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Kerr-Newman black hole lensing of relativistic massive particles
in the weak-field limit
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The gravitational lensing of relativistic neutral massive particles caused by a Kerr-Newman black hole is
investigated systematically in the weak-field limit. Based on the Kerr-Newman metric in Boyer-Lindquist
coordinates, we first derive the analytical form of the equatorial gravitational deflection angle of a massive
particle in the third post-Minkowskian approximation. The resulting bending angle, which is found to be
consistent with the result in the previous work, is adopted to solve the popular Virbhadra-Ellis lens
equation. The analytical expressions for the main observable properties of the primary and secondary
images of the particle source are thus obtained beyond the weak-deflection limit, within the framework of
standard perturbation theory. The observables include the positions, magnifications, and gravitational time
delays of the individual images, the differential time delay, and the total magnification and centroid
position. The explicit forms of the correctional effects induced by the deviation of the initial velocity of the
massive particle from the speed of light on the observables of the lensed images are then achieved. Finally,
serving as an application of the formalism, the supermassive black hole at the Galactic Center, Sagittarius
A*, is modeled to be a Kerr-Newman lens. The magnitudes of the velocity-induced correctional effects on
the practical lensing observables as well as the possibilities to detect them in this scenario are also analyzed.
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I. INTRODUCTION

Gravitational lensing is one of the most powerful tools in
modern astrophysics and cosmology. It provides extensive
astronomical applications (e.g., testing gravity theories
[1-5] and the cosmic censorship conjecture [6], determin-
ing the Hubble constant [7], detecting dark matter [8,9] and
dark energy [10-12], and constraining neutrino mass
[13,14]) and has attracted much attention since the discov-
ery of the first doubly imaged quasar in 1979 [15]. Due to
the traditional advantages of electromagnetic signals in
astronomical observations, the previous works have been
devoted mainly to the investigation of gravitational lensing
phenomena of light by means of different approaches in the
weak-field limit (see, e.g., [16-20] and references therein)
or the strong-field limit (see, for instance, [21-33]).

Actually, with the coming of multimessenger astronomy,
a full theoretical consideration of the gravitational lensing
phenomena of a massive particle with a nonzero rest mass
also deserves our effort, for which two reasons are
responsible. The first one lies in the fact that the lensing
effect of a massive particle (e.g., a neutrino or cosmic-ray
particle) caused by a gravitational system may be more
evident than the lightlike counterpart under the same
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circumstances. This is because the decrease of the velocity
at infinity (the initial velocity) of a test particle leads to the
increase of the total deflection angle for a given lens system
[34,35]. This property of gravitational lensing of massive
particles is of great significance to two aspects, which
include increasing efficiently the opportunities to observe
gravitational lensing events and making the consideration
of the first-, second, and even higher-order contributions to
the lensing observables nontrivial. A second reason is that
one can expect that the study of gravitational lensing of
massive particles may speed up the advancement of joint
multimessenger observations (such as the joint neutrino and
electromagnetic detection [36-38]), since all of the mes-
sengers emitted by an astrophysical source may experience
different gravitational bending processes before approach-
ing their detectors.

To our knowledge, the previous literatures focused on the
gravitational lensing of massive particles appear to be
relatively rare, and most of them have been dedicated to
the study of the weak- or strong-field gravitational deflection
angle in various geometries (see, e.g., [17,34,35,39-53]),
which serves as one of the main parts of gravitational
lensing. For example, Accioly and Ragusa [35,39] com-
puted the gravitational deflection angle of a relativistic
massive particle propagating in the Schwarzschild field,
in the third post-Minkowskian (PM) approximation. It was
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not until recent years that the lens equation of massive
particles was solved to obtain the observable properties of
the lensed images. In 2016, Liu ez al. [54] based on the exact
formula for the Schwarzschild deflection angle of a general
massive particle [55] and solved the small-angles lens
equation [56] in the weak- and strong-field limits, respec-
tively, to obtain the approximate angular positions and
signed magnifications of the lensed images. The leading-
order correctional effects caused by the deviation of the
initial velocity of a massive particle from the speed of light
on the deflection angle, angular image positions, and the
magnifications for both ultrarelativistic and nonrelativistic
particles were also discussed. The procedure of Ref. [54]
was later generalized to Reissner-Nordstrom spacetime [57].
The authors of Ref. [57] obtained the timelike deflection
angle in terms of an elliptical function and investigated the
first-order velocity-induced correctional effects on the
deflection angle as well as the approximate image positions
and magnifications for ultrarelativistic and nonrelativistic
particles in the weak- and strong-field limits. Recently, the
timelike time delay in Schwarzschild geometry was studied
in detail in Ref. [58], where the differential time delay of the
lensed images of a particle source in the | PM approximation
and the first-order velocity effect on it were discussed, on the
basis of the exact total coordinate time of a massive particle.
More recently, the series expansion form of the total
propagating time of a test particle in a stationary axisym-
metric spacetime, as well as the leading-order timelike
differential time delay of the images and the first-order
velocity effect on it, were derived in Ref. [59]. There are also
other works devoted to the study of some of the observable
properties of the lensed images of a massive-particle source
(e.g., [60-62]).

However, it seems fair to mention that further work is
necessary with respect to the issue of gravitational lensing
of massive particles. A first reason is that there is still a lack
of a systematical consideration of the first-, second-, and
even higher-order contributions to all of the main observ-
ables of the images in the lensing scenario of massive
particles. It is of interest, since the velocity-induced effect
on an image observable in or beyond the weak-deflection
limit may be so evident that its magnitude is much larger
than that of the corresponding null observable, while the
general behaviors of the velocity effects on the lensing
observables have not been analyzed up to now. In fact, the
consideration of the velocity effects themselves [17] is also
a significant component of gravitational lensing of massive
particles. Furthermore, we know that rapid progress in
techniques of position, time, angular, and photometric
measurements has been made in the past decades. The
high-accuracy angular measurement in astronomical proj-
ects is nowadays at the level of 1 ~ 10 parcsec (uas) or even
better [63-69]. Especially, the planned Nearby Earth
Astrometric Telescope (NEAT) mission [67,68] aims at
an unprecedented space-borne accuracy of 0.05 pas.

Additionally, the recent photometric precision has been
at the level of about 107® mag or better [70-73]. For
instance, the original Kepler mission has an extreme
photometric precision of a few ymag [70,72], although it
ended prematurely due to the failure of one of four reaction
wheels in 2013. It has been renamed as the K2 mission with
new purposes and a lower photometric precision (within a
factor of 2 of the nominal Kepler performance) [74-76].
Moreover, the present precision of the very long baseline
interferometry (VLBI) technique [77-83] in measuring the
differential time delay is at the level of 107'? s (pico-
seconds) at least. The proposed delay precision of the next-
generation VLBI system is 4 ps [84-86]. It can be expected
that the first- and second-order contributions (even higher-
order contributions) to the observable properties of the
lensed images, as well as the velocity effects on them, may
be detectable in current (or near future) high-accuracy
astronomical measurements.

In the present work, we adopt the standard perturbative
analysis to investigate in detail the weak-field gravitational
lensing of relativistic massive particles induced by a Kerr-
Newman (KN) black hole, which acts as a natural extension
of the previous works [1,87]. First, we calculate analyti-
cally the gravitational deflection angle of a massive particle
propagating in the equatorial plane of the KN source up to
the 3PM order in Boyer-Lindquist coordinates, via an
approach which is different from that in Ref. [88]. The
deflection angle is then utilized to solve the popular
Virbhadra-Ellis lens equation [21]. The explicit forms for
the main observable properties of the primary and secon-
dary images, which include the positions, magnifications,
and gravitational time delays of the individual images, the
sum and difference relations of the image positions or
magnifications, and the differential time delay, along with
the magnification-weighted centroid position, are thus
achieved beyond the weak-deflection limit. The analytical
expressions of the velocity effects on the zeroth-, first-, or
second-order contribution to the image observables are also
obtained in the weak-field limit. As an application of the
formalism, we model the supermassive black hole at the
Galactic Center (i.e., Sagittarius A*) [89-91] as a KN lens
and analyze in detail the magnitudes of the velocity effects
on the practical lensing observables and the possibilities of
their detection. Our discussions are restricted in the weak-
field, small-angle, and thin-lens approximation [8,17].

The organization of this paper is as follows. Section II
gives the basic notations and assumptions used in this
work. In Sec. III, we first review the KN metric in Boyer-
Lindquist coordinates and then derive the gravitational
deflection angle of a relativistic massive particle propagat-
ing in the equatorial plane of the lens up to the 3PM order.
Section IV is devoted to obtaining the weak-field expres-
sions of the timelike observable properties of the lensed
images via solving the Virbhadra-Ellis lens equation, on
the basis of the standard perturbation theory analysis.
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Section V presents the analytical forms of the velocity
effects induced by the deviation of the initial velocity of the
particle from the speed of light on the observables of the
lensed images beyond the weak-deflection limit. In Sec. VI,
the Galactic supermassive black hole is modeled to be a KN
lens, and the magnitudes of the velocity effects as well as
the possibilities to detect them are analyzed. A summary is
given in Sec. VII. Conventionally, greek indices run over
0,1,2, and 3.

II. NOTATIONS AND ASSUMPTIONS

In this paper, geometrized units where G = ¢ = 1 and
the metric signature (+,—,—,—) are used. {e;,e;,e3}
denotes the orthonormal basis of a three-dimensional
Cartesian coordinate system (x,y,z), whose origin is
located at the barycenter of the central body. For the sake
of simplicity, the massive particle is assumed to be neutral
in this work.

We focus on the scenario where a relativistic massive
particle with an initial velocity w(>0), emitted by the
source, is deflected by the lens and propagates to the
observer without looping around the lens (i.e., no rela-
tivistic images appear). The lens diagram is shown in
Fig. 1, where the notations for the main lens quantities are
given. In the weak-field and thin-lens approximation
mentioned above, we can assume the deflection effect
takes place in a cosmologically small region around the
lens. Thus, the observer and source are regarded to be
located in the asymptotically flat region of the KN
geometry, and the propagating path of the test particle
is approximated by its two asymptotes (the blue lines in
Fig. 1) [8]. Furthermore, as done in Ref. [1], we adopt the
assumption that the angular positions of the lensed images
are positive. It implies that the position 3 of the source is
positive when the image is on the same side of the lens as

the source and negative when the image is on the
opposite side.

III. WEAK GRAVITATIONAL DEFLECTION
OF MASSIVE PARTICLES

In this section, we consider the gravitational deflection
of a relativistic massive particle propagating in the equa-
torial plane of a KN black hole, within the 3PM

approximation.

A. The Kerr-Newman metric

The metric of the KN spacetime in Boyer-Lindquist
coordinates (z,r,{, @) is given by [92,93]
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FIG. 1. The lens diagram of a Kerr-Newman black hole. The
positions of the source, lens, observer, and image are given by S,
L, O, and I, respectively. All of them are situated in the equatorial
plane (x-y plane) of the lens. The x axis is assumed to be the optic
axis OL which joins the lens and observer. dg and d; are the
angular diameter distances of the source and lens from the
observer, respectively, and d ¢ is the angular diameter distance of
the source from the lens. 13 and 9 denote, respectively, the angular
source and image positions. @ is the gravitational deflection angle
of the massive particle. b(= d; sind) denotes the impact param-
eter. Without loss of generality, the intrinsic angular momentum
vector J = Jes of the gravitational lens is assumed to be along the
positive z axis (J > 0).

where A=r’+a?>-2Mr+Q? and p? = r’+ a’*cos’¢.
M, Q, and a = J/M(>0) denote the rest mass, electrical
charge, and angular momentum per unit mass of the KN
black hole, respectively. We use the relation a> + Q> < M?
to avoid the naked singularity of the black hole.

B. Equations of motion

The geodesic equation of a test particle in a
given spacetime geometry is equivalent to the Euler-
Lagrangian equation with the Lagrangian £ =1g,, "X
[94], which reads for the equatorial motion ({ = 7/2) in
KN spacetime,

104034-3



GUANSHENG HE and WENBIN LIN

PHYS. REV. D 105, 104034 (2022)

2Mr—Q*\., r?
25:(1—#)#—1;2

r A
(r*+a*)?—ad*A ., 2a(2Mr—Q?). .
7'2 (pz + }"2 t(p7 (2)

where a dot denotes the derivative with respect to the affine
parameter .% which describes the trajectory [17,95]. Along
the particle’s orbit, we have 2£ = 1. Two constants of
motion can be then obtained from Eq. (2) as follows [35]:

peil (1M QY elMr o0
1
Vi 3)
i _g_g _ (r* + al‘r)z2 - aZA(}) B a(ZM;— 0?) ;
- \/;K_% (4)

Here, E and L represent the conserved orbital energy and
angular momentum per unit mass, respectively. The impact
parameter b is defined by |ﬁ| JE = wb [45,49,54], which is
in accord with its definition b = |L|/E for null geodesics
(w = 1). Moreover, for a given intrinsic angular momentum
J(>0) of the KN source, L is positive when the massive
particle takes prograde motion relative to the rotation of
the lens, while it is negative for retrograde motion of the
particle. We thus follow the idea of Ref. [87] to define the
sign of L by the sign parameter s as follows:

+1, for prograde motion

s =sign(L) = {

—1, for retrograde motion

According to Egs. (3) and (4), we have

[(? 4 a?)? — a*A|E + al(Q* — 2Mr)

t= , 6
I"ZA ()

(A —a®)(L — aE) + aEr?

}’2A (7)

¢ pr—
The substitution of Egs. (6) and (7) into Eq. (2) yields
i = [(1? + a®)E — al)* = [(L — aE)* + r’]A. (8)

Equations (6)—(8) are consistent with the results in
Refs. [96,97] for the case of no electrical charge and w = 1.

C. Equatorial gravitational deflection angle
of a massive particle up to the 3PM order

We utilize the approach given in Ref. [1] to perform our
calculation of the 3PM equatorial deflection angle of a

massive particle. It should be pointed out that the weak-
field and small-angle approximation enables us to make the
PM series expansion for the deflection angle,

N, (%) + oMY, 9)

3
&:

1

where the coefficients N; are the unknown functions of w,
a,and Q, and M/b < 1.

The first thing to obtain the explicit form of & is the
determination of the 3PM relation between b and r,, with
ro being the distance of closest approach to the lens for the
particle. We know # in Eq. (8) at the distance r = r,, should
vanish, and it implies

S
N My 0 2
w(l . —1—%) 70 rg

ro 3 ro\ro r3))°

(10)

where we have omitted the other solution which is
nonphysical, and M/ r, is much smaller than 1 to guarantee
a weak field. By defining

h=M/r, a=a/M, 0=0/M, (11)
and using the series expansion of Eq. (10) in &, we find up
to 3PM order

b =ro[l +Ah+ Ayh? + Ash3 + O(M*Y)],  (12)

where

1
A= (13)
w

4w? — 1 —dw3sa + wra? — w2 Q?
A, = 5 . (14)

1
Ay=5 51~ 4w? + 8w — 8w sa + (1 + 2w?)wa?
w

+ (1 = 4w)w?Q? + 2wsaQ?). (15)
However, we want to express the deflection angle in terms
of the invariant impact parameter. In order to express r( in

terms of b, we guess reasonably that the series expansion of
ro in M /b takes the following form:

ro=>b {1 +a1%+a2 (%>2+a3 <%>3 +O(M4)}, (16)
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with a; (i = 1, 2, 3) being undetermined coefficients. By substituting Eq. (16) into Eq. (12) conversely and requiring the
first- and higher-order terms on the right-hand side of Eq. (12) to vanish, we find

ap :——2, (17)

4w? — 1 — dwisa + wha? — wrQ?

a = — Wt > (18)
D2\ — oh 200 _ O2 3\42
a3:_2w(2 0°) sa[2+wwg4 O]+ (w+wa ' (19)

We now turn to the exact expression of the bending angle, which can be written via Egs. (7) and (8) as follows [1,95]:

dg

. 2/+oo
a =
W

—\dr—-=m
,

2 S sa
(=24 S)w =)+

r

/+00
2,02 . 2102\ -w
(=B O S (14 s (1 -2 SOty Ly — sy

dr —m. (20)

b? r b? r

Equation (20) can be rewritten by defining a new variable x = r/r(0 < x < 1) in the form

1 (1 = 2hx + Q*12x?) (42 — sah) + sah
&:2/ - . (21)
o [l =2hx+ (2> + Q)W X’|VH
where &, @, and Q have been defined above, and H and b/r, are given as follows:
b 2 A b 2
H = (1 + a’h’x* — W—s&hx2> —[1 =2hx + (&* + O*)I*¥? [1 —w?+ (W— - s&h) xz} , (22)
To o

b Il =2h+ (@ + O2)R2w + (1 —w?)(2h — QPI2)] = sah?(2 - 0h)

= ~ . 23
ro w(l —2h + Q*h?) (23)
By performing the series expansion of the factor 1/v/H on the right-hand side of Eq. (21) in 4, we have
1 1 1 4 —4wsa —w2(1 + x)0?
==+ 2| 1|xh- x2h?
VH w1 —x2{ [Wz(l +x) } w(1 + x)
2{wl4 - (2 0% + (1 +w?)a?] —sal2 + w4 - (1 )? -4
2fwld -2+ x0)0" +( +w3)a] sal2 +w*(4 - (1+x)Q )}}x2h3+0(M4) ;
w (1 + x)
1 1 -w2(1 2 + dwsa — w(1 -0?
S S O xh+3 w> (1 +x)[2 + :vsa Wz( +x)(3 Q>]x2h2
wvV1l —x? w?(1 +x) 2wt (1 + x)
1 5x . .5
+m{3"‘m = 2wsa[2(1 = 2x) + wi(4 + 10x + 6x) = w¥(1 + x)2Q’]
+ w2 (1 +x)[8 = 3x +2(1 + w?)a? — (4 — x) Q> + wx(1 +x)(5 - 3Q2)]}x2h3 + (’)(M“)}. (24)

After substituting Eq. (24) into the integrand of Eq. (21), we then use the power series expansion of the integrand in #,
integrate it over x, and find
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a
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(s [ (30) -5

10 26 9 7 3z
o+t St 1+

1 4sa  nQ? 2
l+— ) -—— = (14+=)|n?
(1+32) -5 (+35)

4) <2035, 2050
w

w

w

Y
+%}h3 oMY, (25)

e

Finally, the explicit form of the equatorial gravitational deflection angle of a relativistic massive particle up to the 3PM
order can be obtained by plugging Eqgs. (11) and (16)—(19) into Eq. (25) as

o — 2 1_~_1 M+37z 1_‘_4 M?* 4saM =« 1+2 Q2+2 5+45_’_15 1\ M3
KN = w?) b 4 w?) b2 wb* 4 w?) b 3 w2 owt owo/) b3

32 saM? 1\ a2M
—2ﬂ<—+—3>” +2(1+—2>a——
w w w N

b3

or equivalently,

A M P M2 5 M3
aKN:N](W);""Nz(wvavQ)?+N3(W’G7Q)?
+ O(M*), (27)
with
1
Ny (w) = 2(1 + —2), (28)
w
FPS- 4 4 4sa =« 2\ ~,
NZ(W,a,Q)— 1 (1 W2> - " —4(1+W2>Q s (29)

" 2 45 15
N3(W,&’Q):_<5 +W+F_

1 32\ .
% -2 ;—’—ﬁ sa

1 6 1).
+2(1 +—2)a2—2<1 +—2+—4>Q2
w w w
ﬂs&QZ

w

(30)

The comparison of Eq. (26) with the results presented in
the previous works is made as follows. It is interesting to
find that Eq. (26) is in agreement with the result derived by
means of a different method in Ref. [88], after replacing our
sign parameter s by —s (in their notation). When the black
hole’s spin vanishes and the initial velocity of the particle
reaches the speed of light (i.e., a = 0, w = 1), Eq. (26) is
reduced to the third-order Reissner-Nordstrom deflection
angle of light

4M 15zM® 370> 128M3  16MQ>
ORN = 7 Ry R Ty B
b 4b 4b 3b b

(31)

which is in accordance with Eq. (53) of Ref. [1] and
Eq. (8.22) of Ref. [98]. For the case of no electrical charge

6 1\0M
2<1+—2+—4>Q +
w w

nsaQ?

b + O(M*), (26)

b3

of the lens and w =1, up to the 3PM order, Eq. (26)
becomes [87]

R 4M  15zM?*  4saM  128M3
Uer = T pr T T
10zsaM?  4a*M
Ty Ty

(32)

If both the spin and electrical charge of the black hole
disappear simultaneously, Eq. (26) can be simplified to the
third-order Schwarzschild deflection angle of massive
particles [35,39,50]

ao—af14 LM () A\
Qe = _ ) — 4+ — | —
S w2 b 4 w2 ) b2

2 45 15 1\ M3
(s 2\ 33
+3< +w2+w4 w6> b’ (33)

Moreover, Eq. (26) is also consistent with the result
for the second-order KN deflection of massive particles
derived via different approaches [43,44] when the third-
order contributions on the right-hand side of Eq. (26) are
dropped.

With respect to the spin-induced terms on the right-hand
side of Eq. (20), it should be pointed out that the second-
order spin-induced contribution is negative and positive for
the particle’s prograde (s = +1) and retrograde (s = —1)
motions relative to the rotation of the lens, respectively.
This conclusion also holds qualitatively for the total of the
third-order spin-induced contributions, although a special
spin-dependent term whose contribution is always positive
is present on the right-hand side of Eq. (26).

IV. LENSING OBSERVABLES

In this section, we solve the Virbhadra-Ellis lens equa-
tion [21] and discuss the timelike observable properties of
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the lensed images (i.e., the primary and secondary images)
beyond the weak-deflection limit, in the framework of the
weak-field, small-angle, and thin-lens approximation.

A. Lens equation

According to the lens diagram in Fig. 1, we can obtain
the Virbhadra-Ellis lens equation, which reads [21]

tan B = tan 9 — D[tan 9 + tan(& — 9)], (34)

with D = dLS/dS'

We apply the analysis of the standard perturbation theory
to solving Eq. (34). For the sake of a convenient discussion,
we use the scaled variables via the following definitions
[1-3]:

9.8
8=8—E_4D. (35)

Here, 9z = /4DM/d, is the angular Einstein ring radius
of light in the weak-deflection limit. 9, = arctan (M./d;)
denotes the angle subtended by the special gravitational
radius which is defined as M. = GM/ c* (equal to the lens’s
mass M in geometrized units) and different from the
conventional one [99,100]. ¢ serves as the new expansion
parameter for analyzing the observable characteristics of
the lensed images. It is worth mentioning that we do not
adopt the angular Einstein ring radius of massive particles
but 9 as the natural scale in Eq. (35), since the scale factor
should be constant for a given lensing scenario and
independent of the initial velocity of the massive particle.
This treatment guarantees that all of the possible velocity
effects on the angular image position are absorbed by the
scaled variable 6. Moreover, since d5 is of the same order
of magnitude as De¢, Eq. (34) can be reduced to the small-
angles lens equation 9 = B+ a [8,56] by defining a
reduced deflection angle o = Da, when the third- and
higher-order contributions in ¢ to B, 8, and & are omitted.

The perturbation analysis enables us to assume the series
expansion of the scaled angular position of the image in ¢

0= 90+018+9282+0(83), (36)

where 0y(>0) denotes its zeroth-order value in the weak-
deflection limit, while #;, and 0, are the unknown coef-
ficients of the first- and second-order contributions to the
angular image position, respectively.

Now we turn our attention to the solution of the lens
equation. Substituting Eqgs. (27), (35), and (36) and the
relation b = d; sind into Eq. (34), up to the third order of
e, we have

D[N, — (N, +463)6,] ,
E
65

N
0:D<4/}—400+—1>e+
b

D
+30 (N3 +3N; — 12DN36j
0

+ N, (56D%63 + 3607 — 30,05)
+64D03 (B — 63) — 6N,0, — 12030,]¢’
+ O(e), (37)

which is the same as Eq. (65) of Ref. [1] for the case of
w=1and a=Q =0.

B. Image positions

The requirement for the disappearance of the first- and
higher-order corrections on the right-hand side of Eq. (37)

leads to
1 5 1
2 w
N
0, = —22
N, + 46;
 3a(4+w?) — 16wsa — x(2 +w?) 0 (39)
B 8(1 + w? 4 2w?6}) ’
1
0, (N3 +3N; — 12DN363 + 64D*°6}

 30y(N, + 463)

+ 56D*N 0% — 64D*05 — 6N,0, + 3N ,03). (40)
By means of Eq. (38) which indicates f = 6, — 4%‘0, it can
be seen that Eqs. (39) and (40) are consistent with Eqs. (32)
and (33) of Ref. [87], respectively, when the lens’s
electrical charge vanishes (Q = 0) and w = 1 is assumed.

With the consideration of the last assumption made in
Sec. II and the general form of the scaled image position
given in Egs. (38)—(40), the angular positions (denoted by
0" and 6, respectively) of the positive- and negative-parity
images can be expressed explicitly in terms of the angular
source position S as

0 = 0F + 0fe + 056> + O(%), (41)
where
oF =1 p+2 1+i + |B (42)
0 2 W2 ’
gt _ 37(4 +w?) — 16ws*a — n(2 + w?)Q?
b 16(1 + w?)
5 {1 W ] 3)
B+2(1+L)
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2(1 4 6w? + w*) — zw’s=a](1 4 3w? —=w?0?) + w3 (1 + w?)(2wa? — 3rs*a) — STDZ (1+w?)?

o —
2
w6\/ﬁ2 +2(1 + L) [\/ﬂz +2(14) + |ﬁ|}
~ [3z(4 +w?) — 16ws*a — n(2 + w?) Q%) - 1Bl - 15|
2
1282 (1 +02)\ 87 + 201+ 1) [\ + 201+ ) = o] B 20+ £ +2(1+ L)
2
4D 1 w?D 1
- {(1+w2)2(1—p)—(+w)w \/ﬁ2+2<1+2>i|ﬁ| } (44)
wh /B +2(1+ L) 12 w
|
Here, we have used s* and s~ to denote the sign . 5 1
parameter of the positive- and negative-parity images Oy +0, =P +2 <1 + W) (46)
[87], respectively. Notice that the value of s is +1 for
prograde motion of the particle and —1 for its retrograde + e
e . - 0 — 05 = 1Al (47)
motion. Simultaneously, the relation st = —s~ always
holds in our scenario. Note also that f is positive and N N A2
negative (|| = —f) when the image and source are on the o +67 = 3r(4+w’) ﬂ(z +w)o
same and opposite sides of the optic axis, respectively. 8(1 +w?)
Additionally, Egs. (42) and (43) are consistent with 2w stalp| 48
Eq. (72) in Ref. [57] when w = 1 and a = 0 are assumed. + 1 2 ’ (48)
From Egs. (42)-(44), we can obtain the observable w?
product, sum, and difference relations for the coefficients R
of the scaled angular image positions, 0 —0- — — 3n(4 +w?) —2(2+w*)Q? ]
b 8(1+w?) B +2(1+15)
1 1
00 == (1+—), 45 2wsta
0o 2( +w2> (45) T2 (49)
|
oF 40~ — 1 384w {2+ 2w? (1 +w* +w®) +w? (1 =w?)2[3+w?(3+p?)]f*}a? 1
2T 192w (14w?)? (22w +w2p?)3/2 w(2+2w2 +w2p?)3/2

X {(14+w?)2[768(1+ 10w?) +48(448 — 2772 )w* +24(704 — 2772 )w° +9(256 — 972 )w® —512(6 = 5D)D(1 +w?)*
—6w?(128 +8(112—97%)w? 4 (896 — 5472 )w* + (128 —972)w®) 0% — 97w (2 + w?)2 0% —6w? (1 +w?)
x[128(2=D)D(14+w?)* =3(64(1+10w?) +16(112 =922 )w* +8(176 —97?)wo +3(64 — 372> )w?)
+6w?(32+8(28 = 322)w? +2(112=972)w* + (32 =322)w®) O + 372w* (2 + w?)2 0*] 2

=2w* 272w (4 +w?)? = 192(1 + 10w? +28w* +22w0 4+ 3w8) + 128D (1 +w?)*

+w2(192(1+7w? + Tw* +wP) — 182%w? (8 + 6w? +w*)) 0% + 3722w* (2 +w?)2 0% 5%}

—|—192ﬂw3|ﬁ|s+&(4—2w2+3w4+W2Q2)}, (50)
1
05 —0; = R T R {{64(1 +10w?) + 16(112 = 972)w* + 8(176 — 972 )W + 3(64 — 372 )wd — 128D2(1 + w?)*
+ 64wt (1 —w?)2a2 — 2w [32 = w2 (372 (8 + 6w2 +w*) — 32(7 + Tw? +w*))] 0% — 22w (2 + w?)20*} ||
+ 1omys {(16+4w? + 15w*) (1 +w?)? + 6w? (4 +2w? + w* +3w) B2 + 2w* (4 — 2w? + 3w g*
(24 2w? +w?p?)3/?

+w2[2+w2(3—w4+6(1+w2)ﬂ2+2w2ﬁ4)]Q2}}. (51)
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There are three points which should be emphasized. First,
it is interesting to find that the product of the zeroth-order
positions of the positive- and negative-parity images depends
on the initial velocity of the massive particle in the weak-
deflection limit, which is obviously different from the null
case where the value of 8] 05 is always equal to 1. Since the
lens quantities given in Egs. (46) and (48)—(51) also depend
on w, it is possible to study conversely the properties of the
particle’s source by means of the detection of these observ-
ables. Second, due to the presence of the spin-induced
contributions, each of the first- and second-order sum and
difference relations for the coefficients of the image positions
(0] £ 607 and 05 + 05) appears differently for prograde and
retrograde motions of the massive particle. However, this is
not the case for the zeroth-order relations 6] =+ ¢;. Third, it
shows that the first- and second-order sum and difference
relations for the positional coefficients depend not only on a
but also on the electrical charge Q of the black hole. Thus, for
a given timelike lens diagram of a Kerr, Reissner-Nordstrom,
or KN black hole, we may also constrain the intrinsic spin or
electrical charge of the lens in turn by detecting the first-order
sum and difference relations (6 =+ 67).

Finally, the coefficients of the zeroth-, first-, and second-
order contributions to the position of a positive-parity
image, as well as the sum and difference relations given
in Eqgs. (46) and (48)—(51), are plotted as the functions of
the angular source position in Fig. 2. The KN lensing
scenarios for prograde (s* =+1) and retrograde
(st = —1) motions of the particle with an initial velocity
w = 0.1 are considered respectively in Fig. 2.

C. Magnification relations

We then discuss the magnification relations of the lensed
images, including the signed magnifications, total magni-
fication, and the centroid up to the second order in &.

1. Signed magnifications

The general form of the magnification y of a lensed
image for a test particle propagating in the equatorial plane
of the central body is given by [21,23]

u(9) = [Sin B(9) dg(g)] _1‘

sin g a9 (52)

+

Note that the sign of the magnification of a lensed image
gives the image parity. It implies that the magnification u™
of the positive-parity primary image 6% is positive, while
u~ of the negative-parity secondary image €~ is negative.

Based on Eqgs. (27) and (34), the magnification y can be
written in the following form by using the series expansion
in the small parameter e:

1= o+ pi€ + pre* + O(%), (53)

where the coefficients of the zeroth-, first-, and second-
order contributions to the magnification are given by

40;

a0 (1L 12 54
M= 405 = (1+ L) (54)
- W4[371'(4 + WZ) — 16wsda — ].[(2 + WZ)QZ]QS (55)
o 2(1 4+ w? +2w?d5)? :
862
My = — 0

3(Ny —463)(N, + 463)°

x {D*N¢ — [8(2 + 6D — 9D?*)N3 + 48N2N;]03

— [32(4 + 12D — 17D?*)Nt — 576N3 + 384N N30}
— [128(2 + 6D — 9D?)N3 + T68N;]65
+256D>N365}. (56)

Here, the first equality in Eq. (39) and the relation f =
6y — M have been used. With respect to Eqgs. (53)-(56),
0,

there are two aspects which are worth pointing out. First,
for the case of w = 1 and no intrinsic angular momentum
and electrical charge of the black hole (a = Q =0),
Egs. (54)—(56) are in accord with the null result
in Schwarzschild geometry [1]. Second, as done in
Sec. IV B, the coefficients of the magnifications (u* and
u~) of the positive- and negative-parity images can be
expressed in terms of the source position as follows:

1 1+ L+ p
ll(jf:ii wt/ .
2B/ +2(1 + L)

o _37r(1 —1—%) ——16fa - (1 +W%)Q2 (58)
‘ 16[4% +2(1 + L) ’

(57)

(1452 + 2287 +3(1+0) P B(1+52)2 +8(1+ 528 + 48181y /A2 +2(1+52)

Hy =

32 £\ /B +2(1+)IF° +2(1+55) £ 1\ +2(1+55)P
3z 4 4sTa r« 2\ 17 1 1\2 1)3
x{9[7(1+p> —T—Z<1+W>Q} +4[ﬁ2+2(1+m>]{4D252<1+F> —4(2+6D—9D2)<1+W)

2 45 15 1 2 1 1\ - +a0?
-3 [— (5 +—52+—i——6) —2n<3+—3)sia+2(1+—2>a2—2<1+%+—4> 2440 } }} (59)
3 we Wt w wow w we o w w
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FIG.2. 0}.,07.05,0f + 05,07 £ 07, and 05 £ 0 plotted as the functions of #(€ [0.01, 10]) for prograde (s* = +1) or retrograde
(s = —1) motion of the particle. Here and in the following figures of this section, we assume w = 0.1, @ = 0.9, 0 = 0.01, and
D = 0.5, as an example of our scenario of the KN lensing of massive particles. Additionally, the cases of the KN lensing of light (w = 1)
as well as the Schwarzschild lensing (¢ = Q = 0) of light and massive particles are also presented for comparison.
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Notice that the first-order relation y{ = 7, which holds
well in the static and spherically symmetric spacetime,
breaks down in our stationary axisymmetric geometry,
because of the presence of the spin-induced contributions
to the deflection angle @. Since both x| and p; are always
negative due to N5 = N,(s — s¥) > 0, the magnitudes of

py +Hy =1, (60)

1+L+p
A = , (61)

Bl\/B +2(1 + %)

the positive- and negative-parity images are corrected by a 7[3(1 + ) 1+ ) ]
different amount in the same direction. MT TH == 8w2 12011 T )T ) (62)
Similarly, we are able to obtain the measurable sum w
and difference relations for the coefficients of the 2ta
signed magnifications on the basis of Egs. (57)-(59) ui = = s a , (63)
directly, l w21+ =)
|
ny _msTa[l6 + 4w? + 15wt + 4w (2 + 3w?) A% + wr(2 —w? — 2w2B2) 07 (64)
SR 22+ w2+ P ’
1

+_ S =
K2 71 T 1003182 + 202 + WP

+512(2 =3D)D(1 +w?)*] + 128w?[2(11D — 6)D(1 + w?)3

+256D%w*(1 + w?)2p* —

It can be seen from Egs. (60)—(65) that the zeroth-order
difference, first- and second-order sum and difference
relations for the magnification coefficients are dependent
on the initial velocity of the massive particle, in contrast to
the zeroth-order sum relation. Moreover, the first-order
sum, second-order sum, and second-order difference rela-
tions for the magnification coefficients depend on the
intrinsic electrical charge of the black hole. Different from
the case of the second-order difference relation, the terms
on the right-hand side of the first-order difference and
second-order sum relations will disappear (similar to the
null case [87]), if the lens’s spin is absent.

Figure 3 shows the magnitudes of the coefficients of the
zeroth-, first-, and second-order contributions to the mag-
nification of a positive-parity image, as well as those of the
sum and difference relations given in Egs. (61)—(65), for a
given massive particle which takes prograde or retrograde
motion.

384wt [2(1 — w2 +wh) +w?(1 +w?)p?|a?
+(896 — 5472 )w* + (128 — 9722)w® + 64w?(1 4 6w? + w*)p2)Q? + 9z2w*

573 {=3[256(1 + 10w2) + 16(448 — 277%)w* + 8(704 — 2722w + 3(256 — 9 )w?*

= 3(1 4+ 9w? + 19w* + 3u®)|
+ 6w?[128 + 8(112 — 977 )w?
(2+w?)?0%). (65)

|
2. Total magnification and centroid

The total magnification and the magnification-weighted
centroid position serve as the important observables, when
it is hard to distinguish the angular positions of two images.
The total magnification is defined by

Hiot = |/"+| + |ﬂ_|’ (66)

which reads up to the second order in &

1+L+p N 2sta
= &
B+ 20+ ) WIE 2P
+ (i —w3)e? + O(e), (67)

with pJ —u; being given in Eq. (65). In the limit
w—1,a—-0, and Q — 0, the total magnification for
the case of Schwarzschild lensing of light is recovered [1],

2442 2025712— 1024(4 + 2)[12(1 + D) — D*(18 +
Hiot-Ss = 2 ( )[ ( D 5/2) ( )] 82 + 0(83)' (68)
BIVA+P 192|p](4 + #7)
The scaled magnification-weighted centroid position takes the form
Ot = 07| |
G)CCH = T L= 69
IS )
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FIG. 3. ul, uf, 13, u —ug, u £ u7, and p £ py plotted as the functions of  for prograde (s™ = +1) or retrograde (s™ = —1)
motion of the massive particle.
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or, in more detail,

—64(05)° | 4Ny = N7)(0)*[NT — 4N, (6)* + 16(6; )] 1
40§ [N? + 16(67)*] [N? +16(65)* o 605 [N, +4(6§)%)*[N? + 16(64)*)°
x {D*N{° —24(1 — D)DN3[N] — 16384(63)'*1(63)* + 16[N3 (4 + 6D — 9D?) + 6(N7 + N73)]
< [N} +4N1(0)° — 256N, (07 ) — 1024(65)'°)(05)* + T68[(N3)* + Ny N3 + (N3)*[64(65)° — N3](65)°
+ 256N, {6[(N5)> + 4N N5 + (N3)*] = N1(6 = SD)D}[N| — 4(6§)?](05)® — 262144N,D*(0]) '8} + O(&?),

®cent = -

(70)
where Ni = N;(s — s*). In terms of the angular source position, Eq. (70) becomes
®cent = ®cent,0 + ®cent,18 + ®cem.2€2 + 0(83)? (71)
with
BI3(1 + w?) + 2w?p?
Ocento = | |[ ( 5 ) >0 ]» (72)
2(1 4+ w? + w?p?)
+a(1 2 4 22
®centl = _Ws a( +2W +2 ;Vzﬂ ) (73)
’ (1+w* +w?p?)
32|p
®cent,2 | ‘

3wl [\ 20+ + 18] 20+ + (J#+ 20+ 5 +18) 7 [a0 + 22+ (@ +20+ 5 +181)
X {|ﬂ|[9(1 + w4+ 60w (1 4+ w?)3B% + 108w (1 + w?)2B* + 72w (1 +w?) B0 + 16w %] + 4 | B +2<1 +%>

X [(1T4+w?)* +20w?(1 4+ w?)3 42 4+ 60w*(1 +w?)2B* + 56w0 (1 +w?) 0 + 16w8ﬂ8]}

x {384wA[1 +w* + w2 (1 +w?) B2 + w?(2 + B2)]a + (1 +w? +w?B*) {768 + 384w?(20 + %)

— 812w (4 +w?)? + 384w*[56 + 967 + w? (44 + 1962) + 3w*(2 + )] = 1536Dw? (1 +w? )22 (2 +2w? +w?B?)

+256D% (1 +w?)[=2(1 +w?)? + 17w (1 +w?)? 4% + 13w*(1 + w?) g* + 2w0 ]

— 6W2[128 — 972w (8 + 6w? +w*) + 64w? (14 + 2 + w*(2 4+ ) +2w? (7 +342))] 0% — 97°w* (2 + w?)2 0%} }.
(74)

The coefficients of the zeroth-, first-, and second-order contributions to the scaled centroid are plotted in Fig. 4. In the limit
w — 1, Eq. (71) is reduced to

_BIG g 2004 plast |/3|{2<1 +p)a ! 120257

24 24P 2+ 384+ )2+
— 1024[6(4 + 2)(2 — D?) — D*(8 — 34p% — 13p* — )] — 613572 —512(4+ﬁ2)}Q2+81n2Q4}}

+ O(&%), (75)

which is consistent with the result for the case of the Schwarzschild lensing of light [1] when the electrical charge and
angular momentum of the black hole are dropped.
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FIG. 4. Oceni0> Ocent1> and Oy » plotted as the functions of f for the particle’s prograde or retrograde motion.

D. Differential time delay

The difference between the time delays of the primary
and secondary images is another traditional lensing observ-
able. In order to obtain its analytical form, we have to
derive the Shapiro time delay of a test particle propagating
from the source to the observer in the equatorial plane of
the KN black hole firstly.

To our knowledge, the calculations of the Shapiro time
delay of light were performed via various approaches

According to Egs. (3), (4), (6), and (8), we have

[16,59,95,101-108], such as the classical one given in
Ref. [95], the Richter-Matzner method [101], Fermat’s
principle method [16], and the approach based on the time
transfer functions [103—-105]. However, it has been found
that the result of the second-order contributions to the
gravitational time delay takes diverse ways in different
approaches, and further work is thus needed with respect to
this issue to get a perfect agreement. In this work we adopt
the classical method [1,95] to perform our derivation.

. TS (1+ 20 b 24 _C) (76)
U1 p(1 -2 ) L (14— L (1 2 220y sey2 o (2

The traveling time of a massive particle propagating from the point (with the radial coordinate ry) of the closest
approach to the black hole to an arbitrary but finite point (with a radial coordinate R > r() of its trajectory is then

written as
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dt

r® =[G

UL+ &R + aah = 22) (2 = Q*hx) X
:ro/ 2 ~2 L A2\ p22
0} x*[1 = 2hx + (a* + Q°)h*x?|

dr

R

x { {1 + ah <£zh - @>x2]2 —[1 = 2hx + (&% + O*)h2x?] [1 —-w?+ <w_b - s&h)zxz} }_idx, (77)

ro ro

where £, &, and Q have been defined in Eq. (11), and x and b/r, have been given in Egs. (21) and (23), respectively. By
performing the series expansion of the integrand of Eq. (77) in & and then integrating it over x, we obtain via defining

E=ro/R,

A

2
T(R):@ﬂ;?[mmwz_nm(”{:?)] (0 (5 eins) V=

1+¢& w 2 2w(1+¢)?
1+ (1=6w?)(1+8) R rg 15 4\ . 30° 1 2\ Ay
35—150% 6w —1+w*23-70%+2(1+w?)a? 1-(1+3w?)(1
X arcsin?:—z +V1=-& L + v W 3 0" +2(1+w)a] ( —Z W)(3+§)
2 2wO(1+¢) 2wo(1+¢)
sa{4[(1+4w?)(14¢) — 1] -w' (6 - 0*) (1 +¢£)°¢}
O(h%), 78
- 203 (1+ ) +O(1) (78)
|
in agreement with the result presented in Ref. [1] for the M e (81)
caseof w=1and a =0 =0. b
Therefore, the weak-field gravitational time delay for a
massive particle propagating in the equatorial plane of the i N D(1-D) e (82)
KN black hole from the source S to the observer O can be Ry VD2¥tan’B
given by
b
dg — ~ Deg, (83)

t=T(Rg) + T(Ry) — (79) Ro

s B’
where the radial coordinates of the source and observer are, Eq. (78) can be expanded as power series in the small
respectively, parameter ¢,

Ry=/dg+djan®B.  Ro=d,. (80) T(R)_1_1bfb_2M (. 1\M (b

R w 2wR|R w?b w?) b 2R
For the sake of comparison with the actual astronomical 5 A0

. L . . bM?* [3z(5-0Q°) 1 .
observations, it is more convenient to express Eq. (79) in +—— |———— 2|1+ sa
terms of the angular variables through Egs. (23) and (35), RD 4w w
and the relations b = d; sind and M. = d; tan 9.. For this + O(&*), (84)

purpose, we first need to evaluate the magnitudes of the
quantities M /b, b/Rg, and b/R,. With the consideration = which yields immediately the power-series expansion of

that [1] Eq. (79) as
|
1 8d;d; s 202 2 (1 =w)dps\ ,  1- 3w?(dL059% 2
—(2-1 1- R !
r (w )ds‘f' e { w5+ w1+ 4 p-+ 5 In 4d, €
s .
N 377,'W2(5 _ Q ) _ 8WSCZ(1 _|_41;;2) —+ 4(1 - 3w2 — 2w29(2))9] 6‘3 + 0(6‘4)} (85)
0
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The leading term on the right-hand side of Eq. (85) is a
geometrical contribution induced by the velocity effect.
From Eq. (85), it is obvious that the leading-order con-
tribution induced by the lens’s electrical charge to the
timelike gravitational time delay is always negative. In
addition, the traveling time for a massive particle in
prograde motion (s = +1) relative to the lens’s rotation

|

is less than that for the particle’s retrograde motion
(s = —1). These two conclusions are similar to the lightlike
counterparts [16,87]. Furthermore, by substituting Eq. (39)
into Eq. (85) and using the natural lensing timescale
7y = d;9%/D = 4M, we obtain the desired scaled gravi-
tational time delay

7

1 1 1— 1 —3p?2 2 g2 1
i:(——l) dus +—{1—w2eg+w2[1+( W)d”}ﬂhr sl 1n<dL‘9°’9E)}+

TE w dngzE 2W3 dL 2 4dLS 8W390
x 4 3aw2(5—0%) — 8w (1 +w?)sa + L -3 —2w6p Br(4+w?) —16wsa—z(2+w?)0?] pe+O(2). (86)
aw - — W w=)sa T w=)— wsa —T1m w E E7).
2(1+w?+2w?63)

Here, there are two aspects which are worth emphasizing.
The first one is that if the electrical charge of the lens is
dropped and w is equal to 1, Eq. (86) will be reduced to the
Kerr lensing result of light [87]

1 2 02 157 — 1654
b= [1 +ﬂ2—9%—ln<dL90'95)] | 1sn—16sa,

|
delay between the positive- and negative-parity images as
follows:

At =% —%, = Ai+ Ate+ O(e2),  (88)

4dLS 1600 Wlth
+ O(&). (87)
072 —(0:)2 1—3w? 7
Second, based on Egs. (86) and (45), as well as the relation Azy = (6) 2w( o) + Tl In <9_3.), (89)
sT = —s~, we finally achieve the scaled differential time g 0
|
As (5= oH[1 1 N 34 +w?) =22+ w0 [ 1-=3w?—2w(6;)? 1—3w? = 2w (6])?
TT=— — —— —
! 8w 0; 6 16w? [1+w?+2w2(0;)260; [1+w? +2w2(00)2]0,
sta (2—w? +wh+ 2w (05)> 2 —wr +w +2uH(0])? (90)
w2 [+ w? +2w2(05)%06;  [1+w?+2w2(07)405 |-

In terms of the angular source position f, Egs. (89) and (90) can also be expressed as

1
A%O:@ P+2(1+— )+
2w w

_3m(s-0)lpl !

s
T4 Sw(I w22+ 2w i)

1—3w2 | /F+200+5) |

In (91)

3 ’
2 P21+ ) + 1

{n[3<4+w2> @A) QR0 — 202 —3w) + (1 = 3uR) BB

+16wsTal2(1+w?)(1+w*) +w?(2=w? +wh) B2, | f* +2 (1 —i—%) } (92)

Notice that Eq. (88) is consistent with the null result of the
Schwarzschild lensing [1] for the case of w=1 and
a=0Q =0, and with the result of the Kerr lensing
of light [87] for the case of w =1 and Q = 0. Figure 5
gives the magnitudes of the coefficients of the zeroth- and
first-order contributions to the scaled differential time
delay.

V. VELOCITY-INDUCED EFFECTS ON THE
LENSING OBSERVABLES

The deviation of the initial velocity w of a massive
particle from the speed of light affects the geodesic motions
and thus the related lensing observables. Considering
their importance for discussing the gravitational lensing
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100t e | KN (s =+1, w=1) /! II 1
4 100} |- = = KN (s*=+1,w=0.1) ’y )
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FIG. 5. A7, and A7, plotted as the functions of  for the particle’s prograde or retrograde motion.

phenomena of massive particles, we present the explicit  coefficients of the scaled angular positions of the positive-
forms of the velocity-induced effects on the observables of ~ and negative-parity images can be written respectively as
the lensed images beyond the weak-deflection limit. follows:

A. Velocity effects on scaled angular image positions
Based on Eqs. (42)~(44), the explicit forms of the 507 :l{ P +2(1 +L2> e+ 4}’ (93)
velocity effects on the zeroth-, first-, and second-order 2 w

3ﬂ(4+w2)—16wsi&—ﬂ(2—|—w2)Q2{ 1Bl ] 15ﬂ—16sia—3nQ2< 1Bl )
807 = 1 - 1 . (94
: 16(1 + w?) i B 4+2(1+ L) 32 * B+ 4 (94)
505 — 2(1 + 6w? + w*) — awsFa](1 + 3w? —=w?Q*) + w3 (1 +w )(2W&22—3ﬁ'si&> —8%2(1 + w?)?
WO B 4201+ BB 4201+ k) £ 16
_ [371'(4—|—w2)_16wsiA _ (2+w2)Q2]2 [1 . 8] HHE ] ]
12802 (1 4+ w?) [B + 201+ D) B + 201+ ) = 1BI) A +2(1+5) P +2(1+5%)
2
) 4D el _(1+W)WZD[ . 2( i) ] } 16(1 - D)D
4 ﬂz+2(1+#){(1+w)< P 12 preettg) =g P +4

1 R /o —
— 5 _ 2 _ 2 2 9] 6 _ Ao

—3[3z(5 - Q%) — 165*a)? <1 T \/ﬁ‘f'ﬁ) (3 i\//f_H) } (95)

From Egs. (46) and (48)—(51), the velocity effects on the zeroth-order sum, first- and second-order sum and difference
relations for the coefficients of the scaled angular source positions are given, respectively, by

5(9§+95)—\/ﬁ2+2<1+%>—\/ﬂ2+4, (96)
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o 3a(d+wh) —a(24+w?) 0P 2w stalp| ~ {3;:(5 -0%  stalp| }
S0 +07) = 8(1+w?) 1+ w? ﬁ2—|—2(1+%) 16 + /ﬁ2+4 ’ (97)
507 — o) = 3x(5 - Q°)Ip| _3a(4+w?) —a(2+ w0’ 18l N (1-w)ista 08)
! ! 161/ + 4 8(1+w?) ﬁ2—|—2(l+ﬁ) 1+w?
e 1 384w3 {2 + 2w (1 + w* + wb) + w2 (1 = w?)?[3 + w? (3 + p2)|p*}a*
o6 +6;) = 19207 (1 +w2)3{ (2+2w? +w2p?)2

1
* w(2 +2w? + w?p?)
+9(256 — 97%)w® — 512(6 — SD)D(1 + w?)* — 6w>(128 + 8(112 — 922)w? + (896 — 547%)w*

+ (128 = 922)w®) 0% — 97°w* (2 4+ w?)2 0] — 6w (1 + w?)

x [128(2 = D)D(1 4+ w?)* = 3(64(1 + 10w?) + 16(112 — 922)w* + 8(176 — 97°)w® + 3(64 — 37%)n?)
+6w2(32 + 8(28 = 372%)w? + 2(112 = 922)w* + (32 = 322)w®) Q% + 372w*(2 + w?)2 0%

—2w*27 7w (4 4+ w?)? — 192(1 + 10w? + 28w* + 22w + 3w®) + 128D (1 + w?)*

+ w2 (192(1 4 Tw? + Tw* +wO) — 1822w (8 + 6w? + w*)) 0% + 32%w* (2 + w?)?20*)p*}

S {1+ w2)2[768(1 + 10w?) + 48(448 — 272%)w* + 24(704 — 277%)w°

+ 1927w || s a(4 — 2w + 3w + w2 0> {2048D[12 — D(10 — B2)] (B2 + 4)

1
)} + e
+272%(5 — 0?)2(6 + 62 + B*) — 3072(4 — 0*)(8 + 64> + p*)
—96[16a% + zsta(5 + Q) (B +4)*2|B]]}, (99)

1
5(05 —05) = . {{64(1 +10w?) 4+ 16(112 =972 )w* + 8(176 — 972 ) w0 + 3(64 — 372 )wd — 128D (1 +w?)*

32w (14+w?)
+ 64w (1 —w?)2a% —2w2[32 = w2 (372(8 + 6W? +w) = 32(7 4+ Tw? +w*))]| 0% — B2w* (2 +w?)20*} ||

1 2+4
(2_‘_26?::?2;2)3/2{(16+4W2+15w4)(1—|—w2)2—|—6w2(4+2w2+w4+3W6)ﬂ2+2w4(4_2W2+3w4)ﬂ4
w w -
- 2257% —4096 +2048D? +2(512 —457%) 0> + 972 O*
+w2[2+w2(3—w4+6(1+w2)ﬂ2+2w2/}4)}Q2}}_|ﬂ|[ n + 2:6( 72)0% +9720"]
+al5(14 4+ 62 + ) + (2 + 652 + 4 O?
L malS(14 465+ 5 + (2465 + 50 (100)

8(47 +4)7°

B. Velocity effects on magnification relations

The velocity effects on the coefficients of the zeroth-, first-, and second-order contributions to the magnifications of the
positive- and negative-parity images shown in Egs. (57)—(59) are presented, respectively, as follows:

1+5+p° 42
Sy =+ AL +2 ’ Hov
Al B +2(1+L) 2BV +4
3r(1+4) — 1650 _ 71 4 2)0%  34(5- 0?) - 165*a
St = — Al 430 B = a1 3907 | 3a(5 - 0°) — 165%a (102)

16[8% + 2(1 + )32 * 16(5* + 4)3/2
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. (142 +A2 282 +3(1+5) P £ B(1+5)° +8(1+52)8° +48%18l/#° +2(1+35)
//[ =
2 31l [P 20+ 5] [+ 2010+5) <18l B+ 201 +5)
Sef 4\ Asta xf 2\ [ 1 ol 12 VAR RE
X{gh(HF) _T_Z<HF)Q] +4{ﬁ +2<1+W>H4D i (”W) —4(24+6D—-9D )<1+W>
2/ 45 15 1 32\ .. 1. 6 1\, =nstad?
-3 {g <5+W+W_$) —2n(;+$> sia+2<1 +W> a2—2<1 +W+F> 0+ ] }}

_BHAP B+ £GP+ BV AP
A3(P* £ ||/ 4+5) (PP +4£ Bl 4+/7)
—768(1+/%)a> - 613572 —512(4+ )| Q% + 8122 Q* + 967msTa[5(7T+44%) + (1-26%) 0*]}. (103)

{3[6757% —4096(4+ )] = 1024D(4+p*)[12—D(18+%)]

Moreover, base on Egs. (61)—(65), the velocity effects on the zeroth-order difference, first- and second-order sum and
difference relations for the coefficients of the signed magnifications are presented, respectively, as

L[ 14+5m+p 2442

S(ug — uy :—[ W - ] 104
(g — Hg) 7] \/ﬂ2+2(1+§) Ny (104)

o [3(5-0% 3(1+&H-(1+2)0°
5(ﬂ1++,“1) _g{(4+ﬂ2>3/2_ [ﬂ2+2(1 _'_%) 3/2 }’ (105)
S(uy — uy) =2s+&{ 1 S } (106)

wif +2(1+ )2 (4+p7)2

L msta 16+4W2+15w4+4w2(2+3w2)ﬁ2+w2(2—w2—2W2ﬁ2)Q2_5(7+4ﬂ2)+(1—2ﬂ2)Q2}

o 45~ PRV EEE S
Sy —uy) = 9307 |/3|(2+;w2 +W2ﬁ2)5/2{—3[256(1 + 10w?) 4 16(448 — 2772 )w* + 8(704 — 2772)w® 4 3(256 — 972 )w®

+512(2=3D)D(1 +w?)* +128w?[2(11D —6)D(1 +w?)3 =3 (1 +9w? + 19w* + 3u®)|

+256D>wH (1 +w?)2p* = 384w* [2(1 —w? +w*) +w? (1 +w?)p%]a>

+6w2[128 +8(112 = 972)w? 4 (896 — 5472 )w* + (128 — 972 )W + 64w? (1 + 6w? +w*) 2| 0?
1

192|B](4+ %)

—768(1+f2)a® — 613522 = 512(4 4 2)] 0 + 81220} (108)

+ 92w (2 +w?)2 0%} -

57313[6757 —4096(4 + )] — 1024D (4 + ) [12 = D(18 + )]

Note that the velocity effects on the total magnification can be indicated by Eqgs. (104), (106), and (108).
Finally, according to Eqs. (72)—(74), we also give, respectively, the velocity effects on the coefficients of the zeroth-,
first-, and second-order contributions to the scaled magnification-weighted centroid

B~ 1 w?
00, = - , 109
cent,0 2 2 4 /}2 1 4 W2 + W2ﬂ2 ( )

20442 w(l+w? +2w2ﬁ2)], (110)

5@uen = sTa -
cent,] = 5 a{(2+ﬁ2)2 (1 +w? +w?p?)?
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5®cent,2 =

321p|

B[\ 8+ 201+ ) + 11201

+¢)+( B +2(1

+)+18) ][40+ (R 20+ +181)

X {|ﬂ|[9(1 +w?)* 60w (1 +w?)3 42 +108w* (1 +w?)2* + 72w (1 +w?) B0 + 16wS B8] + \ [ B +2<1 —|—%>

X [(14+w?)* +20w? (1 +w?)3 % +60w* (1 +w?)2p* + 56w (1 +w?)B° + 16w8ﬁ8]}

x {384w*[1 +w* + w2 (1 +w?) 224+ w? (24 %)|a* 4 (1 + w? + w?p?) {768 + 384w? (20 + 5?)

—81x2

wH(44+w?)2 4 384w*[56 + 947 +w? (44 + 196%) + 3w (2 + %)) — 1536 Dw? (1 +w?)2 B2 (2 + 2w? +w?f?)

+256D%(14+w?)[=2(1+w?)3 + 17w (1 +w?)?52 + 13w* (1 + w?)p* + 2w )

—6w?[128 — 9%w?
RO+ N+ B +57)

(84 6w? +w*) + 64w (14 + 2 +w* (24 ) + 202 (7 +342))]| 0* — 92w*
WVA+A +1BIB3+B)B+A(3+4°)]

(2+w? 0"}

}{768(4+5ﬂ2+ﬁ4 -2+

12(4482) 2+ 2+ +|BV/4+ )
x [20257% +1024(4+ %) ((2 - p*)D* +

(Va+p+1p)’°
(6—9D)Dp? —12) —6(1357> = 512(4 + ) 0 + 81720}

(111)

C. Velocity effects on scaled differential time delay

Similarly, the velocity effects on the coefficients of the zeroth- and first-order contributions to the scaled differential time
delay between the positive- and negative-parity images can be obtained from Egs. (91) and (92),

1 —3w?

5Mo—|i;|{é\/ﬁ2+2<l+%>—\/ﬂ2+4]+ —

prai+E -l (Jﬂ— YISO iy
P +2(1+L5) +1p VB A=

32(5-0%)|p| [ 4w
OAT, = -1
o 16 1+ w? Jr8w(1+w2

)2(2 4+ 2w? + w?p?)

{n[3(4 +uw?) = (2+w?) 0

x [2(1 =2w? = 3w*) + w2 (1 = 3w?) )| + 16wsTa2(1 + w?)(1 + w*) +w?(2 — w? + w*)p?]

x \/ﬁ2+2<1+$>}—s+&\/4+ﬁ2.

Finally, it is recognized that the terms on the right-hand
side of Egs. (93)—(113) will vanish in the limit w — 1.

VI. LENSING BY THE GALACTIC
SUPERMASSIVE BLACK HOLE

As an application of the analytical results given above,
we model the supermassive black hole at the Galactic
Center as a KN lens. Since the null lensing observables for
the scenario where Sagittarius A* acts as a Schwarzschild
lens have been studied in detail in the previous works (see,
e.g., [1,21]), in this section we concentrate on the analysis
of the velocity-induced correctional effects on the practical
observables of the lensed images. The possibilities of their
astronomical detection will also be discussed.

(113)

A. Basics

The basic parameters under consideration are given as
follows. The mass of Sagittarius A* and the distance to it
are M = 4.2 x 10° M [109,110] and d; = 8.2 kpc [109],
respectively, with My (= 1.475 km) being the mass
of the Sun. The special angular gravitational radius is
8. =5.06 yas. The natural lensing timescale is
7 = 82.6 s. Since the distance of the source from the
lens is much smaller than d; in general, we may assume
d; s = 0.01 kpc. Hence, D =1.22 x 1073, the angular
Einstein radius is 9z = 0.071 as, and the small dimension-
less parameter is & = 7.12 x 107>, For the convenience of
discussion, the initial velocity of the relativistic massive
particle is assumed to have a rough range of 0.05 <w < 1.
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Moreover, we know the spin and electrical charge of a
massive black hole are determined by the competition
between many physical processes. Since the observational
evidences indicate that the Galactic supermassive black
hole may have high spin parameter [111-115] and very
weak electrical charge [116-119], we adopt a = 0.9 [111]
and then Q = 7.56 x 10713 (the equilibrium Wald charge)
[117,118] for Sagittarius A* in our scenario.

Considering the complexity resulting from the motion
direction of the particle relative to the rotating lens (indicated
by the sign parameter s), we take the positive-parity image
with || = p and a sign parameter st € {+1,—1} as an
example to perform our discussions of the image properties.
We follow the idea of Ref. [20] to take the domain [0.01, 10]
for the scaled angular source position . Notice that the sum
and difference relations for the coefficients of the signed
positions or magnifications, as well as the centroid and
differential time delay given above, have been formulated in
terms of the quantities including s*.

It should be pointed out that the magnification is related
to the image flux F(= Fy+ Fie + Fye*> + O(&?)), which
is one of the practical lensing observables, via F; = |u;|F
[2]. Here, i € N, and F,(> 0) denotes the intrinsic flux of
the particle’s source without experiencing the lensing
effect. To relate with the practical observations, we use
the old lensing quantities (9, B, F, E .y, 7) rather than the

B. Result: Velocity-induced effects
on the observables

The velocity effects on the zeroth-, first-, or second-order
contribution to the lensing observables (including the sum
and difference relations for the positions and fluxes) of the
primary and secondary images can be written in terms of
the quantities (9, B, F, E.eni, 7) as follows:

59 el = 9,507 ¢, (114)

SFle = Fouj e, (115)

OB centi€ = 90O en €', (116)
SAt;el = tpSAL e/, (117)

S(9F + 9-)el = 9,5(07 + 07 e, (118)
S(FF + Fr)e = Foout Fu0)es (119)

where i € {0,1,2} and j € {0,1}. Note that 5Az;e/ is
roughly of the order of /12, since 7y is of the order of
d; De*. In order to analyze the image flux more conven-
iently, three auxiliary differential apparent magnitudes
resulted from the deviation of w from c¢ are defined as

OF§ + 6F e+ 6F5 &

F(_;_lwzl +FT|w:18+F;—|w:l€2

S(FS+Fy)+8(Ff+F)e+6(Ff +F5)ée?

+ 0(»33)} , (120)

scaled quantities (0,5, i, O, 7) In  this  section,
with Eeep = 9Ocent- |
om; =-25Ig [1 —1—%] =-251g {1 +
om,=-2.5lg {1 —1—%] =-2.5lg [1 +
omsy=-2.5lg [1 +H} =-2.5Ig [1 +

Figure 6 shows the color-indexed velocity effects on the
zeroth-, first-, and second-order contributions to the pos-
itive-parity image position, as well as on the sum and
difference relations for the positive- and negative-parity
image positions, as the bivariate functions of w and S for
prograde (s* = +1) orretrograde (st = —1) motion of the
massive particle. For the readers’ convenience, the magni-
tudes of these velocity effects for particle’s prograde
motion are presented in Table I. According to the results
given in Fig. 6 and Table I, three aspects are summarized.
First, for a given angular source position f in its domain, it
is found that the velocity effects on the zeroth-, first-,
and second-order contributions to positive-parity image

(F3+F6)|vv=l+(FT+F1_)|w=1€+(F3_+F5)|w=182

+(’)(e3)], (121)

S(F{ —F)e+8(F5 —F5)é?

Fy+(F{ =F7)|ym164 (F3 = F3)|21 €

+(’)(e3)} (122)

position, as well as on the zeroth- and second-order
positional sum relations, increase monotonically with
decreasing w. It also applies to the velocity effect on the
first-order positional sum relation when st = —1. Contrary
to this trend, the velocity effect on the second-order
positional difference relation decreases when decreasing
w from 1 to 0.05, for a given . Compared with them, the
velocity effect on the first-order positional sum for
sT = +1 and a given f within the domain 3.3 S48 <10
first increases to a maximum value and then decreases with
the decrease of w, although the value of w for the peak value
of the velocity effect varies with . Moreover, we find the
velocity effect on the first-order positional difference
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FIG. 6. 897, 69 e, 695 €%, 8(8§ + 95). (9] £ 97)e, and 5(9; + 95)e? displayed in color-indexed form as the bivariate functions
of w and f, for the particle’s prograde (s™ = +1) or retrograde (st = —1) motion. The values of the related parameters are given in
Sec. VIA. Note that we do not show 595 ¢* and 5(95 + 95 )& for the case of s™ = —1, since it is hard to distinguish them from the
corresponding results for the case of s* = +1, respectively. Note also that 5(9] — 97 )e and §(9; — 95 )&? may take negative values for
0.05 <w < land 0.01 < g < 10. Here and thereafter, a white region of a figure indicates the value domain where the magnitude of the
velocity effect is too large or too small to be shown properly, and we do not fill them by adjusting the value range for the convenience of
display.
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TABLE I. The magnitudes (in units of uas) of 39, 59 e,
595 €%, 5(9§ + 95), (97 £ 97)e, and 5(95 + 95 )e? for various
w and . Hereafter, our attention is focused on the absolute value
of magnitudes of the velocity effects when analyzing their
measurability. The star “x” denotes the magnitude whose

absolute value is less than 0.05 pas (the capability of NEAT).

Aw  0.05 0.1 0.5 0.9 0.999999
() 89
0.01 934 x 105 4.34 x 105 4.13 x 10* 4.05 x 10° *
0.1 934x10° 433 x105 4.12 x 10* 4.04 x 10° *
0.5 932x10° 432x10° 4.05x 10* 3.93 x 10 *
I 927x10° 426x 105 3.84 x 10* 3.64 x 10° *
5 830x10° 3.44x10° 1.88 x 10* 1.54 x 10° *
10 7.04x10° 2.55x 105 1.03 x 10* 8.16 x 10? *
(b) 89/ e for s = +1
0.01 651 6.22 3.13 0.48 *
0.1 6.71 6.38 3.13 0.47 *
0.5 7.54 7.06 3.09 0.44 *
1 8.39 7.72 2.94 0.38 *
5 9.26 7.23 0.92 0.08 *
10 7.68 4.73 0.29 * *
(c) 895 € for sT = +1
0.01 2.06 0.27 * * *
0.1 2.05 0.27 * * *
0.5 1.99 0.25 * * *
1 1.92 0.23 * * *
5 1.43 0.13 * * *
10 0.97 0.06 * * *

() (93 +93)
0.01 1.87 x 10° 8.67 x 105 8.25 x 10* 8.10x 10>  0.07
0.1 1.87x10° 8.67 x10° 8.25 x 10* 8.09 x 10>  0.07
0.5 1.86x 10° 8.63 x 105 8.09 x 10* 7.87 x10°  0.07
1 1.85x 10° 8.53 x 105 7.67 x 10* 7.28 x 10>  0.06
5 1.66 x 10° 6.87 x 105 3.77 x 10* 3.08 x 103 *
10 1.41x10° 5.10x 10° 2.06 x 10* 1.63 x 10° *

(e) 5(97 + 97)e for st = +1

0.01 8.87 8.73 5.35 0.94 *
0.1 8.66 8.54 5.25 0.92 *
0.5 7.79 7.68 4.82 0.88 *
1 6.87 6.78 4.42 0.84 *
5 4.74 4.83 421 0.88 *
10 4.58 4.81 4.37 0.90 *
() 6(97 — 97)e for sT = +1
0.01 4.16 3.71 0.92 * *
0.1 4.76 4.23 1.01 * *
0.5 7.29 6.43 1.36 * *
1 9.92 8.65 1.46 —0.08 *
5 13.79 9.63 —2.38 -0.73 *
10 10.78 4.64 —3.80 —0.86 *
(g) 6(95 + 95)e* for sT = +1
0.01 4.12 0.54 * * *
0.1 4.12 0.54 * * *
0.5 4.13 0.54 * * *
1 4.13 0.54 * * *

(Table continued)

TABLE 1. (Continued)

P\w 0.05 0.1 0.5 0.9 0.999999
5 4.30 0.63 * * *
10 4.84 0.86 * * *
(h) 5(95 — 95)e* for s = +1
0.01 * * * * *
0.1 * * * * *
0.5 -0.15 * * * *
1 -0.29 —0.08 * * *
5 —1.45 -3.71 * * *
10 -2.90 -7.41 * * *

relation first decreases to a minimum value and then
increases to some value with decreasing w for a given f.
The magnitude of it can be positive, negative, or zero. It is
interesting to find that its zero-value region has an
approximate C sharp with a short tail. Second, we consider
the possibilities to detect the velocity-induced effects
qualitatively. One can see from Fig. 6 and Table I that
the magnitude of the velocity effect on the zeroth-order
contribution to the positive-parity image position or the
positional sum relation for almost all relativistic massive
particles is much larger than current observational accuracy
(~pas). For instance, the magnitude of §(9] + 9;) with
p = 0.5 still exceeds the NEAT’s accuracy (0.05 pas) for an
ultrarelativistic massive particle with an initial velocity w =
0.999999 (such as a common neutrino [120,121]) as the test
particle. We also notice that there is a large possibility to
detect the velocity effect on the first-order contribution of the
primary-image position or the positional sum relation, since
their magnitudes are much larger than 0.05 pas for most
relativistic massive particles (with a rough range of
0.05 <w <0.8) and a given f € [0.01, 10]. The smaller
the source position f is, the higher upper limit the rough
range of w will have for 597 e. The possibility to detect the
velocity effect (focusing on the absolute value) on the first-
order positional difference relation is relatively large, which
requires a proper combination of w and 5. With respect to the
velocity effect on the second-order contribution to the image
position or to the positional sum or difference relation, it is
likely to detect them only when the massive particle has a
relatively small relativistic initial velocity [e.g., w < 0.2 for
5(93 + 97)&%]. Third, it should be mentioned that the
direction of the orbital angular momentum of the particle’s
motion relative to the lens’s rotation may make a difference
to the magnitudes of these velocity effects and their
detection. For example, the difference between the magni-
tudes of §(97 — 97)e for st = +1 and s* = —1 is consid-
erably in excess of 0.05uas for a fixed source position
p € [0.01, 10], provided w is relatively small (e.g., w < 0.5).

We then consider the velocity effects on the image flux
relations. The velocity effects on the zeroth-, first-, and
second-order contributions to the normalized flux of the
positive-parity image and to the normalized-flux sum and
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difference relations are plotted as the functions of w and S
in Fig. 7. The magnitudes of these velocity effects are given
in Table II. Similarly, three aspects with respect to these
results should be pointed out. First, Fig. 7 and Table II show
that for a given f the velocity effect on the zeroth-order
term of the normalized primary-image flux increases

0
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—-6x1077 &'
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—1x107¢
2 4 6 8 10 %
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SFe/F, for s = +1

monotonically with the decrease of w, which holds for
the velocity effects on the zeroth-order sum and second-
order difference of the normalized fluxes. In contrast, the
velocity effect on the second-order contribution to the
normalized primary-image flux or the normalized-flux sum
relation decreases monotonically when decreasing w.

2 ' 4x107 4107
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= & &
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FIG. 7. &F{/F,, 6F{e/F,, oF5e*/F,, 8(F§ + Fy)/F,, 8(F £ F7)e/F,, and 6(F5 + F5)e?/F plotted as the color-indexed
functions of w and § for the particle’s prograde or retrograde motion. We do not show S8Fje?/F, 8(F| + Fy)e/F,, and
8(F3 — F5)&*/F for the case of s* = —1 due to the same reason given in Fig. 6 or the symmetry.
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TABLE II. The magnitudes of 6F( /F,, 6F|e/Fy, 6F5€*/Fy, 8(F§ + Fy)/Fs, 8(F{ + Fy)e/F,, and 8(F5 +
F3)e*/ F for various w and 3. Here, the black triangle “A” denotes the magnitude whose absolute value is less than

1.0 x 107°.
P\w 0.05 0.1 0.5 0.9 0.999999
(a) 6F; /F,
0.01 657.99 305.32 29.06 2.85 2.50 x 1075
0.1 65.78 30.52 2.90 0.28 2.49 x 107
0.5 13.08 6.03 0.55 0.05 A
1 6.42 291 0.23 0.02 A
5 0.98 0.33 5.72x 1073 3.14x 10 A
10 0.33 0.08 472 x 107 233 x 1073 A
(b) 5Fe/F, for st = +1
0.01 1.53 x 1073 1.26 x 107> A A A
0.1 1.52 x 1075 1.25 x 1075 A A A
0.5 1.37 x 1075 1.10 x 1073 —1.20 x 107° A A
1 1.01 x 1073 7.43 x 1076 —3.00 x 107° A A
5 —1.84x 1076 —3.80 x 107° —1.89 x 107°° A A
10 —2.29 x 107° —2.95 x 107° A A A
(c) SFF€*/F, for st = +1
0.01 —1.47 x 1073 -1.92 x 10~ —2.19x 107° A A
0.1 —1.47 x 1074 -1.92x 1073 A A A
0.5 -2.93 x 107 —3.83 x 107° A A A
1 —1.46 x 1073 —1.90 x 10°° A A A
5 —2.80 x 107° A A A A
10 —1.23 x 107° A A A A
(d) 8(Fy + Fg)/F
0.01 1315.98 610.63 58.11 5.70 5.00 x 1075
0.1 131.56 61.03 5.80 0.57 498 x 10°°
0.5 26.15 12.06 1.10 0.10 A
1 12.84 5.82 0.47 0.04 A
5 1.96 0.67 0.01 6.28 x 1074 A
10 0.67 0.16 9.43 x 107 4.67 x 1073 A
(e) 8(Ff + Fy)e/F, for sT = +1
0.01 —1.59 x 1073 —1.56 x 1075 -7.91 x 10°° A A
0.1 —1.58 x 1073 —1.55x 1075 —7.87 x 10°° A A
0.5 —1.45 %1073 —142 %1073 —6.82 x 10°° A A
1 —1.14 x 107 —1.10 x 1073 —4.44 % 107° A A
5 A A A A A
10 A A A A A
(f) 5(FT_FI_)8/F5
0.01 4.65 x 107 4.07 x 107 7.33 x 107° A A
0.1 4.63 x 107 4.05x 1075 7.20 x 107° A A
0.5 420 % 1075 3.62 x 1073 4.41 % 107° A A
1 3.16 x 1077 2.59 x 107? —1.57 x 107° —1.43 x 107° A
5 —2.96 x 107° —7.15 x 107° —4.20 x 107° A A
10 —4.56 x 107° —6.01 x 107° A A A
(@) 8(F5 + F3)e*/F,
0.01 -2.93 %1073 -3.84 x 107 —4.90 x 107° A A
0.1 -2.93 x 10~ —3.84 x 107° A A A
0.5 —5.86 x 107 —7.68 x 107° A A A
1 —2.93 x 1075 —3.82 x 107° A A A
5 —5.61 x 107° A A A A
10 —2.46 x 107° A A A A

(Table continued)
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TABLE II. (Continued)

P\w 0.05 0.1 0.5 0.9 0.999999
(h) 8(Fy — F5)e?/F for st = +1
0.01 1.23 x 107 1.20 x 1076 A A A
0.1 A A A A A
0.5 A A A A A
1 A A A A A
5 A A A A A
10 A A A A A

Differently, the velocity effect on the first-order contribu-
tion to the normalized image flux or the normalized-flux
difference relation experiences a trend of first decrease and
then increase with decreasing w for a given (1 < f < 10).
Contrary to this trend, the velocity effect on the first-order
contribution to the normalized-flux sum relation first
increases and then decreases when decreasing w, with a
fixed #(2 < < 10). Second, we discuss the possibilities to
detect these velocity effects. The results presented in Fig. 7
and Table II indicate that there is a relatively large
possibility to detect the velocity effect on the zeroth-order
contribution to the normalized flux of the positive-parity
image or the normalized-flux sum. For instance, for the
case of w= 0.9 and g =1, 6F] /F, and 8(F§ + Fy)/F,
can reach approximately 0.02 and 0.04, respectively. The
resulting differential apparent magnitudes (6m ), and

w
log;g [0 cent,0/ 1as]

2 4
B

=
log;o [0AT¢/min]

(5A’To

6

0Zcent1 € for sT = +1

: 1.25
: 1.00
: 0.75
; v 0.50
: 0.25
4 6 8 10 °
B

SAT e for st =41

(6m5) yerorn are about —0.019 mag and —0.033 mag, respec-
tively, whose absolute values are much larger than the
photometric precision of the Kepler mission. Interestingly,
we notice that it is likely to detect the velocity effect on the
second-order contribution to the normalized image flux or
the normalized-flux sum relation in current resolution,
provided both w and g take small values. For example,
if w=0.06 and f =0.025 are preset, the differential
apparent magnitude (6m;)..0ng Tesulting from the velocity
effect 5(F5 + F5)e*/F, will have a value of 18.56 umag,
which is larger than Kepler’s precision evidently.
Moreover, there is a small possibility to detect the velocity
effect on the first-order contribution to the normalized-flux
difference relation for very limited values of w and f. For
instance, the differential apparent magnitude (6m3)g.
caused by S(F| — F)e/F is about 11.95 ymag for the
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FIG. 8. 0Zceni0s 0Zcent 1€ 0 ceni 262, OATy, and SAz e plotted as the color-indexed functions of w and .
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TABLE IIL

The magnitudes (in units of pas) of 0= ..o,
0% ceni 1€ and 6Z.qy &> for various w and B. Here the star
denotes the magnitude whose absolute value is less than 0.05uas.

L\w 0.05 0.1 0.5 0.9 0.999999
(a) 5Ecent.0
0.01 * * * * *
0.1 17.57 17.31 10.58 1.85 *
0.5 1.96x10° 1.93x10° 1.13x 10> 186.20 *
1 1.17 x 10* 1.15x 10* 5.92x 10> 858.14 *
5 1.54x10° 1.29x 10° 1.64 x 10* 1.42 x 103 *
10 277x10° 1.71 x 10° 9.94 x 10> 798.54 *
(b) 6Zcen 1€ for st = +1
0.01 2.05 1.82 0.45 * *
0.1 2.05 1.82 0.45 * *
0.5 2.02 1.80 0.43 * *
1 1.80 1.57 0.25 * *
5 0.10 -0.11 -0.23 * *
10 -0.13 -0.25 -0.08 * *
(C) 5Ecenl,282
0.01 * * * * *
0.1 * * * * *
0.5 0.07 * * * *
1 0.14 * * * *
5 0.65 0.12 * * *
10 0.94 0.10 * * *

TABLE IV. The magnitudes of §Az, (in units of minutes) and

O0A7;¢e (in units of seconds) for various w and .

case of w = 0.27 and f = 3.5. Compared with them, it is
not possible to measure in current precision the velocity
effect on the first-order contribution to the normalized
image flux or the normalized-flux sum relation or on the
second-order normalized-flux difference relation. Finally,
we stress that the influence of the sign of L on the velocity
effects on the image flux relations is limited, and the
qualitative conclusions are not changed when s* takes a
different value.

Now we discuss the velocity-induced effects on the
zeroth-, first-, and second-order contributions to the cent-
roid, which are shown on the top of Fig. 8 in color-indexed
form for the scenario of Sagittarius A*. Their magnitudes
for various w and f are listed in Table III. We can see from
Fig. 8 that the velocity effect on the zeroth- or second-order
contribution to the centroid increases monotonically with
the decrease of w when the angular source position is fixed.
This is not the case for 62, € with s™ = +1. It decreases
first to a minimum value and then increases with decreasing
w for 1 < f < 10. However, it will monotonically increase
with decreasing w when 0.01 < g < 1. For s = —1, the
behavior of 0Z ., | € is then reversed. As to the possibilities
to detect them, Fig. 8 indicates 6=, is very likely to be
detected, as long as f and w do not take very small and
ultrarelativistic values, respectively. We argue that it is also
possible to detect the velocity effect on the first-order
contribution to the centroid position with a proper combi-
nation of f and w. It is only when w and f take,

Aw 005 0.1 0.5 0.9 0.999999
(a) 8AT,
0.01 0.01 001 729%x1073 141x103 1.38x1078
0.1 011 0.11 0.07 0.01 1.38 x 1077
0.5 059 0.9 0.38 0.07 7.10 x 1077
1 135 133 0.85 0.16 1.54 x 107°
5 36.41 34.88 14.24 2.00 1.85 x 1075
10 27427 244.15  62.68 7.71 7.02 x 1073
(b)) 8At e for sT = +1
0.0l 029 0.14 0.01 737 x 107* 536 x 107
0.1 034 0.16 0.01 826 x10™*  6.01 x 107°
0.5 055 026 0.02 127 x 1073 9.24 x 107°
1 0.82 0.39 0.03 191 x 103 1.40x 1078
5 295 141 0.14 821 x 1073 6.12x 1078
10 564 272 0.27 0.02 1.22 x 1077
(by) 8At e for sT = —1

0.01 —0.28 —0.13 —-0.01 —7.17 x 107* =522 x 107°
0.1 -023 -0.12 —0.01  —6.33x107™* —4.62 x 107
0.5 -0.02 —-0.01 —2.62x 1073 —3.00 x 107* —2.31 x 10~
1 025 0.12 624x1073 252x10° —1.73 x 10710
5 239  1.12 0.06 1.46 x 1073 8.10x 107
10 5.04 235 0.13 294% 1073 1.63x1078

respectively, small and relatively large values that a
possibility to observe 6E.,¢> in current resolution
exists.

Finally, we turn our attention to the velocity effects on
the differential time delay between the primary and
secondary images. The velocity effects on the second-
and third-order contributions to the differential time delay
as the color-indexed functions of w and f are plotted on the
bottom of Fig. 8, and the magnitudes of these velocity
effects are given in Table IV. For a fixed g € [0.01, 10] and
the prograde motion the massive particle takes, both dA7,
and SAr e increase monotonically with decreasing w.
This conclusion holds for dAz;e when the particle takes
retrograde motion, with 0.54 < < 10. However, it is
surprising to find that the velocity effect on the third-order
contribution to the differential time delay for the case of
sT = —1 decreases with the decrease of w, supposing
0.01 < <0.54. It indicates the sign of L affects the
behavior of §Ar,e. Furthermore, with the present differ-
ential VLBI accuracy (~107'2s), it appears that the
velocity effect on the second- or third-order contribution
to the differential time delay is measurable, whether the
value of s* is +1 or not.

VII. SUMMARY

In this paper we have studied the weak-field gravitational
lensing of a relativistic neutral massive particle induced by
a Kerr-Newman black hole in detail. The explicit form of
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the equatorial gravitational deflection angle of the massive
particle up to the 3PM order has been achieved and found to
be in agreement with the result given in the previous
literature. Based on the bending angle, the Virbhadra-Ellis
lens equation has been solved. The analytical expressions
of the timelike lensing observables, which include the
positions, magnifications, and gravitational time delays of
the primary and secondary images, along with the differ-
ential time delay, total magnification, and magnification-
weighted centroid position, have thus been obtained
beyond the weak-deflection limit. The analytical forms
of the correctional effects originated from the deviation of
the particle’s initial velocity w from the speed of light on
the lensing observables of the images have also been
achieved.

The formalism has been applied to the supermassive
black hole at the center of our Galaxy by assuming
Sagittarius A* to be a Kerr-Newman lens. In this situation,
we have concentrated on the analysis of the velocity-
induced effects on the angular position and flux of the
positive-parity primary image, the sum and difference
relations for the image positions and fluxes, the centroid,
and the differential time delay. The behaviors of these
velocity effects acting as the bivariate functions of w and
the scaled angular source position f have been discussed
systematically. Interestingly, it is found that, for a given
angular source position, the velocity effects on the zeroth-
and second-order contributions to the primary-image posi-
tion, centroid position, and positional sum relation increase
monotonically with decreasing w. This trend holds for the
velocity effects on the first-order contribution to the
positional sum for retrograde motion of the particle or to
the primary-image position, on the zeroth-order normalized
primary-image flux, and on the zeroth-order sum and
second-order difference of the normalized fluxes. This
conclusion also applies to the velocity effects on the zeroth-
and first-order contributions to the differential time delay
for particle’s prograde motion. The residual components of
the velocity effects, such as the velocity effect on the first-
order contribution to the normalized image flux, appear

more complex or nonintuitive. Taken overall, it is indicated
that the observable image properties in the massive-particle
lensing scenario are more evident than those in the null
lensing scenario under the same circumstances. We have
also analyzed the possibilities to detect these velocity
effects briefly. It seems reasonable to conclude that the
velocity effects on the zeroth-order contribution to the
primary-image position, positional sum relation, and cent-
roid, as well as the velocity effect on the second-order
differential time delay, are feasible to be detected in current
resolution for most cases. It is also likely to detect the
velocity effects on the first-order contribution to the
primary-image position, the positional sum and difference
relations, and the centroid, as well as the velocity effect on
the third-order differential time delay in many scenarios.
This conclusion applies to the velocity effects on the
zeroth-order contribution to the normalized primary-image
flux and the normalized-flux sum. The possibilities to
observe the residual components of the velocity effects
(e.g., the velocity effect on the second-order contribution to
the normalized image flux) are relatively small or do not
even exist in the present precision. We argue that the
direction of the orbital angular momentum of the particle’s
motion relative to the lens’s rotation has a relatively
obvious influence on the behaviors and detection of the
velocity effects on the first-order contribution to the
positional difference relation and the centroid. It also
applies to the velocity effect on the third-order contribution
to the differential time delay.
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