frequency, ¢ is the orbital phase, and ¢, denotes the
orbital phase evaluation at @ = ;. These quantities can be
written as a function of r,

o — 256M* w0} (40)
;= 5|m|5/3 ’
1 M 5/3
b=y = M) _jsr). - qan)
32M32y a)

which can be found in [33]. In the above two equations, we
do not use the dimensionless variables defined in Eq. (29)
in order to express them explicitly.

Note here the star still oscillates at the same frequency
of the external tidal force, which is why a frequency-
dependent Love number can be introduced here. If the
f-mode frequency were within the inspiral frequency
range, then the postresonance star also oscillates with a
frequency component ® = w; [36]. Such free f-mode

oscillations have been observed in numerical simulations
of eccentric binary neutron stars [38].

In Sec. IV we show the performance of hybrid waveform
models with the dynamic tide effect implemented. The
dynamic tide model generally fits better with the numerical
waveforms in the late inspiral stage, as demonstrated
in [33].

ITII. RADIATION

Neutron stars develop nonzero quadrupole moments
because of the gravitational tidal fields from their com-
panions. As a result, the stress energy of the star is modified
by the tidal deformation Eq. (17). This extra piece of stress
energy also generates additional gravitational wave radia-
tion, which in turn affects the orbital evolution. In this
section we first review the relevant Teukolsky formalism
and then compute the tide-induced gravitational wave
radiation.

A. The Teukolsky equation

The wave emission by an extended body moving in the
Kerr spacetime can be described by the Teukolsky equation
[54], which is separable in the frequency domain. In
particular, consider the variable,

1 ® o
=7 . 4 d R Saw (g lm¢—lwt,
v (V—ialcosﬁ)“/_oo a)%; imao (1) 257, (0)e

(42)

which is a Newman-Penrose quantity defined by con-
tracting the Weyl tensor C,,., with tetrad vectors: y, =

—Capean®m®ncin. The Kinnersley tetrad components are
being used [55],
1/A alsin’0
=5l < 19 Oﬂ - )
"a =3 (z s )

— p . . ) 2 .
m, = ——=(iasin®,0,Z, —i(r* + a*) sin0). 43
vl (7 +a)sing).  (43)

At any given frequency o, the wave equation is separable.
In particular, the eigensolution of the angular part of the
Teukolsky equation defines the spin-weighted spheroidal
harmonic _,S9“(#), which is normalized by

/ " 1,85 (0)? sin 0d6 = 1. (44)
0

We have listed relevant properties of the spin-weighted
spheroidal harmonics and their derivatives in the
Appendix A. The radial function R, (r) obeys the radial
Teukolsky equation,
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R (1 dR,,.,

dr\A dr

) VR (r) = ~T (). (45)

where

K% +4i(r— M)K
A

V(r) = + 8iwr + Ay, (46)

and A=r*-2Mr+ada*>, K= (r’+d*)ow—ma, and
Aim = Ay — 2amw + a*w?* — 2, where A, is the eigen-
value of the angular Teukolsky equation.

The radial Teukolsky equation is an ordinary differential
equation, which can be solved by using the Green function
method. To achieve this goal, one needs to first identify two
independent solutions of the homogeneous Teukolsky
equation: R ~and R®  which have the following

Imw Imw?

asymptotic behavior:

RH

__ ptrans A2 ,—ip,,r*
Imw — BlmmA e " r— r+
inc
H _ pref 3 ior* Imo —ior*
R}, = B re +—r e , r— oo, (47)
and
© _ Y Lip,r* ref A2 ,—ip,r*
le(u - lmwe + Clm(uA e ’ r—rg
o ans .3 iwr*
RS> = Clanspel™r, r— oo, (48)
where  p, =w-—-ma/2Mr, and the tortoise
coordinate r* is
2Mr r—r 2Mr_ r—r_
r(ry=r+ In + In ,
r.—r_ 2M r, —r_ 2M
+ +
where the outer and inner horizon radii are

ry =M+ VM?*—a®> Based on the Green’s function
method, the general solution of the Teukolsky equation
with a source can be written in this form,

Rina (1) = Zih, (1) RS, (1) + Zi5,, (PRI, (1), (49)
where
BUS e RH(NT, ()
7H — lmow / dr Imw Ima )
ol = Giwse, cs Jr, VAP
1 © R® ()T e (1)
7% - = d /) Mmw mw . 50
lma)(r) 210}31[21wa r A(r’)2 ( )

As the neutron star we consider here moves along
circular and equatorial orbits, there is only one frequency
in this setup @ = €. In particular, the mth harmonic has a
frequency of

@, = M. (51)

Then we have
Zho = "8(w — w,) Zjey . (52)

The energy fluxes going out to infinity and black-hole
horizon can be obtained as follows:

dE\ ™ |Zlo;)mu :
<) = a 53
(dt)GW %; drw?, (53)
dE\ 7+ |Z£In( |2
- — 4"»1, 54
(dt)GW ;alm drw?, (54)
where
256(2Mr.)> 2 142 (p2 + 166¥)w?
a, = ( r+) pm(pm + 4e )(pm + & )wm (55)

|Clm|2 ’
with e = VM? — a*/4Mr ., and

Cil? = [(Am + 2)? + daw,, — 4a*wd)[22, + 36maa,,
- 36a’w?] + (24, + 3)[6a*w?, — 48maw,,]
+ 144w, (M? - a?). (56)

As mentioned earlier, the boundary condition for gravita-
tional waves on the star’s surface is different from the one
for black-hole horizon. As a result, the horizon flux should
not be accounted for if both objects are neutron stars in
the binary system. However, it is a 4PN effect for
Schwarzschild black holes and 2.5PN effect for Kerr black
holes, and the associated phase shift is less than 0.1 even for
the point-mass motion. Therefore, in characterizing the
tidal effect and the “extra” gravitational wave emission
associated with tidal deformation, we shall not consider the
issue of the horizon fluxes in our paper.

B. Source term

In order to obtain the energy flux, we need to evaluate the
source term in Eq. (50). It is explicitly given by [56],

Im

2 . .
Tlmw(r) =4 / de[—4 (B/z + BE/)_QSaw(9>e_”"¢e’wf’
p

(57)

where the functions B/, and B}’ are
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8

pp - B
By = ==~ Lalp™ Lo(p™2p™ Ty
A%pp _ .
HEN =2 (p72p A )]
P 25
By = 22 Jilp™ P A L (p72p 7T )]
A%pPp

2 T o™ (07T ). (58)

Here, p = —1/(r—iacos@) and p=—1/(r+iacos®).
The differential operators J, and L; are

iK(r)
A 9
L, =0y + mcscO— awsinf + scotd,

J+:8r+

LY =8y —mcscO — awsin 0 + s cot 6. (59)

The stress-energy tensor for an extended body
moving in the Kerr spacetime, as described in Eq. (17),
is given by

1 .
T (x) = /dT [u(ap(h)‘s(@ +§Rcde(u‘lh)6dL6(4)

2
-3 V,V.(J d(”b>c5(4>)] (60)

1
— /dT |:u(ap(b) + chdB(an)edc _ JdaecacFZg

+ FZe (Fgfjfebc + Fgfjdfbc)

Tt rtgre 4 rg o) | 2200

+ 8d(rélf‘]fabc + F?f_]dfbc + Fﬁfjcafd) \/%_g

040, {7 5[x — 2(1)]} %__g (61)
— rAab Slx = z(7)] babgly — (¢ b
: /dA T oulB sl

T 040, {abes[x ~ z(r)]}%__g, (62)

where we have converted the covariant derivatives into
coordinate partial derivatives with Christoffel symbols,
which are more convenient for numerical evaluation.
Here the delta function 6[x — z(z)] is defined as

8l — 2(2)] = [t — 1(x)|8[r — r(2)1610 — 0(<)16[p — $ ().
(63)

Jdabe in Bq. (60) is a tensor, then we have also introduced
additional notations for J%’¢ to account for various pieces
of the source terms, as modified by the tidal field

Ay = Angny, (64)
B}Zi = Baabnanb’ JJ{LZ[Z{ = Jaabﬂnal’lb, (65)

where a, = t,r,0, ¢, and

B{"}

{drnn} B{e} : Baabaﬁ(nanb)’

= B’“bar(l’lal’lb), {donn} =

r abr 0 a

Ji{ildr}nn} =J b ar(nanb)v J?df)}nn} = J" b‘)ag(nanb),
e ra 0 _ 10a

I =0 ), T =P,

gy, T 0 (nyny). gloey JO08,0,(nany).,

{ddrnn} = {dd6nn} =
Ty =700, (nany). (k=0 Dy (nmy).
Ji:l?‘ilﬂnn} = Jrﬂabearaf)(nunh)- (66)

Apart from n,n,, we can also define components for J4*>¢
by contracting J9*¢ with n(,my) and m,im, following
similar convention as the above equations. The explicit
forms of these components are given in the Appendix B.

C. Sample evolution

We incorporated the additional tide-related source terms
into the Gremlin code and evaluate the gravitational wave
energy flux as a function of the orbital frequency. Formally,
we can write the total power as

dE\ pm y) dE tide
P:Ppm‘*‘Ptide:’?z(E) +'7m—(5)<E> . (67)

The #? factor within the point-mass term is related to the
fact that metric perturbation generated by the point mass is
proportional to the mass ratio, so that the flux is propor-
tional to #>. The tidal correction of the gravitational wave
flux is generated by the beating of the wave generated by
the point mass with the additional wave generated by the
quadrupole deformation of the star. Both EP™ and £ can
be computed given the initial conditions of the system. The
values can be used in other systems with different 7 and 4.

In Fig. 2, we plot the total power versus the point-mass
power for a nonspinning equal-mass black-hole neutron-
star system. The same type of system is also used in Sec. [V
for waveform comparison. The additional energy flux
contributed by the tidal deformation [Eq. (67)] becomes
more important at higher frequencies. Although the fluxes
are computed within the extreme-mass-ratio limit, the
results are applied in the comparable mass-ratio limit for
the waveform construction.
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FIG. 2. The energy flux computed for an equal-mass black-hole
neutron-star system with k,(Q = 0) = 0.07346, my = 1.4 M,
Maw; = 0.1349(1 + ¢)/2, and T" =2 polytropic equation of
state, and a similar binary black-hole system with the same mass
and starting from the same initial location. The flux dE/dt is
normalized by 7.

IV. WAVEFORM CONSTRUCTION

With the preparation in Sec. II and Sec. III on the
conservative and dissipative pieces of the tidal effects, we
are ready to present the tidal correction to the gravitational
waveform. We shall focus on the gravitational wave phase
as it is the most sensitively measured quantity within a
parameter estimation process. In general, amplitude cor-
rections for binary neutron star and black-hole neutron-star
waveforms are not negligible [57,58].

Assuming adiabatic circular orbit evolution, the motion
at any instantaneous moment can be approximately viewed
as a circular orbit with frequency Q. The gravitational wave
phase, as a function of the orbital frequency, follows:

d*y dE/dQ
— =2 )
dQ? P (68)

As we are interested in the tidal correction, we shall write
the total phase y as wP™ +y'%, the total energy as
E = EP™ 4 E% and expand Eq. (68) so that only linear
order terms in A are kept,

2,,tide tide m
Py (AEE/dQ oy, dE/ADY (o
dQZ ppm ( Ppm)2

where we plug in E%° and P evaluated in Sec. II and
Sec. I11. In the post-Newtonian theory, Ei and P can be
computed to various PN orders, which lead to the PN tide
waveform at different orders [29]. Notice that the gravita-
tional wave phase increases twice as fast as the orbital
phase because we focus on the dominant piece of the
waveform with £ =2, m = 2.

A. Hybrid waveform

The black-hole perturbation calculation discussed in
Sec. II and Sec. III gives rise to an EMRI-inspired wave-
form, which is fully capable of describing the gravitational
wave emission in the highly relativistic regime. On the
other hand, the PN tide waveform, although being less
accurate in the strong-gravity regime, does not require an
expansion in the mass ratio. In order to combine the merits
of these two different approaches, we have proposed a
hybrid version of the waveform, as explained in Eq. (7) and
depicted in Fig. 1. By definition, this hybrid waveform is
accurate if the mass ratio is small or if the binary separation
is large. Similar to the spirit of the EOB construction, we
anticipate that by ensuring matching at small mass ratio and
weak gravity limit, the hybrid method still provides a
reasonably accurate description for comparable mass-ratio
systems in the strong-gravity regime. This point has to be
checked with numerical relativity waveforms, as discussed
in Sec. IV B.

In constructing the hybrid waveform one needs to
subtract the waveform contribution in the overlap regime,
as explained in Fig. 1. In fact, it also serves as a sanity
check that the PN waveform taking a mass-ratio expansion
should agree with the EMRI-inspired waveform taking a
PN expansion. In light of Eq. (69), it suffices to show that
EU% and PU% obtained in the PN theory have the same
small mass limit as their counterparts found in Sec. II and
Sec. 11, expanded in various PN orders. Such a consistency
check is explicitly performed in Appendix C.

B. Numerical comparison

In order to evaluate the performance of the black-hole
perturbation and hybrid methods in constructing wave-
forms, we adopt an equal-mass black-hole neutron-star
waveform from the Simulating eXtreme Spacetimes wave-
form catalog [59]. For this particular waveform, the neutron
stars have a polytropic equation of state P = Kp', with
I'=2 and K =101.45. The neutron-star mass is
m =14 Mg, and the radius is R = 14.4 km. The phase
error is approximately ~1 rad at the peak of the strain [33].

For comparison purposes, we also compute the EOB
prediction of the tidal phase correction, with dynamic tide
included, in addition to the black-hole perturbation result.
As shown in Fig. 3, the hybrid waveform that integrates
both the black-hole perturbation and 2PN methods, per-
forms significantly better than the black-hole perturbation
result alone. The 2PN expansion of the tidal effects are
from Eq. (5) of [60] (“adiabatic 2PN”). This hybrid
waveform also has shown almost comparable accuracy
as the EOB-dynamic tide waveform, using this polytropic
star waveform. In Fig. 4, we consider a black-hole neutron-
star system with mass-ratio 2:1 and the property of the
neutron star are the same as Fig. 2 and Fig. 3. We observe
slightly better agreement with the numerical waveform for
the hybrid waveform in this case, but the difference is
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FIG. 3. Tidal phases of gravitational perturbation theory, the

hybrid method, the EOB framework, and numerical relativity
simulation for an equal-mass binary neutron-star system. Here
MQ is the orbital frequency and “ad 2PN” stands for adiabatic
2PN tides. The properties of the neutron star are the same as those
described in Fig. 2. The vertical dashed line shows the merger
frequency of the system, and the red shaded region indicates the
estimated phase error from the numerical simulation [61].

within the phase uncertainty of the numerical waveform.
Apart from these two scenarios, more detailed and sys-
tematic comparison and characterization are needed to
address the phase error of the hybrid waveform.

This hybrid waveform is naturally expressed in the
frequency domain, which is convenient for fast waveform
evaluation. To further improve the waveform accuracy to
meet the requirements of third-generation gravitational
wave detectors, high-order corrections (¢° and ') in the
black-hole perturbation method should be evaluated to
reduce the empty space in Fig. 1. As numerical waveforms

0
-1
m
-2
,'i, —— BP
‘g —— BPhyd
-3
—— EOB
— - N
—4| —— ad 2PN
-------- NS disruption

0.02 0.03 0.04 0.05 0.06 0.07 0.08
MQ

FIG. 4. Tidal phases of gravitational perturbation theory, the
hybrid method, the EOB framework, and numerical relativity
simulation for a black-hole neutron-star system with mass-ratio
2:1. The properties of the neutron star are the same as those
described in Fig. 2. The vertical dashed line shows the frequency
of tidal disruption.

0
-1
-2
0
© 3 — a=0
g —— a=0.2
4] — a=04
— a=0.6
—5{ — a=0.8
— a=0.99
-6 0.020 0.025 0.030 0.035 0.040 0.045 0.05
MQ
FIG. 5. Tidal phases in the black-hole perturbation waveform

with spin ranging from a =0 to a = 0.99 for six equal-mass
black-hole neutron-star systems. The property of the neutron star
is the same as Fig. 2.

are required for validation and calibration purposes, we also
likely require future numerical waveforms with O(0.1)
phase error, i.e., a factor of ten improvement from current
waveforms.

Interestingly, the black-hole perturbation approach also
offers straightforward evaluation of the spin dependence of
the tidal terms, which are absent in the current PN or EOB
waveforms. According to Fig. 5, the influence of the spin
parameter of the black hole on the tide-induced phase shift
is less than 10% in the entire inspiral range. Such additional
phase shift may be less important for binary neutron stars,
as they are generally believed to be slowly spinning
according to the observation of galactic pulsar binaries
[62]. Nevertheless, they should be relevant for black-hole
neutron-star binaries if we want to control the waveform
phase error to be below 0.1, especially for the ones with a
low-mass black hole [63].

V. CONCLUSION

A recent program in connecting scattering amplitude
calculations to two-body problems in general relativity has
triggered an evolution in post-Newtonian and post-
Minkowski (PM) theory [64-66]. Higher-order PN and
PM corrections to the equations of motion have been
discovered with this new approach. On the other hand,
the development of second-order (in mass ratio) gravita-
tional self-force is being carried out and implemented in
circular orbits in Schwarzschild [67]. It is expected to
correct phase error on the O(1) order, which is on the
comparable level of the environmental effects [68—71]. The
hybrid approach proposed here naturally integrates these
two independent expansions to achieve a better description
of binary motions in the comparable mass ratio, strong
gravity, and high velocity regime. In this work we have
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incorporated the PN expansion of the tidal correction up to
2PN order and the leading-order term in the mass-ratio
expansion, which gives rise to a hybrid waveform with
almost comparable accuracy to the state of the art EOB
waveform in our comparison with limited number of
numerical waveforms. Although in this work we only
consider the equal-mass and mass-ratio 2:1 systems for
numerical comparisons, our model applies for arbitrary
mass ratios. This tidal phase can be added to the phase of
binary black-hole waveforms to obtain the waveforms for
binary neutron stars and black-hole neutron-star systems
[4]. As this work is mainly dedicated to explain the
theoretical formalism, it is also important to note that, to
faithfully address the accuracy of this model, a more
systematic comparison with the numerical waveforms is
required.

Moving forward, it should be straightforward to include
the w,spy term [60,72,73] and 1/12?3)13 corrections. In

particular, as ‘//<1(1)3)1> is the leading-order tidal term for

the more massive object, it is easier to consider the
problem of a point mass orbiting around a star to evaluate
l//<1(])3)1>- In Fig. 5, we observe that the discrepancy between
the black-hole perturbation waveform and the numerical
waveform monotonically increases as the binary evolves.
The inclusion of the w,spy term and l//<1(])3>P may help
alleviate the disagreement. In the future, it is feasible to

also work out the ‘//(1:3)13 and beyond-2PN corrections to

achieve better accuracy.

In [9], it is argued that for the comparison between the
numerical relativity binary black-hole waveform and the
EMRI-inspired waveform, the discrepancy at large orbital
frequency might come from the breakdown of the adiabatic
approximation, so that the inspiral-to-plunge transition has
to be taken into account. However, in the comparison
performed here for the tidal effects, the discrepancy never
displays a sudden rise near the merger. Therefore, we do not
expect the inspiral-to-plunge transition to be the main
reason of disagreement found here. Nevertheless, we
may still include the transition in our future investigation
to see how it affects the waveform construction.

On the other hand, higher order in mass-ratio terms may
be obtained by calibration with a set of numerical wave-

forms [9]. Let us consider Eq. (5) as an example. If both

‘I/(n_a;) and 1//<1(1)3)P are known through black-hole perturbation

calculations, we may truncate the summation up to n > 1
and fit 1//5}3)],, s '//(17113)19 by comparing to a series of numerical
waveforms with different mass ratios. The obtained fitting
formula and the associated waveform can be tested with
another independent set of numerical waveforms. The
accuracy of this method relies crucially on the accuracy
of the calibration waveforms. We plan to perform this
analysis using more binary neutron star and black-hole
neutron-star waveforms.

As advanced LIGO continues to improve its sensitivity
and especially with the third-generation gravitational wave
detectors [74,75], we should expect to observe a set of high
signal-to-noise ratio (SNR) events, which will allow many
important applications of precise gravitational wave
astronomy. The gain in SNR also poses strict requirements
on the modeling error of the waveforms, so that the
waveform systematic error is smaller than the statistical
error of these events. It has been shown that for third-
generation detectors the mismatch error for numerical
relativity waveforms has to improve by 1 order of magni-
tude. For semianalytical waveforms, an improvement of 3
orders of magnitude is necessary [76]. Significant new
developments are required to bridge such a large gap, and
hopefully the hybrid method proposed here will provide
one avenue for exploration.
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APPENDIX A: SPHEROIDAL HARMONICS

Even though some derivatives of the spin-weighted
spheroidal harmonics can be found in [77], we need some
other derivatives which we state as follows:

89—1 Ykm (0) = (m Cse 9 — cot 0)—1 Ykm (9)

= [k(k+2)]"2,Y,(6), (A1)
oY i (0) = mcescO,Y,,,(0)
= [k(k+2)]"2,Y,,(0),  (A2)
99, Y}, (0) = mesc6,Y,,,(6)
= [(k=1)(k+2)]"%,Y,,(0), (A3)
S= i bkaH—ZYkm’ (A4)
k=lnin
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DgS = (mcot@csc O + 2csc?0)S .
LS = awsin0S — > b[(k—1)(k+2)]"2_,Y,,(0).

- Z b[(k = 1)(k+2)]'"2_,7,,(6),  (A5) K=l
k IlTllﬂ
(A8)
090yS = (=mcotOcsc O + 2csc?0)S
+ (mcot@csc O + 2csc?0)dyS OyLES = awcos 0S + aw sin 00,5
i kZ: bullk = Dk + D001 Y (0). - (A6) C S Bk = Dk 2120 Y®). (A9)
min k llnlﬂ
pLiL3S = 3 bil(k = Dk(k+ 1)(k+2)]'?09Y ,(6) -
K= lnin LiLyS = ) bil(k = Dk(k+ 1)(k +2)]"%,Y,,,(6)
+ 2aw cos OL}S + 2aw sin 0,L%S =i
— 2(aw sin 0)aw cos 0S — (aw sin 6)29,S, +2awsin 0L, — (awsin ). (A10)
(A7)
|
DpyL}S = (—awsin O + 2aw sin 6)S + (aw cos @ + awm — 2aw cos 6)dyS — (aw cos @ — m cot O csc O + csc?6)
x Z bel(k = 1)(k+2)]"/2_,Y,,,(0) — (awsin @ + mcscd — cot ) Z —1)(k+2)]"2_,Y,,
k=liin k=lnin
+ ) byf(k = Dk(k + 1)(k+2)]V2Y,,,. (A11)
k:lmin
Trie_ (_ . 1/2 . _ 1/2
0pOL L3S = (=mcotOcscO) > by[(k—1)k(k+1)(k+2)]"2Y,, (0) +mescO Y by[(k—1)(k+2)]"20y0Y,,, (0)
k=lrnin k=lnin
= bil(k= 1)k (k+1)2(k+2)]"/20p, Y, (0) — 2awsinOLLS +2aw cos 00, L ]S +2awcos 00, L5 S
k=l
+2awsin0dydyL}S — 2a>w? (cos20 — sin®0) S — 2a*w? sin 0 cos 0yS — 2a*@? sin0cos 00,S — (awsin ) DydyS.
(A12)

APPENDIX B: SOURCE TERMS

Because we consider the first-order tidal effects, the we can substitute E, and J,, into the tensors B%” and J4°*¢, The
concrete components are

[Ja—E(r*+a*)]*>  Aa®>+ (=2+r)r)? 4 4a(3 + 4r) 5 5
A = ~18 —2a%r(31 +3r) + —2 T 29— 12 ,
{n} 4mr* 4r'" (=3 +2av + r)? “ + a*r(31+3r) + V3 +r( r+r)
(B1)
i(J — Ea)[Ja — E(r* + a* 7 1 19/2 33r+17)a’
Ay = alJa-E(~+da)] ’ (-) [18va7+u+r(133—97r)a4
22mr3 2\/5(2va+r—3)3 r v
1772 + 48r — 139)a3
LI T 139)a7 | 30,2 4 gar - 17)a2
v
23 42172 = 83r + 66
Ler 2 8y )a—l-r3(—2r3—|-r2+15r—18)—60a6}, (B2)
v
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E[(r+2)a® + r*] = 2Ja p 30a° 4(11r - 20)a’
A= - —r(12r+7)a* + ————
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APPENDIX C: OVERLAP REGIME OF PN AND
BP METHOD

To obtain the hybrid waveform between post-Newtonian
theory and black-hole perturbation method, we need to
check the consistency within the overlap regime of these
two methods. In other words, the PN waveform taking the
mass-ratio expansion should agree with the BP waveform
taking the PN expansion to the relevant orders. Technically,
it suffices to compare the tide-induced energy and energy
flux, which we explicitly show here up to the ¢! and 1.5
PN order. In order to accomplish this goal, we need to
expand the components in Appendix B, as well as the
homogeneous solutions of the Teukolsky equation with the
ingoing boundary condition for /=2, 3 and incident
amplitudes, which can be found in [78],

2 i 1120 i

pin 237 iZ?
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Zmo 30 45 11340

N 2 izt 412 3l L §+g
“\715760 3780 3780/ "€ \30 60 )
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3mo 630 1 1260 3780 16200 252 756)°
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) i T 5
B = " ll—eZ+ie[>—y—1log2 2
s 8w2{ 62+ze<4 y —log >+0(e)},

(C3)

8r%(2va +r —3)*(r - 2)r + a?

. i b4 13

Bt =" dl—e+ie[—=—y—1log2 2

R 8w2{ €2+l€<6 y og>+0(e)},
(C4)

where 7 = owr and € = 2M®. With these equations and
components in Appendix B, we can obtain the energy flux
up to the 1.5 PN order from Eq. (53),

1
33
dE 5 1247
— == 1- MQ)*3 + 18A(MQ)10/3
dt 327 (MQ)'0/3 [ 336 (MQ)* + 18A(MQ)
704
——0 V() 4
28 HMQ) } (C6)

which are the same as the corresponding PN result by
keeping only the #~! order term [29]. According to
Eq. (68), we know that in the overlap regime the post-
Newtonian and black-hole perturbation methods are
consistent.
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