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Primordial black holes (PBHs) in the mass range 1017–1023 gm are considered as possible dark matter
candidates as they are not subject to big-bang nucleosynthesis constraints and behave like cold dark matter.
If PBHs are indeed dark matter, they cannot be treated as isolated objects in asymptotic flat space-time.
Furthermore, when compared to stellar-mass black holes, the rate at which the Hawking particles radiate
out from PBHs is significantly faster. In this work, we obtain an exact time-dependent solution that models
evaporating black holes in the cosmological background. As a result, the solution considers all three aspects
of PBHs—mass-loss due to Hawking radiation, black hole surrounded by mass distribution, and
cosmological background. Furthermore, our model predicts that the decay of PBHs occurs faster for
larger masses; however, the decay rate reduces for lower mass. Finally, we discuss the implications of
theoretical constraints on PBHs as dark matter.
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I. INTRODUCTION

Black holes began as solely a mathematical concept.
However, they are currently at the heart of much of high-
energy astrophysics, gravitational-wave astronomy, and
dark matter research [1–5]. Naturally, black holes have
been studied extensively in both classical and quantum
frameworks [6–13]. However, the majority of these studies
have concentrated on isolated black holes with two essen-
tial properties: the presence of a timelike Killing vector and
asymptotic flatness [13–16].
The realistic black holes are embedded in an expanding

universe rather than an asymptotically flat (or de Sitter)
space-time and are surrounded by local mass distributions
rather than being in a vacuum [17]. Thus, while there are
uniqueness theorems for stationary black holes, there are no
uniqueness theorems for realistic black holes [18]. This is
especially pertinent for two physically important situations
—black holes evaporating via Hawking radiation and
primordial black holes (PBHs).
Hawking predicted that when quantum matter effects are

taken into account, a stationary black hole emits thermal
radiation with the Planckian power spectrum characteristic
of a perfect black-body at a fixed temperature. However, a
radiating black hole is nonstationary as it loses energy and
the horizon continuously shrinks. Attempts have been
made to model this process using a Vaidya-type metric

[19–28]. Metrics of this kind have the advantage of
allowing a study of the dynamical evolution of the
(apparent) horizons associated with a radiating black hole.
However, these models break down at late times because
the Hawking temperature increase with loss of mass. In
other words, the rate at which the energy is radiated from
the black hole also increases.
PBHs are hypothetical black holes that could have

formed in the early Universe before the big-bang nucleo-
synthesis [5,29–31]. Hence, PBHs are not subject to the
well-known big bang nucleosynthesis (BBN) constraint of
baryons and can be classified as nonbaryonic and behave
like any other form of cold dark matter [32]. Furthermore,
unlike stellar black holes formed from the collapse of a
massive star, PBHs could be produced in the mass range
1015–1030 gm. Interest in PBH as a dark matter over
particle dark matter candidates is because its existence
rests on known physics—general relativity and the pres-
ence of primordial fluctuations—and is independent of the
mechanism that generates them [5,34,35].
Current constraints suggest the PBHs in mass windows

1017–1023 gm are potential dark matter candidates [4,5]. As
mentioned earlier, compared to stellar-mass black holes, the
rate at which (Hawking) particles are radiated from PBHs is
substantially higher. These have potential observational
signatures in gravitational waves and electromagnetic
wavebands [36]. It is then imperative to have a model that
describes the evolution of PBHs in the cosmological
background and surrounded by mass distributions. To
our knowledge, no exact time-dependent solution has been
found in the literature.
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Sultana-Dyer obtained an exact spherically symmetric
black hole solution in expanding cosmological space-time
[37], sourced by noninteracting null dust and normal dust. In
this work, we obtain an exact dynamical black-hole space-
time in general relativity, which models the evaporation
process of such black-holes. We show that the dynamical
black-hole has two apparent horizons—cosmological and
dynamical (black hole) horizon. Furthermore, we show that
the decay rate of black holes in the cosmological background
is opposite compared to the black holes in asymptotically flat
space-time. Also, the decay of cosmological black holes is
faster compared to the Schwarzschild black hole. We discuss
the implications of the results for the PBH as dark matter
candidates.
We use a ðþ;−;−;−Þ signature for the 4-D space-time

metric. Greek alphabets denote the 4-D space-time coor-
dinates and lower case Latin for radial-temporal plane.
We set 8πG ¼ c ¼ 1. Prime denotes derivative with
respect to η.

II. MODEL AND EXACT SOLUTION

We consider the following action:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2
þ Lfluids

�
; ð1Þ

where Lfluids refers to the Lagrangian density of the non-
interacting perfect fluids [38,39]. We consider the follow-
ing general form to obtain an exact time-dependent
spherically symmetric black-hole space-time that models
black hole evaporation in cosmological space-time:

ds2 ¼ gαβdxαdxβ ¼ γijdxidxj − ρ2ðxiÞdΩ2; ð2Þ

where xi refers to the radial-temporal plane (i ¼ 1, 2), ρðxiÞ
is the areal radius of the spherical geometry, and dΩ2

represents the metric on the unit 2-sphere.
Like Sultana-Dyer [37], we will focus on modeling

evaporating black hole in the Einstein-de Sitter universe,
which is a flat, matter-only Universe:

ds2¼ a2ðηÞ½dη2−dr2− r2dΩ2�; where aðηÞ¼
�
η

η0

�
2

ð3Þ

η is the conformal time, and η0 is an arbitrary constant. To
model evaporating black-holes in cosmological space-time,
we consider the following time-dependent metric in
Schwarzschild coordinates ðt̄; r̄Þ:

ds2 ¼
�
1 −

2Mðt̄Þ
r̄

�
dt̄2 − a2ðt̄Þ

�
dr̄2

ð1 − 2Mðt̄Þ
r̄ Þ

þ r̄2dΩ2

�
ð4Þ

where Mðt̄Þ is an unknown function of time and aðt̄Þ is the
scale factor. Following Sultana and Dyer, applying the
following transformations [40]:

dt ¼ dt̄þ
�
2Mðt̄Þ

r̄

�
aðt̄Þdr̄
1 − 2Mðt̄Þ

r̄

; dr ¼ dr̄ ð5Þ

to the line element (4) and rescaling dt ¼ aðηÞdη, leads to
the following line element:

ds2 ¼ a2ðηÞ
��

1 −
2MðηÞ

r

�
dη2 −

4MðηÞ
r

dηdr

−
�
1þ 2MðηÞ

r

�
dr2 − r2dΩ2

�
: ð6Þ

By solving Einstein’s field equations under the following
physical conditions, we obtain the exact form of MðηÞ:
First, in the limit of MðηÞ ¼ M0 the time-dependent
solution should reduce to Sultana-Dyer black-hole solution
[37]. Hence, we assume aðηÞ corresponds to flat, matter-
only Universe as defined in (3). Second, since M0 is
positive, we demand that MðηÞ ≥ 0. Third, the matter
source (Lfluids) for the above line element is also a
combination of two noninteracting perfect fluids—null
dust and a massive dust [37,41]. However, unlike
Sultana-Dyer, the energy density of the fluids changes
with time. Lastly, the time-dependent matter sources do not
contribute to the stress-tensor along the axial ðTϕ

ϕÞ and
polar ðTθ

θÞ directions, i.e., Tθ
θ ¼ Tϕ

ϕ ¼ 0. This is con-
sistent with the findings of Candelas [42] who showed that
renormalized stress-tensor of the quantum field in the
Unruh vacuum vanishes along polar and axial.
Varying the action (1) with respect to the metric leads to

the following Einstein’s equation:

Gα
β ¼ Tα

β ¼ ðμD þ pÞuαuβ − pδαβ þ μNkαkβ ð7Þ

where p and μD are the pressure and density of the perfect
fluid and μN is the density of the null-fluid. uα and kα are
the four velocity and null vector, respectively. Imposing the
above conditions imply that p ¼ 0. Note that the four-
velocity of the dust is given by uα ¼ ðu0; u1; 0; 0Þ and for
the null fluid kα ¼ ðk0; k1; 0; 0Þ. The 4-velocity of the dust
and null-fluid satisfies the following normalization con-
ditions:

gαβuαuβ ¼ 1; gαβkαkβ ¼ 0 and gαβuαkβ ¼ 1: ð8Þ

Solving the Einstein’s equations (7), we obtain the
following two branches of exact solutions:
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dsI2 ¼
�
η

η0

�
4
��

1 −
2MIðηÞ

r

�
dη2 −

4MIðηÞ
r

dηdr −
�
1þ 2MIðηÞ

r

�
dr2 − r2dΩ2

�
where MIðηÞ ¼ m

�
η7decay
η7

− 1

�
ð9Þ

dsII2 ¼
�
η

η0

�
4
��

1−
2MIIðηÞ

r

�
dη2 −

4MIIðηÞ
r

dηdr−
�
1þ 2MIIðηÞ

r

�
dr2 − r2dΩ2

�
where MIIðηÞ ¼m

�
1−

η7decay
η7

�
ð10Þ

where ηdecay is a positive constant, which sets the decay rate
of the black hole. This is the first key result of this work
regarding which we want to the discuss the following
points: First, as mentioned above MðηÞ ≥ 0 implies that
η < ηdecay for branch I (9), and η > ηdecay for branch II (10).
Hence, branch I is physically relevant for PBH. Second, the
branch II solution (10) approaches Sultana-Dyer solution in
the limit η → ∞. In the case of branch I, η is bounded from
above by ηdecay. At η ¼ ηdecay, MIðηÞ → 0 and the metric
corresponds to an exact Einstein-de Sitter Universe. We
will discuss more in Sec. IV. Third, the above line elements
(9), (10) are explicitly time-dependent. A fundamental
feature of the time-dependent space-times, like (9), (10),
is the lack of any (asymptotically timelike) Killing vector
field. In Sec. III, we discuss the properties of branch I in
detail.
Fourth, we have evaluated various Ricci and Riemann

invariants, like Rα
βR

β
α − R2=2; RαβγδRαβγδ. All these quan-

tities have a singularity at r ¼ 0. Thus, both the branches
have space-time singularities. Fifth, since the two branches
are explicitly time-dependent, unlike event-horizon, it is
not possible to define the horizon in the space-times
globally [43]. Apparent horizons are defined quasilocally
and are independent of the global causal structure of space-
time. The apparent horizon is a codimension two spatial
surface (hence local in time) that contains sufficient
information regarding the possible formation of an event
horizon in the future. We will discuss in Sec. III.
Lastly, to physically understand the relation between

MðηÞ and the stress-tensor components (μD; μN), we rewrite
the Einstein’s equations in the following form:

G0
0 ¼ μDu0u0 þ μNk0k0 ð11Þ

G0
1 ¼ μDu0u1 þ μNk0k1 ð12Þ

G1
0 ¼ μDu1u0 þ μNk1k0 ð13Þ

G1
1 ¼ μDu1u1 þ μNk1k1; ð14Þ

We use the normalization conditions (8) of the 4-velocity of
the dust and null-fluid, and from these equations, we obtain
the following relations:

μD ¼ G0
0 þ G1

1; ð15Þ

μN ¼ ðG0
1G

1
0 −G0

0G
1
1Þ=μD: ð16Þ

Equation (15) leads to the energy density of the dust, while
Eq. (16) leads to a definite expression for the null-fluid. The
above expression is more simplified compared to Ref. [37].
For more details, see Appendix A.

III. GEOMETRICAL PROPERTIES AND
INVARIANT QUANTITIES

The line elements (9), (10) are explicitly time-dependent
and hence do not posses any asymptotically time-like
Killing vector to define a preferred time coordinate.
Thus, the definition of the surface gravity of the apparent
horizon is also ambiguous. However, Kodama proved the
existence of a divergence-free vector field for any time-
dependent spherically symmetric metric of the form (6)
[44,45]. Interestingly, one can use the Kodama vector to
obtain an invariant definition of the surface gravity of the
apparent horizon [46,47].
Another invariant quantity that is useful to locate the

apparent horizon is the Misner-Sharp-Hernandez energy
ðEMSHÞ [43,48,49]. For the general spherically symmetric
line element (2), Misner-Sharp-Hernandez energy satisfies
the scalar equation ρAH ¼ 2EðρAHÞ at the apparent horizon
(AH). Interestingly, Misner-Sharp-Hernandez energy is the
conserved Noether charge corresponding to the conserva-
tion of the Kodama current [49]. In the rest of this section,
we obtain the following invariant quantities that describe
the properties of the line element (9): Apparent horizon,
Misner-Sharp energy, Kodama vector, and the associated
current. Since these quantities are invariant, we obtain them
with respect to the conformal time (η). We also obtain the
conditions on the energy density. For branch II, see
Appendix B.

A. Apparent horizon

For the line element (2), we can define the following
scalar quantity [43,49,50]:

χðxÞ ¼ γijðxÞ∂iρ∂jρ: ð17Þ

The following conditions give the apparent horizon:

χðxÞjAH ¼ 0; ∂iχðxÞjAH ≠ 0: ð18Þ
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For the line element (9), χðη; rÞ is given by:

χðη;rÞ¼ðrH−1Þ
��

1−
2MIðηÞ

r

�
þ
�
1þ2MIðηÞ

r

�
rH

�
ð19Þ

where H ≡HðηÞ ¼ a0ðηÞ=aðηÞ ¼ 2=η. Using the condi-
tions (18), the horizons are at:

rC ¼ 1=H ð20Þ

rH ¼
�
MIðηÞ þ

1

2H

�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8HMIðηÞ

ð1þ 2HMIðηÞÞ2
s

− 1

�
: ð21Þ

Note that the apparent horizon (20) is due to cosmological
expansion [51] and is also present in the case of Sultana-
Dyer [37]. In the limit of MIðηÞ → M0, the apparent
horizon (21) corresponds to the particles closest to the
event horizon crossing the superluminal barrier (cf. Eq. (26)
in [37]). Thus, the above apparent horizon reduces to the
event-horizon for constant mass. At η → ηdecay, rH vanishes
indicating that the apparent horizon ceases to exist.
The dynamic surface gravity associated with the appar-

ent horizon of the line element (2) is given by [50]:

κAH ¼ 1

2
ffiffiffiffiffiffi−γp ∂ið ffiffiffiffiffiffi

−γ
p

γij∂jρÞj
AH

ð22Þ

Since it is a scalar quantity it is also an invariant quantity.
For the line element (9) and apparent horizon (20), we have:

κC ¼ 1

2aðηÞ
�
H
2
− 3MIðηÞH2

�
: ð23Þ

In the limit of η → ηdecay, MIðηÞ → 0, and the line element
(9) corresponds to that of a pure Einstein-de Sitter, i.e.,:

κC ¼ H
4aðηdecayÞ

:

For the line element (9) and apparent horizon (21), we have:

κH ¼ −
1

aðηÞ
�
1

rH

�
MIðηÞ
rH

þM0
IðηÞ

�
þH

�
MIðηÞ
rH

−M0
IðηÞ

�

−
a00ðηÞ
2aðηÞ ðrH þ 2MIðηÞÞ

�
: ð24Þ

As noted earlier, in the limit η → ηdecay, the line element
(9) becomes Einstein-de Sitter and rH vanishes. Hence, in this
limit κH is not defined. In the limit η → 0, κH is ill-defined as
the metric diverges. At the limit ηdecay → 0 we have:

κH ¼
�

1

aðηÞ
�

28m − ηþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16m2 − 24mηþ η2

p
½4m − ηþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16m2 − 24mηþ η2

p
�2
: ð25Þ

B. Misner-Sharp-Hernandez energy

In terms of χðxÞ and areal radius ρ, the Misner-Sharp-
Hernandez energy is [43]:

EMSHðxÞ ¼
ρðxÞ
2

ð1 − χðxÞÞ: ð26Þ

Substituting χ from Eq. (19), we have:

EMSHðr; ηÞ ¼
r
2
aðηÞ

�
1þ ð1 − rHÞ

��
1 −

2MIðηÞ
r

�

þ
�
1þ 2MIðηÞ

r

�
rH

��
: ð27Þ

The above expression provides some crucial features about
the physically realizable values η can take for the energy to
be non-negative. First, substituting H ¼ 2=η in the above
expression, we see that the Misner-Sharp-Hernandez energy
is positive-definite only if η − 2r > 0. In the case of
η − 2r < 0, the second term in the right hand side (rhs)
will be negative, and EMSHðr; ηÞ is not always positive
definite. Second, in the limit η → ηdecay, the Misner-Sharp-
Hernandez energy reduces to

EMSHðr; ηdecayÞ ¼ r

�
η0

ηdecay

�
2
�
1 − 2

r2

η2decay

�
: ð28Þ

Here again we notice that, EMSH is positive only if
ηdecay >

ffiffiffi
2

p
r. Third, in the limit of ηdecay → 0, the

Misner-Sharp-Hernandez energy (27) reduces to:

EMSHðr; ηÞ ¼
r
2
aðηÞ

�
2 − r2H2 −

2m
r

ðrH − 1Þ2
�
: ð29Þ

This again gives a condition on η for which energy is positive
definite.
To further investigate this, we now look at the energy

density of the dust given in Eq. (15). It is important to note
that while the Misner-Sharp-Hernandez energy is a scalar
quantity, the energy density of the dust is not scalar.
However, it provides crucial insights into the energy
conditions of the matter fields. Substituting Einstein tensor
in Eq. (15), we have:

μD ¼ H2

a2ðηÞ ½σ̃Dðr; ηÞ þ σ̃Nðr; ηÞðη − rÞ� ð30Þ

where

σ̃Dðr;ηÞ¼ 3−
7mη7decay

rη7
; σ̃Nðη;rÞ¼

m
r2

�
η7decay
η7

þ6

�
ð31Þ

represent the flow of energy along the radial direction and
the null direction, respectively. At η → ηdecay, whenMI → 0
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the flow of energy along the radial direction is constant while
the flow of energy along the null decays:

σ̃Dðr; ηdecayÞ → 3 −
7m
r

; σ̃NðηdecayÞ →
7m
r2

: ð32Þ

This implies the following: As the mass of the black hole
decreases, the massless radiated (Hawking) particles that
emit decrease. Since the metric asymptotes to Einstein-de
Sitter, the stress-tensor of the matter asymptotes to a constant
value. Rewriting Eq. (30), we have:

μD¼ 4η40
r2η6

�
3r2−

�
8η7decay
η7

þ6

�
mrþ

�
6þη7decay

η7

�
mη

�
: ð33Þ

The positivity of the energy condition implies

3r2 −
�
8η7decay
η7

þ 6

�
mrþ

�
6þ η7decay

η7

�
mη > 0: ð34Þ

Treating this as a quadratic equation in r, and using the fact
that the above condition corresponds to a parabola that does
not intersect the horizontal axis leads to the following
condition:

�
8η7decay
η7

þ 6

�2

− 12

�
6þ η7decay

η7

�
η

m
< 0: ð35Þ

It is interesting to note that the above condition is independent
of the value of r, implying that the condition is valid for all
values of r > rH. Thus, for example, in the limit, ηdecay ≫ η,
the condition (35) reduces to:

ð16mη7decay=3Þ1=8 < η < ηdecay: ð36Þ

In the limit of η → ηdecay, the condition (35) implies:

m < 3ηdecay=7: ð37Þ

This condition also implies at as ηdecay → 0, m → 0 for the
energy-density to be positive.

C. Kodama vector and current

For line element (2), the Kodama vector is [44,49,52]:

Ki ¼ ϵij∂iρðxÞ ð38Þ

where ϵij is the volume form associated with γij. Note that
the Kodama vector lies in the plane orthogonal to the sphere
of symmetry; hence, the Kodama vector along θ and ϕ is
zero [44]. For the line element (9), the Kodama vector is

K0ðxÞ ¼ 1

aðηÞ ; K1ðxÞ ¼ −
rH
aðηÞ : ð39Þ

From Eq. (27), it is easy to see that the above Kodama
vector satisfies the following relation:

K2 ¼ 2EMSH

ρ
− 1: ð40Þ

Since the Kodama vector is conserved (∇iKi ¼ 0), we can
construct an associated current

Ji ¼ Gi
jK

j; ð41Þ

that is also conserved. For the line element (9), the
associated current is

J0 ¼ H2

a3ðηÞ
�
3þ 4MIðηÞ

r2

�
r −

1

H

��
ð42Þ

J1 ¼ 2½rH − 1�
a3ðηÞr2 ½HMIðηÞ −M0

IðηÞðrH − 1Þ�: ð43Þ

To obtain the conserved charges, we need to fix the 3-space
at a fixed time η.

IV. COMPARISON WITH SCHWARZSCHILD

As mentioned in the Introduction, the original derivation
of Hawking assumed that the space-time is static or sta-
tionary. This assumption is valid only when the radiated
energy is negligibly small compared with the mass-energy
of the black hole. However, when the radiation becomes
sufficiently large, backreaction effects will modify via the
semiclassical Einstein equation [53]. However, this is highly
nontrivial for the four-dimensional space-time [42]. As
shown by Page [54], if we only include massless fields,
the Schwarzschild black-hole mass (MS) decays as:

dMSðtÞ
dt

¼ −
1

3

1

tdecayM2
S
→ MSðτÞ ¼ ð1 − τÞ1=3 ð44Þ

where τ≡ t=tdecay and MS is the (dimensionless) rescaled
mass. Attempts are made to model the decay using Vaidya-
type metric [19–28]. However, all these analyses are
restricted to asymptotically flat space-times in a nonexpand-
ing space-time.
Equation (30) implies that the space-time asymptotes to

Einstein-de Sitter, the stress-tensor of the matter asymptotes
to a constant value while the flow of null particles decays.
Thus, the line element (9) models an evaporating black-
hole in an expanding FRW background with a matter
surrounding it. Thus, the mass of the black-hole in the line
element (9) decays as:

MDðτÞ ¼ ½τ−7=3 − 1� ð45Þ
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where we have relation between the conformal time (η) and
cosmic time (t), i.e., t ¼ η3=ð3η20Þ andMD ¼ MI=m. From
the above expression, we obtain the following decay rate
for the black-hole in cosmological space-times:

dMDðτÞ
dτ

¼ −
7

3
ðMD þ 1Þ10=7: ð46Þ

This is another key result of this work regarding which we
want to discuss the following points: First, comparing
Eqs. (44) and (46), in the case of Schwarzschild black
holes, we see that the decay rate of smaller black-holes is
larger compared to solar mass black holes. However, in
the case of black holes in cosmological background, it is
the opposite; the decay of larger black holes is faster. The
same can be seen in the left panel of Fig. 1. Second,
comparing Eqs. (44) and (45), we see that the decay of a
cosmological black hole is faster compared to the
Schwarzschild black hole at the initial phase. However,
when the mass is smaller, the Schwarzschild black hole
decays faster. See the right panel of Fig. 1. Third, since
the decay for the smaller black hole is slow in the
cosmological background, it is possible to study the
end stages of black hole evaporation in a controlled
manner.
These two results have potentially important implica-

tions for the primordial black holes as a dark matter
candidate. Irrespective of the PBH mass, our model
suggests that decay of the primordial black holes occurs
faster; however, for lower masses, the decay rate falls. More
importantly, it has been argued that the primordial black
holes less than 1015 gm must have evaporated by now
[5,34,35]. These analyses assume the evolution of an
isolated, asymptotically flat space-time. However, this
assumption may not be valid for realistic black holes in
cosmological space-time and must be reconsidered. In

other words, it is not possible to completely rule out
primordial black holes less than 1015 gm.

V. DISCUSSIONS AND CONCLUSIONS

This work obtains an exact time-dependent black hole
solution that models evaporating black holes in the cos-
mological background. Thus, the solution considers all
three aspects of PBHs—Hawking radiation, black hole
surrounded by mass distribution, and cosmological back-
ground. We have shown that as the mass of the black hole
decreases, the massless radiated (Hawking) particles that
emit decrease. Since the metric asymptotes to Einstein-de
Sitter, the stress-tensor of the matter asymptotes to a
constant value. Our model predicts that decay of the
PBHs occurs faster; however, as the mass is reduced, the
decay rate reduces. We have also discussed the implications
of our work regarding the theoretical constraints on
primordial dark matter.
The above result brings attention to the following

interesting questions:
(1) To exactly quantify the spectrum of Hawking

radiation, we need to extend the analysis for the
dynamical horizon. This has been discussed in the
literature [52], however, in our case, we do not have
well-defined asymptotic vacuum states.

(2) Since the decay rate is slow for smaller black holes,
it is possible to study the end stages of black hole
evaporation in a controlled manner than in the case
of asymptotically flat space-times. This is currently
under investigation.

(3) The analysis rests on spherical symmetry. We need
to extend the analysis to axially symmetric space-
time. This is currently under investigation.

(4) The constraints on PBHs as dark matter candidates
are based on the black-holes in asymptotically flat
space-time. Thus, the constraints need to be reworked

FIG. 1. Left: plot of rate of change of mass with time versus M. Right: plot of M as a function of τ for Schwarzschild for
Schwarzschild (44) and cosmological black hole (46).
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based on the exact model proposed here with two
arbitrary parameters m and tdecay.
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APPENDIX A: OBTAINING μN AND μD

In this Appendix, we show that the solutions (9), (10) are
indeed unique solutions to Einstein’s field equations with
time-dependent matter consisting of null and massive dust.
For the line element (6), we have:

Gθ
θ ¼ Gϕ

ϕ ¼ η40½M̈ðηÞηþ 8 _MðηÞ�
η5r

: ðA1Þ

Demanding that the fluids are null and massive dust leads to
the condition Gθ

θ ¼ Gϕ
ϕ ¼ 0:

η40½M̈ðηÞηþ 8 _MðηÞ�
η5r

¼ 0: ðA2Þ

Thus, we have:

MðηÞ ¼ C1 þ
C2

η7
; ðA3Þ

where C1 ¼ �m and C2 ¼∓ mη7decay are constants. The
positive sign in C1 corresponds to branch I (9) and negative
sign in C1 corresponds to branch II (10).
The energy-momentum tensor components for the two

branches are

Ta
bðIÞ ¼

2
666664

4η4
0
ð−σNr−2MIðηÞηþ3r2Þ

r2η6
2η4

0
ð2MIðηÞ−rð3−σDÞÞ

r2η5
0 0

− 2η4
0
ð12rMIðηÞ−rηð3−σDÞþ2MIðηÞηÞ

r2η6 − 4η4
0
ð4MIðηÞηþrð3−σDÞ½r−η�Þ

r2η6 0 0

0 0 0 0

0 0 0 0

3
777775 ðA4Þ

Ta
bðIIÞ ¼

2
666664

4η4
0
ðσ̃Nr−2MIIðηÞtþ3r2Þ

r2t6
2η4

0
ððσ̃D−3Þrþ2MIIðηÞÞ

r2η5
0 0

− 2η4
0
ð12MIIðηÞrþðσ̃D−3Þrηþ2MIIðηÞηÞ

r2η6
− 4η4

0
ð4MIIðηÞη−rðσ̃D−3Þðr−ηÞÞ

r2η6
0 0

0 0 0 0

0 0 0 0

3
777775 ðA5Þ

where

σD ¼ 3 −
7mη7decay

rη7
ðA6Þ

σN ¼ m

�
η7decay
η7

þ 6

�
ðA7Þ

σ̃D ¼ 3þ 7mη7decay
η7r

ðA8Þ

σ̃N ¼ m

�
6þ ηdecay7

η7

�
: ðA9Þ

Equations (11), (12), (13), and (14) can be written in the
following matrix form:

2
666664
G1

0 −G0
0 0 −μN

0 −μD G1
0 G1

1

−G1
1 G0

1 −μN 0

−μD 0 G0
0 G0

1

3
777775

2
666664
u0

u1

k0

k1

3
777775 ¼

2
666664
0

0

0

0

3
777775: ðA10Þ

Using the Gauss elimination method, the above matrix can
be written as
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2
66666664

G1
0 −G0

0 0 −μN
0 −μD G1

0 G1
1

0 0
ðG1

0
G0

1
−G0

0
G1

1
−μDμNÞ

μD

G1
1
ðG1

0
G0

1
−G0

0
G1

1
−μDμNÞ

μDG1
0

0 0 0
ðG1

0
G0

1
−G0

0
G1

1
−μDμNÞ

G1
0

3
77777775

2
66666664

u0

u1

k0

k1

3
77777775
¼

2
66666664

0

0

0

0

3
77777775
: ðA11Þ

We obtain nontrivial solutions for the massive dust
ðu0; u1Þ and the null dust ðk0; k1Þ, using the following
three steps:

(I) To obtain μN and μD. One possible choice is to set

G1
0G

0
1 −G0

0G
1
1 ¼ μDμN: ðA12Þ

The above condition leads to the fact that k1 is
arbitrary and nonvanishing. Using Eq. (15) which
gives μD, we can determine μN from the above
expression. Note that the above conditions are also
satisfied for the Sultana-Dyer metric [37].
The third row of the matrix (A11) is

�
G1

0G
0
1 −G1

1G
0
0 −μDμN

μD

��
k0þG1

1

G1
0

k1
�
¼ 0: ðA13Þ

In order for k1 to be unique (apart from the normal-
izing condition gabkakb ¼ 0), k0 and k1 must satisfy
the following condition:

�
k0 þG1

1

G1
0

k1
�

≠ 0: ðA14Þ

In the case of the Sultana-Dyer metric, since k1 ¼ −k0
and G1

1 ≠ G1
0, the above condition is automatically

satisfied for Sultana-Dyer metric. In this step, we have
obtained explicit expressions for μN and μD and
condition on k0 and k1.

(II) To obtain explicit relations for ðu0; u1Þ in-terms of
ðk0; k1Þ. To go about this, we consider the first and
second rows of Eq. (A10):

G1
0u

0 −G0
0u

1 ¼ μNk1 ðA15Þ

G1
0k

0 þ G1
1k

1 ¼ μDu1: ðA16Þ

Rewriting these expressions, we have:

G1
0u

0 −
G0

0

μD
μDu1 ¼ μNk1 ðA17Þ

⇒ G1
0u

0 −
G0

0

μD
ðG1

0k
0 þG1

1k
1Þ ¼ μNk1 ðA18Þ

using the relation μNμD ¼ G1
0G

0
1 −G0

0G
1
1, we get:

u1 ¼ G1
0

μD
k0 þG1

1

μD
k1 ðA19Þ

u0 ¼ G0
1

μD
k1 þG0

0

μD
k0 ðA20Þ

(III) To obtain explicit expressions for k0 and k1. To do
that, we use the normalization conditions for the
4-velocity vectors ðuμ; kλÞ.

(1) Using the condition gλσkλuσ ¼ 1, we have:

ðg00G0
0þg01G1

0Þðk0Þ2þðg00G0
1þg01G1

1þg01G0
0

þg11G1
0Þk1k0þðg01G0

1þg11G0
0Þðk1Þ2¼μD ðA21Þ

(2) Using the normalization condition for gλνkλkν ¼ 0,
we get:

k1k0 ¼ −
g11
2g01

ðk1Þ2 − g00
2g01

ðk0Þ2: ðA22Þ

Substituting the above expression in Eq. (A21),
we get:

ðk0Þ2Pþ ðk1Þ2Q ¼ μD ðA23Þ

where

P¼ðg00G0
0þg01G1

0Þ
−

g00
2g01

ðg00G0
1þg01G1

1þg01G0
0þg11G1

0Þ ðA24Þ

Q¼ðg01G0
1þg11G1

1Þ
−

g11
2g01

ðg00G0
1þg01G1

1þg01G0
0þg11G1

0Þ: ðA25Þ

(3) Using the normalization condition gσρuσuρ ¼ 1,
we get:

XAVIER, SUNNY, and SHANKARANARAYANAN PHYS. REV. D 105, 104038 (2022)

104038-8



g00

�
G0

1

μD
k1 þ G0

0

μD
k0
�

2

þ 2g01

�
G0

1

μD
k1 þ G0

0

μD
k0
�

×

�
G1

0

μD
k0 þ G1

1

μD
k1
�
þ g11

�
G1

0

μD
k0 þG1

1

μD
k1
�

2

¼ 1

ðA26Þ

Substituting Eq. (A22) in the above expression,
we have:

ðk0Þ2Rþ ðk1Þ2S ¼ μ2D ðA27Þ

where

S ¼ ½g00ðG0
1Þ2 þ 2g01G0

1G
1
1 þ g11ðG1

1Þ2�
−

g11
2g01

ð2g00G0
0G

0
1 þ 2g01ðG1

0G
0
1 þG0

0G
1
1Þ

þ 2g11G1
0G

1
1Þ ðA28Þ

R ¼ ½g00ðG0
0Þ2 þ 2g01G1

0G
0
0 þ g11ðG1

0Þ2�
−

g00
2g01

ð2g00G0
0G

0
1 þ 2g01ðG1

0G
0
1 þ G0

0G
1
1Þ

þ 2g11G1
0G

1
1Þ: ðA29Þ

We thus have two equations (A23), (A27) in two unknown
variables k0 and k1, i.e.,

ðk0Þ2Pþ ðk1Þ2Q ¼ μD ðA30Þ

ðk0Þ2Rþ ðk1Þ2S ¼ μ2D: ðA31Þ

From these we have:

ðk0Þ2ðPS −QRÞ ¼ μDðS − μDQÞ

k0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μDðS − μDQÞ
ðPS −QRÞ

s
ðA32Þ

ðk1Þ2ðQR − SPÞ ¼ μDðR − μDPÞ

k1 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μDðR − μDPÞ
ðQR − SPÞ

s
: ðA33Þ

Since we now know k0 and k1, we can obtain u0 and u1

from Eqs. (A19) and (A20). Note that if we choose k0 to be
positive, k1 can be negative satisfying the condition (A12).
For the metric

ds2 ¼
�
η

η0

�
4
��

1 −
2MðηÞ

r

�
dη2 −

4MðηÞ
r

dηdr

−
�
1þ 2MðηÞ

r

�
dr2 − r2dΩ2

�
; ðA34Þ

P, Q, R and S are given by:

P ¼ η2 _MðηÞ þ 2ð6rþ ηÞMðηÞ
rη2MðηÞ ðA35Þ

Q ¼ −
η _MðηÞ þ 2MðηÞ

rηMðηÞ ðA36Þ

S ¼ −
�
η40½ _MðηÞηþ 2MðηÞ�

η7r3MðηÞ
�

× ð24MðηÞðr − ηÞ þ 12r2 þ 4η _MðηÞð2r − ηÞÞ ðA37Þ

R ¼
�
η40½ _MðηÞη2 þ 2MðηÞð6rþ ηÞ�

η8r3MðηÞ
�

× ð24MðηÞðr − ηÞ þ 12r2 þ 4η _MðηÞð2r − ηÞÞ ðA38Þ

MðηÞ ¼ MI=IIðηÞ and _MðηÞ ¼ dMðηÞ
dη .

APPENDIX B: PROPERTIES OF LINE
ELEMENT (10)

In this Appendix, we list the key properties of the line
element (10).
(1) Apparent horizons Like line element (9), the line

element (10) has two dynamical trapping horizons:

rC2¼
η

2

rH2¼−MIIðηÞ−
η

4
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16MIIðηÞ2þ24MIIðηÞηþη2

p
4

ðB1Þ

(2) Misner-Sharp-Hernandez energy is given by:

EIIðr;ηÞ¼
�
r
2

��
η

η0

�
2
�
1−

�
1

η2

�
ð4r2

�
1þ2MIIðηÞ

r

�

−8ηMIIðηÞ−η2
�
1−

2MIIðηÞ
r

���
: ðB2Þ

(3) Surface gravity: The dynamical surface gravity for
the cosmological horizon is

κAH ¼ η20
2η4

ð−12MIIðηÞ þ ηÞ: ðB3Þ

The dynamical surface gravity at r ¼ rH2 is

κH2 ¼
1

a2ðηÞr2H2

½ðMIIðηÞ −mÞð5η − 12rH2ÞrH2

−MIIðηÞη2 − 2mrH2ðη − rH2Þ þ r3H2�: ðB4Þ
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(4) Energy density of the dust is given by:

μD ¼ 4η40
r2η6

½σDðr; ηÞr2 þ σNðηÞðr − ηÞ� ðB5Þ

σDðr;ηÞ ¼ 3þ 7η7decaym

η7r
; σNðηÞ ¼m

�
6þ η7decay

η7

�
ðB6Þ

where σNðηÞ and σDðr; ηÞ represent the flow of
energy along the radial direction and the null
direction respectively.

(5) Kodama Vector is the same as in Eq. (39).
(6) It is possible to transform the solution (10) to the

branch I solution by setting m → −m. To see this,
we first rewrite the branch II (10) line element as:

ds2II ¼
η4

η40

��
1−

2ð−mÞ
r

�
η7decay
η7

−1

��
dη2

−
4ð−mÞ

r

�
η7decay
η7

−1

�
dηdr

−
�
1þ2ð−mÞ

r

�
η7decay
η7

−1

��
dr2−r2dΩ

�
: ðB7Þ

Setting m ¼ −M in the above line element corre-
sponds to the branch I metric with a negative mass
M ¼ −m. Thus, by reversing the mass, the two
branches are transformed into each other. We do not
consider the second branch (10) because it is related
to the first branch (9) with a negative mass. As we
show below, this transformation is unphysical.

(7) Branch I represents the evolution 0 < η < ηdecay. At
η ¼ ηdecay the metric becomes conformally Einstein-
de-Sitter universe. Further evolution is captured (i.e.,
ηdecay < η < ∞) by the branch II (10) with negative
mass −m. The branch II solution converges to
Sultana-Dyer metric in the limit of η → ∞. Physi-
cally, at η ¼ ηdecay, when the Einstein-de-Sitter space
is formed, we have no further information about the
formation of the black hole solution in branch II
because the black hole is completely evaporated
at η ¼ ηdecay.

APPENDIX C: CONTINUITY OF THE TWO
BRANCHES (9) AND (10)

As mentioned in the previous Appendix, setting
m ¼ −M in the branch II line element corresponds to
the Branch I metric with a negative mass M ¼ −m. In this
Appendix, we look at the continuity of the two branches
(9) and (10).
To go about that, first, we plot the Ricci scalars of the two

branches for different mass ranges. Rewriting τ ¼ η=ηdecay,

the line element and the Ricci scalar of the Branch I
solution is

ds2I ¼
η4decayτ

4

η40

��
1 −

2m
r

�
1

τ7
− 1

��
η2decaydτ

2

−
4m
r

�
1

τ7
− 1

�
ηdecaydτdr

−
�
1þ 2m

r

�
1

τ7
− 1

��
dr2 − r2dΩ

�
ðC1Þ

RI ¼−
4η40ð6ηdecaymτ8−6mrτ7þ3r2τ7þηdecaymτ−8mrÞ

η6decayτ
13r2

:

ðC2Þ

Similarly, the line element and the Ricci scalar of the
branch II solution is:

ds2II ¼
η4decayτ

4

η40

��
1 −

2ð−mÞ
r

�
1

τ7
− 1

��
η2decaydτ

2

−
4ð−mÞ

r

�
1

τ7
− 1

�
ηdecaydτdr

−
�
1þ 2ð−mÞ

r

�
1

τ7
− 1

��
dr2 − r2dΩ

�
ðC3Þ

RII ¼
4η40ð6ηdecaymτ8−6mrτ7−3r2τ7þηdecaymτ−8mrÞ

η6decayτ
13r2

:

ðC4Þ

Note that in the case of branch I, τ is in the range [0, 1]. In
the case of branch II, τ is in the range ½1;∞�. The left
panel of Fig. 2 is the plot of Ricci scalar in both the
branches for 0 < τ < 3. Ricci scalar of both the branches
is continuous at τ ¼ 1, only for negative masses for
branch II. If the mass is positive for both the branches, as
shown in the right panel of Fig. 2, the Ricci scalar is
discontinuous.
To understand that the negative mass (−m) corresponds

to an unphysical transformation from the Schwarzchild
metric, let us repeat the analysis of Sultana and Dyer [37].
The Sultana-Dyer metric [37] is obtained by conformally

transforming Schwarzchild metric. Let us consider the seed
metric—the Schwarzschild vacuum metric with coordi-
nates t̃; r̃; θ̃, and ϕ̃:

ds2 ¼
�
1 −

2m̃
r̃

�
dt̃2 −

dr̃2

ð1 − 2m̃
r̃ Þ

− r̃2dΩ2 ðC5Þ

which is invariant under the simultaneous transformations of
m̃ ¼ −m̃ and r̃ ¼ −r. Using the following transformation:

r̃ ¼ −r ðC6Þ
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t̃ ¼ tþ 2m̃ ln

�
r
2m̃

þ 1

�
ðC7Þ

leads to:

ds2 ¼
�
1þ 2m̃

r

�
dt2 þ 4m̃

r
dtdr −

�
1 −

2m̃
r

�
dr2 − r2dΩ2:

ðC8Þ

Multiplying (C8) with the conformal factor t4 gives the
following metric:

ds2¼ t4
��

1þ2m̃
r

�
dt2þ4m̃

r
dtdr

−
�
1−

2m̃
r

�
dr2−r2dΩ2

�
: ðC9Þ

This metric is identical to the Sultana-Dyer metric [37] only
if −m̃ is negative. However, the transformation (C6) is not
physically realizable because r is negative definite in the
above metric. Hence, the negative mass Sultana-Dyer
solutions are not physically realizable. In other words, the
two branches correspond to two physically distinct
situations.
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