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We study spherically symmetric nontopological soliton (NTS) stars numerically in the coupled system of
a complex scalar field, a U(1) gauge field, a complex Higgs scalar field, and Einstein gravity, where the
symmetry is broken spontaneously. The gravitational mass of NTS stars is limited by a maximum mass for
a fixed breaking scale, and the maximum mass increases steeply as the breaking scale decreases. In the case
of the breaking scale is much less than the Planck scale, the maximum mass of NTS stars becomes the
astrophysical scale, and such a star is relativistically compact so that it has the innermost stable circular
orbit. The first author contributed with a part of the numerical calculations. The second contributed with
planning and conducting the research, and the third contributed with all numerical calculations and finding
new properties of the system.
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I. INTRODUCTION

Nontopological solitons (NTSs) are localized solutions
carrying a Noether charge in nonlinear field theories that
have a continuous global symmetry. Rosen [1], in his
pioneering work, showed that a self-interacting complex
scalar field theory admits particlelike NTS solutions, and
Coleman [2] proved the existence theorem of spherically
symmetric NTS solutions with a conserved charge, he
called them ‘Q-balls’, in nonlinearly self-coupling complex
scalar field theories with some conditions. Friedberg, Lee,
and Sirlin [3] studied a coupled system of a complex scalar
field and a real scalar field with a double-well potential, and
showed the existence of the NTS solutions (see e.g.,
reviews [4,5] and textbooks [6]). The NTS solutions in
extended field theories including a gauge field were also
studied in the works [7–9]. The NTSs are interested as a
possible candidate of dark matter [10–14], and as sources
for baryogenesis [15–17].
Recently, NTS solutions were constructed in the theory

that consists of a complex scalar field, a U(1) gauge field,
and a complex Higgs scalar field with a Mexican hat
potential which causes the spontaneous symmetery

breaking [18–20].1 In this model, there are interesting
properties; the charges carried by two scalar fields are
screening each other, and NTS solutions with infinitely
large mass can exist [20]. These would suggest that NTSs
with astrophysical scale in this model can play important
roles in cosmology. However, infinite mass should be
prohibited if we take gravity produced by the NTS into
account, namely, the mass should be limited by a maximum
mass for self-gravitating NTSs.
It is also investigated that localized objects are made by

self-gravitating complex scalar fields, so-called boson stars.
In the model of a free massive complex scalar field with
gravity, the gravitational mass of the localized solutions is
quite small then the solutions are called miniboson stars
[23,24], while if the complex scalar field has nonlinear self-
coupling, the mass of the solution can be large [25]. Boson
stars in various field models are studied in Refs. [26–28]
(see also [29–31] for review). Furthermore, self-gravity of
the NTS is also studied in the Coleman’s model [32] and
the Friedberg-Lee-Sirlin’s model [33–36].
In this paper we consider the coupled system of two

complex scalar fields and a U(1) gauge field, which is
studied in Refs. [18–20], with Einstein gravity. The local
U(1) symmetry of the system is spontaneously broken
in a vacuum state where one of the scalar field has an
expectation value. The system has two dimensionful
parameters—the symmetry breaking scale, η and the Plank
scale, MP—and then the dimensionless parameter η=MP is
an important quantity that characterizes the model.
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Assuming spherically symmetry, stationary rotation of the
phase of complex scalar fields, and static geometry,wederive
a set of coupled ordinary differential equations. We obtain
numerical solutions that describe self-gravitating objects, we
call them ‘nontopological soliton stars (NTS stars)’ in this
paper, and investigate properties of the solutions, especially,
mass and radius that depend on η=MP. It is interesting that
NTS stars with mass of astrophysical scale are possible, e.g.,
the solar mass is possible for η ∼ 1 GeV, and the NTS stars
can be so compact that they have the innermost stable circular
orbits for η=MP ≪ 1.
The paper is organized as follows. In Sec. II we present

the model that has a symmetry breaking scale, and derive
basic equations on the assumptions of the geometrical
symmetries of the fields. In Sec. III we solve the basic
equations numerically, and present NTS star solutions. In
Sec. IV we investigate internal structures of the NTS stars;
energy density, pressure, and charge density. In Sec. V we
study the mass and radius of the NTS stars, and see that the
maximum mass appears for each breaking scale. Paying
attention to the NTS stars with maximum mass in various
breaking scales, we investigate scale dependence of the
maximum mass and the compactness in Sec. VI.
Section VII is devoted to our conclusions.

II. BASIC MODEL

We consider the action

S ¼
Z ffiffiffiffiffiffi

−g
p

d4x

�
R

16πG
þ Lm

�
; ð1Þ

where R is the scalar curvature with respect to a metric, gμν,
g ≔ detðgμνÞ, and G is the gravitational constant. The
matter Lagrangian, Lm, is given by

Lm¼−gμνðDμψÞ�ðDνψÞ−gμνðDμϕÞ�ðDνϕÞ−
λ

4
ðjϕj2−η2Þ2

−μjϕj2jψ j2−1

4
gμαgνβFμνFαβ; ð2Þ

where it consists of a complex matter scalar field ψ , the
field strength Fμν ≔ ∂μAν − ∂νAμ of a U(1) gauge field Aμ,
and a complex Higgs scalar field ϕ. The gauge field couples
to the scalar fields through the gauge covariant derivative,
Dμ ≔ ∂μ − ieAμ. The parameter e is the charge of the fields
ψ and ϕ, λ the Higgs self-coupling, μ the Higgs-scalar
coupling, and η the Higgs vacuum expectation value
determining the scale of the symmetry breaking.
The Lagrangian (2) has local Uð1Þ × global Uð1Þ sym-

metry under the gauge transformation given by

ψðxÞ → ψ̃ðxÞ ¼ eiðχðxÞ−γÞψðxÞ; ð3Þ
ϕðxÞ → ϕ̃ðxÞ ¼ eiðχðxÞþγÞϕðxÞ; ð4Þ

AμðxÞ → ÃμðxÞ ¼ AμðxÞ þ e−1∂μχðxÞ; ð5Þ

where χðxÞ is an arbitrary function that depends on
spacetime coordinate, and γ is an arbitrary constant.
Concerning this invariance, conserved currents,

jμψ ≔ ieðψ�ðDμψÞ − ðDμψÞ�ψÞ;
jμϕ ≔ ieðϕ�ðDμϕÞ − ðDμϕÞ�ϕÞ; ð6Þ

and conserved charges

Qψ ≔
Z

d3x
ffiffiffiffiffiffi
−g

p
ρψ ; Qϕ ≔

Z
d3x

ffiffiffiffiffiffi
−g

p
ρϕ; ð7Þ

are defined, where ρψ ≔ jtψ and ρϕ ≔ jtϕ are charge
densities induced by the complex scalar field ψ and ϕ,
respectively. The integrations in (7) are performed on a time
slice, t ¼ const.
Owing to the potential term of the complex Higgs scalar

field ϕ in (2), ϕ takes a nonzero vacuum expectation value η
in a vacuum state. As a result, the symmetry is sponta-
neously broken. Then, the scalar field ψ and the U(1) gauge
field Aμ acquire masses, mψ ≔ ffiffiffi

μ
p

η and mA ≔
ffiffiffi
2

p
eη,

respectively, through interactions with the complex
Higgs field. Simultaneously, a real scalar field as a
fluctuation of the amplitude of ϕ around η also acquires
the mass mϕ ≔

ffiffiffi
λ

p
η.

From the action (1), we can derive field equations

1ffiffiffiffiffiffi−gp Dμð
ffiffiffiffiffiffi
−g

p
gμνDνψÞ − μψ jϕj2 ¼ 0; ð8Þ

1ffiffiffiffiffiffi−gp Dμð
ffiffiffiffiffiffi
−g

p
gμνDνϕÞ−

λ

2
ϕðjϕj2−η2Þ−μjψ j2ϕ¼ 0; ð9Þ

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
FμνÞ ¼ jνψ þ jνϕ; ð10Þ

Gμν ¼ 8πGTμν; ð11Þ

where Gμν ≔ Rμν − 1
2
gμνR is the Einstein tensor and Tμν is

the energy-momentum tensor given by

Tμν ≔ −
2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LmÞ
δgμν

¼ 2ðDμψÞ�ðDνψÞ − gμνðDαψÞ�ðDαψÞ
þ 2ðDμϕÞ�ðDνϕÞ − gμνðDαϕÞ�ðDαϕÞ

− gμν

�
λ

4
ðjϕj2 − η2Þ2 þ μjψ j2jψ j2

�

þ
�
FμαFα

ν −
1

4
gμνFαβFαβ

�
: ð12Þ

Here, we assume stationary and spherically-symmetric
fields in the form,
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ψ ¼ e−iωtuðrÞ; ϕ¼ e−iω
0tfðrÞ; A¼AtðrÞdt; ð13Þ

where we use a spherical coordinate ðt; r; θ;φÞ. The
parameters ω and ω0 are constant angular frequencies of
the complex scalar fields. Owing to the gauge transforma-
tion (3)–(5), we can fix the variables as

ϕðrÞ → fðrÞ; ψðt; rÞ → eiΩtuðrÞ;
AtðrÞ → αðrÞ ≔ AtðrÞ þ e−1ω0; ð14Þ

whereΩ ≔ ω0 − ω is the parameter which characterizes the
solution, and takes a positive value without loss of
generality.
We also take static and spherically symmetric spacetime

assumptions in the form

ds2 ¼ gμνdxμdxν

¼ −σðrÞ2
�
1 −

2mðrÞ
r

�
dt2 þ

�
1 −

2mðrÞ
r

�
−1
dr2

þ r2dθ2 þ r2 sin2 θdφ2; ð15Þ

where σðrÞ and mðrÞ are functions of r. Note that σðrÞ is
dimensionless, and mðrÞ has dimension of length. The
Einstein equations reduce to

Gt
t ¼ 8πGTt

t; Gr
r ¼ 8πGTr

r;

Gθ
θ ¼ Gφ

φ ¼ 8πGTθ
θ ¼ 8πGTφ

φ: ð16Þ

Substituting assumptions (14) and (15) into (8)–(10), we
obtain equations for the fields ψ ;ϕ, and A to be solved in
the form,

u00 þ
�
2

r

�
1þm − rm0

r − 2m

�
þ σ0

σ

�
u0

þ
�
1 −

2m
r

�
−1
� ðeα − ΩÞ2u
σ2ð1 − 2m=rÞ − μf2u

�
¼ 0; ð17Þ

f00 þ
�
2

r

�
1þm−rm0

r−2m

�
þσ0

σ

�
f0

þ
�
1−

2m
r

�
−1
�

e2fα2

σ2ð1−2m=rÞ−
λ

2
fðf2−1Þ−μfu2

�
¼0;

ð18Þ

α00 þ
�
2

r
−
σ0

σ

�
α0

þ
�
1 −

2m
r

�
−1
ð−2e2f2α − 2eðeα −ΩÞu2Þ ¼ 0; ð19Þ

where the prime denotes the derivative with respect to r.
Here and hereafter, r, uðrÞ, fðrÞ, αðrÞ, mðrÞ, and Ω are
normalized by η.

As for the Einstein equations, we solve the time-time
component of (16) and the combination

Gr
r −Gt

t ¼ 8πGðTr
r − Tt

tÞ: ð20Þ

The rest is guaranteed by the Bianchi identity. Explicit
forms of the energy-momentum tensor and the charge
densities are given in the Appendix. Then, we have

2m0

r2
− 8πGη2

�
e2f2α2

σ2ð1 − 2m=rÞ þ
ðeα −ΩÞ2u2
σ2ð1 − 2m=rÞ

þ
�
1 −

2m
r

�
ðf02 þ u02Þ

þ λ

4
ðf2 − 1Þ2 þ μf2u2 þ 1

2σ2
α02

�
¼ 0; ð21Þ

and

ð1 − 2m=rÞσ0
rσ

− 8πGη2
�

e2f2α2

σ2ð1 − 2m=rÞ þ
ðeα −ΩÞ2u2
σ2ð1 − 2m=rÞ

þ
�
1 −

2m
r

�
ðf02 þ u02Þ

�
¼ 0: ð22Þ

The dimensionless parameter Gη2 ¼ ðη=MPÞ2 represents
the symmetry-breaking scale with respect to the Planck
mass,MP. In the limiting case ofGη2 → 0, the gravitational
field decouples with the matter fields, where the matter
system (17)–(19) with σðrÞ ¼ 1 and mðrÞ ¼ 0 are studied
in Refs. [18–20].
We require regularity of the spherically-symmetric fields

at the origin described by

σ0 ¼ 0; m¼ 0; u0 ¼ 0; f0 ¼ 0; α0 ¼ 0: ð23Þ

In addition, we assume that the solutions are localized in
finite regions. Therefore, for the matter fields, we assume

u ¼ 0; f ¼ 1; α ¼ 0; ð24Þ

at spatial infinity. The energy-momentum tensor Tμν of the
matter fields satisfying (23) and (24) is localized in a
neighborhood of the origin with a quick radial decay, then
we require that the gravitational fields satisfy

σ ¼ 1; m ¼ m∞ ¼ const: ð25Þ

at spatial infinity.

III. NUMERICAL CALCULATIONS

In this section, we obtain solutions by solving the set of
equations (17), (18), (19), (21), and (22), numerically, and
study properties of the numerical solutions. In this article
we fix the coupling constants as e ¼ 1.0, μ ¼ 1.4, and
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λ ¼ 1.0, for an example. On the other hand, we consider
various symmetry breaking scales. For the Planck breaking
scale, η=MP ¼ 1, we have mψ ∼mϕ ∼mA ∼ 1019 GeV,
and for the lower breaking scale, η=MP ¼ 10−3,mψ ∼mϕ∼
mA ∼ 1016 GeV, respectively.
At a large distance, uðrÞ should decrease quickly so that

the energy is localized in a compact region. The boundary
conditions at the spatial infinity, (24) and (25), require
f ¼ 1, α ¼ 0, and σ ¼ 1; m ¼ const, then Eq. (17) for uðrÞ
reduces to

u00 − ðμ − Ω2Þu ¼ 0: ð26Þ

Then, Ω is bounded above by Ωmax ≔
ffiffiffi
μ

p
. For the

existence of a solution, there is also the lower bound
Ωmin that depends on η=MP. As is seen later, the solution
has the maximum mass for Ω near Ωmin. We can find
numerical solutions for the parameter Ω in the range

Ωmin ≤ Ω < Ωmax: ð27Þ

Typical behaviors of the fields obtained by numerical
calculations are shown as functions of r in Fig. 1 for the
Planck breaking-scale case, and in Fig. 2 for the lower
breaking-scale case. They show that the matter fields and
the gravitational field are localized in a finite region in each
case. Thus, they represent nontopological solitons with
self-gravity, we call them nontopological soliton star (NTS
star) solutions.
In the cases (a) and (b) in the Planck breaking scale, and

(d) in the lower breaking scale, the function u has a

Gaussian form in each case, while f ∼ 1 and α ∼ 0 almost
everywhere. In these cases, the scalar field ϕ and the gauge
field A are not excited anywhere, and only the scalar field ψ ,
which has the mass m ¼ mψ by the Higgs mechanism,
becomes a source of gravity. The behavior that the massive
scalar field with gravity yields compact objects is just the
same as ‘miniboson star’ solutions [23,24]. On the other
hand, in the cases (e) and (f) in the lower breaking scale,ψ ;ϕ,
and A are exited inside the stars. In these cases, interaction
between the scalar fields and the gauge field plays an
important role for the appearance of solutions [18–20].
As for the gravity, in the cases (a), (b), (d), and (e), the

lapse function, σ, is almost constant. It means that the
gravity is weak so that the Newtonian description is
possible. In contrast, in the cases (c) and (f), σ varies
significantly from r ¼ 0 to infinity, i.e., it means the gravity
requires a relativistic description. Paying attention to the
scale of the horizontal axis, we see the size of the NTS stars
depend on Ω. This dependence is discussed later in detail.

IV. ENERGY DENSITY, PRESSURE,
AND CHARGE DENSITIES

A. Energy density and pressure

The energy density and the pressure, defined by
(A1)–(A3) in Appendix, are plotted in Fig. 3 for numerical
solutions. We see that the pressures can be ignored
compared to the energy density in the cases (a), (b) in
the Planck breaking-scale case, and in the cases (d) and
(e) in the lower breaking-scale case. Then, NTS stars in
these cases behave as ‘gravitating dust balls’. On the other

FIG. 1. Field configurations of numerical solutions in the Planck breaking scale case η=MP ¼ 1. We show three subcases of the
parameter: (a) Ω ¼ 1.183 (left column), (b) Ω ¼ 1.178 (middle column), and (c) Ω ¼ 1.008 (right column). The scalar fields u, f, and
the gauge field α are plotted in the upper panels, and the metric components σ and m are plotted in the lower panels.
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hand, in the cases (c) and (f), the radial and tangential
pressures become large in the central regions.

B. Charge distribution

We plot the charge density of ψ , ρψ , and charge density
of ϕ, ρϕ, and total one ρtotal ¼ ρψ þ ρϕ of the NTS stars in

Fig. 4. In all cases except (c), ρψ is compensated by ρϕ then
charge screening occurs everywhere [18]. In case (c), ρtotal
is positive in the central region, and negative surrounding
the region. Total charge, integration of ρtotal from r ¼ 0 to
the large r, vanishes. Namely, the charge is totally screened.
This fact is consistent with the gauge field, A, becoming
massive, and α decays quickly as r → ∞.

FIG. 3. The energy density ϵ, the radial pressure pr, and the tangential pressure pθ, where ϵmax is the maximum value of ϵ. The upper
panels correspond to the Planck breaking-scale case, η=MP ¼ 1, and the lower does the lower breaking-scale case, η=MP ¼ 10−3.

FIG. 2. The same ones as Fig. 1 in the lower breaking scale, η=MP ¼ 10−3. We show for (d) Ω ¼ 1.183 (left column), (e) Ω ¼ 1.178
(middle column), and (f) Ω ¼ 0.783 (right column).
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V. MASS AND RADIUS

We see in Figs. 1–3, that the size of NTS solutions
depend on the parameter Ω. We study the total mass and
radius of the solutions in this section.

A. Gravitational mass

The gravitational mass of the NTS star, MG, is given by

MG ¼ m∞

Gη
: ð28Þ

For a fixed η=MP we have a NTS star solution for each Ω,
then MG is a function of Ω. In Fig. 5, the curves represent
MG as functions ofΩ for various breaking scales η=MP. We
find each curve has a spiral shape at the left end. Then there
appears lower limit of Ω, Ωmin, for the existence of NTS
star solutions. Numerically, we have Ωmin ∼ 0.91 for
η=MP ≳ 10−1, while Ωmin ∼ 0.765 for η=MP ≲ 10−2. The
gravitational mass MG is multivalued in Ω near a region
Ω ∼Ωmin. For a fixed η=MP, there exists maximum of MG
near Ω ∼ Ωmin. We call the NTS star with the maximum
mass ‘the maximum NTS star’. The maximum NTS stars
for η=MP ¼ 10−3 and η=MP ¼ 1 are marked by asterisks in
Fig. 5. In Fig. 3 the central pressure in the maximum NTS
star cases, (c) and (f), become large in the order of
1=4 ∼ 1=3 times the central energy density. The pressure
gradient balances to the gravitational force by the largemass.

For η=MP ≳ 10−1, the curves are shifted upward, as a
whole, as η=MP decreases, while for η=MP ≲ 10−2, the
curves are modified, and middle part of the curves converge
to the limiting curve of η=MP ¼ 0. Let us pay attention to the
curve of η=MP ¼ 10−3, for example see Fig. 6. The curve is
divided into three parts: the middle segment that lies on the
limiting curve η=MP ¼ 0, the right segment downward from
the limiting curve, the left segment leftward from the
limiting curve. Firstly, solutions on the right segment are
‘miniboson stars’ as mentioned before. Secondly, solutions
on the middle are NTS stars whose gravity can be neglected,
while the interaction of the scalar fields and the gauge field is
important, then we call them ‘matter-interacting NTS stars’.
Thirdly, solutions on the left segment are NTS stars whose
gravity is important; we call them ‘gravitating NTS stars’.
In the family of the gravitating NTS stars, the mass quickly
increases as Ω approaches Ωmin. The points (a)–(f) on the
curves in Fig. 5 correspond to the solutions shown in Figs. 1
and 2, respectively.

B. Surface radius

We define the surface radius of the numerical solutions,
rs, by

mðrsÞ ≔ 0.99m∞: ð29Þ
Namely, 99% of total mass of the NTS stars includes within
the surface radius rs. We plot gravitational mass MG of the

FIG. 4. The charge densities ρψ , ρϕ, and the total charge density ρtotal ¼ ρψ þ ρϕ are plotted, where these charge densities are
normalized by the maximum value of ρψ . The upper panels correspond to the Planck breaking-scale case, η=MP ¼ 1, and the lower does
the lower breaking-scale case, η=MP ¼ 10−3.
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NTS stars normalized by MP as a function of dimensionful
radius R ≔ rs=η for various breaking scales in Fig. 7. For a
fixed breaking scale in the range η=MP ≳ 10−1, MG
increases toward the maximum mass as R decreases, while

in the range η=MP ≲ 10−5=2, MG depends on R in a
complicated way; in the region MG=MP ≲ 10, a local
maximum and a local minimum appear and in the region
MG=MP ≳ 10, MG increases toward the maximum mass as
R increases.

FIG. 5. The gravitational mass of NTS stars as a function of Ω
for various breaking scales η=MP. The vertical axis is taken for
MG=η and the horizontal axis for log ðΩmax − ΩÞ. The (red)
broken curve denotes the mass of NTS solutions, dust balls
[19,20], decouple to gravity, i.e., η=MP → 0. The points (a)–(f)
correspond to the solutions shown in Figs. 1–4.

FIG. 6. The gravitational mass of NTS stars for the lower
breaking scales η=MP ¼ 10−3. In this case the NTS star solutions
are classified into three types: miniboson stars, matter-interacting
NTS stars, and gravitating NTS stars.

FIG. 7. The gravitational mass MG of the NTS stars as a
function of surface radius R for various breaking scales. On the
vertical axisMG is normalized by the Planck massMP, and in the
horizontal axis R is normalized by the Planck length RP ≔

ffiffiffiffi
G

p
.

FIG. 8. The compactness of NTS stars as a function of the
gravitational mass MG for various breaking scales.
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C. Compactness

Next, we investigate the compactness, C, defined by

C ≔
2GMG

R
¼ 2m∞

rs
: ð30Þ

In Schwarzschild geometries, which are the exterior of
NTS stars, if C ≥ 2=3 there exists the photon sphere
and if C ≥ 1=3 the innermost stable circular orbit (ISCO)
appears.
In Fig. 8 we show the compactnessC of the NTS stars as a

function of the gravitational mass MG for various breaking
scales. For a fixed breaking scale,C increasesmonotonically
towards the maximum value as MG increases. The maxi-
mum value ofC depends on the breaking scale;C < 1=3 for

η=MP ≳ 10−1=2 and C > 1=3 for η=MP ≲ 10−1. In the latter
case a NTS star can be so compact that the star has ISCO
around it.

D. Binding Energy

Here, we consider stability of the NTS stars in terms of
the binding energy defined by BG ≔ MG −Mfree, where
Mfree is sum of mass of free ψ particles that carry totally the
same chargeQψ of the NTS stars. A NTS star with BG > 0,
ðMG=Mfree > 1Þ, would disperse into free particles, i.e., the
NTS star is energetically unstable, while a NTS star with
BG < 0, ðMG=Mfree < 1Þ, is stable against dispersion.
In Fig. 9 we plot the mass ratio,MG=Mfree, as a function

of MG for various breaking scales. The asterisk marks
represent the maximum NTS solutions. It shows that the
maximum NTS stars in all breaking scales have maximum
negative binding energies where MG=Mfree < 1, then
solutions near the maximum NTS stars are stable in all
breaking scales.

VI. BREAKING SCALE DEPENDENCE

As shown in the previous section, in each breaking scale
there exists a maximum NTS star that has maximum
gravitational mass. The mass, the surface radius, and the
compactness of the maximum NTS star much depend on
the breaking scale. Here, we show how these properties of
the maximum NTS star depend on the breaking scale.
In Fig. 10 we plot the mass, M�, and the surface radius,

R�, of the maximum NTS stars for the various values of the
breaking scale η=MP. We observe that the both M� and R�
obey power laws of η=MP with two different power
indices as

M�
MP

∝

( ð η
MP
Þ−2 for η < ηMcr ;

ð η
MP
Þ−1 for η > ηMcr ;

ð31Þ

and

FIG. 9. The mass ratio MG=Mfree as a function of MG for
various breaking scales. The asterisk mark represents the maxi-
mum NTS solution for each breaking scale.

FIG. 10. The mass of the maximum NTS stars (left panel), and the surface radius (right panel) for each breaking scale η=MP are plotted
as dots. The plots are fitted by double power laws, respectively.
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R�
RP

∝

( ð η
MP
Þ−2 for η < ηRcr;

ð η
MP
Þ−1 for η > ηRcr;

ð32Þ

where the critical values ηMcr and ηRcr are order of 0.1MP, and
the ratio is ηMcr=ηRcr ∼ 3.3. The power index in η ≫ ηcr is the
same as miniboson stars studied in [23,24], and the one in
η ≪ ηcr is the same as soliton stars studied in [34,35].
We consider simple model formulas for M� and R�

shown in Fig. 10 as

M� ¼
Mcr

2
ððη=ηMcr Þ−2 þ ðη=ηMcr Þ−1Þ; ð33Þ

R� ¼
Rcr

2
ððη=ηRcrÞ−2 þ ðη=ηRcrÞ−1Þ; ð34Þ

whereMcr and Rcr are constants. If we can extrapolate (33)
and (34) for much lower breaking scales than the cases
calculated in the present paper, typical scales ofM� and R�
for the maximumNTS stars are listed in Table I. We see that
the maximum NTS star would be an astrophysical scale
for η≲ 100 GeV.
According to the model functions (33) and (34), we have

C� ¼
2GM�
R�

¼ 2GMcr

Rcr

ηMcr
ηRcr

ðηMcr þ ηÞ
ðηRcr þ ηÞ ; ð35Þ

then C� takes the different constant values for η ≪ ηcr and
η ≫ ηcr, respectively, and the ratio of them becomes

C�ðη ≪ ηcrÞ
C�ðη ≫ ηcrÞ

¼ ηMcr
ηRcr

∼ 3.3: ð36Þ

In Fig. 11, we depict the compactness of the maximum
NTS stars, C�, by the use of the numerical values ofM� and
R� as a function of the breaking scale. From numerical
results we see C� ∼ 0.553 for η=MP ≲ 10−2 and C� ∼ 0.167
for η=MP ≳ ηcr. Therefore, the maximum NTS stars in
η ≪ ηcr are relativistic self-gravitating objects that have
innermost stable circular orbits but no photon sphere.

VII. CONCLUSIONS

Westudied the coupled systemof field theory that consists
of a complex scalar field, a U(1) gauge field, a complex
Higgs scalar field that causes a spontaneous symmetry
breaking, and Einstein gravity. The system has a dimension-
less parameter, η=MP, which represents the ratio of the
symmetry breaking scale to the Plank scale. We obtained
numerical solutions that describe nontopological soliton
stars, parametrized by the angular phase velocity of the
complex scalar field, Ω. The solutions have a variety of
properties depending on the parameters η=MP and Ω.
In the case of the large breaking scale, η=MP ≳ 0.1, the

solutions are almost determined by the gravitational field
and a scalar field that acquires its mass by the Higgs
mechanism. Then, the solutions are almost same as the
miniboson stars obtained in the system of the gravitational
field and a massive complex scalar field. On the other hand,
in the case of small breaking scale, η=MP ≪ 1, the
solutions are classified into three types: miniboson stars,
matter-interacting NTS stars, and gravitating NTS stars. For
the first type, gravity and a scalar field contribute the
solutions in the same way as the large breaking-scale case.
In the second type, interactions between matter fields are
important as in the case of nontopological solitons dis-
cussed in Refs. [18–20]. In the last one, the both matter
interaction and self-gravity are important, and NTS star
solutions of this type can have much larger mass than other
types. In the cases of miniboson stars and matter-interacting
NTS stars, the gravity is weak because the lapse function is
almost constant everywhere, while in the case of gravitating
NTS stars, gravity requires a relativistic description where
the lapse varies significantly.
We found that the maximum mass, which depend on the

breaking scale, obeys a double power law: M� ∝ η−1 for
η≳ ηcr and M� ∼ η−2 for η≲ ηcr, where ηcr ∼MP=3. If we
can extrapolate this for much lower breaking scale, the
maximum mass of the NTS star can be astrophysical scale,
the solar mass for η ∼ 1 GeV and the cluster of galaxies
scale for η ∼ 1 eV.

TABLE I. The mass, M�, and the radius, R�, of the maximum
NTS star for various breaking scales. The symbolM⊙ denotes the
solar mass.

Symmetry breaking scale M� [kg] R�½m�
η ∼ 1019 GeV Oð10−8Þ Oð10−35Þ
η ∼ 1016 GeV Oð10−2Þ Oð10−29Þ
η ∼ 102 GeV Oð1026Þ Oð10−1Þ
η ∼ 1.0 GeV Oð1030Þ ∼M⊙ Oð103Þ
η ∼ 1.0 MeV Oð106 M⊙Þ Oð109Þ
η ∼ 1.0 keV Oð1012 M⊙Þ Oð1015Þ
η ∼ 1.0 eV Oð1018 M⊙Þ Oð1021Þ

FIG. 11. The compactness of the maximum NTS stars for
various breaking scales.
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We studied the compactness, the gravitational radius
over the radius of the NTS stars. The compactness of NTS
stars with maximum mass, C�, takes the value C� ∼ 0.167
for η ≫ MP and C� ∼ 0.553 for η ≪ MP, and C� change in
its value quickly around η ∼ 0.1MP. It means the NTS stars
with maximum mass in the lower breaking scale are
relativistically compact object that have the innermost
stable circular orbits. Therefore, the NTS stars in the case
η ≪ MP can be seeds of supermassive black holes.
It is an important to clarify the issue of the stability of the

NTS stars. We would expect that the NTS stars with
maximum mass evolve to black holes if they become
unstable. Linear perturbation of the NTS stars would be our
next work.
In this paper, we construct NTS star solutions whose

internals are filled by kinetic energy of the scalar fields.
These are self-gravitating solutions of dust balls [20].
There are other types of NTSs; potential balls and shell
balls, in the model without gravity [20]. If we take gravity
into account, a self-gravitating potential ball would be a
‘gravastar’ [37,38] that join de Sitter and Scwarzshild
spacetimes by a spherical shell, and a self-gravitating shell
ball would join Minkowski and Scwarzshild spacetimes
[39]. It is also interesting to construct these solutions.
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APPENDIX: ENERGY-MOMENTUM TENSOR
AND CHARGE DENSITIES

Given the assumptions of the scalar and the gauge field
forms, we can reduce the energy-momentum tensor (12) as

Tt
t=η4 ¼ −ϵ

¼ −
ðe2f2α2 þ ðeα −ΩÞ2u2Þ

σ2ð1 − 2m=rÞ

−
�
1 −

2m
r

���
df
dr

�
2

þ
�
du
dr

�
2
�

−
λ

4
ðf2 − 1Þ2 − μf2u2 −

1

2σ2

�
dα
dr

�
2

; ðA1Þ

Tr
r=η4 ¼ pr

¼ ðe2f2α2 þ ðeα −ΩÞ2u2Þ
σ2ð1 − 2m=rÞ

þ
�
1 −

2m
r

���
df
dr

�
2

þ
�
du
dr

�
2
�

−
λ

4
ðf2 − 1Þ2 − μf2u2 −

1

2σ2

�
dα
dr

�
2

; ðA2Þ

Tθ
θ=η

4 ¼ pθ ¼ Tφ
φ=η4 ¼ pφ

¼ ðe2f2α2 þ ðeα − ΩÞ2u2Þ
σ2ð1 − 2m=rÞ

−
�
1 −

2m
r

���
df
dr

�
2

þ
�
du
dr

�
2
�

−
λ

4
ðf2 − 1Þ2 − μf2u2 þ 1

2σ2

�
dα
dr

�
2

; ðA3Þ

where ϵ represents an energy density of the fields, pr and
pθ denote pressure in the direction of r and θ. We have the
charge densities as

ρψ ¼ −2σ−2
�
1 −

2m
r

�
−1
2eðeα −ΩÞu2; ðA4Þ

ρϕ ¼ −2σ−2
�
1 −

2m
r

�
−1
e2f2α: ðA5Þ
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