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We study the stability of topological black holes in the presence of a cosmological constant and a scalar
field coupled to the Gauss-Bonnet (GB) term in the extended scalar-tensor theories. We find two competing
effects. As the strength of the coupling λ of the scalar field to the GB term is increasing, the matter is
interacting more strongly with gravity while as the hyperbolicity ξ of spacetime is getting larger the kinetic
effects of matter tend to dominate. Calculating both analytically and numerically the quasinormal modes
(QNMs) we found for each λ a critical value of ξ, below which there is an instability. When the
coupling constant λ is getting very large, all of the QNMs develop a positive imaginary part indicating an
instability. This behavior indicates a phase transition to a scalarized topological black hole induced by
curvature effects.
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I. INTRODUCTION

The recent experimental results on gravitational waves
[1–3] and more recently the observation of a shadow of the
M87 black hole [4], demonstrated that Einstein’s general
relativity (GR) is a very successful viable theory. However,
on cosmological grounds, to explain the recent observa-
tional results on dark matter and on dark energy a
generalization of GR is required, in an attempt to have a
viable theory of gravity on short and large distances [5–8].
These modified gravity theories can give us important
information on the structure and properties of the compact
objects predicted by these theories and also the observa-
tional signatures, which they can introduce.
In particular, there has been a lot of activity in recent

years in studding the astrophysical nature of compact
objects. The direct observation of gravitational waves
(GWs) produced by the collision of two compact objects
stimulated this discussion. We expect that GW astronomy
will deepen our understanding of the gravitational inter-
action and of astrophysics in extreme-gravity conditions.
The future LIGO and Virgo observations will give us vital
information on the structure of spacetime inside the light
ring and then a strong gravity regime will gradually come
into sight. The hope is to detect the postmerger ringdown
phase that is produced by a series of damped oscillatory
modes [9–11] which can be computed exactly in perturba-
tion theory and to search for indications of new physics.

The modified GR theories predict theories with different
properties of the near-horizon regions of black holes;
therefore future GW observations will shed some light
on the nature and the physics of these regions of black holes
and see if they exhibit any unexpected structure.
Alternatives to known black holes were recently con-
structed, known as exotic compact objects (ECOs) [12–
14]. The important physical consequences of the existence
of any structure at near-horizon scales would give rise to a
series of “echoes” of the primary gravitational wave signal
produced during the ringdown phase [15,16].
The ringdown waveform is dominated by the quasinor-

mal modes (QNMs) [10,11,17] of the compact object under
study. To determine the characteristic parameters of com-
pact objects, the detection of a few modes from the
ringdown signal is required. The ringdown signal is
dominated by the photon sphere (PS) modes. These modes
can be determined if the QNMs are known, while for
ECOs, the PS modes still exist but there are not enough to
determine the nature of these objects [15,16]. However, in
[15,16] it was shown that the ringdown signal provides a
conclusive proof for the formation of an event horizon or
not. In these works it was shown that the ringdown
waveform is dominated by the QNMs of the compact
object producing waveforms in the form of echoes.
Some of the simplest and viable modifications of GR are

the scalar-tensor theories [18].When the scalar field coupled
to gravity backreacts to the background metric, hairy black
hole solutions would be generated. A hairy black hole
solution in an asymptotically flat spacetime was found in
[19] but it was shown that it was unstable because the scalar
field was divergent on the event horizon [20]. However, it
was soon realized that introducing a scale through the
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presence of a cosmological constant, making the spacetime
asymptotically anti–de Sitter/de Sitter (AdS/dS), such an
irregular behavior of the scalar field on the horizon was
avoided. Then hairy black hole solutions were found having
a regular scalar field behavior and all the possible diver-
gences were hidden behind the horizon [21–31].
If the cosmological constant is positive and the scalar field

is minimally coupled or nonminimally coupled with a self-
interaction potential, black hole solutions were found
[24,25,32] but it was shown to be unstable [26,33]. If the
cosmological constant is negative, numerical solutions were
found [27,28] and also a stable exact black hole solution was
discussed in [23] in which the spacetime is asymptotically
AdS with hyperbolic geometry, known as a Martinez-
Troncoso-Zanelli (MTZ) black hole. Later this solution
was generalized to include charge [34], while a generaliza-
tion to nonconformal solutions was discussed in [30].
No-hair theorems can also be evaded by considering

black holes interacting with matter fields [35–40]. In such
cases black holes can support a nontrivial scalar field in
their exterior region. Modified gravity theories were
proposed in which matter is coupled to the Einstein tensor.
These theories belong to general scalar-tensor Horndeski
theories [41]. Then various hairy black holes were found in
which scalar fields are coupled to curvature [31,42–50].
Hairy black hole solutions can also be obtained without

the presence of matter sources if the scalar field is directly
coupled to second-order algebraic curvature invariants. In
this case the scalar hair is maintained by the interaction with
the spacetime curvature. Exploring the strong field regime of
gravity with the aim to detect gravitational waves and black
hole shadows, the effects of higher-order curvature terms
become significant.However, including such terms brings in
the well-known ghost problem [51]. One high curvature
correction is the Gauss-Bonnet (GB) term which is ghost-
free but it becomes a topological term in four-dimensional
spacetime and has no dynamics. To evade this problem, one
has to couple this term to a scalar field in four dimensions
[52]. These gravity theories are known as extended scalar-
tensor-Gauss-Bonnet (ESTGB) theories and were studied
extensively in the literature [53–58].
Recently there has been a lot of activity studying the

ESTGB gravity theories in an attempt to evade the no-hair
theorems and obtained hairy black hole solutions. In
particular, for certain classes of the coupling function it
was shown that we have spontaneous scalarization of black
holes [59–64]. It was found that below a certain critical
mass the Schwarzschild black hole becomes unstable in
regions of strong curvature, and then when the scalar field
backreacts to the metric, new branches of scalarized black
holes develop at certain masses as solutions in the ESTGB
theory [59,60,65]. An extension of these results is to
consider the case of a nonzero black hole charge.
Examining the entropy of the black holes with nontrivial
scalar field it turned out that the solution with the scalar

field is thermodynamically favorable over the Reissner-
Nordström one [66].
The spontaneous scalarization procedure has various

applications. The scalarization due to a coupling of a scalar
field to Ricci scalar was studied in [67] and scalarized black
hole solutions and compact objects in asymptotical flat
spacetime in the ESTGB gravity theories were obtained in
[68–78] and also in AdS/dS spacetimes [79–83]. The
connections of asymptotically AdS black hole scalarization
with holographic phase transitions in the dual boundary
theory were studied in [84,85]. Recently the spontaneous
scalarization in f(R) gravity theories was discussed in [86].
The black hole spontaneous scalarization in ESTGB

gravity theories with a probe scalar field in a black hole
background with different curvature topologies has been
studied in [87]. It was found that the scalar field near an AdS
black hole with positive curvature could be much easier to
scalarize the black hole comparing with negative and zero
curvature cases. In particular, when the curvature is negative,
the scalar field is the most difficult to be bounded near the
horizon. Itwas observed that scalarizations in hyperbolicAdS
topological black hole (TBH) backgrounds depend on the
interplay of two factors, the coupling strength between the
scalar field and the GB term and the cosmological constant.
As we already mentioned, the MTZ black hole [23] is an

exact black hole solution in four dimensions with a
minimally coupled self-interacting scalar field, in an
asymptotically AdS spacetime in which the event horizon
is a surface of negative constant curvature enclosing the
curvature singularity. It was shown that there is a second-
order phase transition at a critical temperature below which
a black hole in vacuum undergoes a spontaneous dressing
up with a nontrivial scalar field. In a series of papers [88–
90] this scalarization procedure was studied for topological
black holes. Calculating analytically and numerically the
QNMs of tensor, electromagnetic and scalar perturbations,
it was found that there is a critical value of the horizon
radius below which the topological black hole is scalarized
to the MTZ black hole with scalar hair. The thermody-
namics of this transition was also studied.
Motivated by the above studies we will study the

scalarization of a topological black hole in the presence
of the coupling of the scalar field to the GB term in the
ESTGB gravity theories. In particular, we will consider a
gravity theory with the presence of a cosmological constant
in which there is matter parametrized by a massive scalar
field minimally coupled to gravity and also coupled to the
GB term. The coupling of the scalar field to the GB term is
denoted by the parameter λ. At first the scalar field does not
backreact to the metric. We fix the background metric to be
a TBH leaving in a hyperbolic spacetime expressed by a
parameter ξ, which is analogous of the orbital quantum
number in the three-dimensional space.
The goal of this work is to study the behavior of matter in

this physical setup. For a fixed cosmological constant we
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have two competing effects. The first one is that as λ is
increasing we expect the matter to interact more strongly
with gravity, while as ξ is getting larger the kinetic effects
tend to dominate. We calculate both analytically and
numerically the QNMs of scalar perturbations of topologi-
cal-AdS black holes in the presence of matter coupled to the
GB term. For each λ we found a critical value of ξ, below
which there is instability. As λ is increasing the imaginary
part of some QNMs are getting positive indicating an
instability. When the coupling constant λ is getting very
large, all of the QNMs develop a positive imaginary part.
This behavior provides evidence of a phase transition to a
scalarized TBH. We also noted that the absolute values of
QNMs are increasing as the parameter ξ is also increasing.
This behavior of the parameters λ and ξ gives us

information about the matter distribution near the horizon
of the TBH. In [91] the behavior of matter outside the
horizon of a compact object described by a hairy black hole
in the Horndeski theory was studied. It was shown that
echoes were formed in the ringdown waveform due to the
entrapment of test fields between the photon sphere and
the effective asymptotic boundary. Also it was found that
the stability of the compact object produces decaying
echoes modes, while instability generates growing echoes
modes. In a future work it would be interesting to study the
echoes that are generated in a scalarized topological black
hole and see what kind of observational signals can be
produced by the interplay of the strength of the coupling of
matter to curvature and the form of the topology of the
spacetime.
The work is organized as follows. In Sec. II we present

the theory of the coupling of a scalar field to the GB term in
the background of a TBH and we discuss the tachyonic
instabilities of this theory. In Sec. III we carry out an
analytical calculation of QNMs. In Sec. IV we consider
scalar perturbations in the extended scalar-tensor GB
theory in which the background metric is the TBH and
finally in Sec. V are our conclusions.

II. TOPOLOGICAL BLACK HOLES, THE
EINSTEIN-SCALAR-GAUSS-BONNET THEORY

AND TACHYONIC INSTABILITIES

In this section we will first discuss the TBHs as the
background of the scalar-GB gravity theories and then we
will discuss the possible tachyonic instabilities of these
theories.
We consider the bulk action

I ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p �
Rþ 6

l2

�
; ð2:1Þ

in asymptotically AdS spacetime, where G is Newton’s
constant and l is the AdS radius. The presence of
a negative cosmological constant ðΛ ¼ − 3

l2Þ allows the
existence of black holes with a topology R × Σ, where Σ is

a two-dimensional manifold of constant negative curvature.
These black holes are known as topological black holes.
The simplest solution of this kind reads

ds2 ¼ −gðrÞdt2 þ dr2

gðrÞ þ r2dσ2;

gðrÞ ¼ r2 − 1 −
2μ

r
; ð2:2Þ

where we employed units in which the AdS radius is l ¼ 1
and dσ is the line element of Σ. The latter is locally
isomorphic to the hyperbolic manifold H2 and of the form

Σ ¼ H2=Γ; Γ ⊂ Oð2; 1Þ; ð2:3Þ

where Γ is a freely acting discrete subgroup (i.e. without
fixed points) of isometries.
The geometry of the TBHs as well their basic properties

have been studied extensively in the literature [92–96]. It
has been shown in [97] that the massless configurations
where Σ has negative constant curvature are stable under
gravitational perturbations. The stability also of the TBHs
was discussed in [98] and QNMs in topological black holes
were calculated in [99–101].
The Einstein-scalar-Gauss-Bonnet theory is described by

the following action functional:

S ¼ 1

16πGN

Z
d4x

ffiffiffiffiffiffi
−g

p ½R − 2∇μϕ∇μϕ −m2ϕ2

þ λ2fðϕÞR2
GB − 2Λ�: ð2:4Þ

This modified gravitational theory consists of a real scalar
field minimally coupled to Einstein’s gravity and non-
minimally coupled to the quadratic gravitational GB term
R2

GB through a real function fðϕÞ. A cosmological constant
Λ is also present, which may take either a positive or a
negative value. We are interested in hyperbolic TBHs with
negative curvature constant. So the metric ansatz reads as

ds2 ¼ −eAðrÞdt2 þ eBðrÞdr2 þ r2ðdθ2 þ sinh2θdφ2Þ: ð2:5Þ

Using natural units such that GN ¼ c ¼ 1 the gravitational
field equations have the covariant form

Gμν ¼ T̃μν; ð2:6Þ

Gμν ¼ TðϕÞ
μν þ TðGBÞ

μν − Λgμν; ð2:7Þ

Gμν þ Λgμν ¼ TðϕÞ
μν þ TðGBÞ

μν ; ð2:8Þ

where Gμν is the Einstein tensor

Gμν ¼ Rμν −
1

2
gμνR; ð2:9Þ
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and TðϕÞ
μν is the energy-momentum tensor which receives

contribution only from the kinetic term and the mass term

of the scalar field, and TðGBÞ
μν is the energy-momentum

tensor which receives contribution only from the interac-
tion of the scalar field with the Gauss-Bonnet term

TðϕÞ
μν ¼ −

1

2
gμνm2ϕ2 þ 2∇μϕ∇νϕ − gμν∇κϕ∇κϕ; ð2:10Þ

TðGBÞ
μν ¼ −Rð∇μΨν þ∇νΨμÞ − 4∇αΨαGμν

þ 4Rμα∇αΨν þ 4Rνα∇αΨμ − 4gμνRαβ∇αΨβ;

þ 4Rβ
μαν∇αΨβ; ð2:11Þ

with

Ψμ ¼ λ2 _fðϕÞ∇μϕ: ð2:12Þ

The equation of motion of the scalar field is

∇μ∇μϕ −
1

2
m2ϕþ 1

4
λ2 _fðϕÞR2

GB ¼ 0; ð2:13Þ

where the dot denotes differentiation with respect to the
scalar field. A condition for the coupling function fðϕÞ
arises from Eq. (2.13), namely _fð0Þ ¼ 0. This condition
ensures that the trivial scalar field ðϕ ¼ 0Þ satisfies the
equation of motion. In the case of a trivial scalar field the
metric functions of the background TBH are given by

eAðrÞ ≡ gðrÞ ¼ −1 −
M
r
−
Λ
3
r2; ð2:14Þ

eBðrÞ ¼ 1

−1 − M
r −

Λ
3
r2

¼ 1

gðrÞ : ð2:15Þ

The equation of motion of the scalar field (2.13) can be
written as

ð□ − μ2effÞϕ ¼ 0; ð2:16Þ

where

μ2eff ¼
1

2
m2 −

1

4
λ2 _fðϕÞR2

GB: ð2:17Þ

The sign of this effective mass is connected with the
stability or instability of the underlining theory. To clarify
this issue, consider the Lagrangian density for a free
relativistic scalar field ϕ in a Minkowski spacetime

L ¼ −
ϵ

2
∂μϕ∂μϕ −

ε

2
m2ϕ2: ð2:18Þ

In the ϵ ¼ ε ¼ þ1 case, the Hamiltonian is positive semi-
definite and therefore bounded from below, while in the

ϵ ¼ ε ¼ −1 case, the Hamiltonian is negative semidefinite
and therefore bounded from above. In the case ϵ ¼ −ε, the
Hamiltonian is indefinite and so it is not bounded either
from below or from above. The field ϕ is called a ghost
field if ϵ ¼ ε ¼ −1 (for a review on ghost fields see [102]),
while it is called a tachyon field if ϵ ¼ þ1 and ε ¼ −1, and
finally, it is called a tachyonic ghost if ϵ ¼ −1 and ε ¼ þ1.
A Hamiltonian that is unbounded from below is usually
associated with instabilities of the system. If ϵ ¼ −ε, a
small perturbation can grow exponentially, signaling an
instability.
If the effective mass (2.17) is negative μ2eff < 0, there is a

tachyonic instability triggered by a negative effective mass
squared of the scalar field [80].

III. ANALYTICAL CALCULATION OF QNMs

We consider a function fðϕÞ coupled to the GB term, for
which

df
dϕ

����
ϕ¼0

¼ 0;
d2f
dϕ2

����
ϕ¼0

¼ 2 > 0: ð3:1Þ

We suppose that ϕ is restricted in the well surrounding
ϕ ¼ 0, so that the expression λ2fðϕÞR2

GBð0Þ reduces in this

limit to the approximate form λ2R2
GBð0Þϕ

2. We consider the

line element

ds2 ¼ −gðrÞdt2 þ 1

gðrÞ dr
2 þ r2ðdθ2 þ r2sinh2θdϕ2Þ;

gðrÞ ¼ −1 −
M
r
−
Λ
3
r2 ¼ −1 −

M
r
þ r2

L2
; ð3:2Þ

for which the GB invariant reads

R2
GBð0Þ ¼

24

L4
þ 12M2

r6
: ð3:3Þ

The starting point of our approach will be an equation
describing the scalar perturbations, which derives from the
Klein-Gordon equation after substituting for the scalar field
the form

ϕðt; r; θ;ϕÞ ¼ ΨðrÞe−iωtYξmðθ;ϕÞ; ð3:4Þ

where Yξmðθ;ϕÞ are the counterparts of the spherical
harmonics and ξ is a parameter analogous to the orbital
quantum number. The equation reads

gðrÞ d
dr

�
gðrÞ dΨ

dr

�
þ ½ω2 − VðrÞ�Ψ ¼ 0;

VðrÞ≡ gðrÞ
�
g0ðrÞ
r

−
λ2

4
R2

GBð0Þ þ
ξ2 þ 1

4

r2

�
: ð3:5Þ
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Note that the parameter ξ indicates the hyperbolic geom-
etry. A large value of ξ shows the departure from the
spherical topology.
Substituting gðrÞ and R2

GBð0Þ by their respective values,
Eq. (3.5) takes the form

gðrÞ d
dr

�
gðrÞdΨ

dr

�

þ
�
ω2 − gðrÞ

�
2

L2
þM
r3

−
6λ2

L4
−
3λ2M2

r6
þ ξ2þ 1

4

r2

��
Ψ¼ 0:

ð3:6Þ

We now introduce the new variable

u≡
�
rþ
r

�
2

⇔ r ¼ rþ
u1=2

; ð3:7Þ

so that

d
dr

¼−
2u3=2

rþ

d
du

;
d2

dr2
¼ 4

r2þ
u3=2

d
du

�
u3=2

d
du

�
; ð3:8Þ

and Eq. (3.6) becomes

4

r2þ
gu3=2

d
du

�
gu3=2

d
du

�
Ψ

þ
�
ω2−g

�
2þMu3=2

r3þ
−6λ2−

3λ2M2u3

r6þ
þξ2þ1

4

r2þ
u

��
Ψ¼0:

ð3:9Þ

Setting L ¼ 1 and using the notations

ĝðuÞ≡ gðrÞ
r2þ

¼ 1

u
−

1

r2þ
−
M
r3þ

u1=2; ð3:10Þ

V̂ðuÞ≡ VðrÞ
r2þ

¼ ĝðuÞ
�
2þMu3=2

r3þ
− 6λ2 −

3λ2M2u3

r6þ
þ ξ2 þ 1

4

r2þ
u

�
;

ð3:11Þ

the equation takes the form

− 4u3=2ĝðuÞðu3=2ĝðuÞΨ0Þ0 þ V̂Ψ ¼ ω̂2Ψ

⇔ HΨ ¼ ω̂2Ψ; ω̂≡ ω

rþ
: ð3:12Þ

It is possible to proceed with an analytical approach, in two
cases, namely when the black hole is small with rþ around
1 or when the black hole is large.

A. Small black hole: The horizon is approximately 1

We now restrict our attention to the critical case, where

rþ ¼ 1 ⇔ M ¼ 0:

In this case

ĝðuÞ ¼ 1 − u
u

;

and the equation reduces to

− 4u1=2ĝðuÞðu1=2ð1 − uÞΨ0Þ0 þ V̂ðuÞΨ ¼ ω̂2

1 − u
Ψ

⇔ HΨ ¼ ω̂2

1 − u
Ψ; ð3:13Þ

with

V̂ðuÞ ¼ 2 − 6λ2

u
þ
�
ξ2 þ 1

4

�
;

and then the Klein-Gordon equation becomes

−4u1=2ðu1=2ð1− uÞΨ0Þ0 þ
�
2− 6λ2

u
þ ξ2þ 1

4

�
Ψ¼ ω̂2

1− u
Ψ:

ð3:14Þ

We introduce the parameter a≡ 2–6λ2, so that the potential
takes on the simple form

V̂ ¼ a
u
þ ξ2 þ 1

4
;

and the equation to be solved reads

4ð1 − uÞuΨ00 þ 2ð1 − uÞΨ0 − 4uΨ0 þ ω̂2

1 − u
Ψ

−
�
a
u
þ ξ2 þ 1

4

�
Ψ ¼ 0: ð3:15Þ

One may check that the (finite) approximate solution

in the limit u → 0 is proportional to u
1þ ffiffiffiffiffiffi

1þ4a
p
4 , while in

the limit u → 1 it is proportional to ð1 − uÞ�iω
2 . We choose

ð1 − uÞ−iω
2 , in which case a negative imaginary part of ω

corresponds to a stable system. It is convenient to make the
transformation

ΨðuÞ ¼ u
1þ ffiffiffiffiffiffi

1þ4a
p
4 ð1 − uÞ−iω

2XðuÞ: ð3:16Þ

The function XðuÞ interpolates between the two limiting
values of u → 1 and u → 0. Then the differential equation
becomes
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16uð1 − uÞX00ðuÞ þ 8½−2 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4a

p þ uð4þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4a

p
− 2iωÞ�X0ðuÞ

þ ½5þ 4aþ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4a

p þ 4ξ2 − 8iω − 4i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4a

p
ω − 4ω2�XðuÞ ¼ 0; ð3:17Þ

which may be readily solved in terms of hypergeometric functions

XðuÞ ¼ C12F1

�
1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4a

p

4
−
iξ
2
−
iω
2
;
1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4a

p

4
þ iξ

2
−
iω
2
;1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4a

p

2
; u

�

þC2u−
ffiffiffiffiffiffi
1þ4a

p
2

2F1

�
1

2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4a

p

4
−
iξ
2
−
iω
2
;
1

2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4a

p

4
þ iξ

2
−
iω
2
;1−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4a

p

2
; u

�
: ð3:18Þ

Thus one obtains the solution of the original equation

ΨðuÞ ¼ C1u
1þ ffiffiffiffiffiffi

1þ4a
p
4 ð1− uÞ−iω

2
2F1

�
1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4a

p

4
−
iξ
2
−
iω
2
;
1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4a

p

4
þ iξ

2
−
iω
2
;1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4a

p

2
; u

�

þC2u
1−
ffiffiffiffiffiffi
1þ4a

p
4 ð1− uÞ−iω

2
2F1

�
1

2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4a

p

4
−
iξ
2
−
iω
2
;
1

2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4a

p

4
þ iξ

2
−
iω
2
;1−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4a

p

2
; u

�
: ð3:19Þ

In view of the above expressions when 1þ 4a ¼ 0 we get a critical value for the GB coupling

λc ¼
ffiffiffi
3

8

r
≈ 0.61:

If λ is small enough, i.e. λ < λc, one should set C2 ¼ 0 to ensure finiteness at u → 0. The solution reduces to

ΨðuÞ ¼ C1u
1þ ffiffiffiffiffiffi

1þ4a
p
4 ð1 − uÞ−iω

2 × 2F1

�
1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4a

p

4
−
iξ
2
−
iω
2
;
1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4a

p

4
þ iξ

2
−
iω
2
; 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4a

p

2
; u

�
: ð3:20Þ

The expansion of the hypergeometric function around u ¼ 1 reads

2F1

�
1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4a

p

4
−
iξ
2
−
iω
2
;
1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4a

p

4
þ iξ

2
−
iω
2
; 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4a

p

2
; u

�

≃ K1

1

Γ
�
1
2
þ

ffiffiffiffiffiffiffiffi
1þ4a

p
4

− iξ
2
þ iω

2

	
Γ
�
1
2
þ

ffiffiffiffiffiffiffiffi
1þ4a

p
4

þ iξ
2
þ iω

2

	
Γð1 − iωÞ

þ K2

1

Γ
�
1
2
þ

ffiffiffiffiffiffiffiffi
1þ4a

p
4

− iξ
2
− iω

2

	
Γ
�
1
2
þ

ffiffiffiffiffiffiffiffi
1þ4a

p
4

þ iξ
2
− iω

2

	
Γð1þ iωÞ

ð1 − uÞþiω; ð3:21Þ

where K1 and K2 are constants, in the sense that they do
not involve u. Since we insist on having only terms of
the form ð1 − uÞ−iω

2 near u ¼ 1, it is obvious that the
second term, which involves ð1 − uÞþiω, should be dis-
carded; the only way to discard it is the divergence to
infinity of the Γ functions in the denominator, which
happens when

1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4a

p

4
þ iξ

2
−
iω
2

¼ −n;

⇒ ω ¼ �ξ − i

�
2nþ 2þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4a
p

2

�
: ð3:22Þ

The quantity n is a non-negative integer. Thus we have
determined (to zeroth approximation) the QNMs
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ωn ¼�ξ− i

�
2nþ2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9−24λ2

p

2

�
; n¼ 0;1;2;… ð3:23Þ

for small GB coupling λ, less than its critical value λc.
If λ grows enough, so that λ > λc, we work along similar

lines and we get

ωn ¼ �ξþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24λ2 − 9

p

2
− ið2nþ 1Þ: ð3:24Þ

Notice that the real part of the QNMs may be nonzero even
when ξ vanishes.

1. Analytical predictions for the QNMs

The above analysis holds strictly at rþ ¼ 1. Thus we
have a prediction for the results if rþ ¼ 1:

(i) For small λ we expect to find QNMs ω≡ ωR − iωI
with a constant ωR ¼ �ξ (the same for all of them)
and with ωI, with an interval 2 between successive
values.

(ii) For large λ we expect ωR ¼ �ξþ
ffiffiffiffiffiffiffiffiffiffiffi
24λ2−9

p
2

.
One may depict the above changes in Fig. 1, where the

quantities ωR and ωI are shown versus λ. It is evident that a
qualitative change happens at λ ¼ λc, since the slope
presents a discontinuity. It is reasonable to expect a phase
transition to happen at this value of λ. The real part ωR
vanishes for small λ, that is λ < λc, while it takes nonzero
values for large λ, even though ξ is set to zero. In addition, it
does not depend on the integer n. On the other hand, the
imaginary part ωI depends on the integer n.
In the numerical calculations of the QNMs one works

actually for values for rþ either slightly smaller or slightly
larger than 1. In [90] it was found that the real part for
rþ ≠ 1 is no more the same for all QNMs, as predicted
above, there is a slope, which is positive (negative) for
rþ < 1ðrþ > 1Þ. Thus the QNMs are infinite in number for
rþ > 1, while for rþ < 1 the QNMs approach the vertical

axis and eventually cease to exist. In addition, if ξ is small
enough, no propagating modes exist.
From Fig. 1 we can see that for λ < λc, the real part of the

QNMs is zero, while the imaginary part is negative. These
results indicate that for values of λ below its critical value
the TBH is stable under scalar perturbations, while above
that critical value of λwe have instability, indicating that we
have a phase transition of the TBH to a MTZ-like
black hole.
If we want to go to different (but close enough) values of

rþ, we may calculate corrections analytically, using per-
turbation theory. However, this is technically difficult, so
we postpone it for a future work. We expect that insta-
bilities may show up in a perturbative calculation for
rþ ≠ 1, when λ takes on sufficiently large values.
We have not been able to analytically investigate the

regime of very small ðrþ ≪ 1Þ or very large ðrþ ≫ 1Þ
black holes. However, the numerical results that we present
in later sections indicate that there are no QNMs for either
of these categories of black holes. Thus it is plausible that
only horizons around rþ ≈ 1 may be expected to
yield QNMs.

B. Scalar modes

To calculate the scalar modes we start with Eq. (3.14)
when the horizon equals 1,

−4u1=2ðu1=2ð1−uÞΨ0Þ0 þ
�
2− 6λ2

u
þ ξ2þ 1

4

�
Ψ¼ ω̂2

n

1−u
Ψ:

ð3:25Þ

We employ the transformation (3.16)

ΨðuÞ ¼ u
1þ

ffiffiffiffiffiffiffiffi
9−24λ2

p
4 ð1 − uÞ−iωn

2 XðuÞ; ð3:26Þ

and use the result (3.22)

FIG. 1. ωR (left) and ωI (right) versus λ for ξ ¼ 0 and n ¼ 0, 1 and 2. The value n ¼ 0 corresponds to the uppermost curve.
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ωn ¼ �ξ − i

�
2nþ 2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 24λ2

p

2

�
: ð3:27Þ

The resulting equation reads

2ð−1þ uÞuX00 þ ½2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 24λ2

p
þ uð−2þ 4nþ 2iξÞ�X0

þ 2nðnþ iξÞX ¼ 0: ð3:28Þ
Let us check the behavior of the quantity

ρ̂ ¼ Ψ�ðuÞΨðuÞ; ð3:29Þ
which contains the u dependence of the charge density

ρ ¼ e
2m

½ðΨe−iωtÞ�∂tðΨe−iωtÞ − ðΨe−iωtÞ∂tðΨe−iωtÞ��t¼0:

ð3:30Þ

For n ¼ 0 the equation simplifies to

2ð−1þ uÞuX00 þ ½2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 24λ2

p
þ uð−2þ 2iξÞ�X0 ¼ 0:

ð3:31Þ

The solution reads

X ¼ c1 þ c2u−
1
2

ffiffiffiffiffiffiffiffiffiffiffi
9−24λ2

p
2F1

�
−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 24λ2

p
;

−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 24λ2

p
− iξ;−

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 24λ2

p
; u

�
: ð3:32Þ

However, the factor u−
1
2

ffiffiffiffiffiffiffiffiffiffiffi
9−24λ2

p
does not behave properly in

the limit u → 0, if λ < λc, so, in this case, the result is a
constant function, that is, c2 must be set to zero. Thus the
solution for λ < λc takes the form

Ψ<ðuÞ ¼ c1u
1þ

ffiffiffiffiffiffiffiffi
9−24λ2

p
4 ð1 − uÞ−iω

2 ;

ω ¼ �ξ − i
2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 24λ2

p

2
: ð3:33Þ

Its solution for λ > λc is the linear combination

Ψ>ðuÞ ¼ u
1
4u

i
ffiffiffiffiffiffiffiffi
24λ2−9

p
4 ð1 − uÞ−iωn

2 ð3:34Þ

×

�
c1þ c2u−

i
2

ffiffiffiffiffiffiffiffiffiffiffi
24λ2−9

p
2F1

�
−
i
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24λ2 − 9

p
;

−
i
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24λ2− 9

p
− iξ;−

i
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24λ2− 9

p
;u

��
; ð3:35Þ

ωn ¼ �
�
ξþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24λ2 − 9

p

2

�
− ið2nþ 1Þ: ð3:36Þ

We set λ ¼ 0.5, which lies in the region of small λ values.
We may check by inspection that there is no dependence on
ξ in this region of λ (and in this approximation). Figure 2
displays the result.
In Fig. 3 one may observe the results for λ ¼ 2.0, that is

λ > λc, at ξ ¼ 0 and ξ ¼ 10. The most striking character-
istic is the qualitative difference between Figs. 2 and 3 (left
panel), which may lend support to the conjecture that
moving to large values of λmay result in a phase transition.

0.2 0.4 0.6 0.8 1.0
u

0.5

1.0

1.5

2.0

X 2

FIG. 2. X�ðuÞXðuÞ for the scalar field versus u for λ ¼ 0.5 and
ξ ¼ 0.

0.2 0.4 0.6 0.8 1.0
u

1

2

3

4

X 2

0.2 0.4 0.6 0.8 1.0
u

1

2

3

4

X 2

FIG. 3. X�ðuÞXðuÞ for the scalar field versus u for λ ¼ 2.0 and either ξ ¼ 0 (left) or ξ ¼ 10 (right).
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When one uses ξ ¼ 10, quantitative differences are evident,
in contrast to the previous case, but these differences do not
qualify for a qualitative change.

IV. SCALAR PERTURBATIONS

In this section we will consider scalar perturbation in
ESTGB gravity theories in the case where the background
metric is the TBH. In the case of a trivial scalar field, the
equation which describes massive scalar perturbations in
this spacetime background reads

�
□ð0Þ −

m2

2
þ 1

4
λ2R2

GBð0Þ

�
δϕ ¼ 0; ð4:1Þ

where□ð0Þ andR2
GBð0Þ are the D’Alembert operator and the

Gauss-Bonnet invariant for the topological geometry. So

R2
GBð0Þ ¼

4ððgðrÞ þ 1Þg00ðrÞ þ g0ðrÞ2Þ
r2

¼ 24

L4
þ 12M2

r6
: ð4:2Þ

This small perturbation has the same symmetries of the
TBH, namely static and spherical symmetry. So the
variables can be decomposed by the standard way

δϕ ¼ uðrÞe−iωtYξmðθ;φÞ: ð4:3Þ

Note that the spherical harmonics Yξmðθ;φÞ obey the
equation

1

sinh θ
∂θðsinh θ∂θYξmðθ;φÞÞ þ

1

sinh2θ
∂2
ϕYξmðθ;φÞ

¼ −
�
ξ2 þ 1

4

�
Yξmðθ;φÞ: ð4:4Þ

After substituting in Eq. (4.1) and introducing the
tortoise coordinate dr� ¼ 1

gðrÞ dr, we obtain the following

Schrödinger-like equation:

u00ðr�Þ þ ðω2 − UðrÞÞuðr�Þ ¼ 0; ð4:5Þ

where the effective potential UðrÞ reads

UðrÞ ¼ gðrÞ
�
1

2
m2 þ 1

r
g0ðrÞ − λ2

4
R2

GBð0Þ þ
ξ2 þ 1

4

r2

�
; ð4:6Þ

and using (4.2) we have

UðrÞ ¼
�
−1 −

M
r
þ r2

L2

��
1

2
m2 þ 1

r

�
M
r2

þ 2r
L2

�

−
λ2

4

�
24

L4
þ 12M2

r6

�
þ ξ2 þ 1

4

r2

�
: ð4:7Þ

In the case of a nontrivial scalar field (2.12) the wave
equation reads

−
1ffiffiffiffiffiffi−gp ∂μ½

ffiffiffiffiffiffi
−g

p
gμν∂νΨ� þ

dU
dΨ

¼ 0: ð4:8Þ

In the TBH background we have

1ffiffiffiffiffiffi−gp ∂μ½
ffiffiffiffiffiffi
−g

p
gμν∂νΨ� ¼ −

1

gðrÞ ∂ttΨþ 1

r2
∂r½r2gðrÞ∂rΨ�

þ 1

r2
1

sinh θ
∂θ½sinh θ∂θΨ�

þ 1

r2sinh2θ
∂2
ϕΨ:

On the other hand, for the spherical harmonicsYðkÞ
q we have

1

sinhθ
∂θ½sinhθ∂θY

ðkÞ
q � þ 1

sinh2θ
∂2
ϕY

ðkÞ
q ¼ −

�
ξ2 þ 1

4

�
YðkÞ

q ;

ð4:9Þ

while the potential reads

U ¼ 1

2
m2Ψ2 −

λ2

2
fðΨÞR2

GB; ð4:10Þ

where

R2
GB ¼ R2 − 4RμνRμν þ RμναβRμναβ

→
4

r2
½g02ðrÞ þ ðgðrÞ þ 1Þg00ðrÞ�; ð4:11Þ

so that, replacing Ψðt; r; θ;ϕÞ ¼ Φðt; rÞYðkÞ
q ðθ;ϕÞ, one

ends up with an equation for a field depending just on t
and r,

1

gðrÞ ∂ttΦðt; rÞ − 1

r2
∂r½r2gðrÞ∂rΦðt; rÞ� þ ξ2 þ 1

4

r2
Φ

þm2Φðt; rÞ − λ2R2
GB

dF
dΦ

¼ 0: ð4:12Þ

If we fix the scalar function to F ¼ 1
2
Φ2, the scalar field

equation becomes

1

gðrÞ ∂ttΦðt; rÞ − 1

r2
∂r½r2gðrÞ∂rΦðt; rÞ� þ ξ2 þ 1

4

r2
Φ

þm2Φðt; rÞ − λ2R2
GBΦ ¼ 0: ð4:13Þ

In this scalar field equation there is a direct coupling of
the scalar field to the GB term and also an extra parameter ξ
appears because of the hyperbolic geometry.
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Changing the variables to

Φðt; rÞ ¼ χðt; rÞ
r

⇒ r2∂rΦ ¼ rχ0 − χ ⇒ ∂rðr2∂rΦÞ ¼ rχ00;

ð4:14Þ

the scalar equation becomes

∂ttχ − gðrÞ d
dr

�
gðrÞ d

dr
χ

�
þ gðrÞ

r
dfðrÞ
dr

χ þ gðrÞ ξ
2 þ 1

4

r2
χ

þm2gðrÞχ − λ2gðrÞR2
GBχ ¼ 0: ð4:15Þ

Introducing tortoise coordinates

dr� ¼
dr
gðrÞ ⇔ gðrÞ d

dr
¼ d

dr�
; ð4:16Þ

the equation takes the form

∂ttχ −
d2

dr2�
χ þ gðrÞ

�
1

r
dgðrÞ
dr

þ ξ2 þ 1
4

r2
þm2 − λ2R2

GB

�
χ ¼ 0:

ð4:17Þ

The time dependence of χ is e−iωt and the above equation
takes the Schrödinger-like form

−
d2

dr2�
χ þ gðrÞVðrÞχ ¼ ω2χ; ð4:18Þ

where the potential is given by

VðrÞ≡ 1

r
dgðrÞ
dr

þ ξ2 þ 1
4

r2
þm2 − λ2R2

GB: ð4:19Þ

For the TBH the potential becomes

VðrÞ ¼ 2

L2
þ 2M

r3
þ ξ2 þ 1

4

r2
þm2 − λ2R2

GB: ð4:20Þ

Setting

χ ¼ ψωe−iωr� ;

the scalar field equation becomes

gðrÞ d
2ψω

dr2
þ
�
dgðrÞ
dr

− 2iω

�
dψω

dr
¼ VðrÞψω; ð4:21Þ

where VðrÞ is given by (4.20). To investigate the properties
of the scalar field, it is useful to change variables from r to
x ¼ 1

r. We also define hðxÞ ¼ gð1xÞ. Then Eq. (4.21) is
transformed into

hðxÞ
�
x4
d2ψω

dx2
þ2x3

dψω

dx

�
þ
�
−x2

dhðxÞ
dx

−2iω

��
−x2

dψω

dx

�

¼VðxÞψω; hðxÞ¼ 1

L2x2
−2Mx−1; ð4:22Þ

where

VðxÞ ¼ 2

L2
þ 2Mx3 þ

�
ξ2 þ 1

4

�
x2 þm2

− 24λ2
�
1

L4
þ 2M2x6

�
: ð4:23Þ

The horizon variable xþ is determined through

hðxþÞ ¼ 0⇒
1

L2x2þ
− 2Mxþ − 1¼ 0⇒ 2M ¼ 1

L2x3þ
−

1

xþ
:

ð4:24Þ

This means that

hðxÞ¼ 1

L2x2
−
�

1

L2x3þ
−

1

xþ

�
x−1⇒

dhðxÞ
dx

¼−
2

L2x3
þ 1

xþ
;

ð4:25Þ

so that the metric function and the potential take the form

hðxÞ ¼ ðx − xþÞ
L2x2x2þ − x2 − x2þ − xxþ

L2x3þx2
;

and

VðxÞ ¼ 2

L2
þ 2Mx3 þ

�
ξ2 þ 1

4

�
x2 þm2

− 24λ2
�
1

L4
þ ð1 − x2þÞ2

2x6þ
x6
�
: ð4:26Þ

The introduction of the horizon radius in the scalar field
equation will be helpful to study the behavior of the scalar
field near and far away from the horizon of the black hole.
Equation (4.22) transforms into

x4hðxÞ d
2ψω

dx2
þ
�
2x3hðxÞ þ x4

dhðxÞ
dx

þ 2iωx2
�
dψω

dx

¼ VðxÞψω; ð4:27Þ

x4hðxÞ
x− xþ

d2ψω

dx2
þ 1

x− xþ

�
2x3hðxÞ þ x4

dhðxÞ
dx

þ 2iωx2
�
dψω

dx

¼ ðx− xþÞVðxÞ
ðx− xþÞ2

ψω: ð4:28Þ

STELLA KIORPELIDI et al. PHYS. REV. D 105, 104039 (2022)

104039-10



We define

sðxÞ ¼ x4hðxÞ
x − xþ

; tðxÞ ¼ 2x3hðxÞ þ x4
dhðxÞ
dx

þ 2iωx2;

uðxÞ ¼ ðx − xþÞVðxÞ;

so that Eq. (4.28) may be written in the form

sðxÞ d
2ψω

dx2
þ tðxÞ
x − xþ

dψω

dx
¼ uðxÞ

ðx − xþÞ2
ψω: ð4:29Þ

We expand ψω about xþ

ψωðxÞ ¼
X
k

anðωÞðx − xþÞn; ð4:30Þ

as well as the functions sðxÞ, tðxÞ and uðxÞ, according to the
expressions

sðxÞ ¼
X
k

snðωÞðx− xþÞn; tðxÞ ¼
X
k

tnðωÞðx− xþÞn;

uðxÞ ¼
X
k

unðωÞðx− xþÞn: ð4:31Þ

Notice that sðxÞ is a polynomial, since hðxþÞ ¼ 0.
Using the scalar field equation we find a recurrence

formula of the form

anðωÞ ¼ −
1

Pn;0

Xn−1
m¼n−7

Pm;n−mamðωÞ;

Pm;n−m ¼ mðm − 1Þsn−m þmtn−m þ un−m: ð4:32Þ

For the consistency of our calculations we demand that the
wave function vanishes at infinity ðr → ∞; x ¼ 0Þ, which
yields the equation

ψωð0Þ ¼
X
k

anðωÞð−xþÞn ¼ 0: ð4:33Þ

One has to solve the scalar field equation for ω, which are
the quasinormal frequencies. We solve the scalar equation
numerically and we plot the points of the complex ω plane,
where ψωð0Þ vanishes. The method we use is to make a
contour plot for each of the real and imaginary parts of
ψωð0Þ, that is, find the points where each of the above
vanishes. The points that we are looking for are exactly the
points of intersection of the various curves. We have used
between 500 and 1000 terms in the above sums, the
criterion being the stabilization of the results.

A. QNMs for λ = 0.5 and ξ = 0

As we saw in the analytic calculation, the system
becomes unstable for large values of λ, larger than about
0.61. At first we will consider values safely below
this value.
We will consider λ to take the value 0.5, where we do not

expect instabilities. As can be seen in Fig. 4, left panel, the
intersections of the curves for rþ ¼ 1.10 lie in the negative
ωI half-plane, the line connecting them has a negative slope
and the consecutive imaginary parts differ by 2i. As one
considers larger black holes, that is, larger rþ, the QNMs
move toward less negative values: a relevant result is shown
in Fig. 4, right panel, where rþ ¼ 0.95 and rþ ¼ 1.60; in
addition, the differences between consecutive QNMs
increase in magnitude, that is, the QNMs appear more
sparse. At some value of rþ the intersections disappear
completely, a fact indicating that no QNMs exist for large
black holes.
In Fig. 5, λ is set to the relatively large value λ ¼ 1.5, ξ is

set to 0 and rþ takes on the values 1.10 and 2.00. For
rþ ¼ 1.10 (left panel), apart from the QNMs with ωI < 0,
there exist several QNMs with ωI > 0, signaling instability.
It is conceivable that this instability means that the metric

0

FIG. 4. λ ¼ 0.5, ξ ¼ 0, rþ ¼ 1.10, rþ ¼ 1.60.
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used is no longer operational and scalarization should be
considered. We note that the QNMs with ωI > 0 have a
positive slope. The number of QNMs with ωI > 0
decreases as rþ increases, until at rþ ¼ 2.00 (right panel)
they disappear completely. If we keep increasing rþ, even
the QNMs with ωI < 0 disappear; this indicates once more
that no QNMs exist for large black holes.

B. QNMs for ξ = 0, r+ = 1.10 and large λ

Figure 6 refers to the dependence of the QNMs on λ,
when ξ ¼ 0 and rþ ¼ 1.10. For λ ¼ 1.50 (left panel, which
is just a reproduction of Fig. 5 above), QNMs exist with
negative ωI . In addition QNMs with positive values of ωI
appear, whose existence gets more pronounced as λ
increases. For λ ¼ 3.0, the QNMs with negative ωI dis-
appear. This picture persists for even larger values of λ. This
is consistent with the remark made earlier that the expres-
sion

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 24λ2

p
, appearing in the analytical treatment,

suggests that, for large values of λ, instabilities are expected
to set in.

C. QNMs for r+ = 1.10 and various values of ξ

Figure 7 contains the QNMs when λ ¼ 0.5 is small,
rþ ¼ 1.10 and ξ is set either to 0.0 or to 5.0. The left panel
is the same as the left panel of Fig. 4. The influence of the
value of ξ is apparent: the real parts of the QNMs move
toward bigger positive values.
On the other hand, the influence of ξ is somewhat

different when λ ¼ 1.5, that is when it takes a moderately
large value. The situation for ξ ¼ 0 is depicted in Fig. 5, left
panel. In Fig. 8, left panel, one may see the modifications
brought about by the increasing values for ξ: when ξ ¼ 5.0,
a modest value, the QNMs with negative ωI are not
modified very much; on the contrary the QNMs with
positive ωI are influenced. The nature of this change
becomes clear for the value ξ ¼ 30.0, shown in Fig. 8,

FIG. 6. ξ ¼ 0.0, rþ ¼ 1.10, and λ ¼ 1.5 (left), λ ¼ 3.0 (right).

FIG. 5. λ ¼ 1.5, ξ ¼ 0.0, and rþ ¼ 1.10, 2.00.
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right panel: the QNMs with positive ωI disappear com-
pletely, while the QNMs with negative ωI move to less
negative values. Once more, the real part of the QNMs
moves to values of the order of ξ. Thus the unstable system
depicted in Fig. 5, left panel, is transformed through the
situation in Fig. 8, left panel, to the stable system shown in
Fig. 8, right panel. Thus increasing the ξ value counter-
balances the instability. In general, it seems that the
parameters λ and ξ act competitively. Looking at this
behavior another way, we find out that there is a critical
value of ξ for each value of λ, such that below it the system
is unstable.

V. CONCLUSIONS

In this work we studied the stability of a topological
black hole in the presence of the coupling of a scalar
field to the GB term in the ESTGB gravity theories and
we investigated the possibility of its scalarization to

a MTZ-like black hole. We considered a gravity theory
in the presence of a cosmological constant and a massive
scalar field minimally coupled to gravity and also coupled
to the GB term. We first considered possible tachyonic
instabilities of these theories. Considering a general metric
ansatz, we calculated the Klein-Gordon equation. Fixing
the background metric to be the TBH we calculated the
effective mass of the scalar field. A negative effective mass
of the scalar field signals possible instabilities of the
considered theory. To study the stability/instability of this
theory we followed two approaches. We first calculated
analytically the QNMs which can give us very important
information on a stability of a theory. Then to verify our
results we calculated also analytically the QNMs.
To study the QNM spectrum we performed scalar

perturbations of a massive scalar field coupled to the
GB term in the background of a topological-AdS black
hole living in a hyperbolic spacetime expressed by the
parameter ξ. The coupling of the scalar field to the GB term

FIG. 7. λ ¼ 0.50, rþ ¼ 1.10, and ξ ¼ 0.0 (left), ξ ¼ 5.0 (right).

FIG. 8. λ ¼ 1.50, rþ ¼ 1.10, and ξ ¼ 5.0 (left), ξ ¼ 30.0 (right).
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is denoted by the parameter λ. For a fixed cosmological
constant we have two competing effects. The first one is
that, as λ is increasing, we expect the matter to interact more
strongly with gravity, while as ξ is getting larger, the effects
of the variations of the wave functions are dominant. Our
goal was to see what are the effects of the increase of the
strength of the parameters λ and ξ and their possible
interplay on the stability of the topological black hole
and if there are indications of a phase transition to a new
scalarized black hole.
Calculating analytically the QNMs we found that for

small black holes (we had fixed the horizon radius to
rþ ¼ 1) we found a critical value of λc below which the
topological black hole is stable under scalar perturbations.
This can be seen in Fig. 1 where, for λ < λc, the real part of
the QNMs is zero, while the imaginary part is negative.
These results indicate that for values of λ below its critical
value the topological black hole is stable under scalar
perturbations. However, when the coupling constant λ is
getting larger than its critical value, all of the QNMs
develop a positive imaginary part signaling an instability of
the background black hole. Calculating the scalar modes of
the perturbations, we found that for large ξ the variations
of the wave functions influences most effectively the
behavior of the QNMs.
Then we calculated the QNMs for large black holes in

the limit rþ → þ∞. Our analytical calculations showed
that in this limit only nonphysical QNMs exist. Thus we
concluded that only horizons around 1 may be expected to
yield physical QNMs. We calculated also the scalar modes
of the Klein-Gordon equation. As it was shown in Figs. 2
and 3 in the case of λ > λc, as λ is increasing there is
evidence of a phase transition, i.e. to a topological black
hole with scalar hair. Also when ξ is increasing this phase
transition becomes more evident.
Calculating the QNMs of scalar perturbations numeri-

cally we get similar results for the instability of the
background topological black hole. In a series of figures
we showed that increasing the ξ value, for fixed value of λ

above its critical value, counterbalances the instability. In
general, it seems that the parameters λ and ξ act competi-
tively. Looking at this behavior another way, we find out
that there is a critical value of ξ for each value of λ, such that
below it the system is unstable. This is a very interesting
result. It seems that the strength of the coupling of matter to
curvature is strongly influenced by the geometry of the
metric of the topological black hole and this leads to the
stability/instability of the topological black hole and its
scalarization.
To summarize our results, we found that there are critical

values of the parameter λ, which is the coupling of matter to
the GB term, and the parameter ξ which specifies the
geometry of the background metric, which controls the
instability of the topological black hole. Therefore we
expect that the interplay of these parameters will lead to the
scalarization of the topological black hole. To find the form
of the scalarized topological black hole we have to allow
the backreaction of the scalar field to the background
topological black hole. We leave this for future work.
It would also be interesting to extend this study to rotating

topological black holes. In [103] metrics with negative
cosmological constant and representing rotating, topologi-
cal black holeswere discussed. By analytical continuation of
the Kerr–de Sitter metric, a solution describing a rotating
black hole whose event horizon is a Riemann surface of
arbitrary genus was obtained. This solution has rotational
symmetry and the amount of rotation it has is bounded by
some power of the mass. More recently in [104] rotating
Kerr-type black hole solutions were generated by the
coupling of a pseudoscalar axion field coupled to topologi-
cal Chern-Simons term. This coupling introduces a param-
eter expressing the rotation which appears in the metric of
the black hole solution. In our case if our backgroundmetric
is a rotating topological black hole, then except for the λ and
ξ parameters another parameter will appear expressing the
rotation of the black hole. It would be interesting to see
the interplay of all these parameters on the stability of the
rotating topological black hole.
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[102] F. Sbisà, Eur. J. Phys. 36, 015009 (2015).
[103] D. Klemm, V. Moretti, and L. Vanzo, Phys. Rev. D 57,

6127 (1998).
[104] N. Chatzifotis, P. Dorlis, N. E. Mavromatos, and E.

Papantonopoulos, Phys. Rev. D 105, 084051 (2022).

STELLA KIORPELIDI et al. PHYS. REV. D 105, 104039 (2022)

104039-16

https://doi.org/10.1103/PhysRevD.103.084043
https://doi.org/10.1103/PhysRevD.103.084043
https://doi.org/10.1103/PhysRevD.102.064042
https://doi.org/10.1007/JHEP09(2020)186
https://doi.org/10.1103/PhysRevD.102.104038
https://doi.org/10.1103/PhysRevD.102.104038
https://arXiv.org/abs/2010.10312
https://doi.org/10.1103/PhysRevD.99.064003
https://doi.org/10.1103/PhysRevD.99.064003
https://doi.org/10.1016/j.physletb.2020.135269
https://doi.org/10.1016/j.physletb.2020.135269
https://doi.org/10.1103/PhysRevD.101.044026
https://doi.org/10.1103/PhysRevD.101.044026
https://doi.org/10.1103/PhysRevD.101.084059
https://doi.org/10.1103/PhysRevD.101.084059
https://doi.org/10.1103/PhysRevD.102.024034
https://doi.org/10.1103/PhysRevD.101.124016
https://doi.org/10.1103/PhysRevD.102.084029
https://doi.org/10.1103/PhysRevD.102.084029
https://doi.org/10.1103/PhysRevD.104.064017
https://doi.org/10.1140/epjc/s10052-021-09630-7
https://doi.org/10.1088/1126-6708/2006/10/006
https://doi.org/10.1088/1126-6708/2008/05/107
https://doi.org/10.1088/0264-9381/26/10/105004
https://doi.org/10.1103/PhysRevD.103.044042
https://doi.org/10.1103/PhysRevD.103.044042
https://doi.org/10.1103/PhysRevD.54.3840
https://doi.org/10.1103/PhysRevD.54.3840
https://doi.org/10.1016/0370-2693(95)00533-Q
https://doi.org/10.1088/0264-9381/14/5/007
https://doi.org/10.1016/S0550-3213(97)00833-X
https://doi.org/10.1103/PhysRevD.56.6475
https://doi.org/10.1103/PhysRevD.56.3600
https://doi.org/10.1103/PhysRevD.56.3600
https://doi.org/10.1088/0264-9381/16/4/009
https://doi.org/10.1103/PhysRevD.66.064024
https://doi.org/10.1103/PhysRevD.66.064024
https://doi.org/10.1103/PhysRevD.76.124039
https://doi.org/10.1103/PhysRevD.76.124039
https://doi.org/10.1103/PhysRevD.65.084006
https://doi.org/10.1103/PhysRevD.65.084006
https://doi.org/10.1103/PhysRevD.67.044014
https://doi.org/10.1103/PhysRevD.67.044014
https://doi.org/10.1103/PhysRevD.74.084026
https://doi.org/10.1103/PhysRevD.74.084026
https://doi.org/10.1088/0143-0807/36/1/015009
https://doi.org/10.1103/PhysRevD.57.6127
https://doi.org/10.1103/PhysRevD.57.6127
https://doi.org/10.1103/PhysRevD.105.084051

