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A photon sphere is known as the geometrical structure that shapes a black hole shadow. The mechanism
is well understood for static or stationary black hole spacetimes such as the Schwarzschild and the Kerr
spacetimes. In this paper, we investigate and explicitly specify a photon sphere that shapes a black hole
shadow in a dynamical spacetime while taking the global structure of the spacetime into account. We
consider dynamical and eternal black hole cases of the Vaidya spacetime, which represents a spherically
symmetric black hole with accreting null dust. First, we numerically show that there are the dynamical
photon sphere and photon orbits corresponding to the shadow edge in a moderate accretion case. Second,
the photon spheres are derived analytically in special cases. Finally, we discuss the relation between our
photon sphere and the several notions defined as a photon sphere generalization.
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I. INTRODUCTION

A photon sphere, the radius of circular photon orbits, is
known to play a key role in observation of a black hole
shadow, for example, in the Schwarzschild spacetime.
Concerning black hole shadow observations, there are two
important aspects. First, the radius is a threshold for photons
coming from distant light sources to escape to infinity or fall
into the black hole. In the observer’s sight, there exists a
region from which the photons cannot come in principle.
This dark region is called a black hole shadow. Second, the
photon sphere accumulates photons along the radius. If light
sources emit photons for a long time, an enormous number
of photons orbit around the sphere and eventually escape to
infinity. Then the observer observes a very bright shadow
edge corresponding to the photon sphere as actually
observed by the Event Horizon Telescope [1].
In static and spherically symmetric cases, we can analyze

the escaping photon behaviors and what we will observe
around a black hole by use of the conserved quantities,
energy, and angular momentum. In the Schwarzschild case,
the first analysis was given by Synge [2]. Pande and
Durgapal gave the analysis in generic spherically symmetric
configuration [3]. From the analyses, we can see that the
radius of circular photon orbits, namely the photon sphere, is
important for black hole shadow formation.
In dynamical cases, it is challenging to define a photon

sphere as a structure that shapes a black hole shadow even in
spherical symmetry. This is because there are not so many

exact solutions to the Einstein equation that are physically
reasonable and the geodesic equation does not reduces to
one-dimensional radial potential problem due to the absence
of the conserved energy. Although several generalized
notions of photon sphere have been proposed from various
points of view [4–9], not so many examples in dynamical
cases are known yet. The aim of this paper is to specify
dynamical photon spheres that shape black hole shadows in
specific cases.
One of good models for this problem is the Vaidya

spacetime, an exact solution to the Einstein equation with
accreting null dust [10]. The spacetime metric looks like the
Schwarzschild spacetime in Eddington-Finkelstein coordi-
nates ðv; r; θ;ϕÞ with the mass M replaced by the arbitrary
mass function mðvÞ. We can model an accreting black hole
and gravitational collapse by specifying the mass function
appropriately. As a preceding work, Mishra, Chakraborty,
and Sarkar [11] investigated photon spheres of the Vaidya
spacetime with several mass functions and showed their
evolution in the future characteristic time regions. Solanki
and Perlick [12] investigated the Vaidya spacetime by
assuming a linearly increasing mass functions over the
entire time region and specified the photon sphere analyti-
cally by using the self-similarity of the spacetime. See also
Ref. [13] for works on variations of the Vaidya spacetime.
In this paper, we investigate photon spheres and black

hole shadows of the Vaidya spacetime focusing on the first
aspect of the importance mentioned above. That is, we
suppose that black hole shadows are formed not due to the
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red shift of photons, but due to the absence of null geodesics
that emanate from a distant light source and reach the
corresponding points on the celestial sky of a distant
observer. We assume the mass function to be exactly
constant in the past and future so that the global structure
becomes as simple as the Schwarzschild spacetime and
define the photon sphere from the causal point of view. As
our main focus, we show the evolution of the photon sphere
for the entire time region and clarify what the appropriate
boundary condition is. Specifying the photon sphere as
analytically as possible, we also discuss the relation between
our photon sphere and several generalized notions of a
photon sphere.
In Sec. II, reviewing the photon sphere and the black hole

shadow of the Schwarzschild spacetime, we clarify what is
the photon sphere shaping a black hole shadow in the Vaidya
spacetime. In the current work, we focus our attention on
eternal black holes that are static in the past and future time
domain. We specify the photon spheres and the behaviors of
null geodesic motions corresponding to the edge of the black
hole shadows in the following three cases. In Sec. III, we
consider the case where the black hole increases its mass
moderately and numerically show the photon sphere shaping
the black hole shadow. The result briefly shows the existence
of a photon sphere relevant to a black hole shadow in a
dynamical case. In Sec. IV, we consider linearly increasing
mass in the dynamical time domain. The photon sphere is
explicitly specified in terms of the parameters of the
spacetime, such as the initial and final mass. In Sec. V,
the null dust shell accretion is considered. In Sec. VI, we
discuss the relation between our photon sphere and recently
proposed generalized notions of a photon sphere. In
Sec. VII, we summarize our results. We use units in which
G ¼ 1 and c ¼ 1.

II. REVIEW AND PRELIMINARY

Reviewing the photon sphere and the black hole shadow
in the Schwarzschild spacetime, we clarify what we inves-
tigate as a photon sphere and a black hole shadow in the
Vaidya spacetime.

A. Schwarzschild photon sphere and the black
hole shadow

The spacetime is given by the metric

g ¼ −
�
1 −

2M
r

�
dt2 þ

�
1 −

2M
r

�
−1
dr2 þ r2dΩ2

2: ð1Þ

A null geodesic obeys the one-dimensional potential
problem,

_r2þVðE;L;rÞ¼0; VðE;L;rÞ≔L2

�
1−

2M
r

�
r−2−E2;

ð2Þ

where _≔ d=dλ is the derivative by the affine parameter λ,
E ≔ −gð∂t; kÞ and L ≔ gð∂ϕ; kÞ are the energy and the
angular momentum, and k is the null geodesic tangent. We
have assumed that the null geodesics are in the equatorial
plane θ ¼ π=2, without loss of generality. Normalizing the
affine parameter as λ → λ=E, the equation reduces to

_r2 þ Vðb; rÞ ¼ 0; Vðb; rÞ ≔ Vð1; b; rÞ; ð3Þ
where b ≔ L=E is the impact parameter. Null geodesics
are drawn as horizontal lines in r − b plane (Fig. 1).
They are reflected by the effective potential when they
touch the boundary of the forbidden region, Vðb; rÞ > 0.
The extremum of Vðb; rÞ is at r ¼ 3M. This is the
Schwarzschild photon sphere.
Suppose an observer looking to the black hole at robs ≫

2M and a spherical light source at rsrc > robs. There is the
critical impact parameter, bc ¼ 3

ffiffiffi
3

p
M ≃ 5.196M. For

jbj > bc, null geodesics emanating from the source are
reflected by the potential and eventually reach robs. For
jbj < bc, null geodesics from the source fall into the black
hole. For the null geodesics reaching robs, the incident angle
α to the observer is given by

k ¼ βðe0 þ cosαe1 þ sin αe2Þ; ð4Þ

where β is a constant and the tetrad feμg for the equatorial
plane is given by

e0¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

2M
r

r −1

∂t; e1¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

2M
r

r
∂r; e2¼ r−1∂ϕ: ð5Þ

Using the impact parameter, we have

tan α ¼ gðk; e2Þ
gðk; e1Þ

¼ b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − 2M=robsÞr−2obs

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2ð1 − 2M=robsÞr−2obs

p ð6Þ

or, by approximation with the large robs,
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FIG. 1. r − b plane for null geodesics in the Schwarzschild
spacetime. The region of Vðb; rÞ > 0 (shaded region) is the
forbidden region. Null geodesics with b > bc coming from
infinity are eventually reflected by the potential at radii corre-
sponding to Vðb; rÞ ¼ 0.
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α ≃
b
robs

: ð7Þ

Since jbj > bc for null geodesics reaching the observer, the
least impact parameter bc determines the apparent angular
size of the dark region, i.e., the black hole shadow, as
αsh ¼ bc=robs.

1 Furthermore, since the near critical null
geodesics with jbj ¼ bc þ 0 are the orbits asymptoting
r ¼ 3M, the photon sphere is said to shape the black hole
shadow. Note that the formula, Eq. (7), is valid for other
asymptotically flat spacetimes. Figure 2 shows the image of
the black hole shadow for a distant observer surrounded by a
spherical light source. Even in dynamical black hole space-
times, the impact parameter of the marginally escaping null
geodesics determines the shadow size.
We consider a null geodesic which is emitted from a

distant point and reflected at the turning point whose radius
is rmin, and reaches a distant observer. From L ¼ r2dϕ=dλ
and Eq. (3), we obtain

r2
dϕ
dr

¼ �
�
b−2 − r−2

�
1 −

2M
r

��
−1=2

: ð8Þ

Integrating this equation, we can define the winding
number as n ¼ Δϕ=ð2πÞ, where Δϕ is

Δϕ ¼ 2

Z
1=rmin

0

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b−2 − u2ð1 − 2MuÞ

p − π; ð9Þ

and u ≔ 1=r. We can regard Δϕ as a function of the impact
parameter b. In Fig. 3, the winding number is plotted and it

is divergent at b ¼ bc. It is known that this divergent
behavior is logarithmic n ∼ − lnðb − bcÞ [14–16].

B. Schwarzschild photon sphere from
the causal point of view

From the causal point of view, the Schwarzschild photon
sphere can be characterized as a hypersurface generated by
null geodesics from i− to iþ. This fact is important for the
photon sphere to be a structure that shapes a black hole
shadow for the following reason.
As a simple setup for a black hole shadow observation,

one may suppose a distant observer looking to the black
hole at r ¼ robs ≫ 2M and a distant light source filling a
sphere of r ¼ rsrc > robs [17–19]. They are described as
timelike curves from i− to iþ in the Penrose diagram as in
Fig. 4. What the observer observes is understood by the
behavior of the past-directed null geodesics from each point
of the observer’s world line. That is, the orbits of observed
photons correspond to the null geodesics connecting the
observer’s and the source’s world lines, and mapping of
their impact parameters to the observer’s celestial sky gives
the shadow image. Note that photons are supposed to be
observed if they enter the observer’s sight from the front,
i.e., photons are outgoing when observed.
Here we further idealize the situation from the causal

point of view by taking the limit rsrc; robs → ∞. As we are
concerned with null geodesics from the light source to the
observer, the observer are supposed to be in the future of
the light source, and therefore, we identify Iþ and I −

with the idealized observer and source, respectively. Note
that, from the assumption that photons are outgoing when
observed, we can ignore the case where the light source is
on Iþ. The past-directed null geodesics from Iþ are
classified into two types, ones toI − and ones toH −.2 The

FIG. 2. Image of the black hole shadow in the Schwarzschild
spacetime. The bright and dark regions in the observer’s sight are
shown as the orange and black regions. The distance from the
center corresponds to the impact parameter, and the shadow edge
(red dashed line) corresponds to the critical impact parameter.

FIG. 3. Winding number of null geodesics in the Schwarzschild
spacetime as a function of the impact parameter b. The red
dashed line denotes the critical impact parameter b ¼ bc ¼
3
ffiffiffi
3

p
M ≃ 5.196M. We set M ¼ 1 in the numerical calculation.

1If we take fX; Yg as Cartesian coordinates of the observer’s
celestial sky with the origin corresponding to the line of sight to
the black hole, then the incident angle corresponds to the radius,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2

p
¼ jαj. The normalization, X → X=robs; Y → Y=robs,

gives the relation,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2

p
¼ jbj. In this sense, the shadow size

is often said to be bc.

2Strictly speaking, there is only one null geodesic going to i− for
each point onIþ, ignoring those that can be identified by rotation
reduced from the spherical symmetry of the spacetime. Such a null
geodesic has the exact critical impact parameter b ¼ bc.
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photon sphere then works as the boundary of the set of null
geodesics from Iþ and I − (Fig. 5). In particular, the null
geodesics corresponding to the shadow edge (i.e., ones with
b ¼ bc þ 0 in terms of the impact parameter) are the orbits
that asymptote to the photon sphere. Therefore, the causal
feature of the photon sphere is actually important for the
black hole shadow formation.

C. Photon sphere of dynamical eternal black hole

Even in a dynamical spacetime, the above causal argu-
ment for the photon sphere would hold if the causal
structure is the same and the geometrical structure is not
so different. In this paper, we consider the Vaidya
spacetime [10],

g¼−fðv;rÞdv2þ2dvdrþ r2dΩ2; fðv;rÞ¼ 1−
2mðvÞ

r
;

ð10Þ

where the mass function mðvÞ is arbitrary. The Vaidya
spacetime is the spherically symmetric black hole solution to
the Einstein equation with null dust accretion. By setting the
mass function appropriately, we consider dynamical and
eternal black hole cases. We assume that the mass function
mðvÞ is initially constant [mðvÞ ¼ M1 for v ≤ v1], mono-
tonically increases temporally for v1 < v ≤ v2, and finally
constant [mðvÞ ¼ M2 for v > v2]. The configuration guar-
antees the null energy condition and avoids the appearance
of a naked singularity and the absence of future null infinity
[20,21]. Outside the horizons H �, the spacetime has the
same causal structure as the Schwarzschild spacetime as
shown in Fig. 6.
We investigate the photon sphere of the dynamical black

hole spacetime especially focusing on its property as a
structure that shapes the black hole shadow. We define the
dynamical photon sphere as a hypersurface generated by null
geodesics from i− to iþ. Trivial examples for such hyper-
surfaces are also shown in Appendix A; however, we do not
investigate them in detail because the causal structures are
out of our scope. Concerning the black hole shadow, we
define shadow edge orbits as follows. For each point onIþ,
consider the set of all the past-directed null geodesics
emanating from the point and going to I −. Among the
set, we call the null geodesic having the smallest impact
parameter at the point onIþ a shadow edge orbit.3 If every
shadow edge orbit asymptotes to the photon sphere, we can
say that the photon sphere is the structure shaping the black

FIG. 4. The photon sphere (PS) and null geodesics (dashed
lines) from a distant spherical light source to a distant observer
(solid lines from i− to iþ) in the Schwarzschild spacetime.

FIG. 5. The PS and null geodesics (dashed lines) from the
idealized light source, I −, to the idealized observer Iþ.

FIG. 6. The causal structure of the Vaidya spacetime with
temporal accretion for v1 < v ≤ v2. The apparent horizon (AH) is
given by r ¼ 2mðvÞ [22] and does not coincide with the future
event horizon H þ for v ≤ v2.

3This definition is thanks to the spherical symmetry and
asymptotic flatness. If the spacetime asymptotes to the Kerr
metric in the far region for example, then we should define the
shadow edge orbit in terms of the impact parameter associated
with the Killing vector of rotation and the Carter constant
associated with the Killing tensor.
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hole shadow. Note that this behavior of shadow edge orbits
around the photon sphere implies that the photon sphere
corresponds to an unstable photon sphere of a static case
rather than a stable photon sphere, or an anti-photon sphere.
Although a stable photon sphere may also go from i− to iþ
[23], we focus on the dynamical photon sphere correspond-
ing to an unstable photon sphere.4

When the spacetime is dynamical, it is generally difficult
to discuss the radial geodesic equation in an analytic way,
and it is often solved numerically. Hence, in the dynamical
spacetime, finding the geodesic that goes to the timelike
infinity is a difficult problem in general. However, in our
case, since the spacetime in the past and future is the
Schwarzschild spacetime, we just need to find a geodesic
that has the critical impact parameter b ¼ bc1 ≔ 3

ffiffiffi
3

p
M1 at

v ¼ v1 and b ¼ bc2 ≔ 3
ffiffiffi
3

p
M2 at v ¼ v2. Hence, we can

find the geodesic from i− to iþ, i.e., the dynamical photon
sphere with arbitrary accuracy by using the shooting
method for the dynamical region. By contrast, shadow
edge orbits are obtained as follows. We numerically solve
the null geodesic equation in the past direction from each
time v and some large r for various impact parameters. The
solutions going to r → ∞ for v → −∞ are the photons
observed by the observer, and, among them, one that has
the smallest impact parameter is the shadow edge orbit for

each v. Then we see that the shadow edge orbits asymptote
to the photon sphere.

III. NUMERICAL INVESTIGATION OF VAIDYA
PHOTON SPHERE

First we give an example of the photon sphere and shadow
edge orbits by solving the geodesic equation numerically.
We consider the Vaidya spacetime, Eq. (10), with the mass
function,

mðvÞ ¼

8>>><
>>>:

M1 v ≤ v1
M1 þ 1

2
ðM2 −M1Þ

�
1 − cos

�
v−v1
v2−v1

π
��

v1 < v ≤ v2
M2 v > v2

: ð11Þ

The spacetime is isometric to Schwarzschild spacetime
with the mass M1 and M2 > M1 in the past time domain
v < v1 and the future time domain v ≥ v2, respectively. In
the intermediate dynamical domain, the mass increases
monotonically. The mass function moderately increases
and is of class C1 as shown in Fig. 7.
The photon sphere generator is a null geodesic with finite

radius in far past and future. In the current case, it implies
that the null geodesic must asymptote to or coincide with
r ¼ 3M1 in the past and r ¼ 3M2 in the future. This is the
boundary condition for the photon sphere generator.
We calculated the photon sphere generator satisfying the

boundary condition by numerical integration of the null
geodesic equation.We found that (i) the generator is uniquely
determined, (ii) asymptotes to r ¼ 3M1 from outside in the
past direction, and (iii) asymptotes to r ¼ 3M2 from inside in

the future direction. The generator is shown in Fig. 8 in r − v
plane with shadow edge orbits that closely approaches the
generator. Although the Vaidya spacetime with the mass
function (11) is locally isometric to Schwarzschild space-
times in the past and future, the photon sphere does not
coincide with those of the Schwarzschild spacetimes. Even if
the spacetime is locally static, the photon sphere is not static
there. The shadow edge orbits are obtained by integrating the
null geodesic equation in the past direction from each points
of the observer’s world line at r ¼ 300. Each orbit deter-
mines the apparent shadow size at each time v. Note that, for
the observer at constant radius, time interval of the ingoing
null coordinate v is the same as the outgoing coordinate u,
which is called “an observer’s time” for an observer on Iþ.
Figure 9 shows the shadow edge orbits radius subtracted by
the photon sphere generator radius. We can see that the
shadow edge orbits asymptote to the photon sphere generator
exponentially in time.
The time evolution of the shadow image is shown in

Fig. 10. The shadow radius is increasing in time, and the
image is very close to that for the Schwarzschild spacetime

v1 v2 v

M1

M2

m(v)

FIG. 7. The mass function (11) increases monotonically from
M1 to M2.

4Since spacetimes of black holes formed by gravitational
collapse have a quite different causal structure, it is not trivial
whether our consideration and expectation for the dynamical
photon spheres and shadow edge orbits are valid.
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with M ¼ M1 at early time and M ¼ M2 at late time,
respectively. Figure 11 shows the corresponding time
evolution of the shadow edge.
In Fig. 12, we plotted the photon sphere orbit and the

orbit r ¼ 3mðvÞ for comparison. This shows that the
photon sphere orbit does not coincide with the orbit
r ¼ 3mðvÞ, but qualitative behaviors of those two orbits
are similar. As will shown later, for the weakly linear
accretion case, the deviation of the photon sphere orbit
from r ¼ 3mðvÞ is proportional to the first order of the
accretion rate.
We can discuss the winding number n ¼ Δϕ=2π, where

Δϕ is the total change of ϕ subtracted by π for a null

geodesic which comes from a light source and reaches an
observer. Figure 13 shows the time evolution of the
winding number as a function of the impact parameter
b. The winding number is divergent at the impact parameter
bedge which corresponds to the shadow edge orbit. In fact,
similar to the Schwarzschild case, this divergent behavior is
also logarithmic. A typical case is plotted in Fig. 14. We
note that the logarithmic divergent behavior at the impact
parameter which corresponds to the shadow edge orbit also
can be seen in linear and shell accretion cases which are
studied later.
In the following two sections, we investigate the cases

where the photon spheres are derived more analytically.
The shadow edge orbits that asymptote to the photon
spheres are also shown numerically.

IV. ANALYTICAL INVESTIGATION: LINEAR
ACCRETION

Here we consider another case of the Vaidya spacetime,
Eq. (10), with the mass function,

mðvÞ ¼

8>><
>>:

M1 v ≤ v1
M1 þ μðv − v1Þ v1 < v ≤ v2
M2 ¼ M1 þ μðv2 − v1Þ v > v2

: ð12Þ

The static time domains correspond to Schwarzschild
spacetime with masses M1 and M2. The mass linearly
increases in v in the intermediate dynamical time domain.
We assumeM1 > 0 and 0 < μ < 1=16. The causal structure
of the dynamical region is given as a part of the diagram in
Fig. 1 of Ref. [20]. Thus, our spacetime is an eternal black
hole and the Penrose diagram is given by Fig. 15.
Because the mass function, Eq. (12), mimics that of

Eq. (11), we can expect that the photon sphere of this
spacetime also satisfies similar boundary conditions to the
ones in the previous section. Actually, we can see similar
behaviors of shadow edge orbits and the photon sphere
generator as their limiting surface from numerical inte-
gration of the null geodesic equation (Fig. 16). The
corresponding shadow images and shadow edges are
shown in Figs. 17 and 18, respectively (see also
Appendix D for various accretion rates μ). As in the
previous case, the photon sphere generators asymptote to
r → 3M1 þ 0 and r → 3M2 − 0 in the past and future,
respectively. These boundary conditions seem to be
generic for this kind of eternal black hole spacetimes.
In the following, we find the photon sphere generator

more analytically by assuming that the generators asymp-
tote to r → 3M1 þ 0 and r → 3M2 − 0 in the past and
future, respectively. It is explicitly shown that the deviation
of the photon sphere from the hypersurfaces of r ¼ 3M1

and r ¼ 3M2 depends on the parameters of the geometry,
M1, M2, μ, and v2 − v1.

FIG. 8. The orbits of the photon sphere generator (red line)
and shadow edge orbits that once approach the generator (blue
line) in the Vaidya spacetime with the mass function (11). We set
the parameters as M1 ¼ 1, M2 ¼ 3, v1 ¼ 0, and v2 ¼ 100. The
photon sphere generator asymptotes to r ¼ 3M1 þ 0 in the past
and r ¼ 3M2 − 0 in the future.

FIG. 9. The shadow edge orbits radius subtracted by the photon
sphere generator radius. We took the same parameters as in Fig. 8.
This shows that the shadow edge orbits asymptote to the photon
sphere generator exponentially in time.
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A. Null geodesics in the static domains

The static time domains, v ≤ v1 and v > v2, of the
Vaidya spacetime are isometric to Schwarzschild space-
times of masses,M1 and M2, respectively. We analyze null
geodesics in each region in the usual way.
Consider the Hamiltonian for the null geodesic equation,

H ¼ gμνkμkν ¼ 0; ð13Þ

for the null geodesic tangent kμ ¼ dxμ=dλ ¼ _xμ with the
affine parameter λ. We assume that the null geodesic lies on
the equatorial plane θ ¼ π=2 without loss of generality.
Since the basis ∂v is locally a Killing vector in each static
domains and ∂ϕ is globally a Killing vector, we have a

FIG. 10. Image of the black hole shadow observed at r ¼ 300 for v ¼ 500, 550, 600, 650, 700, 750, 800, 850, and 900 in the
Vaidya spacetime with the mass function (11). Parameters are the same as those in Fig. 8. The distance from the center corresponds
to the impact parameter observed at r ¼ 300, and the red dashed lines are b ¼ 3

ffiffiffi
3

p
M1 and b ¼ 3

ffiffiffi
3

p
M2 for the inner and outer,

respectively.

FIG. 11. Time evolution of the shadow edge observed at
r ¼ 300. Parameters are same as those in Fig. 8.

DYNAMICAL PHOTON SPHERE AND TIME EVOLVING SHADOW … PHYS. REV. D 105, 104040 (2022)

104040-7



locally conserved energy and a globally conserved angular
momentum,

E ≔ −gðk; ∂vÞ; L ≔ gðk; ∂ϕÞ: ð14Þ

Then the null geodesic equations of each domain reduces to

_r2þViðE;L;rÞ¼0; ViðE;L;rÞ≔L2fiðrÞr−2−E2; ð15Þ

where the functions fiðrÞ ¼ 1 − ð2MiÞ=r (i ¼ 1, 2) are the
metric component −gvv of each domain.
The effective potentials Vi have maxima at r ¼ 3Mi.

From the condition _r ¼ 0 at r ¼ 3Mi, we can see that the
null geodesics staying the radii have the critical impact
parameters b2ci ¼ 27M2

i , where an impact parameter is
defined by b2 ¼ L2=E2. The null geodesics that asymptote
to r ¼ 3Mi also have the critical impact parameters b2ci.
Specifically, the null geodesic that asymptotes to r ¼ 3M1

from outside in the past infinity has the critical impact
parameter b2c1 and satisfies r > 3M1 and _r > 0 for v ≤ v1.
The one that asymptotes to r ¼ 3M2 from inside in the
future infinity has the critical impact parameter b2c2 and
satisfies r < 3M2 and _r > 0 for v > v2.

B. Null geodesics in the dynamical domain

The spacetime locally has a homothetic vector in the
dynamical domain [20,22]. Therefore, for v1 < v ≤ v2, we
can take conformally static coordinates by the coordinate
transformation fv; rg → fT; Rg,

Tðv; rÞ ¼ lnðvþ v0Þ−R�ðRðv; rÞÞ; R2ðv; rÞ ¼ r
vþ v0

;

ð16Þ

FIG. 12. The red and blue dashed line denote the photon sphere
orbit and the orbit r ¼ 3mðvÞ, respectively. The parameters of the
spacetime are the same as those in Fig. 8.

FIG. 13. The time evolution of the winding number n ¼ Δϕ=2π of null geodesics emitted from r ¼ 350 and observed at r ¼ 300 as a
function of the impact parameter bo. We took the same parameters as in Fig. 8. The gray dashed lines are b ¼ 3

ffiffiffi
3

p
M1 and b ¼ 3

ffiffiffi
3

p
M2

for the left and right, respectively, and the red dashed line is the impact parameter of the shadow edge orbit bedge at v ¼ vo.
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where

R�ðRÞ≔
Z

F−1ðRÞdR;

¼−
1

2ðR2
Hþ−R2

H−Þ
½R2

Hþ ln jR2
Hþ−R2j

−R2
H− ln jR2−R2

H−j�;

FðRÞ≔ 1

2R
ðfðRÞ−2R2Þ¼ 1

2R
ð1−2μR−2−2R2Þ;

where v0≔ðM1−μv1Þ=μ, and fðv; rÞ ¼ 1–2μðvþ v0Þ=r ¼
1 − 2μ=R2≕ fðRÞ for v1 < v ≤ v2. The time coordinate
basis ∂T is the homothetic vector and ∂R is the radial basis
orthogonal to ∂T . The metric in the dynamical time domain
is then given by

ds2 ¼ Ω2

�
2

R
ð−FdT2 þ F−1dR2Þ þ R2dΩ2

�
; ð17Þ

Ω2 ¼ðvþ v0Þr ¼ e2ðTþR�ÞR2: ð18Þ

The radii RH� given by

RH� ≔
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 16μ

pq
ð19Þ

are the solutions to the equation, FðRÞ ¼ 0. They are the
conformal (homothetic) Killing horizons in the sense that
∂T becomes null. We can adapt the coordinates fT; Rg for
each of the regions 0 < R < RH−, RHþ < R < RH−, and
RHþ < R < ∞. However, only the region RHþ < R <
RH− is conformally static because ∂T is timelike there.
The causal structure is investigated in Ref. [20] for the
maximal extension, corresponding to change of the range
v ∈ ðv1; v2Þ to v ∈ ðv1 −M1=μ;∞Þ.
The basis ∂T is the homothetic vector which is timelike

in the conformally static region. Thus, for the null geodesic
with the tangent kμ ¼ dxμ=dλ in the dynamical domain, we
have a locally conserved “energy,”

C ≔ −gðk; ∂TÞ; ð20Þ

in addition to the globally conserved angular momentum,
L. Then the null geodesic equation reduces to

Ω4 _R2 þ 1

2
FR−1L2 −

R2

4
C2 ¼ 0: ð21Þ

The parameter transformation λ → λ̃ðλÞ given by

FIG. 15. The Penrose diagram of the Vaidya spacetime with the
mass function, Eq. (12), for μ < 1=16. TheAH of Vaidya spacetime
is given by r ¼ 2mðvÞ [22]. The event horizon of the black hole
(H þ) is the null hypersurface that matches r ¼ 2M2 in the future
time domain v > v2. The analysis of the dynamical domain is given
in Sec. IV B.

FIG. 16. The orbits of the photon sphere generator (red line)
and shadow edge orbits that once approach the generator (blue
line) for the Vaidya spacetime with the linear accretion mass
function (12). We set the parameters as M1 ¼ 1, M2 ¼ 2,
μ ¼ 1=20, v1 ¼ 0, and v2 ¼ 40. The photon sphere generator
asymptotes to r ¼ 3M1 þ 0 in the past and r ¼ 3M2 − 0 in the
future.

FIG. 14. Semilogarithmic scale of Fig. 13 for vo ¼ 700. The
horizontal axis is bo − bedge and the vertical axis is Δϕ=2π.
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dλ

dλ̃
¼ Ω2 ð22Þ

further reduces the equation to

R02þUðC;L;RÞ ¼ 0; UðC;L;RÞ≔ 1

2
FR−1L2 −

R2

4
C2;

ð23Þ

where 0 ¼ d=dλ̃.
The behaviors of null geodesics are characterized in terms

of the conformal impact parameter, D ≔ L=C, and the
rescaled potential, UðD;RÞ≔C−2UðC;L;RÞ¼Uð1;D;RÞ.
The null geodesics are given as horizontal lines in R −D
plane in Fig. 19, where the forbidden region UðD;RÞ > 0
is shown as the shaded region. The solution of R to
UðD;RÞ ¼ 0 and dU

dR ðD;RÞ ¼ 0 is given by

Rex ≔
1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 12μ

pq
: ð24Þ

The corresponding critical impact parameter is given by

D2
c ¼

ð1 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 12μ

p Þð1 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 12μ

p
− 6μÞ

2ð8μ − ð1 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 12μ

p ÞÞ : ð25Þ

FIG. 17. Image of the black hole shadow observed at r ¼ 50 for v ¼ 20, 40, 60, 80, 100, 120, 140, 160, and 180 in the Vaidya
spacetime with the linear accretion mass function (12). We took the same parameters as in Fig. 16. The distance from the center
corresponds to the impact parameter observed at r ¼ 50, and the red dashed lines are b ¼ 3

ffiffiffi
3

p
M1 and b ¼ 3

ffiffiffi
3

p
M2 for the inner and

outer, respectively.

FIG. 18. Time evolution of the shadow edge observed at
r ¼ 50. We took the same parameters as in Fig. 16.
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For the critical orbit, the radius Rex corresponds to the
maximum of the potential, i.e., d

2U
dR2 ðDc;RexÞ < 0. As can be

seen from Fig. 19, null geodesics with an impact parameter
D2 < D2

c is not reflected by the potential. Another important
radius would beR ¼ ffiffiffiffiffi

3μ
p

, which corresponds to r ¼ 3M1 at
v ¼ v1 and r ¼ 3M2 at v ¼ v2. In the case μ < 1=16, the
conformal Killing horizons RH� exist and these characteristic
radii of the dynamical domain satisfy the relations

2μ < R2
H− < 3μ < R2

ex < R2
Hþ; ð26Þ

as shown in Fig. 15.

C. Transition among the potential problems

From the one-dimensional potential problems in each
time domain, Eqs. (15) and (23), the null geodesic equation
of the spacetime is formulated as a piecewise potential
problem. At v ¼ v1 and v ¼ v2, the potential problems are
transformed to other ones by the coordinate transforma-
tion, fv; rg ↔ fT; Rg.
At v ¼ vi (i ¼ 1, 2), the energies and radial velocities are

transformed as

C ¼ −gðk; ∂TÞ ¼ −g
�
k;
∂T
∂v ∂v þ

∂T
∂r ∂r

�
;

¼ ðvi þ v0Þfiðvi; rÞ − r
fiðvi; rÞ

Ei −
r

fiðvi; rÞ
_r; ð27Þ

R0 ¼ dλ
dλ0

�∂R
∂v _vþ ∂R

∂r _r

�
;

¼ R
2C

�
−

r
fiðvi; rÞ

Ei þ
ðvi þ v0Þfiðvi; rÞ − r

fiðvi; rÞ
_r

�
; ð28Þ

for fv; rg → fT; Rg and

Ei ¼ −gðk; ∂vÞ ¼ −g
�
k;
∂v
∂T ∂T þ ∂v

∂R ∂R

�
;

¼ e−ðTþR�ðRÞÞ fðRÞC
f2ðRÞ − 2R2

½fðRÞ − R2 þ 2RR0�; ð29Þ

_r¼
�∂r
∂T _Tþ ∂r

∂R
dλ0

dλ
R0
�
;

¼−e−ðTþR�ðRÞÞ fðRÞC
f2ðRÞ−2R2

�
R2þ2ðfðRÞ−R2Þ

R
R0
�
; ð30Þ

for fT; Rg → fv; rg, where the angular momentum L is
globally conserved and the coordinate values are trans-
formed according to Eq. (16). Note that _r ¼ �VðC;L; ; rÞ
and R0 ¼ �UðC;L;RÞ are obtained more easily from
the potentials once the energies are obtained, however,
the information of the signs are then lost. Note also
e−ðTþR�ðRÞÞ ¼ Mi=μ.

D. Photon sphere generator

Here we identify for a null geodesic to be the photon
sphere generator. Without loss of generality, we assume
that the generator lies on the equatorial plane θ ¼ π=2.
First we define a past critical orbit and a future critical
orbit as null geodesics that asymptote to r ¼ 3M1 from
outside in the past direction and r ¼ 3M2 from inside in
the future direction, respectively. Then we investigate the
conditions for them to be connected successfully in the
dynamical domain.
A past critical orbit is given as a null geodesic γ1

satisfying the condition,

rjv¼v1 ¼ r1 ≔ 3M1ð1þ ϵ1Þ; _rjv¼v1 ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−VðE1; L1; r1Þ

p
;

kv ¼ −E1; L2
1 ¼ b2c1E

2
1; ð31Þ

where ϵ1 > 0 and the subscripts 1 represent the quantities
of γ1. From Eqs. (16) and (27), we have

R2 ¼R2
1 ≔ 3μð1þ ϵ1Þ; T ¼ T1 ≔ ln

M1

μ
−R�ðR1Þ; ð32Þ

C1¼
E1M1

μ

"
1−9μ

ð1þϵ1Þ2
1þ3ϵ1

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

1þ3ϵ1
ð1þϵ1Þ3

s !#
: ð33Þ

In the same manner, a future critical orbit is given as a null
geodesic γ2 satisfying

rjv¼v2 ¼ r2≔3M2ð1−ϵ2Þ; _rjv¼v2 ¼þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−VðE2;L2;r2Þ

p
;

kv¼−E2; L2
2¼b2c2E

2
2; ð34Þ

where ϵ2 > 0. From Eqs. (16) and (27), we have

0.0 0.2 0.4 0.6 0.8
R

0.0

0.2

0.4

0.6

0.8

1.0D

FIG. 19. R −D plane for null geodesics in the dynamical
region of the Vaidya spacetime with the mass function, Eq. (12).
The region of UðD;RÞ > 0 (shaded region) is the forbidden
region. The vertical dashed lines are R ¼ RH− and R ¼ RHþ. The
accretion rate is set to μ ¼ 1=32 < 1=16 for example.
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R2¼R2
2≔ 3μð1− ϵ2Þ; T ¼T2 ≔ ln

M2

μ
−R�ðR2Þ; ð35Þ

C2¼
E2M2

μ

�
1−9μ

ð1−ϵ2Þ2
1−3ϵ2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

1−3ϵ2
ð1−ϵ2Þ3

s ��
: ð36Þ

The critical orbits γ1 and γ2 are successfully connected if
they satisfy

γμ1jv¼v2 ¼ γμ2jv¼v2 ; _γμ1jv¼v2 ¼ _γμ2jv¼v2 : ð37Þ

The latter condition is equivalent to the conditions for the
conserved quantities,

C1 ¼ C2; L1 ¼ L2; ð38Þ

because each tangent vector has only two independent
components due to the fact that the null geodesics are
supposed to be on the equatorial plane and satisfy H ¼ 0.
From that L1 ¼ bc1E1 ¼ 3

ffiffiffi
3

p
M1E1 and L2 ¼ bc2E2 ¼

3
ffiffiffi
3

p
M2E2, the equation L1 ¼ L2 implies

E1M1 ¼ E2M2: ð39Þ

From Eqs (33), (36), and (39), the equation C1 ¼ C2

reduces to

ð1þ ϵ1Þ2
1þ 3ϵ1

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1þ 3ϵ1
ð1þ ϵ1Þ3

s �

¼ ð1 − ϵ2Þ2
1 − 3ϵ2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1 − 3ϵ2
ð1 − ϵ2Þ3

s �
: ð40Þ

The relation between ϵ1 and ϵ2 is independent of any
parameters concerning the spacetime itself, μ, v1, v2, M1,
and M2.
The former condition in Eq. (37) is explicitly obtained by

extending γ1 to the time v ¼ v2 from v ¼ v1 by integrating
the null geodesic equation. For simplicity, we assume that,
for v ∈ ðv1; v2Þ, γ1 and γ2 are in the conformally static
region spanned by the coordinates fT; Rg. Then the
condition is expressed as

T2−T1¼
Z

λ2

λ1

dTðλÞ
dλ

dλ; R2−R1¼
Z

λ2

λ1

dRðλÞ
dλ

dλ; ð41Þ

where TðλÞ and RðλÞ are the coordinates of γ1ðλÞ and λ1 and
λ2 are the values satisfying Rðλ1Þ ¼ R1 and Rðλ2Þ ¼ R2,
respectively. Further assuming that _RðλÞ < 0 for λ ∈ ½λ1; λ2�,
which is verified in Appendix B, the equations are trans-
formed to the form

T2 − T1 ¼
Z

R2

R1

dT=dλ
dR=dλ

dR ¼
Z

R2

R1

dT=dλ̃

dR=dλ̃
dR: ð42Þ

Using Eq. (16) and the fact that v1 þ v0 ¼ M1=μ and
v2 þ v0 ¼ M2=μ, the left-hand side becomes

T2 − T1 ¼ ln
M2

M1

− R�ðR2Þ þ R�ðR1Þ: ð43Þ

Using Eqs. (20) and (23) and the fact UðC;L;RÞ ¼
C2Uð1; D;RÞ, the right-hand side reduces to

Z
R2

R1

dT=dλ̃

dR=dλ̃
dR¼−

Z
R2

R1

R
2FðRÞ½−Uð1;D1;RÞ�−1=2dR; ð44Þ

where

D1 ≔
L1

C1

¼ 3
ffiffiffi
3

p
M1E1

C1

¼ −3
ffiffiffi
3

p
μf1ðr1Þ

h
R2
1 − f1ðr1Þ

þ R2
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2c1f1ðr1Þr−21

q i
−1
: ð45Þ

Then we have

ln
M2

M1

− R�ðR2Þ þ R�ðR1Þ

¼ −
Z

R2

R1

R
2FðRÞ ½−Uð1; D1;RÞ�−1=2dR: ð46Þ

Finally, using Eqs. (31), (32), (34), and (35), we obtain the
equation

ln
M2

M1

¼R�ð3μð1− ϵ2ÞÞ−R�ð3μð1þ ϵ1ÞÞ

þ
Z

3μð1þϵ1Þ

3μð1−ϵ2Þ

R
2FðRÞ ½−Uð1;D1;RÞ�−1=2dR;

D1 ¼ 3
ffiffiffi
3

p
μ

�
1− 9μ

ð1þ ϵ1Þ2
1þ 3ϵ1

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

1þ 3ϵ1
ð1þ ϵ1Þ3

s ��
−1
;

ð47Þ

as the former condition of Eq. (37). Independently of
Eqs. (40) and (47) gives the relation between ϵ1 and ϵ2
depending on M1, μ, and v2 − v1, where M2 ¼
M1 þ μðv2 − v1Þ is reducible from them.
In summary, if there exist critical orbits γ1 and γ2 with

the parameters ϵ1 and ϵ2, respectively, that satisfy Eqs. (39),
(40), and (47), they are the PS generator. Equation (39)
determines the parameter scaling of γ2ðλÞ relative to γ1ðλÞ.
The combination of Eqs. (40) and (47) determines ϵ1 and ϵ2
for given M1, μ, and v2 − v1.
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E. Results

The numerical results of Eqs. (40) and (47) for various
values of the parameters, μ and v2 − v1, are shown in Fig. 20.
The parameterM2 is given byM2 ¼ μðv2 − v1Þ, and we can
take the other parameters as M1 ¼ 1, E1 ¼ 1, and v1 ¼ 0
without loss of generality. We have investigated the region
μ < 1=18 because, for μ > 1=18, R2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3μð1 − ϵ2Þ

p
<ffiffiffiffiffi

3μ
p

< RH− implying that the past and future critical orbits
corresponding to the PS generator are connected outside the
conformally static region R ∈ ðRH−; RHþÞ. This violates the
assumption mentioned above Eq. (41), under which we have
derived Eq. (47).
For smaller values, we can analytically determine ϵ1 and

ϵ2 by linear approximation. Equation (40) is expanded in ϵ1
and ϵ2 as

− 1þ 9μþ 9ð
ffiffiffi
3

p
− 1Þμϵ1 þOðϵ21Þ

¼ −1þ 9μþ 9ð
ffiffiffi
3

p
þ 1Þμϵ2 þOðϵ22Þ: ð48Þ

Equating their orders of magnitude, we have

ϵ1 ¼
ffiffiffi
3

p þ 1ffiffiffi
3

p
− 1

ϵ2: ð49Þ

Equation (47) is expanded as

ln
M2

M1

þ 9

2

μ2

ðR2
Hþ − 3μÞð3μ − R2

H−Þ
ðϵ1 þ ϵ2Þ

¼ 1 − 9μ

1 − 18μ
ðϵ1 þ ϵ2Þ þOðϵ21; ϵ22Þ: ð50Þ

For lnM2=M1 ¼ Oðϵ1; ϵ2Þ, we have

ϵ1 þ ϵ2 ¼
�
1 − 9μ

1 − 18μ
−
9

2

μ2

ðR2
Hþ − 3μÞð3μ − R2

H−Þ
�
−1

× ln
M2

M1

¼ ln
M2

M1

; ð51Þ

where we have used Eq. (19) in the second equality. Using
Eq. (49), we finally obtain

ϵ1 ¼
3þ ffiffiffi

3
p

6
ln
M2

M1

; ϵ2 ¼
3 −

ffiffiffi
3

p

6
ln
M2

M1

: ð52Þ

The result is valid for the case ϵ1, ϵ2 ≪ 1 corresponding to
the condition δM=M1 ≔ ðM2 −M1Þ=M1 ¼ OðϵÞ ≪ 1.
Actually, this coincides with ϵ1 and ϵ2 for the smaller
values of v2 − v1 in Fig. 20. In the limit M2 → M1, the
photon sphere coincides with the Schwarzschild photon
sphere, r ¼ 3M1. The photon sphere can be described in
the Penrose diagram as in Fig. 21.
From Eqs. (32) and (35), the radius of the photon sphere is

in the range, R2 ∈ ð3μð1 − ϵ2Þ; 3μð1þ ϵ1ÞÞ. The radius
R2 ¼ 3μ corresponds to r ¼ 3mðvÞ. Thus, the dynamical
photon sphere deviates from but, for weaker accretion,
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FIG. 20. The dots show the numerical results of Eqs. (40) and (47) for varying v2 − v1 with the fixed value of
μ ¼ 1=200; 1=100; 1=30, and 1=20. The other parameters are chosen so that M1 ¼ 1, E1 ¼ 1, and v1 ¼ 0.
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approximately given by three times the Misner-Sharp mass.
In the globally self-similar case of the Vaidya spacetime [12],
a photon sphere is specified as R2 ¼ R2

ex, i.e., the maximum
of the effective potential UðC;L;RÞ in Eq. (23). The photon
sphere in our temporarily self-similar case is also different
from this case.

V. ANALYTICAL INVESTIGATION:
SHELL ACCRETION

In the previous section, we mainly focused on the weak
accretion case. In this section, as another interesting case
which also can be studied analytically, we discuss the null
dust thin shell limit. If we consider the limit of μ → ∞ and
v2 − v1 → 0 with μðv2 − v1Þ ¼ δM ¼ finite and v1 ¼ 0,
then the mass function mðvÞ in Eq. (12) becomes

mðvÞ ¼ M1 þ δMΘðvÞ; ð53Þ

where δM ¼ M2 −M1ð≥ 0Þ andΘðvÞ is the Heaviside step
function

ΘðvÞ ¼
	
0 ðfor v ≤ 0Þ
1 ðfor v > 0Þ : ð54Þ

The metric Eq. (10) with Eq. (53) describes the
Schwarzschild spacetime with M1 for v < 0 and M2 for
v > 0, respectively, and there is a null dust thin shell at
v ¼ 0. To study the photon sphere, we discuss the null
geodesic on this spacetime. The tangent of the null
geodesic on the equatorial plane

k ¼ kvðλÞ∂v þ krðλÞ∂r þ kϕðλÞ∂ϕ; ð55Þ

satisfies the geodesic equations kν∇νkμ ¼ 0. Using
L ¼ gð∂ϕ; kÞ, the ϕ component of the geodesic equations
can be solved. The only nontrivial component of the
geodesic equations is

dkv

dλ
−
L2

r3
þ ðkvÞ2ðM1 þ δMΘðvÞÞ

r2
¼ 0: ð56Þ

This equation implies that kv is continuous when the null
geodesic goes through the null shell at v ¼ 0 surface.5

From the null condition for k

2krkv þ L2

r2
þ ðkvÞ2ð2M1 − rþ 2δMΘðvÞÞ

r
¼ 0; ð57Þ

we obtain the condition for kr just before and after the null
geodesic goes through the null shell

krjþ0 − krj−0 ¼ −
δMkv

r0
; ð58Þ

where krj�0 ¼ limv→�0 kr and r0 is the radius of the
intersection point of the null geodesic and the null shell.
We wish to find a geodesic which asymptotes to r ¼ 3M1

for v → −∞ and r ¼ 3M2 for v → ∞, then the geodesic has
the critical impact parameters bc1 ¼ 3

ffiffiffi
3

p
M1 for v < 0 and

bc2 ¼ 3
ffiffiffi
3

p
M2 for v > 0. Because L is globally conserved,

the relations

E1 ¼
L
bc1

¼ L

3
ffiffiffi
3

p
M1

; ð59Þ

E2 ¼
L
bc2

¼ L

3
ffiffiffi
3

p
M2

ð60Þ

hold, where E1 ¼ −gð∂v; kÞ for v < 0 and E2 ¼ −gð∂v; kÞ
for v > 0. From the definition of the energy in v < 0 and
v > 0 regions, we have

kv ¼
8<
:

rð ffiffi3p
Lþ9M1krÞ

9M1ðr−2M1Þ ðfor v < 0Þ
rð ffiffi3p

Lþ9M2krÞ
9M2ðr−2M2Þ ðfor v > 0Þ

: ð61Þ

The continuity of kv at the null shell implies

ffiffiffi
3

p
Lþ 9M1krj−0

M1ðr0 − 2M1Þ
¼

ffiffiffi
3

p
Lþ 9M2krjþ0

M2ðr0 − 2M2Þ
: ð62Þ

From Eqs. (58), (61), and (62), we can show
3M1 < r0 < 3M2, krj−0 > 0 and krjþ0 > 0.6 Thus, the
relations

FIG. 21. The dynamical PS (red dashed line) in the temporally
accreting Vaidya spacetime.

5If kv is not continuous, then dkv=dλ contains the Dirac delta
function, and then the equation cannot be satisfied.

6Equations (58), (61), and (62) indicate that krjþ0k
rj−0

becomes negative if and only if r0 satisfies 3M1þ
δM < r0 < 3M1 þ 2δMð< 3M2Þ. If krj−0 > 0 and krjþ0 < 0
for r0 < 3M2, then the geodesic goes to the black hole horizon.
Thus, we only need to consider the possibility krj−0 > 0; krjþ0 > 0
and 3M1 < r0 < 3M2.
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kr ¼

8><
>:

Lðr−3M1Þ
ffiffiffiffiffiffiffiffiffiffiffi
rþ6M1

p
3
ffiffi
3

p
M1r3=2

> 0 ðfor v < 0Þ
Lð3M2−rÞ

ffiffiffiffiffiffiffiffiffiffiffi
rþ6M2

p
3
ffiffi
3

p
M2r3=2

> 0 ðfor v > 0Þ
ð63Þ

are satisfied.
Equations (62) and (63) determine the value of r0 for the

desired null geodesic which corresponds to the photon
sphere7

r3=20 þ ðr0 − 3M1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0 þ 6M1

p
M1ðr0 − 2M1Þ

¼ r3=20 − ðr0 − 3M2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0 þ 6M2

p
M2ðr0 − 2M2Þ

: ð64Þ

The solution of Eq. (64) is given by

r0 ¼
1

2

�
ðM1 þM2Þð1þ α2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðM1 þM2Þ2ð1þ α2Þ

α2
−
3M1M2ð4þ α21Þ

α1

s �
; ð65Þ

with

α1 ¼ 21=3
�ðM1 þM2Þ2 þ ðM2 −M1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

1 þ 6M1M2 þM2
2

p
M1M2

�1=3

; ð66Þ

α2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3M1M2ð4þ α21Þ

ðM1 þM2Þ2α1

s
: ð67Þ

We should note that (65) also satisfies Eq. (58). To
understand the property of Eq. (65), it is convenient to
introduce δr0 as

r0 ¼ 3M1

�
1þ δr0

δM
M1

�
; ð68Þ

then δr0 represents the deviation of the dynamical photon
sphere radius from 3M1 at v ¼ 0. We note that δr0 is a
function of δM and 0 ≤ δr0 ≤ 1 is satisfied. Equation (68)
also can be written as

r0 ¼ 3M2

�
1 − ð1 − δr0Þ

δM
M2

�
; ð69Þ

then 1 − δr0 represents the deviation from 3M2 at v ¼ 0. If
1 ≫ δM=M1, then δr0 approximately behaves

δr0 ¼
3þ ffiffiffi

3
p

6
−

1

18

�
δM
M1

�
þ 18þ ffiffiffi

3
p

648

�
δM
M1

�
2

−
32þ 3

ffiffiffi
3

p

1944

�
δM
M1

�
3

þOðδM4Þ;

≃ 0.7887 − 0.05556

�
δM
M1

�
þ 0.03045

�
δM
M1

�
2

− 0.01913

�
δM
M1

�
3

þOðδM4Þ; ð70Þ

If 1 ≪ δM=M1, then δr0 approximately behaves as

δr0 ¼
2

3
þ 1

3

�
δM
M1

�
−1

−
9

8

�
δM
M1

�
−2

þ 9

2

�
δM
M1

�
−3

þOðδM−4Þ: ð71Þ

For general cases, the behavior of δr0 is plotted in Fig. 22.
The dynamical photon sphere whose generator asymptotes
to 3M1 þ 0 and 3M2 − 0 in the far past and future,
respectively, in the Penrose diagram is shown in Fig. 23.
In Fig. 24, the photon sphere generator and the null
geodesics which asymptotes to it in the past direction
are plotted, and the discontinuity behavior of kr in Eq. (58)
at v ¼ 0 can be seen. The corresponding shadow images
and shadow edges are shown in Figs. 25 and 26, respec-
tively. While the spacetime is suddenly changes at v ¼ 0
due to the shell accretion and the photon sphere generator is
continuous but not smooth (see Fig. 24), the shadow image
for a distant observer is continuously and smoothly changes
in time.
Finally, we make a remark on the expressions of

Eqs. (68) and (69). Using Eq. (70), the equations can be
written as

7If we remove the square roots in Eq. (64), then we obtain a
simple equation r40 − 2ðM1 þM2Þr3 þ 27M2

1M
2
2 ¼ 0. We should

be careful about that the solution of this equation may not satisfy
the original equation (64).

DYNAMICAL PHOTON SPHERE AND TIME EVOLVING SHADOW … PHYS. REV. D 105, 104040 (2022)

104040-15



r0 ¼ 3M1

�
1þ 3þ ffiffiffi

3
p

6
ln
M2

M1

�
þOðδM2Þ

¼ 3M1ð1þ ϵ1Þ þOðδM2Þ;

r0 ¼ 3M2

�
1 −

3 −
ffiffiffi
3

p

6
ln
M2

M1

�
þOðδM2Þ

¼ 3M2ð1 − ϵ2Þ þOðδM2Þ; ð72Þ

where we quoted the parameters ϵ1 and ϵ2 from the result of
the weak accretion limit of the linear accretion case,
Eq. (52). Therefore, although our analysis of the linear
accretion case (Sec. IV) depends on the assumption,
μ < 1=18, the expressions of the photon sphere radius,
rjv¼v1 ¼ 3M1ð1þ ϵ1Þ and rjv¼v2 ¼ 3M2ð1 − ϵ2Þ, with
Eq. (52) are also valid in the shell accretion case corre-
sponding to μ → ∞.

VI. RELATION TO PHOTON SPHERE
GENERALIZATIONS

We have specified the photon sphere shaping the black
hole shadow. Our photon sphere should coincide with, be
included by, or have some relations to the recently proposed
notions generalizing a photon sphere.

A. Photon surface

In 2001, Claudel, Virbhadra, and Ellis proposed a photon
surface as a geometrical generalization of the Schwarzschild
photon sphere [4]:
Definition 1. A photon surface of a spacetime ðM; gÞ is

an immersed, nowhere-spacelike hypersurface S of ðM; gÞ
such that, for every point p ∈ S and every null vector
k ∈ TpS, there exists a null geodesic γ∶ ð−ϵ; ϵÞ → M of
ðM; gÞ such that _γð0Þ ¼ k, jγj ⊂ S.
The excellent feature of a photon surface is that, in a

timelike case, it is a totally umbilic hypersurface [4,24].
The surface is completely characterized by a local geo-
metrical quantity, the extrinsic curvature being pure trace.
See Refs. [25–33] for the various investigations of photon
surface.
In a spherically symmetric spacetime, there are an

infinite number of spherically symmetric photon surfaces,
or equivalently SOð3Þ-invariant photon surfaces, even in a
dynamical case because they are given as solutions to a
second order ordinary differential equation [4]. In other
words, any null geodesic with nonzero angular momentum
is tangent to some spherically symmetric timelike photon
surface. In this sense, our photon sphere of the Vaidya
spacetime is the special one of many photon surfaces that
goes to both iþ and i−.
As an application of a photon surface to a black hole

shadow, the notion of “stability” is also important [34].
That is, an unstable photon surface generalizes the usual
photon sphere, which is relevant to a black hole shadow,

FIG. 22. Behavior of δr0 as a function of δM.

FIG. 23. The dynamical PS (red dashed line) in the Vaidya
spacetime with shell accretion.

FIG. 24. The orbits of the photon sphere generator (red line)
and shadow edge orbits that once approaches the generator (blue
line) for the Vaidya spacetime with the shell accretion mass
function (53). We took the parameters of the spacetime as
M1 ¼ 1, M2 ¼ 2. The photon sphere generator asymptotes to
r ¼ 3M1 þ 0 in the past and r ¼ 3M2 − 0 in the future. We can
see the discontinuity behavior of kr in Eq. (58) at v ¼ 0.
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whereas a stable one does the anti-photon sphere, which is
irrelevant. In Appendix C, we show our photon sphere is
actually an unstable photon surface and therefore, the
photon sphere relevant to the black hole shadow.

B. Wandering set

In the Schwarzschild spacetime, a null geodesic on the
photon sphere is a circular orbit and it comes from the past
timelike infinity and go to the future timelike infinity. This

FIG. 25. Image of the black hole shadow observed at r ¼ 50 for v ¼ 10, 40, 70, 100, 110, 120, 130, 140, and 150 in the Vaidya
spacetime with the shell accretion mass function (53). We took the same parameters as in Fig. 24. The distance from the center
corresponds to the impact parameter observed at r ¼ 50, and the red dashed lines are b ¼ 3

ffiffiffi
3

p
M1 and b ¼ 3

ffiffiffi
3

p
M2 for the inner and

outer, respectively. The shadow image for a distant observer is continuously changing in time even for the shell accretion case.

FIG. 26. Time evolution of the shadow edge (left) and the time derivative (right) observed at r ¼ 50. We took the same parameters as
in Fig. 24. While the photon sphere generator is continuous but not smooth (see Fig. 24), the shadow edge for a distant observer is
continuously and smoothly changes in time.
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means that although the geodesics on the photon sphere
are null, they do not fall into the black hole or escape to
the null infinity. We call such a null geodesic a “neutral”
null geodesic. Since the generator of the event horizon is
also a neutral geodesic, to exclude it, Siino defines the
wandering null geodesic as follows.
Definition 2 [5,6]. A future (past) wandering null

geodesic from p is a future (past) complete null geodesic
with infinite number of conjugate points starting from p to
the future (past) direction. A totally wandering null
geodesic is a future and past complete null geodesic with
infinite number of conjugate points in both the future and
past directions.The set of the totally wandering null geo-
desics is called a wandering set, and it is a generalization of
Schwarzschild photon sphere.
For the Vaidya spacetime discussed in this paper, first,

according to the Penrose diagram in Fig. 21, the null
generators of the dynamical photon sphere are complete.
Next, let us consider two null generators of the photon
sphere starting form a north pole. We assume that these two
geodesics have slightly different azimuth angle. When one of
the geodesics reaches the south pole, the other geodesic also
reaches the same point due to the spherical symmetry.
Repeating this argument, we find that if these two geodesics
intersect infinitely many times, then there is an infinite
number of conjugate points.
To make this intuitive explanation clear, we consider the

future directed null geodesic, kμ ¼ dxμ=dλ, asymptoting
from r ¼ 3M1 to r ¼ 3M2 obtained in the previous
sections. We here do not restrict the null geodesic motion
to the equatorial plane, θ ¼ π=2. In the future static region,
which is described by the Schwarzschild metric,

ds22 ¼ −f2ðrÞdt22 þ
dr2

f2ðrÞ
þ r2ðdθ2 þ sin2 θdϕ2Þ; ð73Þ

where f2ðrÞ ¼ 1–2M2=r and dt2 ¼ dv − f−12 ðrÞdr, the
conserved energy E2, the conserved angular momentum
L, and the Carter constant Q are given by

E2¼f2ðrÞ
dt
dλ

; L¼r2sin2θ
dϕ
dλ

; Q¼r4
�
dθ
dλ

�
2

þL2cot2θ:

ð74Þ

From the null condition, we have

dr
dλ

¼ E2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

f2
r2

Qþ L2

E2
2

s
: ð75Þ

Since the null geodesic asymptotes to the spherical photon
orbit with r ¼ 3M2, we have ðQþ L2Þ=E2

2 ¼ 27M2
2 and

the polar angle θ varies in the range θmin ≤ θ ≤ θmax where

θmin ¼ arctan

� jLjffiffiffiffi
Q

p
�

and θmax ¼ π − θmin: ð76Þ

Hence, the expansion Θ̃ of the null congruence consisting
of nearby null geodesics with the same E2, L, and Q is
given by

Θ̃ ¼ kμ;μ ¼ −
E2

r2
2r2 þ 6M2r − 9M2

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðrþ 6M2Þ

p
þ ϵθ

27M2
2E

2
2

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qðtan2 θ − tan2 θmax;minÞ

q ; ð77Þ

where ϵθ ¼ �1 according to the θ direction of motion.
Since the polar angle θ repeatedly takes the values θmin and
θmax for in a finite interval of the affine parameter, the
expansion Θ̃ repeatedly becomes singular.8,9 This means
that the future directed orbit asymptoting from r ¼ 3M1 to
r ¼ 3M2 is a future wandering null geodesic. Note that this
conclusion holds for both cases when the geodesics are
future and past directed. Thus, the dynamical photon sphere
derived in this paper is a wandering set.

C. Dynamically transversely trapping surfaces

Yoshino, Izumi, Shiromizu, and Tomikawa introduced
the transversely trapping surface in the static and stationary
spacetimes as a generalization of the static photon surface
by using local quantities [7]. Further, they define the
dynamically transversely trapping surface (DTTS) as a
concept applicable to the dynamical spacetime [8]. The
definition of the dynamically transversely trapping surface
is given as follows:
Definition 3 [8]. Suppose Σ to be a smooth spacelike

hypersurface of a spacetime M. A closed orientable two-
dimensional surface σ0 in Σ is a dynamically transversely
trapping surface if and only if there exists a timelike
hypersurface S in M that intersects Σ precisely at σ0
and satisfies the following three conditions at arbitrary
points on σ0:

k̄ ¼ 0; ð78Þ

max ðK̄abkakbÞ ¼ 0; ð79Þ
ð3ÞL̄n̄k̄ ≤ 0; ð80Þ

where k̄ is the trace of the extrinsic curvature of σ0 in the
surface S, K̄ab is the extrinsic curvature of S, ka are

8The case of L ¼ 0 corresponds to the intuitive explanation.
9Since we choose the null congruence with specific conserva-

tion quantities (74), the expansion becomes singular at θ ¼ θmin,
θmax, but due to the spherical symmetry, there exists a congruence
whose expansion becomes singular at θ ¼ θ0, π − θ0 for any θ0.
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arbitrary future-directed null vectors tangent to S, n̄a is the
future-directed unit normal in S, and ð3ÞL̄n̄ is a Lie
derivative in S. The quantity ð3ÞL̄n̄k̄ is evaluated with a
time coordinate in S whose lapse function is constant on
σ0.The region in which DTTSs exist is said to be a
dynamically transversely trapping region. If the outer
boundary of a dynamically transversely trapping region
satisfies the condition ð3ÞL̄n̄k̄ ¼ 0, then it is said to be a
marginally DTTS and a generalization of Schwarzschild
photon sphere.
To discuss whether the dynamical photon sphere in this

paper is the marginally DTTS or not, we consider a null
geodesic on the equatorial plane in the static regions which
are described by the Schwarzschild metric with different
masses:

ds2i ¼ −fiðrÞdt2i þ
dr2

fiðrÞ
þ r2ðdθ2 þ sin2 θdϕ2Þ; ð81Þ

where fiðrÞ ¼ 1–2Mi=r (i ¼ 1, 2) and dti ¼ dv − f−1i dr.
In this case, we have locally conserved energies and a
globally conserved angular momentum Eq. (14):

Ei ¼ fiðrÞ
dti
dλ

; L ¼ r2
dϕ
dλ

¼ Eibi: ð82Þ

From the null condition, we have

dr
dti

¼ �fiðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

b2i
r2

fiðrÞ
r

: ð83Þ

If we obtain a solution of a radial geodesic rðtiÞ, a photon
surface can be constructed due to the spherical symmetry.
This photon surface is denoted as S. Then, the induced
metric on the photon surface S is given by

ds2i ¼ −α2i dt2i þ r2ðdθ2 þ sin2 θdϕ2Þ; ð84Þ

where the lapse function is given by

αi ¼
bi
r
fiðrÞ: ð85Þ

We take a spacelike hypersurface Σti such that the time
coordinate is constant and the intersection of Σti and S is
written as σti which is a closed two-dimensional surface.
The future-directed unit normal to σti in the hypersurface S
and the outward spacelike unit normal to S are denoted as
n̄a and r̄a, respectively. Then, k̄ and ð3ÞL̄n̄k̄ are given by

k̄ ¼ 2

bifiðrÞ
dr
dti

and ð3ÞL̄n̄k̄ ¼ 2

r2

�
1 −

3Mi

r

�
: ð86Þ

If we choose the impact parameter of null geodesics from σti
such that k̄ ¼ 0, i.e., b2i ¼ r2=fiðrÞ, then the first definition

of the DTTS is satisfied. Since the hypersurface S is a photon
surface, there is a null geodesic γ∶ð−ϵ; ϵÞ → M of ðM; gÞ
such that _γð0Þ ¼ k; jγj ⊂ S. Hence, we obtain

K̄abkakb ¼ r̄a;bkakb ¼ ðr̄akaÞ;bkb ¼ 0; ð87Þ

along γ and then the second definition is also satisfied. By
contrast, whether the third definition is satisfied or not
depends on the radius of σti . The radius of the dynamical
photon sphere in this paper is lager than 3M1 in the past
region and less than 3M2 in the future region. Hence, the
time slice of the dynamical photon sphere is the DTTS in the
future region while it is not the DTTS in the past region.
Since the marginally DTTS is located at r ¼ 3M2 in the
future region and r ¼ 3M1 in the past region, the time slice
of the dynamical photon sphere is not the marginally DTTS
if a spacelike hypersurface Σti is taken such that the time
coordinate ti is constant.
The dynamical photon sphere in this paper clearly

depends on the past and future mass, and hence it is
determined by a global geometrical structure while the
DTTS is defined by local geometrical quantities. Therefore,
as with the relation between the event horizon and the
apparent horizon, the dynamical photon sphere in this paper
does not necessarily coincide with the DTTS in general.
Note that since the definition of the DTTS depends on a
choice of a hypersurface, there may exist a hypersurface
that the dynamical photon sphere in this paper is the DTTS.

VII. SUMMARY AND DISCUSSION

We have investigated dynamical photon spheres that
shape the black hole shadows in the Vaidya spacetime from
the causal point of view. The spacetime has been assumed to
be static in the past and future time domains, i.e., isometric to
the Schwarzschild spacetime with the mass M1 and M2,
respectively. As a result, we have obtained the photon
spheres as hypersurfaces generated by null geodesics that
asymptote to r → 3M1 þ 0 and r → 3M2 − 0 in the past
and future, respectively. Remarkably, the radii of the photon
spheres deviate from the Schwarzschild photon spheres 3M1

and 3M2 even in the static domains.
We have also derived the photon sphere analytically in

the case where the evolution of the black hole is linear in
the time coordinate v by using the self-similarity of the
spacetime there. The result shows that the photon sphere
radius also deviates from the maximum of the conformal
effective potential UðC;L;RÞ as opposed to the entirely
self-similar case in Ref. [12]. In the weak accretion limit,
δM=M1 ≪ 1, the deviations of the photon sphere radius
from 3M1 and 3M2 has been derived as rjv¼v1 ¼3M1

ð1þð3þ3
ffiffiffi
3

p Þ=6 lnM2=M1Þ and rjv¼v2 ¼ 3M2ð1− ð3−
3
ffiffiffi
3

p Þ=6 lnM2=M1Þ, respectively. In the shell accretion
limit, the dynamical photon sphere also locates at the
radius between 3M1 and 3M2. Remarkably, in the weak
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accretion limit of the shell case, i.e., μ → ∞ and v2 −
v1 → 0 but δM ≪ 1, the expression r0 ¼ rjv¼v1 ¼ 3M1ð1þ
ð3þ 3

ffiffiffi
3

p Þ=6 lnM2=M1Þ ¼ rjv¼v2 ¼ 3M2ð1− ð3− 3
ffiffiffi
3

p Þ=
6 lnM2=M1Þ holds. Therefore, we conclude that a dynami-
cal photon sphere shaping a black hole shadow is not
determined by local geometry only. Rather, it depends on
global information of the spacetime if one adopts our
definitions of a photon sphere and a shadow.
We have discussed the relation between our photon sphere

and several notions that generalize a photon sphere. We have
concluded that our photon sphere is a unstable photon
surface [4,34] and a wandering set [5,6]. Concerning the
DTTS [8], we have not found the coincidence with our
photon sphere, however, it can be expected from the
difference of the viewpoints of the definitions.
It is still challenging to propose, for generic dynamical

cases of spacetimes, a generalized definition of a photon
sphere as a structure that shapes a black hole shadow. One
of approaches for this problem is to gather many examples
in specific cases and to study their essential points. Then
one can check if an existing generalization of a photon
sphere is consistent with them or define a new notion so
that it is consistent with them. Our numerical and
analytical results would be the good examples in a
spherically symmetric spacetime whose dynamics is
clearly understood in a physical sense. As a further
investigation, it is important to investigate a dynamical
photon sphere in a nonspherically symmetric spacetime.
For example, the photon spheres of the Kastor-Traschen
spacetime [35], a spacetime of two colliding black holes,
and its relation to the shadows investigated in Ref. [19,36]
are interesting.
Let us apply our results, Eqs. (31), (34), and (52), to the

observation of M87. According to Ref. [37], the current
mass and the accretion rate are estimated as M1 ¼ 3 ×
109 M⊙ and μ ¼ 10−3 M⊙ year−1. From M2 ¼
μðv2 − v1Þ þM1, the radius of the photon sphere after
the accretion for the time period of observation, v2 − v1,
becomes rjv¼v2 ≃ 3M1ð1þ ð3þ ffiffiffi

3
p Þδ=6Þ where δ ¼

μðv2 − v1Þ=M1 ¼ 0.33 × 10−12ðv2 − v1Þ=ð1 yearÞ. After
a few decades, the photon sphere radius evolve only by
the ratio ∼10−11. For black holes with much greater
efficient accretion, we might be able to observe the time
evolution.
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APPENDIX A: CONFORMAL SCHWARZSCHILD
SPACETIMES

We consider the conformal Schwarzschild spacetime
Ω2gSchμν , where gSchμν denotes the Schwarzschild metric, as
toy models of the black hole spacetimes with an evolving
event horizon. This type of black hole spacetimes were
studied in the context of cosmological black holes, e.g., in
[38,39]. Because the light ray orbits are invariant under the
conformal transformation, we can easily discuss the loca-
tion of the photon sphere. In particular, we focus on two
cases. Case I: Ω is a function of the time coordinate v with
dv ¼ dt − ð1 − 2M=rÞ−1dr in the Eddington-Finkelstein
coordinates, and case II: Ω is a function of the time
coordinate η with dη ¼ dt − 2Mdr=ðr − 2MÞ in the
Kerr-Schild coordinates.

1. Case I: Function of the Eddington-Finkelstein
time coordinate v

We consider the metric

ds2 ¼ ΩðvÞ2
�
−
�
1 −

2M
r

�
dv2 þ 2dvdr

þ r2ðdθ2 þ sin2θdϕ2Þ
�
: ðA1Þ

If the conformal factor is given by

Ω2 ¼

8>><
>>:

1 ðfor v ≤ v0Þ
1þ μðv − v0Þ ðfor v0 ≤ v ≤ v1Þ
1þ μðv1 − v0Þ ≔ Ω2

f ðfor v1 ≤ vÞ
; ðA2Þ

then the spacetime is the Schwarzschild metric with the
mass parameter M for v ≤ v0, dynamical for v0 < v < v1,
and the Schwarzschild metric with the mass parameterΩfM
for v1 ≤ v. In this spacetime, the location of the event
horizon is r ¼ 2M and the location of the photon sphere is
r ¼ 3M. Thus, this metric gives a simple toy model of the
dynamical black hole spacetime where we can easily
determine the location of the photon sphere.
However, this spacetime has a problematic feature as

shown below. Introducing the new time and radial coor-
dinates ðV; RÞ as dV ¼ Ωdv and R ¼ Ωr, the metric
becomes

ds2 ¼ −
�
1 −

2

R

�
ΩM − R2

dΩ=dV
Ω

��
dV2

þ 2dVdRþ R2ðdθ2 þ sin2θdϕ2Þ: ðA3Þ

This is similar to the form of the Vaidya metric, but the
Misner-Sharp mass
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MMS ¼ ΩM − R2
dΩ=dV

Ω
ðA4Þ

depends on R. If the horizon area is increasing in time, then
the function dΩ=dV is positive. Then, the Misner-Sharp
mass for v0 ≤ v ≤ v1 becomes negative at the large
distance.

2. Case II: Function of the Kerr-Schild time
coordinate η

Next we consider the metric

ds2 ¼ ΩðηÞ2
�
−dη2 þ dr2 þ r2ðdθ2 þ sin2θdϕ2Þ

þ 2M
r

ðdηþ drÞ2
�
: ðA5Þ

If we choose the conformal factor as

Ω2 ¼

8>><
>>:

1 ðfor η ≤ η0Þ
1þ μðη − η0Þ ðfor η0 ≤ η ≤ η1Þ
1þ μðη1 − η0Þ ≔ Ω2

f ðfor η1 ≤ ηÞ
; ðA6Þ

the spacetime has a similar property as the case I. The
Misner-Sharp mass for this spacetime becomes

MMS ¼ MΩþMrdΩ=dη
Ω

ðrdΩ=dη − 2ΩÞ

þ r3ðdΩ=dηÞ2
2Ω

; ðA7Þ

and this is positive everywhere for the above conformal
factor. However, because the last term in Eq. (A7) corre-
sponds to the effect of the expanding Universe, this
spacetime is not appropriate for the toy model of black
holes with the localized accreting matter.

APPENDIX B: ASSUMPTION OF _R < 0

In Sec. IV D, to derive Eq. (47), we have assumed that
the critical orbit γ1 satisfies _R < 0 for v ∈ ðv1; v2Þ.
The assumption is equivalent to that γ1 is not reflected
by the conformal effective potential UðC1; L1;RÞ for
v ∈ ðv1; v2Þ. This is because the case where _R > 0 for
all v ∈ ðv1; v2Þ is not allowed due to the fact that the
radius of γ1ðλÞ for λ ∈ ðλ1; λ2Þ satisfies Rðλ2Þ ¼
R2 <

ffiffiffiffiffi
3μ

p
< R1 ¼ Rðλ1Þ. Actually, we can see that γ1,

which is connected to γ2, is not reflected by the potential
as follows.
First, since UðC;L;RÞ has only one maximum and no

local minimum for R ∈ ðRH−; RHþÞ, the orbit γ1 can be
reflected at most once. The possible cases for the radius of
reflection, Rref , are Rref < R2 < R1 and R2 < R1 < Rref .
The former case is impossible because it implies that the
maximum of the potential, R ¼ Rph−, is smaller than Rref .
This contradicts to the fact that R2 <

ffiffiffiffiffi
3μ

p
< Rph−. On the

other hand, the latter case implies that R2 <
ffiffiffiffiffi
3μ

p
< R1 <

Rref < Rph− and initially _R > 0 at R ¼ R1. By the coor-
dinate transformation fv; rg → fT; Rg given by Eq. (16),
we obtain _R ¼ ∂R

∂v kv þ ∂R
∂r kr from the null geodesic tangent

kμ of the photon sphere generator at v ¼ v1 specified by
Eq. (31). We have

_RðR1Þ ¼
E1

2R1M1ð1 − 2μR−2
1 Þ ½ð1 − 2μR−2

1 − R2
1ÞR−3

1 jR2
1

− 3μj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
1 þ 6μ

q
− R2

1� ðB1Þ

as the function ofR1. However, the conditions,
ffiffiffiffiffi
3μ

p
< R1 <

Rph− and μ < 1=16, lead to _RðR1Þ < 0 as numerically
shown in Fig. 27. Therefore, the latter case is also
impossible.
As a conclusion, the critical orbit γ1 connected to γ2, i.e.,

the null geodesic corresponding to the PS generator, must
satisfy _R < 0 for v ∈ ðv1; v2Þ.

APPENDIX C: PHOTON SURFACE STABILITY

Our photon sphere derived in Sec. IV is an SOð3Þ-
invariant photon surface [4]. For the photon surface to be the
structure shaping the black hole shadow, it must be “an
unstable photon surface” [34].
Let S and γ be our photon surface and a null geodesic

along S, respectively. Consider a geodesic deviation X along
γ that is proportional to the unit normal n to S at p ∈ jγj ⊂ S.
The null geodesic γ is said to be unstable at p if
gðX;∇k∇kXÞjp > 0. This condition implies that, if a photon
orbit along γ is parallelly perturbed from p ∈ S to the
direction n, then it increases the deviation from S as it
propagate in the spacetime. According to Proposition 1 of
Ref. [34], the condition is equivalent to

Rμνρσkμnνkρnσ < 0; ðC1Þ

FIG. 27. The plot of _RðR1Þ for R1 ∈ ð ffiffiffiffiffi
3μ

p
; Rph−Þ and

μ < 1=16, which is everywhere negative.
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where k ¼ _γ. If every null geodesic on S is unstable at every
point on S, then the photon surface itself is said to be
unstable. For an SOð3Þ-invariant photon surface S, if one
null geodesic γ along S is unstable on every point on jγj, S is
an unstable photon surface because of the spherical
symmetry.
Let k be the null geodesic tangent of the photon sphere

generator derived in Sec. IV. From Eqs. (31) and (34), the
tangent is given by

kμ ¼ ðE1f−11 ðrÞ;þE1V1ðbc1; rÞ; 0; L1r−2Þ ðC2Þ

and

kμ ¼ ðE2f−12 ðrÞ;þE2V2ðbc2; rÞ; 0; L2r−2Þ ðC3Þ

in the static regions v ≤ v1 and v > v2, respectively. The
unit normal n to the photon sphere is

nμ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b−2c1 r
2 − f1ðrÞ

q
; b−1c1 f

−1
1 ðrÞ; 0; 0

�
;

nμ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b−2c2 r
2 − f2ðrÞ

q
; b−1c2 f

−1
2 ðrÞ; 0; 0

�
ðC4Þ

in each region. Then, we have

Rμνρσkμnνkρnσ ¼ −
3L1M1

r
< 0;

Rμνρσkμnνkρnσ ¼ −
3L2M2

r
< 0 ðC5Þ

in each region. Therefore, the photon surface is unstable in
the static regions.
In the dynamical region, v1 < v ≤ v2, the null geodesic

tangent is

kμ ¼ Ω−2C

�
R

2FðRÞ ;−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

4
−
FðRÞ
2R

D2

r
; 0;

D
R2

�
: ðC6Þ

The unit normal to the photon sphere is

nμ ¼ Ω
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

2FðRÞ
R

r
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

FðRÞR

s
; 0; 0

�
: ðC7Þ

Then, we have

Rabcdkanbkcnd ¼
1

4R12F2ðRÞΩ
−4C2AðRÞ; ðC8Þ

where

AðRÞ ¼ −μ
�
D2ð10R8 − 11R6 þ ð3þ 22μÞR4 − 12μR2

þ 12μ2Þ − 2R10

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2FðRÞ
R3

D2

r ��
: ðC9Þ

The conformal impact parameter, D ¼ D1, is given
by Eq. (47) depending on ϵ1. ϵ1 is determined by
specifying the parameters μ and v2 − v1 as derived in
the end of Sec. IV. The value of AðRÞ for R ∈ ðR2; R1Þ is
plotted in Fig. 28. R1 and R2 are determined by ϵ1 and ϵ2,

FIG. 28. Plot of AðRÞ for R ∈ ðR2; R1Þ. μ ¼ 1=200; 1=100; 1=30; 1=20 are investigated. For each μ, values of v2 − v1 are chosen as
those investigated in Fig. 20. The bluer and green lines correspond to the smaller and greater values of v2 − v1. We can see AðRÞ < 0 for
all the ranges.
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respectively, from Eqs. (32) and (35). The values of μ
and v2 − v1 are the same as those investigated in Fig. 20
for ϵ1 and ϵ2. The results show that AðRÞ < 0 and,
therefore, the photon surface is also unstable in the
dynamical region.

APPENDIX D: TIME EVOLUTION
OF SHADOW EDGE FOR VARIOUS

ACCRETION RATES

In this section, we study the time evolution of shadow
edge for the linear accretion model, which is discussed in
Sec. IV, with various accretion rates. Figure 29 shows the
shadow edge observed at r ¼ 100M1 for various accretion
rates μ. In Fig. 29, the behaviors of the lines for μ ¼ 1 and
1=10 are very similar. This implies that the time evolution
of the shadow edge for large accretion rate becomes almost
same for a distant observer. This is the reason why the
figures for the linear accretion case in Fig. 18 and for the
shell accretion case, which can be considered as the μ → ∞
limit of the linear accretion case, in Fig. 26 are very similar.
In Fig. 30, we plot the time at the inflection point of
bedgeðvoÞ as a function of μ. We define vI as the time at the
inflection point where d2bedge=dv2o ¼ 0 is satisfied. We can
see that vI asymptotes to a value vIshell for large μ, where

vIshell is defined as vI for μ → ∞ case (shell limit).
Figure 31 shows vI ∼ vIshell þ 1=ð2μÞ for large μ.
For fixed M1 and M2, if the accretion rate is very large,

the spacetime is varying in a short time scale. Nevertheless,
the above results suggest that the shadow edge for a distant
observer becomes almost same as the case with not very
large accretion.
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