
Quasinormal modes and late-time falloff of Finslerian black holes
with cosmological constant

Tian-Yang Li,* Su-Ping Zhao,† and Xin Li‡

Department of Physics and Chongqing Key Laboratory for Strongly Coupled Physics,
Chongqing University, Chongqing 401331, China

(Received 5 June 2021; revised 15 February 2022; accepted 5 May 2022; published 20 May 2022)

Quasinormal modes of scalar and electromagnetic field perturbations in Finslerian Reissner-Nordström
black holes with a cosmological constant are investigated in this paper. We analyze the fundamental
frequencies and dynamical evolution of quasinormal modes using the WKB approximation and finite
difference method, respectively. Both approaches show that the periods of oscillation of quasinormal
modes increase with higher Finslerian parameter ϵ2 if the multipole quantum number l ≥ 2. Using the
Prony method, we show that the results obtained from the finite difference method are consistent with the
results obtained from the WKB approximation. Quasinormal modes of Finslerian black holes possess
spectrum splitting, which reflects the fact that the spherical symmetry of the Finslerian black holes is
broken. The effects of the Finslerian parameter ϵ2 on the late-time tails of scalar and electromagnetic field
perturbations are shown. The late-time tails of the Finslerian Reissner-Nordström black holes possess a
power-law falloff. The power-law index has a discontinuous jump, while the Finslerian parameter ϵ2 varies
from 0 to nonzero. Such a fact reflects the fact that asymptotic-infinity behaviors of the Finslerian Reissner-
Nordström black holes are different from their counterparts in general relativity.
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I. INTRODUCTION

The black hole, as a region with strong gravity, has been
widely discussed by physicists. In general relativity, the
Schwarzschild solution has predicated the existence of
black holes. Penrose gave a robust proof that black holes
can be formed without the assumption of high symmetry
[1]. Black holes can be generated through three ways,
namely, the gravitational collapse of a heavy star [2], the
gravitational collapse of a primordial overdensity in the
early Universe [3–5], or high energy collisions [6].
Accretion disks [7], as a typical astronomical phenom-

ena, can be used to locate supermassive black holes located
at the centers of galaxies. Observations of a hot accretion
flow for Sagittarius A� have shown that it is a candidate for
a supermassive black hole [8]. The orbits of several stars
around Sagittarius A� have been precisely observed by the
GRAVITY Collaboration [9]. This also confirms that
Sagittarius A� is compatible with black holes predicted
by general relativity. The first released picture of the centre
of M87 by the Event Horizon Telescope Collaboration has
shown the existence of a supermassive compact object at
the centre of M87 [10]. A detailed analysis of the shadow of

this picture provides strong support for the fact that such a
supermassive object is a supermassive black hole.
The above progress has shown universal existence of the

black holes in our cosmology from both theoretical and
experimental researches. On behalf of the detection of
gravitational waves [11], properties of black holes can be
investigated from direct gravitational effect. The ongoing
third generation of gravitational-wave detectors, such as the
Einstein Telescope [12], will provide more precise obser-
vations of binary black holes mergers. Though general
relativity has been tested by various observations with high
precision [13], the observation of gravitational waves could
become a powerful tool to test general relativity in strong
gravitational region.
To study possible quantum effects of gravity or to search

for possible explanations of dark energy or dark matter,
various modified theories of gravity have been proposed
[14], such as fðRÞ gravity [15], fðR; TÞ gravity [16], and
Bekenstein’s TEVES theory [17]. The modified theories of
gravity mentioned above share one common feature,
namely, the background geometry, which is Riemannian.
Finsler geometry [18] is a natural generalization of
Riemannian geometry. It is expected that a gravitational
theory based on Finsler geometry will provide different
gravitational effects than other modified theories of gravity.
Based on the geodesic deviation equation, Rutz suggested
that the Finslerian vacuum gravitational field equation is
vanishing of the Ricci scalar [19]. We have derived exact
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solutions from Rutz’s field equation. These solutions admit
the existence of Finslerian black holes, namely, Finslerian
Schwarzschild black holes [20] and Finslerian Reissner-
Nordström black holes [21]. The Finslerian black holes
derived by us preserve a special symmetry. It is a warp
product spacetime and its two-dimensional subspace is
Finsler space with constant curvature. In Ref. [22], general
existences of Finslerian black holes have been proved. As a
counterpart of Penrose’s singularity theorem [1], Jacobi
fields and the Ricci scalar play an important role in their
proofs [22]. The above facts imply that Rutz’s field
equation [19] could be a reasonable Finslerian gravitational
field equation.
Though the mathematical existence of Finslerian black

holes has been established, the physical existence of
Finslerian black holes in cosmology should be tested by
astronomical experiments. Quasinormal modes (QNMs),
generated by perturbations of black holes, carry intrinsic
information of black holes. Thus, QNMs have been dis-
cussed intensively by physicists to test various modified
theories of gravity [23–30]. The frequencies of QNMs are a
characteristic property of the ringdown phase, which is the
last process of merge of binary. Up to now, three types of
binary mergers—binary black hole, binary neutron star, and
neutron star–black hole mergers—have been detected
[11,31]. Ongoing third-generation gravitational-wave detec-
tors (such as the Einstein Telescope [12]) and space-borne
detectors (such as LISA [32] and Taiji [33]) will provide
more precise observations and a broad detection frequency
band of the ringdown phase. Therefore, it is interesting and
important to test Finslerian black holes using QNMs.
We have investigated QNMs of specific Finslerian

Schwarzschild black holes [34]. Current cosmological
observations show that our Universe is undergoing accel-
erated expansion, which implies the existence of a cos-
mological constant [35]. Thus, the effect of a cosmological
constant should be considered in investigating the QNMs of
Finslerian black holes. In this paper, we study the QNMs of
Finslerian Reissner-Nordström black holes with a cosmo-
logical constant. In Finsler geometry, spaces with constant
curvature are not equivalent [21]. Therefore, Finslerian
Schwarzschild spacetime [20] and Finslerian Reissner-
Nordström spacetime [21] cannot be uniquely determined
by Rutz’s Finslerian gravitational field equation [19].
Rutz’s field equation can be regarded as an extension of
Einstein’s field equation. The above fact implies that other
constraints are needed to determine the gravitational
properties of Finsler spacetime. The asymptotic-infinity
behaviors of all Finslerian Schwarzschild solutions, includ-
ing the Schwarzschild solution, are different. Late-time tails
of perturbations of black holes reflect the asymptotic-
infinity behaviors of black holes [36]. Thus, research on
the late-time tail of perturbations of Finslerian black holes
may shed light on obtaining the hidden constraints on
Finsler spacetime.

This paper is organized as follows. In Sec. II we briefly
introduce the Finslerian Reissner-Nordström black holes.
Using the Finslerian Laplace operator and the divergence
operator, the equations of motion of a scalar field and
electromagnetic field can be derived. In Sec. III we use the
finite difference method, WKB approximation, and Prony
method to analyze the dynamic evolution and frequencies
of QNMs, respectively. The late-time tails are discussed in
this section. Finally, discussions and conclusions are
presented in Sec. IV.

II. QUASINORMAL MODES IN FINSLERIAN-
REISSNER-NORDSTRÖM SPACETIME

A. Finslerian Reissner-Nordström black holes

The basic geometric quantity of Finsler geometry is the
Finsler structure F [18]. The arc length of Finsler geometry
is defined as LðτÞ ¼ R

FðxðτÞ; yðτÞÞdτ, where x denotes
the coordinate of the Finsler manifold M and y ∈ TxM.
The Finsler structure satisfies the property Fðx; λyÞ ¼
λFðx; yÞ; λ > 0. This property guarantees that the Finsler
structure is well defined, namely, that the arc length is
independent of the choice of the parameter τ. The Finslerian
metric is given as

gμν ≡ ∂
∂yμ

∂
∂yν

�
1

2
F2

�
: ð1Þ

In Ref. [18] the Finsler structure was taken to be positive
definite. However, in physics the Finsler structure F is not
positive definite at every point of the Finsler manifold. The
causal structure of Finsler spacetime directly depends on
the sign of F2 [22,37].
In our previous research [21], a specific Finslerian

Reissner-Nordström (RN) solution was obtained from
Rutz’s Finslerian gravitational field equation [19], which
is distinguishing with the Reissner-Nordström solution
only in two-dimensional subspace. It is given as

F2 ¼ −fðrÞytyt þ fðrÞ−1yryr þ r2F̄2; ð2Þ

where fðrÞ ¼ 1 − 2GM
r − br2 þ q2

r2 , M and q2 ¼ 4πGQ2 are
the mass and charge of the black hole, respectively, and b is
a cosmological constant. F̄ is a two-dimensional Finsler
space with positive constant flag curvature. One of the
major differences between Riemannian geometry and
Finsler geometry is that Finsler spaces with constant flag
curvature are not equivalent to each other. For example, the
Finsler space derived by Byrant [38] is not equivalent to the
one derived by Shen [39]. Different choices of nonequiva-
lent Finsler spaces with constant flag curvature could
response on the different behaviors of QNMs, namely,
the frequencies and their late-time falloff. This is because of
the difference black hole geometry. In this paper, in order to
be consistent with our former results on QNMs in
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Finslerian Schwarzschild black holes [34], we only con-
sider a Finsler space F̄ with the following form [20,39]:

F̄¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1− ϵ2 sin2 θÞyθyθþ sin2 θyφyφ

p
1− ϵ2 sin2 θ

−
ϵsin2 θyφ

1− ϵ2 sin2 θ
; ð3Þ

where ϵ is the Finslerian parameter, and 0 ≤ ϵ < 1. The
Finsler space F̄ [Eq. (3)] is a extension of Riemannian
sphere.
QNMs have already been studied in Finslerian

Schwarzschild spacetime with the two-dimensional sub-
space F̄. Together with the following study on QNMs of
Finslerian RN black holes, we obtain more perturbational
properties of Finslerian black holes with the two-dimen-
sional subspace F̄.

B. Scalar field and electromagnetic field perturbations
of Finslerian RN black holes

In general relativity, electromagnetic field perturbations
of RN black holes with a cosmological constant are related
to gravitational perturbations of black holes [40,41].
Gravitational perturbations of Finslerian black holes will
involve detail analysis on Finslerian gravitational field
equation. This is beyond the scope of this paper and will
be considered in the future. Therefore, in this paper we only
consider the scalar and electromagnetic field perturbations
of Finslerian RN black holes [Eq. (2)]. The energy-
momentum tensor of scalar and electromagnetic field
perturbations is quadratic in the scalar and electromagnetic
fields. Therefore, in the linear approximation, these per-
turbed fields do not contribute to the gravitational field
equation, i.e., the background Finslerian RN black holes (2)
are unaffected by the perturbations. This implies that scalar
and electromagnetic field perturbations satisfy the Klein-
Gordon and Maxwell equations in the Finsler spacetime
(2), respectively. These equations are related to the Laplace
operator and divergence operator in Finsler geometry. It
should be mentioned that several different ways of defi-
nition of Finslerian are not equivalent. In this paper we use
the Finslerian Laplace operator defined in Refs. [42,43] that
was used in our former research [34]. It makes the results of
QNMs in Finslerian RN black holes comparable and
consistent with the results of QNMs in Finslerian
Schwarzschild black holes [34].
For any one-form A ¼ Aμdxμ and smooth function ϕ, the

Finslerian Laplace operator and divergence operator [43]
are given as

Δϕ ¼ σ−1∂μðḡμνσ∂νϕÞ; ð4Þ

divA ¼ σ−1∂μðḡμνσ∂AνÞ; ð5Þ

where σ denotes the Holmes-Thompson volume element in
Finsler geometry [44]. ḡμν is defined in terms of the Finsler
metric gμν,

ḡμν ¼ σ−1c−1n−1

Z
SxM

gμν detðgμν=FÞdη; ð6Þ

where cn−1 denotes the volume of the unit Euclidean
(n − 1)-sphere, SxM ¼ fy ∈ TxMjFðyÞ ¼ 1g, and

dη ¼
Xn
i¼1

ð−1Þi−1yidy1 ∧ � � � ∧ cdyi ∧ � � � ∧ dyn: ð7Þ

The Holmes-Thompson volume element is given as

σ ¼ c−1n−1

Z
SxM

detðgμν=FÞdη: ð8Þ

It should be noticed that ḡμν is the Riemannian metric.
Thus, the Finslerian Laplace operator defined in
Refs. [42,43,45] is a weighted Riemannian Laplace oper-
ator. Although the Finslerian Laplace operator and diver-
gence operator are very similar to the Riemannian one, it
still carries important information about Finsler spacetime,
such as the Holmes-Thompson volume element σ, and the
Riemannian metric ḡμν can be regarded as an average of the
Finsler metric gμν.
The Finslerian RN black holes (2) and the Finslerian

Schwarzschild black holes [20] both possess the same two-
dimensional subspace F̄ (3). Therefore, following the same
approach used in Ref. [34] and after some tedious calcu-
lations, we obtain that the radial and time components of
the scalar field and electromagnetic field perturbations
satisfy the following Schrödinger-like equation:

−
∂2R
∂t2 þ ∂2R

∂r2� ¼ VR; ð9Þ

where dr� ¼ dr=f is the tortoise coordinate. In Eq. (9), the
effective potential V of scalar field perturbations, axial
mode and polar mode of electromagnetic field perturba-
tions are given as

VS ¼ f

�
λS

r2
þ 1

r
df
dr

�
; ð10Þ

VA ¼ fλA

r2
; ð11Þ

VP ¼ fλS

r2
; ð12Þ

respectively. The parameters −λ in the above formulas
denote the eigenvalues of modified spherical harmonics
derived from the equation of motion of scalar field
perturbations and the axial and polar modes of electro-
magnetic field perturbations, respectively. These eigenval-
ues are given as

QUASINORMAL MODES AND LATE-TIME FALLOFF OF … PHYS. REV. D 105, 104042 (2022)

104042-3



λS ¼ lðlþ 1Þ − ϵ2
�
3ðl − 1Þlðlþ 1Þðlþ 2Þ

2ð2l − 1Þð2lþ 3Þ þ m2ð7l2 þ 7lþ 6Þ
2ð2l − 1Þð2lþ 3Þ

�
; ð13Þ

λA ¼ lðlþ 1Þ − ϵ2
�
lðlþ 1Þð3l2 þ 3l − 2Þ
2ð2l − 1Þð2lþ 3Þ þ m2ð7l2 þ 7l − 6Þ

2ð2l − 1Þð2lþ 3Þ
�
; ð14Þ

where l and m denote the multipole quantum number and magnetic quantum number of spherical harmonics, respectively.

It should benoticed that different choices for theFinslerian
Laplace operator alter the solutions of the angular part for
perturbed field. The properties of the QNMs of black holes
only depend on the radial and time components of field
perturbations. Different choices for the Finslerian Laplace
operator correspond to different eigenvalues of the solutions
of the angular part for a perturbed field, and different
eigenvalues could alter the frequencies of QNMs and the
power-law index of the late-time tails.

III. NUMERICAL RESULTS

A. Dynamical evaluation of QNMs

In this paper we use the finite difference method [46]
with a second-order scheme to investigate the dynamical
evaluation of QNMs in a specific Finslerian RN black hole.
Introducing the light-cone coordinates μ ¼ t − r� and
ν ¼ tþ r�, the Schrödinger-like equation (9) can be
simplified as

�
4

∂2

∂μ∂νþ Vðμ; νÞ
�
Rðμ; νÞ ¼ 0: ð15Þ

Using a grid cell scale h ¼ δμ ¼ δν, Eq. (15) can be discretized through Taylor expansion as

Rðμþ δμ; νþ δνÞ ¼ Rðμ; νþ δνÞ þ Rðμþ δμ; νÞ − Rðμ; νÞ

− ΔμΔνV
�
2ν − 2μþ δν − δμ

4

�
Rðμþ δμ; νÞ þ Rðμ; νþ δνÞ

8
þOðh4Þ: ð16Þ

The boundary condition applied in the calculation is
Rðμ; ν ¼ 0Þ ¼ 0, and the initial condition is a Gaussian
pulse Rðμ ¼ 0; νÞ ¼ exp½−ðν − νcÞ2=2ω2�. Additionally,
we set the grid cell scale h ¼ 0.5 and obtain the dynamical
evaluations of QNMs at a fixed r� ¼ 0.
To find the independent influences of the charge q and

cosmological constant b on QNMs frequencies, we first

consider the two cases, i.e., Finslerian RN black holes and
Finslerian Schwarzschild–de Sitter (SdS) black holes,
respectively. Then, the impacts of the joint action of the
two parameters are considered for Finslerian RN–de Sitter
(RNdS) black holes. Our results for these conditions at
ϵ2 ¼ 0 are consistent with the calculations in general
relativity [41,47]. The dynamic evolutions of the QNMs
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FIG. 1. Dynamical evolution of the QNMs of scalar and electromagnetic field perturbations in Finslerian RN black holes with various
ϵ2. The parameters used are q ¼ 0.5, l ¼ 2, and m ¼ 0. The parameters of the Gaussian pulse are νc ¼ 50 and ω ¼ 1.414.
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of Finslerian RN black holes are shown in Figs. 1–3. These
figures show that the periods of oscillation for scalar and
electromagnetic field perturbations both increase with
higher ϵ2 and m, and decrease with lower l. However,
the decay rates of the peak of the dynamical evolution of

QNMs are less affected by varying the parameters (l, ϵ2

and m). The periods of oscillation are inversely propor-
tional to the real part of the complex frequencies.
Next, we consider the impacts of the parameters (ϵ2, l,

and m) on the Finslerian SdS black holes. The results are
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FIG. 2. Dynamical evolution of the QNMs of scalar and electromagnetic field perturbations in Finslerian RN black holes with various
l. The parameters used are q ¼ 0.5, ϵ2 ¼ 0.4, and m ¼ 0. The parameters of the Gaussian pulse are νc ¼ 50 and ω ¼ 1.414.
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FIG. 3. Dynamical evolution of the QNMs of scalar and electromagnetic field perturbations in Finslerian RN black holes with various
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0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400

t

-40

-35

-30

-25

-20

-15

-10

-5

0
Scalar Field

(a)
t

-40

-35

-30

-25

-20

-15

-10

-5

0
Axial Mode of Electromagnetic Field

(b)
t

-40

-35

-30

-25

-20

-15

-10

-5

0

ln
| R

|

ln
| R

|

ln
| R

|

Polar Mode of Electromagnetic Field

(c)

FIG. 4. Dynamical evolution of the QNMs of scalar and electromagnetic field perturbations in Finslerian SdS black holes with various
ϵ2. The parameters used are l ¼ 2 and m ¼ 0, and the event horizon and cosmological horizon are re ¼ 1 and rc ¼ 100, respectively.
The parameters of the Gaussian pulse are νc ¼ 10 and ω ¼ 3.
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plotted in Figs. 4–6, respectively. One should notice that a
long oscillation will appear at t≲ rc=c with scalar field
perturbations for Finslerian SdS black holes and Finslerian
RNdS black holes. This means that an exponential decay

replaces the power-law decay, which is a special phenome-
non with a small positive cosmological constant [47].
Finally, we consider the dynamical evolution of the

QNMs of the Finslerian RNdS black holes. Here we only
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FIG. 5. Dynamical evolution of the QNMs of scalar and electromagnetic field perturbations in Finslerian SdS black holes with various
l. The parameters used are ϵ2 ¼ 0.4 and m ¼ 0, and the event horizon and cosmological horizon are re ¼ 1 and rc ¼ 100, respectively.
The parameters of the Gaussian pulse are νc ¼ 10 and ω ¼ 3.
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FIG. 6. Dynamical evolution of the QNMs of scalar and electromagnetic field perturbations in Finslerian SdS black holes with variousm.
The parameters we used are ϵ2 ¼ 0.4 and l ¼ 2, and the event horizon and cosmological horizon are re ¼ 1 and rc ¼ 100, respectively.
The parameters of the Gaussian pulse are νc ¼ 10 and ω ¼ 3.
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FIG. 7. Dynamical evolution of the QNMs of scalar perturbations in Finslerian RNdS black holes with various ϵ2, l, and m,
respectively. The common parameters used are b ¼ 10−5 and q ¼ 0.5. The specific parameters are l ¼ 2 and m ¼ 0 for panel (a),
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consider scalar field perturbations in Finslerian RNdS black
holes since the electromagnetic and gravitational modes are
coupled. The parameters of the Gaussian pulse ain calcu-
lating the Finslerian RNdS black hole are the same as for
the Finslerian SdS black holes. The impacts of the three
parameters (ϵ2, l, and m) on the dynamical evolution are
shown in Fig. 7.

B. Frequencies of QNMs

1. WKB approximation

In this section we use the WKB approximation [48] to
obtain the frequencies of QNMs from the Schrödinger-like
equation (9). To improve the accuracy of the characteristic
frequencies of QNMs, the higher-order WKB approach was
derived by Iyer and Will [49] and Konoplya [50]. In this
paper, the sixth-order WKB approximation is utilized to
obtain the frequencies of QNMs, and it is of the form

iðω2 − V0Þffiffiffiffiffiffiffiffiffiffiffiffi
−2V 00

0

p ����
r¼r0

¼ nþ 1

2
þ
X6
i¼2

Λi; ðn ¼ 0; 1; 2;…Þ;

ð17Þ

where V0 is the maximum potential at r ¼ r0 and Λi are the
ith-order correction terms, whose specific forms can be
found in Refs. [48–50]. Fundamental QNMs frequencies
labeled by overtone number n ¼ 0 are the least damped
mode [24] that usually dominates the ringdown waveform
and more likely to be detected in the ongoing third
generation of gravitational wave detectors. Thus, we only
study the fundamental QNM frequencies of Finslerian
black holes in this paper. The convergence of the sixth-
order WKB approximation was discussed in Ref. [25],
where it was shown that in many cases, when n ≤ l, the
sixth-order WKB approximation gives better results. In this
paper we only consider fundamental QNM frequencies,
which means that n ≤ l and the sixth-order WKB approxi-
mation is suitable.
Meanwhile, the effective potential of the Finslerian RN

anti–de Sitter black holes has no extremum and is not
convergent at infinity. Its complex frequencies cannot be
obtained with the WKB approximation. Therefore, in this
paper we only consider three special cases of QNMs of
Finslerian RN black holes with a cosmological constant
[Eq. (2)], i.e., QNMs of the Finslerian RN black holes
(b ¼ 0), QNMs of Finslerian SdS black holes (q ¼ 0), and
QNMs of scalar field perturbations of Finslerian RNdS
black holes (b > 0). In these cases of a probe electromag-
netic field, the spacetime is fixed and does not evolve.
For the three special cases of Finslerian RN black holes

with a cosmological constant, we discuss the influence of
the three parameters on QNMs frequencies, namely, the
Finslerian parameter ϵ2, multipole quantum number l, and
magnetic quantum number m. In this paper, without loss of

generality, we set the parameter GM ¼ 1 to obtain numeri-
cal results for Finslerian RN black holes and Finslerian
RNdS black holes. To compare our results with QNMs of
SdS black holes in general relativity [47], we consider an
event horizon re and cosmological horizon rc in calculating
the QNMs of Finslerian SdS black holes. These parameters
possess the following relations with metric components
fðrÞ and b and GM:

f ¼ 1 −
2GM
r

− br2 ¼ b

�
1 −

re
r

�
ðrc − rÞðrþ re þ rcÞ;

ð18Þ

b ¼ðr2e þ rerc þ r2cÞ−1; ð19Þ

GM ¼ brercðre þ rcÞ
2

: ð20Þ

The Finslerian parameter ϵ2 in the Finslerian black holes
(2)–(3) plays an important role in depicting the deviation from
black holes in general relativity. Thus, we focus on inves-
tigating the impact of ϵ2 on the complex frequencies of the
QNMs of Finslerian black holes. The numerical results are
listed in Tables I–III. It should be noticed that the Finslerian
parameter ϵ2 does not affect the QNM spectrum when l ¼ 0
for the scalar field perturbations and l ¼ 1ðm ¼ 0Þ for
polar modes of electromagnetic field perturbations. There
are also clear changes in the QNMs when ðl; mÞ ¼ ð1; 0Þ
between the axial and polar modes of electromagnetic field
perturbations. This is due to the fact that the nonvanishing ϵ2

breaks spherical symmetry. The three special cases of
Finslerian RN black holes with a cosmological constant have
similar behaviors for the field perturbations. For scalar field
perturbations, the magnitude of Reðω0Þ decreases with
higher ϵ2, while the magnitude of jImðω0Þj increases with
higher ϵ2. For axial and polar modes of electromagnetic field
perturbations, the magnitudes of Reðω0Þ and jImðω0Þj both
decrease with higher ϵ2. The Finslerian effect on the QNMs
can be attributed to the eigenvalues of the modified
spherical harmonics [Eqs. (13)–(14)]. The eigenvalue λ can
bewritten in terms of the effectivemultipole quantum number
ν, namely, λ≡ νðνþ 1Þ. In many cases, the effective multi-
pole quantum number ν decreases with higher ϵ or m.
Therefore, these results are obvious from the properties of
the quasinormal frequencies of RN black holes. It should be
noticed that the eigenvalues (13)–(14) both return to that in
general relativity when ϵ2 ¼ 0 or l ¼ 0. This means that
the QNM frequencies of Finslerian black holes will also
return to that in general relativity when ϵ2 ¼ 0 or l ¼ 0.
Under such special conditions, we find that our numerical
results are consistent with the results in general relativity
[51–53].
The two-dimensional subspace of Finslerian black holes

(3) breaks spherical symmetry. Such fact responses to the
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eigenvalues (13)–(14) that depend on the magnetic quantum
numberm. It will cause a Zeeman-like splitting of the QNM
spectrum. The numerical results are shown graphically in
Figs. 8–10, respectively. For scalar field perturbations, the

magnitude of Reðω0Þ decreases as m increases, while the
magnitude of jImðω0Þj increases as m increases. For axial
and polar modes of the electromagnetic field, themagnitudes
of Reðω0Þ and jImðω0Þj are restrained with higher m.

TABLE I. Fundamental QNM frequencies for scalar and electromagnetic field perturbations with various l and ϵ2 in Finslerian RN
black holes. The values are calculated using the sixth-order WKB approximation, and the parameters used in the calculation are m ¼ 0
and q ¼ 0.5.

Electromagnetic

Scalar Axial Polar

l ϵ2 Reðω0Þ Imðω0Þ Reðω0Þ Imðω0Þ Reðω0Þ Imðω0Þ
0 0.1 0.115747 −0.1019980 � � � � � � � � � � � �
1 0.1 0.306551 −0.0988743 0.255082 −0.0939979 0.261322 −0.0941246

0.2 0.306551 −0.0988743 0.248689 −0.0938613 0.261322 −0.0941246
0.3 0.306551 −0.0988743 0.242130 −0.0937140 0.261322 −0.0941246
0.4 0.306551 −0.0988743 0.235392 −0.0935550 0.261322 −0.0941246
0.5 0.306551 −0.0988743 0.228460 −0.0933823 0.261322 −0.0941246

2 0.1 0.499056 −0.0979638 0.469852 −0.0962429 0.472307 −0.0962544
0.2 0.492048 −0.0979792 0.459900 −0.0961944 0.464902 −0.0962191
0.3 0.484939 −0.0979956 0.449728 −0.0961419 0.457378 −0.0961817
0.4 0.477725 −0.0980130 0.439322 −0.0960848 0.449728 −0.0961419
0.5 0.470400 −0.0980315 0.428664 −0.0960224 0.441946 −0.0960995

3 0.1 0.694904 −0.0977065 0.674285 −0.0968360 0.675885 −0.0968387
0.2 0.683143 −0.0977159 0.660527 −0.0968116 0.663790 −0.0968175
0.3 0.671177 −0.0977260 0.646477 −0.0967851 0.651470 −0.0967947
0.4 0.658993 −0.0977369 0.632115 −0.0967563 0.638914 −0.0967702
0.5 0.646579 −0.0977486 0.617419 −0.0967248 0.626105 −0.0967437

TABLE II. Fundamental QNM frequencies for scalar and electromagnetic field perturbations with various l and ϵ2 in Finslerian SdS
black holes. The values are calculated using the sixth-order WKB approximation, and the parameters used in the calculation are m ¼ 0,
re ¼ 1, and rc ¼ 100.

Electromagnetic

Scalar Axial Polar

l ϵ2 Reðω0Þ Imðω0Þ Reðω0Þ Imðω0Þ Reðω0Þ Imðω0Þ
0 0.1 0.220886 −0.2016370 � � � � � � � � � � � �
1 0.1 0.585645 −0.1955000 0.484278 −0.1849440 0.496275 −0.1852330

0.2 0.585645 −0.1955000 0.471981 −0.1846320 0.496275 −0.1852330
0.3 0.585645 −0.1955000 0.459364 −0.1842930 0.496275 −0.1852330
0.4 0.585645 −0.1955000 0.446399 −0.1839250 0.496275 −0.1852330
0.5 0.585645 −0.1955000 0.433056 −0.1835220 0.496275 −0.1852330

2 0.1 0.953816 −0.1935270 0.896307 −0.1898830 0.901011 −0.1899070
0.2 0.940416 −0.1935600 0.877242 −0.1897790 0.886826 −0.1898320
0.3 0.926823 −0.1935950 0.857754 −0.1896670 0.872410 −0.1897520
0.4 0.913027 −0.1936320 0.837815 −0.1895440 0.857754 −0.1896670
0.5 0.899020 −0.1936710 0.817392 −0.1894110 0.842844 −0.1895760

3 0.1 1.328280 −0.1929790 1.287690 −0.1911420 1.290750 −0.1911480
0.2 1.305800 −0.1929990 1.261360 −0.1910900 1.267610 −0.1911030
0.3 1.282920 −0.1930210 1.234470 −0.1910350 1.244030 −0.1910550
0.4 1.259620 −0.1930440 1.206990 −0.1909740 1.220000 −0.1910030
0.5 1.235890 −0.1930690 1.178860 −0.1909070 1.195480 −0.1909470
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2. Prony method

In this section we use the Prony method [54] to calculate
the frequencies of QNMs from the time-domain profile
obtained using the finite difference method. Introducing a
superposition of damped exponents,

ΨðtÞ ≈ Σp
j¼1Cje−iωjt; ð21Þ

the time-domain profile can be fitted. The time interval of
the time-domain profile selected to fit begins at t0 ¼ 0 and
ends at t ¼ Nh, where N is an integer and satisfies
N ≥ 2p − 1. Using Eq. (21), the time-domain data can
be expressed as

RðnhÞ ≃ Σp
j¼1Cje−iωjnh ¼ Σp

j¼1Cjznj : ð22Þ

Thus, zj can be obtained using the known RðnhÞ, and a
polynomial function AðzÞ designed to find zj is defined as

AðzÞ ¼ Πp
j¼1ðz − zjÞ ¼ Σp

m¼0αmz
p−m; α0 ¼ 1: ð23Þ

Then, we can obtain the sum

Σp
m¼0αmRn−m ¼ Σp

m¼0αmΣ
p
j¼1Cjzn−mj

¼ Σp
j¼1Cjz

n−p
j AðzjÞ ¼ 0: ð24Þ

Considering α0 ¼ 1, we get the matrix equation

TABLE III. Fundamental QNM frequencies for scalar field
perturbations with various l and ϵ2 in Finslerian RNdS black
holes. The values are calculated using the sixth-order WKB
approximation, and the parameters used in the calculation are
m ¼ 0, b ¼ 10−5, and q ¼ 0.5.

l ϵ2 Reðω0Þ Imðω0Þ
0 0.1 0.115752 −0.1019790
1 0.1 0.306506 −0.0988663
2 0.1 0.498989 −0.0979534

0.2 0.491982 −0.0979689
0.3 0.484874 −0.0979853
0.4 0.477661 −0.0980028
0.5 0.470336 −0.0980214

3 0.1 0.694815 −0.0976954
0.2 0.683055 −0.0977048
0.3 0.671090 −0.0977150
0.4 0.658907 −0.0977258
0.5 0.646495 −0.0977376
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FIG. 8. Real and imaginary parts of the fundamental quasinormal frequencies of scalar and electromagnetic field perturbations in
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By solving the abovematrix equation and substituting it into
AðzÞ, we can calculate zj. With the relation ωj ¼ i

h lnðzjÞ
we can obtain the frequencies of QNMs. The relative error

between the WKB approximation and Prony method is
given by

σ ¼
����1 − kωPronyk

kωWKBk
����: ð25Þ

Applying the Prony method to the time-domain profile
calculated in Sec. III A, we get the fundamental frequencies
with a relative error σ < 0.001. The comparisons of the
frequencies obtained from the WKB approximation and
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FIG. 9. Real and imaginary parts of the fundamental quasinormal frequencies of scalar and electromagnetic field perturbations in
Finslerian SdS black holes with l ¼ 1, 2, 3, 4 and varyingm. Lines refer tom ¼ 0;…; l from top to bottom for Reðω0Þ, and from bottom
to top for jImðω0Þj for scalar field perturbations. Lines refer to m ¼ 0;…; l from top to bottom for Reðω0Þ and jImðω0Þj for
electromagnetic field perturbations.
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Prony method are shown in Tables IV and V for the scalar
and electromagnetic field of Finslerian RN black holes and
Finslerian SdS black holes, and in Table VI for the scalar
field of Finslerian RNdS black holes, respectively. The
results obtained using the Prony method show that the
dynamical evolutions of scalar and electromagnetic field
perturbations are consistent with the results obtained from
the WKB approximation.

C. Late-time tails

In this section we focus on the behaviors of the late-time
tails. The QNMs of black holes in general relativity are

suppressed by exponential or power-law tails at sufficiently
late times [36]. The late-time tails of bothSdSblackholes and
RNdS black holes exhibit an exponential falloff [41,47]. Our
numerical investigations on the late-time tails of Finslerian
SdS black holes and Finslerian RNdS black holes show that
they follow the same behavior as that in SdS and RNdS black
holes, respectively, and nomajor differences are found when
the Finslerian parameter ϵ2 ranges from 0 to 0.7. Thus,
we will discuss the late-time tails of the Finslerian
Schwarzschild black holes and Finslerian RN black holes.
A complete and generic approach to analyzing the late-

time tails of QNMs was presented in Ref. [36]. There it was
found that the behavior of the late-time tails depends on the

TABLE IV. Frequencies of the QNMs of scalar and electromagnetic field perturbations for Finslerian RN black
holes with varying ϵ2. The parameters used are ðl; mÞ ¼ ð2; 0Þ and other parameters are the same as ones in the
article.

Field ϵ2 ωWKB ωProny σ

Scalar 0 0.505966 − 0.0979492i 0.506153 − 0.0971758i 7.25 × 10−5

0.4 0.477725 − 0.0980130i 0.477808 − 0.0977648i 6.46 × 10−5

0.7 0.455396 − 0.0980724i 0.455243 − 0.0988687i 3.93 × 10−5

Axial 0 0.479598 − 0.0962877i 0.479867 − 0.0950132i 2.95 × 10−5

0.4 0.439322 − 0.0960848i 0.439380 − 0.0958273i 2.96 × 10−6

0.7 0.406515 − 0.0958786i 0.406574 − 0.0956769i 2.72 × 10−5

Polar 0 0.479598 − 0.0962877i 0.479867 − 0.0950132i 2.95 × 10−5

0.4 0.449728 − 0.0961419i 0.449421 − 0.0975668i 6.20 × 10−7

0.7 0.425958 − 0.0960058i 0.426043 − 0.0956346i 2.64 × 10−6

TABLE V. Frequencies of QNMs of scalar and electromagnetic field perturbations for Finslerian SdS black holes
with varying ϵ2. The parameters used are ðl; mÞ ¼ ð2; 0Þ and other parameters are the same as ones in the article.

Field ϵ2 ωWKB ωProny σ

Scalar 0 0.967030 − 0.1934960i 0.968078 − 0.1887937i 1.18 × 10−4

0.4 0.913027 − 0.1936320i 0.913319 − 0.1922369i 3.14 × 10−6

0.7 0.870330 − 0.1937590i 0.870656 − 0.1922204i 1.67 × 10−5

Axial 0 0.914977 − 0.1899780i 0.916250 − 0.1840692i 6.94 × 10−5

0.4 0.837815 − 0.1878535i 0.838172 − 0.1878535i 2.66 × 10−5

0.7 0.774941 − 0.1891020i 0.774913 − 0.1889345i 8.44 × 10−5

Polar 0 0.914977 − 0.1899780i 0.916250 − 0.1840692i 6.94 × 10−5

0.4 0.857754 − 0.1896670i 0.859409 − 0.1824479i 1.01 × 10−4

0.7 0.812206 − 0.1893750i 0.813202 − 0.1854296i 1.01 × 10−4

TABLE VI. Frequencies of QNMs of scalar and electromagnetic field perturbations for Finslerian RNdS black
holes with varying ϵ2. The parameters used are ðl; mÞ ¼ ð2; 0Þ and other parameters are the same as ones in the
article.

Field ϵ2 ωWKB ωProny σ

Scalar 0 0.505899 − 0.0979388i 0.503321 − 0.1103802i 1.97 × 10−5

0.4 0.477661 − 0.0980028i 0.474498 − 0.1122827i 1.80 × 10−5

0.7 0.455335 − 0.0980624i 0.451813 − 0.1134557i 1.40 × 10−4
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specific form of the effective potential of the Schrödinger-
like equation. In Finslerian Schwarzschild black holes and
Finslerian RN black holes, the effective potentials (10),
(11), and (12) all satisfy the following form

Vðr�Þ ≈
νðνþ 1Þ

r2�
þ k1

r3�
ln

�
r�
k2

�
; ð26Þ

where νðνþ 1Þ ¼ λS corresponds to the scalar field and the
polar mode of the electromagnetic field, νðνþ 1Þ ¼ λA

corresponds to the axial mode of the electromagnetic field,
and k1 and k2 are parameters related to the physical
parameter GM and eigenvalues λ.
Following the analysis of Ref. [36], one can find that the

parameter ν in Eq. (26) plays an important role in determin-
ing the behavior of the late-time tails.While ν is a noninteger,
the first term in the potential, i.e., νðνþ 1Þ=r2� (called the

centrifugal barrier) is dominant. Under such a condition, the
radial and time components of field perturbations Rðr�; tÞ
behave as

Rðr�; tÞ ∼ 2 sinðνπÞt−ð2νþ2Þ; ð27Þ

when r� → ∞. The above formula tells us that the centrifugal
barrier term does not contribute to the late-time tails if ν is an
integer. Thus, the second term of Eq. (26) should be
considered. Under such a condition, Rðr�; tÞ behaves as

Rðr�; tÞ ∼ t−ð2νþ3Þ ð28Þ

when r� → ∞.
The behaviors of late-time tails are listed in Table VII for

Finslerian black holes. One can find that the late-time tails
of the QNMs of both Finslerian-Schwarzschild black holes
and Finslerian RN black holes possess a power-law falloff.
In this paper we use the least-squares method to inves-

tigate the behaviors of the late-time tails of scalar and
electromagnetic field perturbations for the considered black
holes by analyzing the numerical results of the dynamic
evolutions of QNMs. The numerical and theoretical results
are shown in Tables VIII and IX, respectively. To find the
differences of tails between Finslerian black holes and
Riemannian black holes, we choose the fixed l and m in λ
[Eqs. (13)–(14)] and only vary the values of the Finslerian
parameter ϵ2. From Table VIII, we find that our numerical
results are consistent with those of Schwarzschild black
holes and RN black holes when ϵ2 ¼ 0. Moreover, the
numerical results are consistent with the theoretical results.

TABLE VII. Behaviors of late-time tails for Finslerian black holes.

Spacetime Field ϵ2 Rðt → þ∞Þ

Finslerian Schwarzschild=Finslerian RN Scalar=Electromagnetic
ϵ2 ¼ 0 t−ð2νþ3Þ

ϵ2 ≠ 0 t−ð2νþ2Þ

TABLE VIII. Behaviors of late-time tails of scalar and electromagnetic field perturbations for Finslerian
Schwarzschild black holes and Finslerian RN black holes. The values denote the power-law index, and common
parameters are set as l ¼ 2 and m ¼ 0.

Finslerian Schwarzschild Finslerian RN

Electromagnetic Electromagnetic

ϵ2 Scalar Axial Polar Scalar Axial Polar

0 −7.04204 −7.04228 −7.04228 −7.04190 −7.04210 −7.04210
0.1 −5.89842 −5.89346 −5.89855 −5.89834 −5.89336 −5.89845
0.2 −5.86398 −5.82536 −5.86413 −5.86390 −5.82525 −5.86402
0.3 −5.80419 −5.73773 −5.80435 −5.80410 −5.73761 −5.80423
0.4 −5.73756 −5.64387 −5.73773 −5.73747 −5.64374 −5.73761
0.5 −5.66756 −5.54621 −5.66773 −5.66746 −5.54608 −5.66761

TABLE IX. Theoretical calculation of the behaviors of late-
time tails of scalar and electromagnetic field perturbations for
Finslerian Schwarzschild black holes and Finslerian RN black
holes. The values denote the power-law index, and common
parameters are set as l ¼ 2 and m ¼ 0.

ϵ2 Scalar=Polar Axial

0 −7.00000 −7.00000
0.1 −5.93095 −5.90772
0.2 −5.86092 −5.81368
0.3 −5.78988 −5.71774
0.4 −5.71774 −5.61984
0.5 −5.64450 −5.51980
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IV. DISCUSSION AND CONCLUSION

In this paper, we have studied the QNMs of Finslerian RN
black holes with a cosmological constant. Two basic
differences between such Finslerian black holes and its
counterpart in general relativity, namely, two-dimensional
subspace of the Finslerian black holes breaks spherical
symmetry and asymptotic infinity of the Finslerian RN black
holes without cosmological constant is not a Minkowski
spacetime. The spectrum-splitting features of the QNMs of
the Finslerian black holes were shown in Figs. 8–10. This
reflects the spherical symmetry breaking. The late-time tails
of the QNMs of both the Finslerian Schwarzschild black
holes and Finslerian RN black holes possess a power-law
falloff. The power-law index has a discontinuous jump,while
the Finslerian parameter ϵ2 varies from 0 to nonzero. Such a
fact reflects that asymptotic infinity of the Finslerian black
holes is not aMinkowski spacetime. It should be noticed that
the Finslerian black holes will reduce to the counterparts
black holes in general relativity while the Finslerian param-
eter ϵ2 ¼ 0. Under this special condition, our numerical
results on QNMs are consistent with those in general
relativity [41,47–50].

The analysis of the dynamical evolution of QNMs shows
that Finslerian RN black holes with a cosmological con-
stant are stable under perturbations. Together with our
former research [34], we found that the Finslerian black
holes where their two-dimensional subspace is Finsler
space with constant curvature are stable under perturba-
tions. In this paper, we only considered the two-
dimensional subspace of Finslerian black holes F̄ with
the specific form (3). It should be noticed that Finsler
spaces with constant curvature are not equivalent. It is
expected that other two-dimensional subspaces, such as
that derived by Byrant [38], will behave differently on the
QNMs. Therefore, the frequencies of QNMs and the
power-law index derived from the late-time tail will be
useful tools to determine whether black holes are Finslerian
or not and their deviation from spherical symmetry.
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