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Avenida Rovisco Pais 1, 1049 Lisboa, Portugal

3School of Mathematical Sciences, Queen Mary, University of London,
Mile End Road, London E1 4NS, United Kingdom

4School of Mathematics and Statistics, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland
5Institute for Physical Science and Technology, University of Maryland,

College Park, Maryland 20742, USA

(Received 25 February 2022; accepted 14 April 2022; published 17 May 2022)

Gravitational self-force theory is the leading approach for modeling gravitational wave emission from
small mass-ratio compact binaries. This method perturbatively expands the metric of the binary in powers
of the mass ratio. The source for the perturbations depends on the orbital configuration, calculational
approach, and the order of the perturbative expansion. These sources fall into three broad classes:
(i) distributional, (ii) worldtube, and (iii) unbounded support. The latter, in particular, is important for
emerging second-order (in the mass ratio) calculations. Traditional frequency domain approaches employ
the variation of parameters method and compute the perturbation on standard time slices with numerical
boundary conditions supplied at finite radius from series expansions of the asymptotic behavior. This
approach has been very successful, but the boundary conditions calculations are tedious, and the approach
is not well suited to unbounded sources where homogeneous solutions must be computed at all radii. This
work develops an alternative approach where hyperboloidal slices foliate the spacetime, and compactifying
coordinates simplify the boundary treatment. We implement this approach with a multidomain spectral
solver with analytic mesh refinement and use the scalar-field self-force on circular orbits around a
Schwarzschild black hole as an example problem. The method works efficiently for all three source classes
encountered in self-force calculations and has distinct advantages over the traditional approach. For
example, our code efficiently computes the perturbation for orbits with extremely large orbital radii
(rp > 105M) or modes with very high spherical harmonic mode index (l ≥ 100). Our results indicate that
hyperboloidal methods can play an essential role in self-force calculations.

DOI: 10.1103/PhysRevD.105.104033

I. INTRODUCTION

Observations of gravitational waves are providing new
insights into the population statistics of compact binaries
[1] and enabling tests of Einstein’s general relativity in
strong-field, dynamical spacetimes [2]. As present detec-
tors are upgraded and new detectors come online, a wider
range of systems will appear.
One particularly interesting class of sources are compact

binaries where the mass ratio, ϵ, of the smaller to the larger
mass is small. For example, extreme mass-ratio inspirals
(EMRIs) with ϵ≲ 10−4 are sources for the future space-
based LISA detector [3]. Another example are intermediate
mass-ratio inspirals (IMRIs) with 10−4 ≲ ϵ≲ 10−1, which
are sources for both ground- and space-based detectors [4].
Searching for and estimating the parameters of these
binaries requires precise theoretical waveform templates
to compare against the detector data stream.

The small mass ratio of E/IMRIs lends itself to a
perturbative treatment through black hole perturbation
theory, and in particular, the gravitational self-force
approach [5–7]. In this approach one expands the spacetime

metric of the binary as gμν ¼ gμν þ ϵhð1Þμν þ ϵ2hð2Þμν þOðϵ3Þ,
where gμν is the metric of primary, and the hðnÞμν are nth-
order perturbative corrections. Taking this expansion
through second order in the mass ratio [Oðϵ2Þ] is important
for precision tests of general relativity with EMRIs [8], and
enables efficient modeling of IMRIs [9]. The equations

governing the metric perturbations hðnÞμν are obtained by
substituting the expansion above into the Einstein field
equations and solving order-by-order along with appro-
priate regularization schemes to handle the behavior of the
metric perturbation near the secondary [5,10,11]. These
equations can then be solved in the time or frequency
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domains, typically after decomposing the perturbation onto
a spherical or spheroidal harmonic basis.
The majority of self-force calculations have been carried

out in the frequency domain [12–18] where computing the
perturbation reduces to solving a set of ordinary differential
equations (ODEs). The source for each Fourier mode of
the perturbation depends on the orbital configuration,
calculational approach, and the order of the perturbative
expansion.
These sources fall into three broad classes: (i) distribu-

tional, (ii) worldtube, and (iii) unbounded support.
Distributional sources are encountered at first order (in
the mass ratio) when using a point-particle model for the
secondary moving on a fixed orbital radius [12,15,19].
Eccentric orbits, which librate between a minimum and
maximum radius, lead to worldtube sources [13]. This class
of sources also arises when the secondary is modeled using
an effective-source approach where the source is confined
to a compact worldtube around the worldline [20,21].
Finally, sources with unbounded support appear in sec-
ond-order calculations where a vital ingredient of the
second-order source involves products of the first-order
metric perturbation [22].
The long-established approach for obtaining solutions

for each Fourier mode, whether at first or second order, is
through the Green’s function method of variation of
parameters. To generate the physical solution, one con-
structs a basis of linearly independent homogeneous
solutions that satisfy ingoing boundary conditions at the
bifurcation horizon (r → 2M) and outgoing boundary
conditions at spatial infinity (r → ∞). The homogeneous
solutions are typically computed by either constructing
appropriate numerical boundary conditions at finite radii
and numerically integrating into the spacetime or by using
the semi-analytic Mano-Suzuki-Takasugi (MST) method
[23]. One then integrates these homogeneous solutions
against the source term to construct the inhomogeneous
solution.
This approach has been instrumental in previous fre-

quency-domain self-force calculations, but it does have
some drawbacks. For the numerical integration method, the
boundary conditions are formally straightforward to com-
pute from Frobenius or asymptotic series expansions but
deriving them is tedious work. Furthermore, these series
expansions of the boundary conditions must be evaluated in
the wave zone to converge at large radii. For low-frequency
modes, which occur for large radius orbits and some modes
of eccentric orbit calculations [14,24], the wave zone
moves into the very weak field, which means the integra-
tion of the homogeneous solutions accumulates a lot of
error from the many steps the numerical integrator must
take to extend the solution into the strong field.
The MST method avoids these issues by writing the

perturbation as a rapidly convergent series of hypergeo-
metric functions that satisfy the boundary conditions by

construction and can be evaluated at any radius. The
challenge with this approach is finding the coefficients
in these series expansions. For low-frequency modes, this
can be done very efficiently [25] (or even analytically, e.g.,
[26–28]), but for modes with higher frequencies, numeri-
cally finding the coefficients and evaluating the many terms
in the series can be computationally expensive and often
requires the use of arithmetic beyond machine precision
[29]. This makes the MST approach ill-suited to working
with sources with unbounded support as the homogeneous
solutions then need to be evaluated at all radii to employ the
variations of parameters approach. This class of sources is
also challenging for the numerical integration method as
the homogeneous solutions may not even be regular near
the “opposite” boundary to where the boundary conditions
are set.
This work develops a new approach to self-force

calculations that resolves these challenges and works
efficiently for all three classes of sources described above.
We first transform the field equation for the perturbation to
hyperboloidal slices [22,30–32]. These slices provide a
smooth foliation instead of intersecting at the black hole
horizon and spatial infinity. Compactifying the radial
coordinate leads to a regular geometry allowing us to place
both the future event horizonHþ and future null infinity Iþ
on our numerical grid. We do not need to provide data on
the grid boundaries because there are no incoming char-
acteristics into the numerical domain. The resulting boun-
dary conditions are behavioral instead of numerical.
This combination of hyperboloidal slicing and compac-

tification has already proven very successful in time-
domain black hole perturbation calculations [33–43]. For
our frequency-domain implementation, we efficiently solve
the perturbation equations using the spectral methods
developed in Refs. [44,45]. These techniques, expanded
to include the pseudospectrum of perturbations, have been
applied successfully to the study of quasinormal modes
[46–50]. We use the same coordinates employed in these
papers to tackle the self-force problem.
We demonstrate our approach on a scalar-field toy

problem that captures all the key features of self-force
calculations while avoiding additional complexity that
arises in the gravitational case. We show that our method
works efficiently for distributional, worldtube, and
unbounded support sources. We also demonstrate that it
performs well for very large radius circular orbits and very
high spherical harmonic mode indices in combination with
analytic mesh refinement. The paper is organized as
follows. In Sec. II we give the field equation and mode
decomposition on standard t slicing, and discuss the three
classes of sources. In Sec. III we transform the field
equations to hyperboloidal slicing and compactify them.
In Sec. IV we give the details of the spectral numerical
scheme. We present our results in Sec. V for all three
classes of sources and for large radius orbits. In this work
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we adopt the metric signature ð−þþþÞ and use geom-
etrized units such that G ¼ c ¼ 1.

II. FREQUENCY DOMAIN SELF-FORCE
PROBLEM: SCHWARZSCHILD BACKGROUND

The line element for the Schwarzschild solution with
mass M in standard coordinates ðt; r; θ;φÞ is

ds2 ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2ðdθ2 þ sin2θdφÞ; ð1Þ

with fðrÞ ¼ 1–2M=r. The frequency-domain field equa-
tions in the self-force problem for a field ϕ have the generic
form [12,15,19–22,31]

Δϕ ¼ S; ð2Þ

where Δ is a second-order derivative operator on the
Schwarzschild background. We discuss the specific form
of the operatorΔ and the source S for a scalar field example
in the following sections.

A. Scalar-field example

We focus on a scalar self-force (SSF) toy model in this
work. This model captures all the essential features of self-
force calculations while avoiding subtle technical issues in
the gravitational case, such as gauge choices. We follow
Ref. [20] and consider a particle of mass μ with scalar
charge q, moving on a geodesic with coordinates xμðτÞ
where τ is the particle’s proper time. In this toy model, the
particle’s motion gives rise to a scalar field, which acts back
on the scalar charge to generate the SSF. The dynamics of
the scalar fieldΦðt; r; θ;φÞ is dictated by the wave equation
in curved spacetime,

□Φ ≔ ∇α∇αΦ ¼ −4πρ; ð3Þ

where ∇α is the covariant derivative with respect to the
background Schwarzschild metric and ρ is the particle’s
scalar density supported on the particle’s worldline,

ρðt; r; θ;φÞ ¼ q
Z

δ4ðxμ − xμpðτÞÞ½−gðxÞ�−1=2; ð4Þ

where g ¼ −r4sin2θ is the metric determinant. This equa-
tion is equivalent to the spin-0 Teukolsky equation [51]. We
must impose appropriate outgoing boundary conditions to
obtain the retarded field, Φret, from Eq. (3). This retarded
field, however, is divergent at the particle. The backreaction
on the particle is calculated from a residual field [52,53]

ΦRðxÞ ¼ ΦretðxÞ −ΦPðxÞ; ð5Þ

where ΦP is a puncture field defined in a region around the
particle that cancels the divergence in the retarded field.
The equations of motion are then given by

uβ∇βðμuαÞ ¼ FαðxpÞ ¼ lim
x→xp

q∇αΦRðxÞ: ð6Þ

For reviews of self-force theory see Refs. [5,6]. For this
work, it is sufficient to know that the residual field can be
calculated either by first computing the retarded field and
then subtracting the singular contribution using the mode-
sum approach [54], or by reformulating Eq. (3) to directly
solve for the regular field using the effective-source
approach [55,56]. How these two approaches affect the
source of Eq. (3) is discussed in Sec. II C.

B. The operator Δ
The operator on the left-hand side of Eq. (2) follows

from decomposing the scalar field into Fourier and spheri-
cal harmonic modes

Φðt; r; θ;φÞ ¼
Z X

lm

ϕlmðrÞYlmðθ;φÞe−iωtdω; ð7Þ

where Ylmðθ;φÞ are the usual spherical harmonics nor-
malized such that

R
YlmY�

l0m0 sin θ dθ ¼ δl
0
l δ

m0
m . Substituting

this into Eq. (3) leads to separatable equations where for
each ðl; mÞ mode the radial equation is governed by

Δlm ¼ d2

dr2
þ 2

ð1 −M=rÞ
rf

d
dr

þ 1

f

�
ω2

f
−
lðlþ 1Þ

r2

�
: ð8Þ

Appendix A discusses the operator Δlm for the Bardeen-
Press-Teukolsky (BPT) [57] and Regge-Wheeler-Zerilli
(RWZ) [58] formulations of black hole perturbation theory.

C. The source S

We now discuss the most common source types in self-
force calculations that appear on the right-hand side of the
Eq. (2). In our examples, the perturbation is a particle of
mass μ moving on a circular geodesic with radius rp.
Circular geodesics can be parameterized by their energy E,
angular momentum L, or azimuthal frequency Ωφ. In terms
of the orbital radius, they are given explicitly as

E¼ fpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−3M=rp

p ; L¼
ffiffiffiffiffiffiffiffiffi
rpM

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−3M=rp

p ; Ωφ¼
ffiffiffiffiffi
M
r3p

s
; ð9Þ

where fp ¼ fðrpÞ. Themode frequency becomesω ¼ mΩφ

and the integral in Eq. (7) becomes a discrete sum over m
modes [12].

1. Distributional source

The first case we consider has a distributional source
with support on the particle’s orbit. This case arises when
we directly solve for the retarded field with a point-particle
source, as is common in black hole perturbation theory.
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The regular field can then be computed using the mode-
sum approach [54].
In our scalar-field example, the source for each mode is

given by decomposing Eq. (4) into spherical harmonic and
Fourier modes as in Eq. (7). The field equation takes the
form

Δlmϕlm ¼ Sd
lm; ð10Þ

where the distributional source is given by [12,20]

Sd
lm ¼ κlmδðr − rpÞ; κlm ¼ −

4πq
Epr2p

ĉlmPm
l ð0Þ; ð11Þ

with ĉlm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ1
4π

ðl−mÞ!
ðlþmÞ!

q
arising from the definition of the

definition of the spherical harmonic function: Ylmðθ;φÞ ¼
ĉlmPm

l ðcos θÞeimφ, where Pm
l ðcos θÞ is the associated

Legendre polynomial. Note that solutions to Eq. (10) are
not unique. We must impose outgoing boundary conditions
to obtain the retarded solution as we discuss in Sec. II D.

2. Worldtube sources

The second scenario we consider has extended sources
with compact support around the particle, i.e., cases in
which the source functions are defined on the compact
worldtube r ∈ ½r−; rþ�, with r− ≤ rp ≤ rþ. These types of
sources occur in eccentric orbit [13,59] and effective-source
[20,21] calculations. We demonstrate our approach with the
effective-source case, where we directly solve for the
residual field. For each spherical harmonic mode we write

ΦR
lm ¼ ϕret

lm − ϕP
lm: ð12Þ

Applying the operator (8) to this equation, and using
Eq. (10), we obtain the differential equation for the residual
field ΦR

lm

ΔlmΦR
lm ¼ Sw

lm; ð13Þ

with Sw
lm as an effective source defined within a worldtube

around the particle

Sw
lm ¼

�
0 if r < r−; r > rþ
Sd
lm − Δlmϕ

P
lm if r− ≤ r ≤ rþ

: ð14Þ

In the scalar toy model, the distributional term Sd
lm is given

by Eq. (11) and the corresponding modes of the puncture
field are given by [20]

ΦP
lm ¼ δðω −mΩφÞ

�
κlm
2

jΔrj þ χlmΔrþ ξlm

�
; ð15Þ

with Δr ¼ r − rp and

χlm ¼ 4qYlmðπ=2; 0Þ
ð2lþ 1Þr2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3M=rp

fp

s
ðE − 2KÞ; ð16Þ

ξlm ¼ 8qYlmðπ=2; 0Þ
ð2lþ 1Þrp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3M=rp

fp

s
K: ð17Þ

The functions K and E are the complete elliptic integrals of
first and second kind, respectively, with arguments
M=ðrpfpÞ. By construction of the puncture field, ΦP

lm;rr ¼
κlmδðr − rpÞ and so it follows for r ∈ ½r−; rþ�

Sw
lm ¼ −

�
2
ð1 −M=rÞ

rf
ΦP

lm;r þ
1

f

�
ω2

f
−
lðlþ 1Þ

r2

�
ΦP

lm

�
:

ð18Þ
3. Sources with unbounded support

Sources with unbounded support arise in various recent
self-force calculations. They appear in second-order GSF
calculations where a contribution to the source for the
second-order metric perturbation comes from the second-
order Einstein tensor, which is computed from quadratic
combinations of the first-order metric perturbation and its
derivatives [22]. The two-timescale approach to second-
order calculations introduces “slow-time derivatives” of the
first-order metric perturbation [22] and the calculation of
these also introduces unbounded support source terms.
Further unbounded support sources appear when modeling
hyperbolic orbits in the frequency domain [60].
In this work we will use the slow-time derivative

calculation to demonstrate how the hyperboloidal approach
applies to sources with unbounded support. For quasicir-
cular inspirals, the main computational challenge when
calculating slow-time derivatives is to compute [22]

ψ ret
lm ¼ ∂rpϕ

ret
lm: ð19Þ

Hereafter we refer to ψ ret
lm as the “parametric derivative” of

the perturbation. Taking an rp derivative of Eq. (10) and
rearranging we find that ψ ret

lm satisfies the equation

Δlmψ
ret
lm ¼ Su

lm; ð20Þ

with the source

Su
lm ¼ ∂rpκlmδðr − rpÞ − κlmδ

0ðr − rpÞ

− 2
ω∂rpω

f2
ϕret
lm: ð21Þ

Note that Su
lm has both Dirac-delta distributions and a term

involving retarded field ϕret
lm which extends all over the

spatial domain (unbounded support). The distribution terms
in this case are also more complicated as they involve both
δðr − rpÞ, and δ0ðr − rpÞ. Thus, both ψ ret

lm and ∂rψ
ret
lm
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exhibit discontinuities at the particle’s orbit fixed by κlm
and ∂rpκlm.

D. The boundary conditions

The physical boundary conditions are typically specified
on t ¼ constant hypersurfaces that intersect the bifurcation
horizon B at r ¼ 2M, and at spatial infinity i0 as r → ∞
(see thin, dashed lines in Fig. 1). These boundary con-
ditions pick the retarded solution whose energy radiates
towards the black hole or to infinity. For compact sources
the asymptotic form of the boundary conditions is given by

ϕret
lmðrÞ ∼

e�iωr�

r
; r� → �∞; ð22Þ

where we have introduced the radial tortoise coordinate
defined as dr�=dr ¼ fðrÞ−1.
For implementation with a numerical scheme, the

oscillations along the t slices means that compactification

of the radial domain leads to an infinite resolution problem
and is therefore avoided within the standard approach
[61–63]. Instead, the unbounded domain is truncated and
the boundary conditions are imposed at a finite radius.
To find the boundary conditions at a finite distance, one

performs a series expansion. For example, the outer
boundary condition towards spatial infinity is often
expanded at some large radius rout in the form

ϕret
lmðroutÞ ¼ eiωr

� X∞
k¼0

almkðωroutÞ−k: ð23Þ

The coefficients alm;k≥1 are determined by substituting the
expansion into the homogeneous equation Δlmϕlm ¼ 0 and
solving the resulting recurrence relation. For the scalar
field, these recurrence relations can be found in, e.g.,
Appendix A of Ref. [20]. Computing these relations is
tedious work, which becomes substantially more involved
for perturbation of Kerr spacetime (e.g., Appendix C of
Ref. [19]) or for gravitational perturbations [15,24].
For the expansion in Eq. (23) to converge, we must have

ωrout ≫ 1. This can be problematic when very low-fre-
quency modes occur as the outer boundary must then move
out very far. The unbounded support source given in
Eq. (21) falls off sufficiently rapidly that the asymptotic
boundary condition is given by just the rp derivative of
Eq. (22)

ψ ret
lmðrÞ ∼� i∂rpωr

�e�iωr�

r
; r� → �∞: ð24Þ

Constructing boundary conditions at a finite radius for the
unbounded support source is more involved as now the
recurrence relation for the coefficients involve coefficients
of the expansion of the retarded field, ϕret

lm, that appears in
the source—see Ref. [64] for an example where such
boundary conditions are computed.

III. HYPERBOLOIDAL METHOD FOR
SELF-FORCE IN FREQUENCY DOMAIN

Hyperboloidal surfaces are spacelike surfaces that
behave like a spacetime hyperboloid near null horizons.
The term hyperboloidal in the literature typically refers to
null infinity [65,66]. We expand the usage of the term to
encompass also other null surfaces, such as the black hole
horizon or the cosmological horizon. Horizon-penetrating
coordinates, such as the original Eddington-Finkelstein or
the Painlevé-Gullstrand coordinates, are hyperboloidal,
which becomes clear when written with respect to the
tortoise coordinate that pushes the black hole horizon to
negative infinity. Naturally, first numerical implementa-
tions of hyperboloidal coordinates in black hole spacetimes
also included horizon-penetrating coordinates [33,34,67].

FIG. 1. Carter-Penrose diagram for the Schwarzschild exterior
region. Thin, dashed lines depict standard Schwarzschild time
surfaces t ¼ constant extending between the bifurcation sphere B
at the horizon r ¼ 2M and spacelike infinity i0 as r → ∞. The
intersection of these time surfaces near B and i0 imply a
coordinate singularity. The domain must be truncated and
boundary data must be imposed near B and i0. Thick, solid
lines depict hyperboloidal time surfaces τ ¼ constant extending
between the black hole horizon Hþ at σ ¼ 1 and future null
infinity Iþ as σ ¼ 0 given by Eq. (25). These coordinates provide
a smooth foliation on the full exterior domain which means that
both the horizon and null infinity can be included in the
computational domain. No external boundary conditions are
needed to study perturbations.

HYPERBOLOIDAL METHOD FOR FREQUENCY-DOMAIN SELF- … PHYS. REV. D 105, 104033 (2022)

104033-5



Therefore, it makes sense to use the term for both the black
hole horizon and null infinity.
The similarity of hyperboloidal coordinates near null

infinity and near the black hole horizon is also visible when
viewed in a Penrose diagram (see Fig. 1 and [31]).
Hyperboloidal coordinates foliate the (future) event horizon
Hþ instead of intersecting at the bifurcation sphere B at
r ¼ 2M, and they foliate (future) null infinity Iþ instead of
intersecting at spatial infinity i0 when r → ∞.
Consequently, we can include the black hole horizon
and null infinity in our computational domain, which
removes the need for the complicated boundary conditions
described in the previous section. Another important
advantage of the method is that the construction only
depends on the background spacetime. In contrast, boun-
dary conditions must be computed separately for each
problem with different sources or different formulations of
the perturbations.
Among the many ways to construct hyperboloidal

surfaces, a convenient and common method is to fix the
coordinate location of null infinity (scri) on the grid [30].
Scri-fixing has the essential advantage of leaving the
timelike Killing field of stationary black holes invariant.
Consequently, coefficients of equations describing black
hole perturbations are time-independent, and the event
horizon and null infinity are fixed at the numerical
boundaries. The scri-fixing method of Ref. [30] to construct
hyperboloidal coordinates consists of three steps:
(1) Introduce a time coordinate that respects the timelike

Killing field and satisfies certain asymptotic con-
ditions.

(2) Map the unbounded spatial domain to a compact
domain.

(3) Rescale the fields for regularity at the domain
boundary.

Level sets of the hyperboloidal time coordinate τ1 penetrate
the (future) black hole horizon at r ¼ 2M, and future null
infinity Iþ as r → ∞ as depicted on the Carter-Penrose
diagram Fig. 1. As both surfaces are incoming null
surfaces, no boundary data is prescribed. The boundary
conditions after the spatial mapping are behavioral as
opposed to numerical in the terminology of Boyd [68].
This implies trivial boundary treatment in spectral methods
after a suitable choice of function space.
There are many specific hyperboloidal coordinates using

scri fixing (see [32] for a review in the context of
Kerr spacetime). Here, we follow [32,44–46] and work
in the so-called minimal gauge. Specifically, the trans-
formation between the original Schwarzschild coordinates
ðt; r; θ;φÞ and the hyperboloidal coordinates ðτ; σ; θ;φÞ
reads

t ¼ λðτ −HðσÞÞ; r ¼ 2M
σ

; ð25Þ

with λ ¼ 4M and the height function

HðσÞ ¼ 1

2

�
lnð1 − σÞ − 1

σ
þ ln σ

�
: ð26Þ

Thus, along τ ¼ constant, Iþ is located at σ ¼ 0 and the
black hole horizon is at σ ¼ 1.
As discussed in Refs. [32,45], this gauge retains the

minimal structure in the coordinate transformation needed
to construct hyperboloidal slices. Consequently, the corre-
sponding equations on black hole perturbation theory
assume the most simple form. Figure 1 shows the level
sets τ ¼ constant in the Carter-Penrose diagram, where the
desired properties become evident: the hypersurfaces pen-
etrate the black hole horizon Hþ, and they extend up to
future null infinity Iþ. For regularity of the transformed
equations, the asymptotic falloff behavior of the unknown
field must be taken into account [62]. The rescaling that
takes out the asymptotic falloff is geometrically related to
the conformal completion of the asymptotically flat back-
ground spacetime [69]. In the frequency domain, the time
transformation Eq. (25) corresponds to a rescaling
[31,32,63]. The scalar field rescales as

ϕ ¼ Zϕ̄; Z ¼ ΩesH; s ¼ −iωλ: ð27Þ

The conformal factor Ω ¼ σ=λ accounts for the scalar
field’s falloff behavior ∼1=r, whereas the exponential term
naturally arises from the Fourier factor e−iωt when the time
transformation in Eq. (25) is taken into account. In this way,
Z automatically incorporates the boundary behavior (22)
via the geometrical interpretation of the height function
from the spacetime perspective. Hereafter will denote the
rescaled quantities with an overline, e.g., ϕ̄.
Equivalent to Eq. (2), the hyperboloidal field ϕ̄ satisfies

Aϕ̄ ¼ S̄; ð28Þ

with the operator A and source S̄ related to the original Δ
and S via

Δϕ ¼ FAϕ̄ ⇒ S̄ ¼ F−1S: ð29Þ

We discuss the rescaling factor F in the upcoming section.
First, let us express the operator A as

A ¼ α2
d2

dσ2
þ α1

d
dσ

þ α0: ð30Þ

An important property is that the transformed operator A
degenerates at the domain boundaries. In other words, the
operator’s principal part α2 vanishes at σ ¼ 0 and σ ¼ 1.

1Not to be confused with proper time, which shall be denoted
by τ in this work.
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Thus, the original considerations about ingoing/outgoing
boundary conditions are recasted into questions about the
underlying solution’s regularity. In practical terms, due to
the vanishing of the coefficient α2 at σ ¼ 0 and σ ¼ 1, the
regularity conditions for a field ϕ̄ satisfying Eq. (28) reads

ðα1∂σϕ̄þ α0ϕ̄Þjσ¼0;
σ¼1

¼ S̄jσ¼0;
σ¼1

: ð31Þ

In this way, the boundary conditions follow directly from
the equation, and no external data is allowed if one seeks a
regular solution. In the above considerations, we assume S̄
is finite at σ ¼ 0 and σ ¼ 1. As discussed, this is the case
for the examples under consideration. A more detailed
study on the regularity classes of S̄ is necessary for the
sources on the two-time scale analysis [22].

A. The hyperboloidal operator A and factor F

The operator A acting on the hyperboloidal scalar field
ϕ̄lm follows from Eqs. (8) and (29) via a factor [32]

F ¼ Z
r2f

: ð32Þ

The original radial coordinate r is understood as the
function rðσÞ according to Eq. (25). The coefficients on
Eq. (30) are

α2 ¼ σ2ð1 − σÞ; α1 ¼ σð2 − 3σÞ þ sð1 − 2σ2Þ;
α0 ¼ −½lðlþ 1Þ þ σ þ 2sσ þ s2ð1þ σÞ�: ð33Þ

The polynomial structure in σ manifests the hyperboloidal
minimal gauge’s simplicity. With the explicit expressions
above, it becomes evident that Alm is a degenerate operator,
i.e., α2 ¼ 0 at σ ¼ 0 and σ ¼ 1. Appendix A discusses the
factorF and operator A for fields with spin weight p ≠ 0 in
both BPT and RWZ formalisms.

B. The hyperboloidal source S̄

We now turn our attention to the transformation of the
different types of source terms discussed in Sec. II C.

1. Distributional sources

The transformation of Eq. (11), where the source term
has delta support on the particle’s orbit, gives

S̄d
lm ¼ κ̄lmδðσ − σpÞ: ð34Þ

The constant κ̄lm relates to the original κlm via

κ̄lm ¼ σ2p
2MF

κlm;

¼ 2M
fp
Zp

κlm: ð35Þ

The first line in Eq. (35) has a generic form, and the
transformation incorporates two terms: a rescaling by F−1

from Eq. (29), and a change of coordinates in the delta
function accomplished by

δðgðσÞÞ ¼ δðσ − σpÞ
jg0ðσpÞj

; gðσÞ ¼ rðσÞ − rp: ð36Þ

In the above expression, rðσÞ is given by Eq. (25). The
second line in Eq. (35) makes explicit use of the functionF
in Eq. (32). In this context, the (hyperboloidal) retarded
field ϕ̄ret

lm is the regular solution to the equation

Almϕ̄
ret
lm ¼ S̄d

lm; ð37Þ

i.e., ϕ̄ret
lm must satisfy Eq. (31) with the right-hand side

S̄ ¼ 0 at σ ¼ 0 and σ ¼ 1. Note that, as opposed to the
standard case, the transformed equation does not allow for
regular advanced solutions. The retarded behavior is not
imposed through a separate boundary condition but
through the equation itself. In order to construct advanced
solutions, one would need to change the causal nature of the
slicing by changing the sign of the height function in (26)
so that the hyperboloidal surfaces extend between past
event horizon and past null infinity.
The delta-function source in the right-hand side of (37)

imposes a jump in the field’s first derivative in the form

ð∂σϕ̄
ret
lmþ − ∂σϕ̄

ret
lm−Þjσ¼σp

¼ J̄p; ð38Þ

with

J̄p ¼ κ̄lm
α2

����
σ¼σp

: ð39Þ

In the above expressions we have defined

ð∂σϕ̄
ret
lm�Þjσ¼σp

¼ lim
ϵ→0

∂σϕ̄
ret
lmðσp � ϵÞ: ð40Þ

2. Worldtube sources

For sources with compact support around the particle’s
orbit, the hyperboloidal residual field Φ̄R

lm satisfies

Almϕ̄
R
lm ¼ S̄w

lm; ð41Þ
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with S̄w
lm defined within the worldtube σ ∈ ½σ−; σþ�. Note

that from Eq. (25) one has rþ ¼ rðσ−Þ and r− ¼ rðσþÞ.
Considering Sw

lm given by Eq. (14), we obtain the trans-
formed expression

S̄w
lm ¼ κ̄lmδðσ − σpÞ − AlmΦ̄P

lm: ð42Þ

As expected, α2∂2
σσΦ̄P

lm ¼ κ̄lmδðσ − σpÞ, so the delta
source cancels out in the right-hand side of Eq. (42). We
are left with

S̄w
lm ¼ α1∂σΦ̄P

lm þ α0Φ̄P
lm: ð43Þ

Alternatively, the rescaling from Eq. (29) applies directly
into the regularized expression (18). As explained, Eq. (31)
fixes the regularity conditions for ϕ̄R

lm. Since S̄lm ¼ 0 at
σ ¼ 0 and σ ¼ 1, the conditions reduce to same as for the
retarded field. In fact, by definition one has

Φ̄R
lm ¼

(
ϕ̄ret
lm; σ ∈ ½0; σ−Þ; σ ∈ ðσþ; 1�

ϕ̄ret
lm − ϕ̄P

lm; σ ∈ ½σ−; σþ�
; ð44Þ

i.e., Φ̄R
lm and ϕ̄ret

lm coincide everywhere outside the world-
tube. Equation (44) fixes the transition conditions at the
boundaries σin;out. Specifically, Eq. (44) imposes

ðΦ̄R
lmþ − Φ̄R

lm−Þjσ¼σin
¼ −ϕ̄P

lmðσinÞ; ð45Þ

ð∂σΦ̄R
lmþ − ∂σΦ̄R

lm−Þjσ¼σin
¼ −∂σϕ̄

P
lmðσinÞ; ð46Þ

ðΦ̄R
lmþ − Φ̄R

lm−Þjσ¼σout
¼ ϕ̄P

lmðσoutÞ; ð47Þ

ð∂σΦ̄R
lmþ − ∂σΦ̄R

lm−Þjσ¼σout
¼ ∂σϕ̄

P
lmðσoutÞ: ð48Þ

Finally, a unique solution follows by fixing Φ̄R
lm at the

particle’s location via continuity conditions

ðΦ̄R
lmþ − Φ̄R

lm−Þjσ¼σp
¼ 0; ð49Þ

ð∂σΦ̄R
lmþ − ∂σΦ̄R

lm−Þjσ¼σp
¼ 0: ð50Þ

3. Unbounded support sources

The transformation of Eq. (20) follows similarly. By
taking the derivative of Eq. (37) with respect to rp one
obtains the hyperboloidal parametric derivative field
ψ̄ ret
lm ¼ ϕ̄ret

lm;rp

Almψ̄
ret
lm ¼ S̄u

lm: ð51Þ

Here, the extended hyperboloidal source reads

S̄u
lm ¼ ∂rp κ̄lmδðσ − σpÞ þ

σ2p
2M

κ̄lmδ
0ðσ − σpÞ þ Cϕ̄ret

lm;

ð52Þ

with the operator C ¼ ∂rpA given by

C ¼ ∂rpsð2σ þ 2sð1þ σÞ − ð1 − 2σ2Þ∂σÞ: ð53Þ

The relation between the original field ψ ret
lm and its hyper-

boloidal equivalent ψ̄ ret
lm does not follow from Eq. (27) in

contrast to ϕret
lm and ϕ̄ret

lm. Because Z depends on rp through
the frequency s, Eq. (27) leads to

ψ ret
lm ¼ Zψ̄ ret

lm þ ∂rpZϕ̄
ret
lm: ð54Þ

The field ψ̄ ret
lm is then uniquely determined via the regularity

conditions at σ ¼ 0 and σ ¼ 1, together with the jump
conditions at the particle location. According to Eq. (31)
the regularity conditions read

ðα1∂σψ̄
ret
lm þ α0ψ̄

ret
lmÞjσ¼0;

σ¼1
¼ Cϕ̄ret

lmjσ¼0;
σ¼1

; ð55Þ

whereas the jump conditions at the particle location are

ðψ̄ ret
lmþ − ψ̄ ret

lm−Þjσ¼σp
¼ σ2pJ̄p

2M
; ð56Þ

ð∂σψ̄
ret
lmþ − ∂σψ̄

ret
lm−Þjσ¼σp

¼ ∂rp J̄p −
σ2pJ̄p
2M

α1
α2

����
σ¼σp

: ð57Þ

C. Energy flux and the self-force

As a consistency check of our calculations, it is useful to
use a flux-balance law and compare our results to those in
the literature. For these we need to compute the energy flux
radiated to infinity and the horizon. In the following
subsections, we derive the balance law and show how to
calculate the energy fluxes from data computed on the
hyperboloidal slices.

1. Flux balance law

The total energy flux must balance the work W done on
the scalar charge by the SSF such that

_Etotal ¼ −W ¼ −μ _E; ð58Þ

where Etotal is the total radiated (scalar) energy, the overdot
denotes a derivative with respect to coordinate time t, and
we have written the work done in terms of the rate of
change of specific energy, E, per unit time. The specific
energy itself is given by E ¼ −ξμðtÞuμ ¼ −gμνξνðtÞu

ν, where

ξμðtÞ is the timelike Killing vector field satisfying the Killing

equation ∇βξα þ∇αξβ ¼ 0. To take advantage of this, we
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transform the derivative that appears on the right-hand side
to a derivative with respect to proper time,

_E ¼ ðutÞ−1uα∇αE;

¼ −gμνðutÞ−1ðuνuα∇αξ
μ
ðtÞ þ ξμðtÞu

α∇αuνÞ;
¼ −gμνðutÞ−1ξμðtÞuα∇αuν: ð59Þ

The term uνuα∇αξ
μ
ðtÞ vanishes due to ξμðtÞ satisfying

Killing’s equation. Since the motion of our particle is
determined by the (self-)forced equation of motion, Eq. (6)
and our timelike Killing vector is given by the Kronecker
delta, ξμðtÞ ¼ δμt , we find from Eqs. (58) and (59)

Ft ¼ μut _Etotal: ð60Þ

Note that we have neglected the rate of change of the mass
per unit proper time, dμ=dτ, as we are in a stationary,
circular orbit configuration. In more general setups, the
mass of the scalar charge can vary due to the SSF
component that is tangent to uα such that dμ=dτ ¼
−uαFα [13,52].
We compute the rp derivative of the self-force from our

calculations involving sources with unbounded support. As
with our original field equation (20), one can take an rp
derivative of both sides of Eq. (60) to find

DrpFt ¼ μð∂rpu
t _Etotal þ ut∂rp

_EtotalÞ: ð61Þ

Note that one must carefully consider the rp derivative on
the left-hand side of Eq. (61), since the operations ∂rp and
limr→rp do not commute with each other. More specifically,
the right-hand side involves quantities evaluated at the
black hole horizon, and at future null infinity. Thus, ∂rp

accounts for the explicit parametric dependence on the
particle’s orbit. The left-hand side, however, must account
for the parametric rp dependence, as well as the contribu-
tion from the field’s value at rp. Hence, for a given quantity
ϖp ¼ limr→rpϖðrÞ, one obtains

Drpϖp ¼ ð∂rpϖðrÞ þϖ0ðrÞÞj
rp
: ð62Þ

2. Hyperboloidal flux

The total radiated energy can be evaluated from the
energy flux vector

εα ≔ −gαβTβμξ
μ
ðtÞ; ð63Þ

where Tμν is the stress-energy tensor of the scalar field [70].
We wish to calculate the flux flowing to Iþ (future null
infinity) and down to the black hole. To do so let us

consider a timelike hypersurface with r ¼ r0 labeled Σ0.
The scalar-field energy flowing through an infinitesimal
surface element of the hypersurface, dΣ0, that spans a small
time dt is given by

dE0 ¼
Z
Σ
εαdΣ0

α ¼
Z
Σ
Tα

μξ
μ
ðtÞdΣ

0
α: ð64Þ

Here dΣ0
α is an outward-pointing surface element on the

section of the hypersurface dΣ0. Since our hypersurface is
timelike, the outward-pointing surface elements are
expressed as dΣ0

α ¼
ffiffiffiffiffiffi
−h

p
nαdtdθdφ, where h is the deter-

minant of the induced metric on Σ0 and nα is the radial unit
normal vector to the hypersurface. Explicitly in terms of the
standard Schwarschild coordinates nα ¼ δrα=

ffiffiffiffiffi
f0

p
and

therefore h ¼ −f0r20 sin2 θ, where subscript “0” means
the function is evaluated at r ¼ r0. Bringing this all
together and substituting the coordinate form of the
Killing tensor, one finds the flux of energy through the
hypersurface Σ0 to be

_E0 ¼ dE0

dt
¼ f0r20

I
Ttrdw; ð65Þ

where dw is the standard differential solid angle.2 Our aim
is to write Eq. (65) in terms of our hyperboloidal coor-
dinates xα

0 ¼ ðτ; σ; θ;φÞ and the hyperboloidal field ϕ̄ðσÞ
to evaluate the radiative flux at future null infinity (σ ¼ 0)
and the horizon (σ ¼ 1). By transforming the stress-energy
tensor of the scalar field Tαβ into our coordinates, we find

Ttr ¼ −
σ2

2Mλ
ðTττH;σ þ TτσÞ: ð66Þ

It follows from Eq. (26)

∂σH ¼ 1 − 2σ2

2σ2ð1 − σÞ : ð67Þ

As discussed in Appendix B, evaluating Tττ and Tτσ in
terms of the conformal field and noting in our hyper-
boloidal coordinates, fðσÞ ¼ ð1 − σÞ, we find remarkably
simple expressions for the flux integrands:

f0ðTττH;σ þ TτσÞjσ0¼0 ¼
1

8πλ2
ð∂τΦ̄Þ2; ð68Þ

f0ðTττH;σ þ TτσÞjσ0¼1 ¼ −
1

8πλ2
ð∂τΦ̄Þ2: ð69Þ

Therefore our flux expressions become

2This is written differently than the normal convention dΩ, so
as to not be confused with the conformal factor Ω introduced in
Eq. (27).
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_EIþ
≔ þ _E0jσ0¼0 ¼

1

16πλ2

I
ð∂τΦ̄Þ2jσ¼0dw; ð70Þ

_EHþ
≔ − _E0jσ0¼1 ¼

1

16πλ2

I
ð∂τΦ̄Þ2jσ¼1dw; ð71Þ

where our sign convention is chosen such that the outflow
of energy towards Iþ is positive and the inflow of energy
towards the horizon is negative. The Fourier and spherical
harmonic mode decomposition of the conformal scalar field
given by

Φ̄ðτ; σ; θ;φÞ ¼
X
l;m

ϕ̄lmðσÞYlmðθ;φÞesτ ≔
X
lm

Φ̄lm; ð72Þ

allows us to make the replacement ∂τΦ̄lm ¼ sΦ̄lm. If we
substitute this into Eq. (71), the integral is readily evaluated
with the standard spherical harmonic orthogonality rela-
tion, leaving us with succinct expressions for the flux at the
horizon and infinity,

_EIþ ¼ 1

16πλ2
X
lm

jsϕ̄lmj2σ¼0; ð73Þ

_EHþ ¼ 1

16πλ2
X
lm

jsϕ̄lmj2σ¼1: ð74Þ

If we are to compare our results with the parametric
derivative of the field, ψlm, then we need to compute
the rp derivative of the flux. As our conformal field is
complex, we find

∂rp
_EIþ ¼ 1

16πλ2
X
lm

Re½sϕ̄lmð∂rpsϕ̄lmþsψ̄lmÞ��σ¼0; ð75Þ

∂rp
_EHþ ¼ 1

16πλ2
X
lm

Re½sϕ̄lmð∂rpsϕ̄lmþsψ̄lmÞ��σ¼1: ð76Þ

D. Self-force

To calculate the self-force within our hyperboloidal
approach we start with the expression for the self-force
in covariant form given in Eq. (6). We first consider the t
component of the self-force in terms of conformal scalar
field. The transformation to conformal coordinates yields

Fself
t ¼ q

λ
lim
xμ→xμp

Ω∂τΦ̄ðxμÞ: ð77Þ

We shall denote the l-mode contribution to the full self-
force field by Flt. With the help of Eq. (27), substituting the
decomposition from Eq. (72) into Eq. (77) and taking the
limit to the worldline we find

Flt ¼
q
λ

Xl
m¼−l

sZðσpÞϕ̄lmðσpÞYlmðπ=2; 0Þ: ð78Þ

This expression can be used to directly evaluate left-hand
side of the balance law, Eq. (61), by taking a rp derivative
of both sides of Eq. (78):

DrpFt ¼
q
λ

Xl
m¼−l

½∂rpsZϕ̄lm

þ sZðDrp ϕ̄lm þDrp lnZϕ̄lmÞ�Ylmðπ=2; 0Þ: ð79Þ

Using Eq. (62), one obtains explicitly

Drp ϕ̄lm ¼ ψ̄lmðσpÞ −
2M
r2p

ϕ̄lm;σjσ¼σrp
; ð80Þ

Drp lnZ ¼ ∂rps −
2M
r2p

ððlnΩÞ;σ þ sH;σÞjσ¼σrp
: ð81Þ

Obtaining the r component of the SSF, meanwhile, is a bit
more involved. Due to the coordinate transformation given
in Eq. (25), one obtains

∂r ¼ −
σ2

2M
ð∂σ þH;σ∂τÞ: ð82Þ

Therefore,

Fself
r ¼ −

q
2M

lim
xμ→xμp

σ2½H;σ∂τΦðxμÞ þ ∂σΦðxμÞ�; ð83Þ

which yields

F�
lr ¼ −q

σ2p
2M

Xl
m¼−l

ZðσpÞ
�
H;σsϕ̄�

lm

þ ϕ̄�
lm;σ þ

ϕ̄�
lm

σ

�
σ¼σp

Ylmðπ=2; 0Þ: ð84Þ

Here, Fþ
lr and F

−
lr correspond to approaching the worldline

from the range r > rp and r < rp, respectively. This
distinction is necessary if we set ϕ̄lm ¼ ϕ̄ret

lm above as then
the derivatives of the scalar field ∂τϕ̄ and ∂σϕ̄ at the particle
location have two well-defined, but generally different,
one-sided limits. In this case the left-hand side of Eq. (84)
represents the unregularized l modes of the force. To
compute the r component of the SSF we use the mode-sum
regularization formula [54]

Fself
lr ¼ F�

lr ∓ Arlðlþ 1Þ − Br −
X3
n¼1

Fl
r½2n�; ð85Þ
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where Ar; Br; Fl
r½2n� are known as regularization parame-

ters. The Ar and Br act to regularize the self-force, and the
Fl
r½2n� act to accelerate the convergence of the l-mode sum

[71]. If instead in Eq. (84) we set ϕ̄lm ¼ ϕ̄R
lm as computed

from the effective-source approach then the limit is the
same from both directions and the left-hand side of Eq. (84)
becomes Flr.

IV. NUMERICAL METHODS

This section details the numerical methods providing
highly accurate solutions to the equations transformed into
compactified hyperboloidal coordinates. We follow the
conceptual framework from Refs. [72–75] employing a
multidomain spectral method [68,76,77], enhanced with
analytic mesh refinement to improve the computation of
solutions with steep gradients.

A. Multidomain spectral methods

We use a collocation-point spectral method to solve the
hyperboloidal equation on the compact domain σ ∈ ½0; 1�.
Specifically, we employ the algorithms detailed in
Ref. [74] to find the numerical approximations fðiFieldÞ,
with iField ¼ 0 � � �NField, assuming nField ¼ NField þ 1 real-
valued functions. For instance, the scalar self-force field
described in the previous section is a complex-valued
function. Therefore, the numerical scheme must solve
for a total of nField ¼ 2 unknown functions: the scalar
field’s real and imaginary part.
We divide the interval [0, 1] into ndom subdomains

σ ∈ ½σ0; σ1�|fflfflffl{zfflfflffl}
domain id¼1

∪ � � � ∪ ½σid−1 ; σid �|fflfflfflfflffl{zfflfflfflfflffl}
domain id

∪ � � � ∪ ½σndom−1
; σndom �|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

domain id¼ndom

:

ð86Þ

In our coordinates, future null infinity is at σ0 ¼ 0 and the
black hole horizon is at σndom ¼ 1. It is convenient to map
each subdomain σ ∈ ½σid−1 ; σid �, labeled by id ¼ 1 � � � ndom,
into a coordinate x ∈ ½−1; 1� via

σ ¼ 1

2
½σidð1þ xÞ þ σid−1ð1 − xÞ�; ð87Þ

x ¼ 2σ − ðσid þ σid−1Þ
σid − σid−1

: ð88Þ

At each domain id, the numerical scheme approximates a
given function, fðid;iFieldÞðxÞ, via the finite expansion

fðid;iFieldÞNid
ðxÞ ¼

XNid

k¼0

cðid;iFieldÞk TkðxÞ; ð89Þ

with Nid as the truncation order, and TkðxÞ ¼
cos½k arccosðxÞ� the Chebyshev polynomials of first kind.

The Chebyshev coefficients cðid;iFieldÞi are fixed by a collo-
cation method. For this purpose, we discretize the interval
x ∈ ½−1; 1� in terms of the Chebyshev-Lobatto grid

xi ¼ cos

�
π

i
Nid

�
; i ¼ 0 � � �Nid ; ð90Þ

and impose that the expression (89) coincides with the
exact function fðid;iFieldÞðxÞ at the grid points. In other words,
the coefficients cðid;iFieldÞi follow from inverting the equation

fðid;iFieldÞNid
ðxiÞ ¼ fðid;iFieldÞðxiÞ: ð91Þ

The above considerations assume an a priori known
function fðid;iFieldÞðxÞ from which we construct the approxi-

mation fðid;iFieldÞNid
ðxÞ. In practice, though, fðid;iFieldÞðxÞ is not

given, and we only have access to the underlying differ-
ential equation the function must satisfy. To obtain the
function’s values at the discrete grid points, we first collect
the unknown components from all different domains into
the single vector. More specifically, let us define

fðid;iFieldÞi ¼ fðid;iFieldÞNid
ðxiÞ ð92Þ

as the function’s value for a given field iField, at the grid
point xi within the domain id. Then, we collect each of
these values into the vector

X⃗ ¼ ðfðid;iFieldÞi Þ id¼1���ndom
iField¼0���NField

i¼0���Nid

; ð93Þ

which has a total of

ntotal ¼ nField
Xndom
id¼1

ðNid þ 1Þ ð94Þ

components. Enforcing the differential equations, together
with its boundary or transition conditions at all domains
and all collocation points leads to an algebraic system of
ntotal linear equations F⃗ðX⃗Þ. Recall that imposing the
differential equation at the grid points requires calculating
approximations for the first and second derivatives, respec-

tively, f0ðid;iFieldÞi and f00ðid;iFieldÞi . They result from applying
specific spectral differential matrices to the vectors X⃗
[68,76,78]. We solve the linear system F⃗ðX⃗Þ for the vector
X⃗ using an lower-upper (LU) decomposition. Thus, the
algorithm scales as n3total and should be sufficiently fast for
low-to-moderate values of ndom and Nid .
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B. Convergence

Spectral methods are very efficient when the underlying
function fðid;iFieldÞðxÞ is analytic because the approximated

numerical solution fðid;iFieldÞNid
ðxÞ converges exponentially to

the exact solution as the numerical resolution Nid increases
(see [68,76–78] and references therein). Because we do not
have access to an explicit expression for the exact solution
fðid;iFieldÞðxÞ, the numerical error is estimated by fixing a
reference solution obtained with a given high accuracy
Nid ¼ Nref

id
, and measuring a relative error

Eðid;iFieldÞ
Nid

¼
����1 − fðid;iFieldÞNid

ðxÞ
fðid;iFieldÞ
Nref

id

ðxÞ

����; Nid < Nref
id
: ð95Þ

In particular, we are interested in measuring the error at the

particle’s location. The Chebyshev coefficients cðid;iFieldÞk
provide an efficient way to estimate the error of a numerical
solution at a fixedNid because their asymptotic behavior for

k ≫ 1 determines the rate at which the error Eðid;iFieldÞ
Nid

decays to zero as Nid → ∞. Indeed, the exponential

convergence Eðid;iFieldÞ
Nid

∼ C−Nid for analytic functions follows

from a behavior cðid;iFieldÞk ∼ C̄−k (with constants C and C̄).
Particular scenarios may jeopardize the fast convergence

rate. Clearly, the exponential decay depends on the regu-
larity of the underlying solution. If the solution is known to
be on a regularity class Clð½−1; 1�Þ, then the convergence
rate (as well as the behavior of the Chebyshev coefficients)
will be merely algebraic. We do not find these issues in the
scenarios studied here.
An exponential decay does not always imply a highly

accurate solution for a small-to-moderate numerical reso-
lution Nid . The error and the Chebyshev coefficients of
functions with steep gradients may decay with a relatively
small exponential rate. As discussed in the following
sections, this is the case for large angular modes l or
large orbital radii rp. In the next section, we describe the
“analytic mesh-refinement” (ANMR) technique, which
introduces yet another coordinate mapping to increase
the grid density around the steep region.

C. Analytic mesh refinement

Within a given domain id, we map the interval ½−1; 1�
into itself via

x ¼ xB

�
1 −

2 sinh ½κð1 − xBχÞ�
sinhð2κÞ

�
; χ ∈ ½−1; 1�; ð96Þ

with a mesh-refinement parameter κ ≥ 0. The limit κ → 0
recovers the identity x ¼ χ. The parameter xB indicates
whether the steep region is around the left (xB ¼ −1) or the

right boundary (xB ¼ 1). The AMR technique discretizes
the grid χ ∈ ½−1; 1�—as opposed to x in Eq. (90)—via

χi ¼ cos

�
π

i
Nid

�
; i ¼ 0 � � �Nid : ð97Þ

The grid xi follows from the AMR mapping (96), which
then fixes the grid in the hyperboloidal radial coordinate σ
via Eq. (86). The bottom panel of Fig. 2 displays the
Chebyshev-Lobatto grid for the χ coordinate according to
Eq. (97), whereas the middle and top panels reveal the
effect of the mapping (96) with a parameter κ ¼ 3. They
demonstrate, respectively, the accumulation of grid points
on either the left ðxB ¼ −1Þ or right boundary ðxB ¼ 1Þ. As
we shall demonstrate, the increase of point density in these
regions allows us to accurately represent functions with
steep gradients around the particle with a low-to-moderate
spectral resolution Nid .

V. RESULTS

This section presents several numerical results that
demonstrate the effectiveness of self-force calculations
using compactified hyperboloidal coordinates combined
with spectral methods. In each subsection, we present
results for examples from the three classes of sources
commonly found in self-force calculations: distributional,
worldtube, and unbounded support. Computing self-force
for large radius orbits is a challenging problem for all three
classes and is therefore presented in a separate subsection.
At all steps of the code development, we compare the
solution around the particle with the corresponding solution
obtained from the Black Hole Perturbation Toolkit (BHPT)

FIG. 2. AMR to better resolve functions with strong gradients.
Bottom panel: a Chebyshev-Lobatto grid is considered for the
coordinate χ ∈ ½−1; 1� according to Eq. (97). Middle panel: for
xB ¼ −1, the AMRmap (96) populates the grid points around the
left boundary. Top panel: for xB ¼ 1, the AMR map (96)
populates the grid points around the right boundary. Examples
with AMR parameter κ ¼ 3.
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[79]. Such cross-checks attest to our results’ correctness
and allow us to perform convergence tests.

A. Distributional sources

We compute the retarded field ϕ̄ret
lm using a distributional

source solving Eq. (37). We first examine individual modes
and then present results for the self-force computed using
the mode-sum approach. In our computations we split the
grid at the particle’s location, σp, and employ the same
spectral resolution in both domains, i.e., N1 ¼ N2 ¼ N.
The left panel of Fig. 3 displays the real part of

hyperboloidal retarded field ϕ̄ret
lm for the angular mode

ðl; mÞ ¼ ð1; 1Þ, where the spectral resolution is N ¼ 60

and the particle is at rp ¼ 6M. The retarded field ϕ̄ret
lm is

continuous with a discontinuity at the first radial derivative.
Most importantly, the field is accessible in the entire
domain, including future null infinity σ ¼ 0 and the black
hole horizon σ ¼ 1. The solutions’ accuracy and smooth-
ness are assessed by the behavior of the corresponding
Chebyshev coefficients ci.

3 The insets show the coeffi-
cients’ exponential decay up to the round-off saturation of
order 10−16. In contrast, the right panel of Fig. 3 explores
more extreme regions in the parameter space. Similar to the
left panel of Fig. 3 this shows the real part of ϕ̄ret

lm but with
ðl; mÞ ¼ ð100; 0Þ and rp ¼ 6M. The numerical solution
requires a higher resolution N, especially in domain 2, due
to the steep gradient around the particle.
These computations of the transformed fields ϕ̄ret

lm
demonstrate the internal consistency of the code in the
compact hyperboloidal formulation. The field ϕret

lm and its

derivative are used in the calculation of the self-force and
can be reconstructed from ϕ̄ret

lm via Eq. (27). As discussed in
Sec. IV, we take a numerical solution with the high
resolution Nref ¼ 150 as reference and evaluate the relative
error EN according to Eq. (95) for the physical retarded
field and its rp derivative at the particle’s location. We
observe spectral convergence, with higher angular modes
requiring higher numerical resolution to obtain a given
precision. The behavior for high angular modes is a
consequence of the steep gradients around the particle
observed in right pane of Fig. 3. Nevertheless, the required
resolution is not prohibitive, as all l modes seem to
converge similarly. The main effect of increasing l is an
upward shift in the curves, and one obtains accurate
solutions for l modes as high as l ¼ 100 with moderate
resolution N ¼ 100.
In Fig. 4, we show convergence for a fixed ðl; mÞ ¼

ð1; 1Þ but varying rp=M ¼ f3.01; 10; 100; 1000g. Even
though we observe exponential convergence regardless
of rp, the convergence rate decreases for higher values
of rp. For instance, resolution N ¼ 150 yields solutions
jϕret

lmj correct only up to 10−4 for rp ¼ 1000M. The reason
behind the poor convergence rate is the steep gradients
around the particle, so the spectral method loses accuracy
for large rp. One can, however, solve this problem using
AMR as presented in Sec. V D.
To further validate our code, we calculate both the

energy flux and the local self-force. The energy flux at
infinity, _EIþ

, and the horizon, _EHþ
, is computed from the

values of the field at σ ¼ 0 and σ ¼ 1, respectively, using
Eqs. (73) and (74). In Table I we present numerical values
for these scalar energy fluxes. Table I also presents a direct
comparison with values for the flux at the horizon and
spatial infinity computed using the TEUKOLSKY package of

FIG. 3. Left panel: real parts of hyperboloidal retarded field ϕ̄ret
lm for the angular mode ðl; mÞ ¼ ð1; 1Þwith rp ¼ 6M and N ¼ 60. The

numerical domain extends from future null infinity, σ ¼ 0, to the future event horizon, σ ¼ 1. The inset demonstrates exponential decay
of Chebyshev coefficients indicating spectral convergence. Right panel: same fields as in the left panel but for angular mode ðl; mÞ ¼
ð100; 0Þ and resolution N ¼ 120. We need higher resolution at high mode numbers because of the steep gradient around the particle.
Insets demonstrate slower spectral convergence than in left panel.

3To simplify the notation, we remove the labels ðidom; iFieldsÞ
used in Sec. IV, as this information is available within the plots.
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the Black Hole Perturbation Toolkit [79], with relative
differences comparable in magnitude to machine precision.
We also compute the self-force from the values of the

derivative of the scalar field at the particle’s location. The t
component of the self-force, Flt, is computed using
Eq. (78). The modes of Flt do not require any regulari-
zation, and in Fig. 5 we see that the contribution from each
l mode falls off exponentially to machine roundoff. The r
component of the self-force, Flr, is computed using
Eq. (84). The individual l modes of the radial self-force
do require regularization, which we perform using Eq. (85).
In Fig. 6 we show the behavior of both the unregularized
and regularized l modes of the self-force. The delicate
cancellation between the modes of the retarded field and
the regularization parameters is a good test of the

correctness of our code, and we find that our numerical
results are excellent for modes as high as l ¼ 100.

B. Worldtube sources

As an example of a worldtube source, we solve Eq. (41)
for the hyperboloidal residual field ϕ̄R

lm. The effective
source for this equation has compact support within a
region around the particle. This naturally suggests a 4-
domain grid for our spectral solver. We scale the numerical
resolution as N1 ¼ 2N2 ¼ 2N3 ¼ N4 ¼ N. In the compact
radial coordinate σ, the puncture field regularizing the
source takes values in a window around the particle
fixed by

σ− ¼ σp
2
; σþ ¼ 1þ σp

2
: ð98Þ

The corresponding physical coordinates r�ðσ∓Þ read

rþ ¼ 2rp; r− ¼ 2rp
1þ rp=ð2MÞ : ð99Þ

This choice halves the region between future null infinity,
σ ¼ 0, and the particle, σ ¼ σp, as well as between the
particle and the horizon σ ¼ 1. Thus, the problem is
formulated on the four domains

(i) Domain 1: σ ∈ ½0; σ−�,
(ii) Domain 2: σ ∈ ½σ−; σp�,
(iii) Domain 3: σ ∈ ½σp; σþ�,
(iv) Domain 4: σ ∈ ½σþ; 1�.

We explore the same set of parameters as in the previous
section. Figure 7 displays the results for a fixed angular
mode ðl; mÞ ¼ ð1; 1Þ with the particle located at rp ¼ 6M
and numerical resolution N ¼ 60. Figure 8 shows the
results for large angular ðl; mÞ ¼ ð100; 0Þ and N ¼ 100.

TABLE I. Sample numerical results for the scalar-field energy flux for a range of numerical values of rp at exactly Hþ and Iþ in the
second and third columns, respectively. The fourth column displays t component of the SSF calculated locally using Eq. (78). Column
five is an internal consistency check comparing the t component of the self-force calculated locally with and using the total energy flux
and balance law in Eq. (58). Column six presents a comparison of the total energy flux with results obtained from the TEUKOLSKY

package of the Black Hole Perturbation Toolkit [79].

rp=M _EHþ
× μðM=qÞ2 _EIþ

× μðM=qÞ2 Ft × ðM=qÞ2 1 − jFt=ut _Etotalj 1 − μj _Etotal= _E
BHPT
total j

6 7.85026 × 10−6 2.47345 × 10−4 3.60907 × 10−4 7.60 × 10−12 −1.04 × 10−10
7 2.40585 × 10−6 1.31191 × 10−4 1.76732 × 10−4 −6.95 × 10−12 −4.12 × 10−12
8 8.82307 × 10−7 7.63725 × 10−5 9.77204 × 10−5 6.64 × 10−12 −6.88 × 10−13
10 1.70076 × 10−10 3.12066 × 10−5 3.75023 × 10−5 3.38 × 10−12 −4.18 × 10−13
14 1.48586 × 10−8 8.17262 × 10−6 9.23673 × 10−6 4.85 × 10−12 7.92 × 10−13
20 1.15966 × 10−9 1.98251 × 10−6 2.15159 × 10−6 1.13 × 10−12 6.42 × 10−13
30 6.53417 × 10−11 3.96179 × 10−7 4.17679 × 10−7 −2.18 × 10−12 1.96 × 10−12
50 1.77767 × 10−12 5.19670 × 10−8 5.36017 × 10−8 −7.93 × 10−12 1.10 × 10−11
70 1.66651 × 10−6 1.36106 × 10−8 1.39122 × 10−8 3.39 × 10−12 3.03 × 10−11
100 1.36047 × 10−14 3.28462 × 10−9 3.33504 × 10−9 4.42 × 10−9 1.35 × 10−10

FIG. 4. Numerical convergence for the retarded field jϕret
lmj with

ðl; mÞ ¼ ð1; 1Þ as function of particle’s orbit rp. Despite the
exponential decay of error against a reference solution with
Nref ¼ 150, the decay rate is slower at large orbits rp due to steep
gradients.
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The hyperboloidal residual field ϕ̄R
lm (blue) is discon-

tinuous across the window boundaries σ∓, but continuous
at the particle’s location σp. For a consistent comparison,
these panels also display (in red) the corresponding

retarded field ϕ̄ret
lm ¼ ϕ̄R

lm þ ϕ̄P
lm. As the effective source

only has support inside the worldtube we have ϕ̄R
lm ¼ ϕ̄ret

lm

in the domains 1 and 4, and ϕ̄R
lm ¼ ϕ̄ret

lm − ϕ̄P
lm at domains 2

and 3. The smoothness of the retarded field across the
worldtube boundaries is an important consistency check on
the results for ϕ̄R

lm.
The bottom panels on Figs. 7 and 8 display the

Chebyshev coefficients within each domain. These plots
have an inset, where we reproduce the real part of residual
field ϕ̄R

lm with a color code identifying each of the four
domains. As in the previous section, the coefficients’
spectral decay to numerical roundoff indicates high accu-
racy. High angular modes as in Fig. 8 require higher
resolution due to steep gradients around the particle.
Next, we discuss convergence tests for the residual field

jϕR
lmj. By fixing a reference solution with Nref ¼ 150, we

calculate the relative error at the particle according to
Eq. (95). The top panel of Fig. 9 compares the code’s

FIG. 5. The l mode contributions to the t component of SSF,
Flt, for a particle on a circular orbit of radius rp ¼ 10M. The
modes of Fl

t converge exponentially until machine precision
roundoff is encountered near l ¼ 17.

FIG. 6. The lmode contribution to the r component of the SSF,
Flr, for a particle on a circular orbit of radius rp ¼ 10M. For
large l the unregularized modes (blue squares) grow linearly.
After subtracting the leading regularization parameter, the modes
(light blue triangles) tend to a constant for large l. Further
subtracting the next regularization parameter, the regular modes
(orange circles) falls off as l−2 for large l. The convergence of
the l-mode sum is then accelerated using higher-order regulari-
zation parameters with each additional parameter changing the
large l behavior by l−2. After all the known regularization
parameters are subtracted, the modes quickly reach machine
roundoff. Note that the agreement with the expected large-l
behavior is excellent out to l ¼ 100 (when the contributions are
above machine precision).

FIG. 7. Top panel: effective source solution using four domains
with angular mode ðl; mÞ ¼ ð1; 1Þ and particle location
rp ¼ 6M. Bottom panel: decay of Chebyshev coefficients in
all domains demonstrates spectral convergence. The inset dis-
plays the real part of residual field ϕ̄R

lm with a separate color for
each domain.
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convergence for the angular modes ðl; mÞ ¼ ð1; 1Þ;
ð50; 50Þ, and (100,0) with the particle at rp ¼ 6M. We
encounter the expected exponential convergence, with
higher angular modes requiring slightly higher resolution.
The bottom panel compares the convergence for various
particle locations rp=M ¼ f3.01; 10; 100; 1000g with a
fixed angular mode ðl; mÞ ¼ ð1; 1Þ. As in Sec. VA, the
error decays exponentially in all cases. As before, the decay
rate is lower for larger rp values. For instance, when
rp ¼ 1000M, one only achieves an accuracy of ∼10−6
with N ¼ 150.
We further check our results by computing components

of the self-force. For the t component, Flt, our results are
almost identical to those presented for the distributional
source in Fig. 5. Using the effective-source approach we
directly compute the modes of the residual field, and from
their radial derivatives the modes of the radial self-force,
Flr, can be computed using Eq. (84). With the effective
source in Eq. (42) we expect l−2 convergence of the l
modes of the self-force which we observe for modes up to
l ¼ 100—see Fig. 10. We then use higher-order regulari-
zation parameters to accelerate further the convergence of

the l-mode sum [71]. This faster rate of convergence could
also be achieved by using a higher-order puncture which
would leave to a smoother effective source [20].

C. Sources with unbounded support

As an example of a problem with an unbounded support
source, we compute ψ̄ ret

lm ¼ ϕ̄ret
lm;rp

, which satisfies the field
equation (51). The source for Eq. (51) contains ϕ̄ret

lm and so
we solve for both fields simultaneously. These problems are
not well suited to the variations of parameter approach as
explained in the introduction, but we find our hyperboloidal
spectral approach handles them with ease. In Fig. 11 we
show the calculation of the (1,1) mode of the ψ ret

lm
for a particle orbiting at rp ¼ 6M. As with the compact
sources, the decay of the Chebyshev coefficients in the two
domains demonstrate spectral convergence. We see similar

FIG. 8. Same setup as in Fig. 7 but for a high angular mode
ðl; mÞ ¼ ð100; 0Þ.

FIG. 9. Convergence tests for the residual field jϕR
lmj displaying

the error against a reference solution with Nref ¼ 150 according
to Eq. (95). Top panel: angular modes ðl; mÞ ¼ ð1; 1Þ; ð50; 50Þ,
and (100,0) with the particle at rp ¼ 6M. Higher angular modes
require slightly higher resolution. Bottom panel: various particle
locations rp=M ¼ f3.01; 10; 100; 1000g with a fixed angular
mode ðl; mÞ ¼ ð1; 1Þ. The exponential decay rate is lower for
larger orbits.
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convergence properties for other orbital radii—see Fig. 12.
Again, the convergence is slower for large radius orbits
with compact sources.
To check our results further, we compute the rp-

derivative of the energy flux radiated through the event

horizon and to infinity. For reference values to compare
against, we use the TEUKOLSKY package from the BHPT to
compute the numerical rp derivative of the fluxes. This is
achieved by fitting a Taylor series centred around the rp
value of interest using a densely populated grid of fluxes
around rp. It suffices for our expansion to be truncated at
Oðrp − rÞ5 for a grid of 50 points equally spaced over the
range ½rp − 0.05; rp þ 0.05�. This approach is very slow as
we must solve the scalar wave equation many times for
each rp value at which we wish to compute the rp
derivative of the fluxes. We compare our hyperboloidal
data to the numerically compute the rp derivative in Table II
and find excellent agreement.

D. Large radius orbits

We see in Figs. 4 and 9 that the convergence of the
solution slows down for large orbits. This slow conver-
gence is due to the fixed mapping of the unbounded domain
to a compact domain. In the compact radial coordinate σ,
the region between null infinity at σ ¼ 0 and the particle at
σ ¼ σp becomes very small as it scales as ∼r−1p while the
domain between the particle and the horizon becomes
comparatively large. Strong gradients form because the
main contribution to ϕ̄ret

lm (or ϕ̄R
lm) comes from the region

around the particle. These strong gradients are already
visible for rp ¼ 100M depicted in Fig. 13.
One way to improve the accuracy of our results for large

rp is to increase the number of subdomains. We observe
faster convergence at rp ¼ 1000M in the 4-domain code
(solving for ϕ̄R

lm in Fig. 9) than in the 2-domain code
(solving for ϕ̄ret

lm in the bottom panel of Fig. 4). These codes
solve for different fields and the comparison between the

FIG. 10. The l-mode contribution to the r component of self-
force, Flr, computed using the effective-source method. The
direct output of the hyperboloidal calculation with the effective
source are shown as the (orange) circles which falls off as l−2.
We then use higher-order regularization parameters to accelerate
the convergence of the series. The more rapidly convergent series
quickly reaches machine precision roundoff. The results pre-
sented here for the regularized force are, as expected, the same as
the results from the mode-sum approach—see Fig. 6. With our
setup the effective-source method is more efficient than the
distributional source and mode-sum approach. This is because
with the distributional source large gradients of the field occur
near the particle which necessitates N ¼ 150 Chebyshev nodes in
each domain where the effective-source only requires N ¼ 50.

FIG. 11. The rp derivative of the scalar field, ψ̄ ret
lm, computed

for rp ¼ 6M and ðl; mÞ ¼ ð1; 1Þ. The source for ψ̄ ret
lm is un-

bounded but our approach handles it with ease. The inset shows
the exponential convergence (until machine roundoff is reached)
for the Chebyshev coefficients in each domain.

FIG. 12. Convergence of ψ ret
lm with increasing number of

Chebyshev nodes, N, for different orbital radii. In all cases the
convergence is exponential but for large radius orbits the
convergence can be quite slow. The rate of convergence can
be improved with analytic mesh refinement—see Fig. 15.
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errors are only valid at a qualitative level, but we can still
confirm that the better convergence for the 4-domain
computation is a direct consequence of having more
domains.
However, increasing the number of subdomains can

quickly become prohibitive with the current algorithm.
The ODE solver used in these computations employs an
LU decomposition scheme with a computational scaling as
n3total. Assuming that all ndom have a numerical resolution of
order N, one obtains ntotal ∼ ndomN and thus a scaling
n3domN

3. More subdomains require significantly more
computational resources. It is evident from Fig. 13 that
the solution on much of the computational domain does not
show any features that need to be resolved. Shifting the
existing resources towards the steep gradients seems
the appropriate solution. Therefore, instead of increasing
the subdomains, we employ AMR described in Sec. IV C to

achieve the desired high accuracy for large orbits while
keeping the computational requirements low. To demon-
strate the effects of AMR we will focus on problems with
two domains below, but also present results for four
domains using an effective source in Appendix C 2.

1. Analytic mesh refinement with two domains

In this section we present large orbit calculations in our
2-domain code, i.e., solving for the retarded field ϕ̄ret

lm and
its rp derivative ψ̄ ret

lm. We first concentrate on domain 2,
σ ∈ ½σp; 1�. Because the particle is located at the domain’s
left boundary, the mapping (96) is employed with xB ¼ −1.
The top panel of Fig. 14 displays the Chebyshev coef-
ficients of Reðϕ̄ret

lmÞ for several AMR parameters κ when
rp ¼ 1000M and ðl; mÞ ¼ ð1; 1Þ. We observe slow con-
vergence without AMR (κ ¼ 0). Increasing κ increases the
grid point density around the left boundary, and, as a
consequence, the function becomes better represented by
its spectral approximation, which improves the conver-
gence rate. For instance, at κ ¼ 0, the coefficients assume
values only of order ∼10−2, while κ ¼ 3 yields coefficients
down to order ∼10−10. For each combination of parameters
rp and ðl; mÞ, there exits an optimal value κ�lmðrpÞ leading
to the fastest convergence. In Fig. 14, optimal decay
is achieved at κ�11ð103MÞ ≈ 3.85, where the cis reach
the numerical roundoff saturation at around N ≈ 50.
As we further increase κ, the coefficients’ decay rate
decreases once again. We empirically find the optimal
value for κ�lmðrpÞ on domain 2 at several radii
rp=M ¼ f10; 50; 100; 300; 1000; 4000; 10000g. The bot-
tom panel of Fig. 14 shows κ�lmðrpÞ for the angular modes
used as an example: ðl; mÞ ¼ ð1; 1Þ; ð50; 50Þ, and (100,0).
We find that the fit

TABLE II. Sample numerical results for the rp derivative of the scalar-field energy flux for the l ¼ 1 mode for a range of numerical
values of rp at exactly Hþ and Iþ in the second and third column, respectively. The fourth column presents the l ¼ 1 mode of the rp
derivative of the t component of the SSF calculated using Eq. (79). Column five is an internal consistency check comparing the t
component of the self-force calculated locally and using the total energy flux and balance law in Eq. (58). Column six presents a
comparison of the rp derivative of the total energy flux with results obtained via numerically differentiating solutions from the
TEUKOLSKY package of the BHPT [79] as described in the main text.

rp=M ∂rp
_EHþ
l¼1 × μðM=qÞ2 ∂rp

_EIþ
l¼1 × μðM=qÞ2 DrpF1t × ðM=qÞ2 1 − jDrpF1t=∂rpðut _El¼1

total Þj 1 − μjDrp
_El¼1
total=∂rp

_EBHPT
total j

6 −9.37367 × 10−6 −7.51347 × 10−5 −8.45083 × 10−5 −2.32 × 10−11 2.35 × 10−13
7 −2.48526 × 10−6 −3.96139 × 10−5 −4.20992 × 10−5 9.04 × 10−11 −5.17 × 10−13
8 −7.97541 × 10−7 −1.11122 × 10−5 −2.30219 × 10−5 5.32 × 10−11 −5.82 × 10−13
10 −1.22413 × 10−7 −8.20090 × 10−6 −8.32331 × 10−6 5.03 × 10−11 −2.67 × 10−13
14 −7.57877 × 10−9 −1.73916 × 10−6 −1.74674 × 10−6 1.22 × 10−10 8.92 × 10−14
20 −4.11511 × 10−10 −3.22739 × 10−7 −3.23151 × 10−7 3.63 × 10−10 −2.71 × 10−13
30 −1.53865 × 10−11 −4.60066 × 10−8 −4.60220 × 10−8 7.24 × 10−10 −9.41 × 10−14
50 −2.50251 × 10−13 −3.82238 × 10−9 −3.82263 × 10−9 2.23 × 10−12 −5.50 × 10−13
70 −1.67314 × 10−14 −7.32062 × 10−10 −7.32079 × 10−10 2.44 × 10−9 −1.41 × 10−13
100 −9.54997 × 10−16 −1.25886 × 10−10 −1.25887 × 10−10 3.65 × 10−10 −4.03 × 10−13

FIG. 13. In self-force calculations for large orbits, strong
gradients form in the compact coordinate σ around the particle.
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κ�lmðrpÞ ≈ Alm þ 0.5 ln

�
rp
M

�
ð100Þ

captures the rp dependence for the optimal κ�lm.
Interestingly, the log-dependence is independent of the
ðl; mÞ mode, and the only effect of the angular parameters
is to shift the curve upwards. For instance, we have
A1;1 ≈ 0.42, A50;50 ≈ 0.89, and A100;0 ≈ 1.15. One can also
exploit the AMR to increase the accuracy in the domain
extending up to future null infinity (domain 1). However, a
systematic pattern for the optimal κ�lmðrpÞ in domain 1
[similar to Eq. (100) in domain 2] is absent. Appendix C 1
discusses this possibility and it brings an explicit example
for the configuration ðl; mÞ ¼ ð1; 1Þ. Since the experi-
ments with AMR on domain 1 demonstrate marginal
accuracy improvements, we employ AMR only on the
domain extending to the black hole horizon. Using the

value κ�lmðrpÞ from Eq. (100), we can compute accurate
solutions for any rp with a relatively low numerical
resolution. In Fig. 15 we display convergence tests similar
to the bottom panel of Fig. 9. The numerical resolution is
set as N1 ¼ N2 ¼ N, with Nref ¼ 100 for a reference
solution in Eq. (95). Convergence is spectral with satu-
ration at machine precision around N ∼ 70, regardless of
rp. Similarly, the right panel of Fig. 15 shows the
equivalent results for a fixed rp ¼ 106M, but comparing
the different angular modes ðl; mÞ ¼ ð1; 1Þ, (50,50), and
(100,0). The exponential decay saturates at N ∼ 70 even for
high-l modes. Figure 15 clearly demonstrates the signifi-
cant gain offered by the AMR combined with compacti-
fication for large orbits.

2. Post-Newtonian comparison for large radius orbits

To demonstrate the significant improvement the analytic
mesh refinement provides for large radius orbits, we
compute the t component of the self-force, Ft and its rp
derivative and compare it against a post-Newtonian (PN)
series in the weak field. For a scalar particle in a
Schwarzschild background, a weak-field expression for
Ft was derived to high PN order in Ref. [80], with the terms
up to 4PN terms given explicitly. After summation over l
modes, the 4PN expression is given by

Ftðrp ≫ MÞ ¼ q2V4

3r2p

�
1 −

1

2
V2 þ 2πV3

−
77

8
V4 þ 27π

5
V5 þOðV6Þ

�
; ð101Þ

where V ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
M=rp

p
. Note that our definition of the scalar

field differs from that of [80] by a factor of 4π, which leads
to the same difference in Ft. The t component represents
the energy lost due to the SSF and hence the expression
begins at 1.5PN order since this is due to dipole radiation.
The PN expression for the rp derivative of the t component
of the SSF, after some simplification, is

DrpFtðrp ≫ MÞ ¼ −
4q2V4

3r3p

�
1 −

5

8
V2 þ 11π

4
V3

−
231

16
V4 þ 351π

40
V5 þOðV6Þ

�
: ð102Þ

We compare the numerical results of our code to the
above two PN series in Fig. 16. In both panels we plot the
force or its rp derivative normalized by the leading term in
the relevant PN series, i.e., the coefficient in front of the
square brackets in Eqs. (101) or (102), respectively. We
denote these normalized quantities with an overhat.
When we subtract the leading (normalized) PN term (i.e.,

1) from F̂t we observe that the residual scales as V2, as
expected. The order of the scaling increases by OðVÞ for

FIG. 14. Top panel: Chebyshev coefficients of Reðϕ̄ret
lmÞ for

rp ¼ 1000M and ðl; mÞ ¼ ð1; 1Þ in domain 2 between the
particle and the horizon. The optimal value for the AMR
parameter is κ ¼ 3.85. Bottom panel: optimal AMR parameters
plotted against rp=M with the fit Eq. (100) for different angular
modes.
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the subtraction of each subsequent subleading PN term up
to 4.5PN order. We find excellent agreement with the PN
series for orbits as large as rp ¼ 106M even up to OðV6Þ.
For the calculation of Ft this is a significant improvement
of what is usually possible with the numerical integration
method that relies on boundary condition expansions
evaluated in the wave zone (though note the MST method
works well for large orbits with distributional sources). For
∂rpFt, neither the numerical integration nor MST methods
work well for large radius orbits, but the results from our
hyperboloidal approach agree very well with the PN series.
We find the same scaling arguments as previously and
agreement up for rp ¼ 106M up toOðV6Þ for the residuals.

VI. CONCLUSION

This work presents the hyperboloidal approach to self-
force calculations in the frequency domain. This approach
works well for the three classes of sources typically found
in self-force calculations: distributional, worldtube, and
unbounded support. The latter, in particular, is challenging
for current techniques but crucial for emerging second-
order (in the mass ratio) calculations [9,81,82]. Another
challenging problem for current self-force techniques,
present for all three classes of sources, is the comparison
to post-Newtonian results for large orbital radii.
Compactification along hyperboloidal surfaces combined
with analytic mesh refinement is an elegant solution to
these challenging problems.
Our approach relies on two essential ingredients. On the

theoretical side, we employ scri-fixing hyperboloidal coor-
dinates for the background black hole spacetime in minimal
gauge [30–32,44,45]. On the numerical side, we solve the
self-force equations with a spectral ODE solver, enhanced
with analyticmesh refinement to resolve functionswith steep
gradients [72–75]. The combination of these theoretical and

numerical frameworks provides us with a powerful novel
scheme to address the current limitations of the numerical
techniques in the self-force program.
We emphasize various advantages of hyperboloidal

slices relevant to the self-force problem, as demonstrated
in this work. First, the boundary conditions at the black
hole and the wave zone become trivial. Specifically, the
geometric construction of hyperboloidal slices ensures the
absence of incoming characteristics as the radial coordinate
approaches the horizon or extends towards the wave zone.
Consequently, the treatment of the boundary conditions is
behavioral and not numerical. The outgoing behavior of
solutions near the boundaries follows directly from the
regularity of solutions as discussed with Eq. (31). This
simplification of boundary treatment is both a conceptual
and a practical advantage because one does not need to
impose boundary conditions by hand to ensure the unique-
ness of the solution, and one does not need to compute
lengthy and tedious approximations at finite radii for each
type of perturbation or source.
Second, radiation extraction becomes a trivial evaluation

at the outer boundary, whereas current calculations extrapo-
late fluxes from finite radii up to infinity. Such extrapo-
lations are particularly difficult to perform for unbounded
support sources and introduces additional systematic errors
that must be controlled. In contrast, we evaluate fluxes
directly from the hyperboloidal solutions at the spacetime
boundaries as discussed in Sec. V D 2. The extraction of
fluxes are as accurate as the numerical solution of the
equations without additional systematic errors.
Third, hyperboloidal slices improve the numerical effi-

ciency of ODE solvers. Typically, the accuracy of fre-
quency domain calculations is limited by the number of
grid points per wavelength. Hyperboloidal transformations
flatten the waves and reduce the number of spatial
oscillations along the time slice, thereby enabling a highly

FIG. 15. Left panel: exponential error decay for large orbits with optimal AMR. Comparison with Fig. 12 demonstrates the power of
AMR in calculating accurate self-force results for large radius orbits. Right panel: convergence for different spherical harmonic modes
with rp=M ¼ 106 including a high-l mode where machine precision is reached around N ¼ 80. This computation would be
prohibitively resource intensive in standard self-force calculations.
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efficient numerical solver. The hyperboloidal solution is
smooth and nonoscillatory throughout the domain except
for discontinuities at the particle location or worldtube
boundaries. Therefore, multidomain spectral methods are
ideally adapted to generate highly accurate solutions for
little computational cost. Such spectral methods have been
successfully employed both for hyperboloidal formulations
[83–85] and self-force calculations [86]. Our code, based
on Refs. [44,45], brings these two applications together in a
multidomain spectral code for hyperboloidal self-force
calculations where the compactified exterior black hole
region is divided into subdomains to properly treat the
singular behaviors and discontinuities at the particle loca-
tion while efficiently resolving the nonoscillatory solution
with spectral accuracy away from the discontinuities.
Fourth, hyperboloidal compactification efficiently solves

the problem of unbounded support sources with support
extending across the entire exterior black hole region. Such
sources provide a significant numerical challenge in sec-
ond-order self-force calculations. Present implementations
compute the second-order source on a finite radial domain
and expend significant effort making the source fall off
more rapidly to make the integrals in the variation of
parameters approach converge more rapidly. Our approach

avoids these issues entirely and handles the case of
unbounded support sources with ease. There is also an
additional advantage of using of hyperboloidal slicing in
second-order calculations as it improves the behavior of the
source near the boundaries [22,87].
Fifth, compactification allows us to compute self-force

for orbits with very large radii, e.g., rp ∼ 106M. The large
radius regime is important for connecting self-force results
to post-Newtonian theory [88–91]. This regime is chal-
lenging for current numerical integration methods because
they place the outer boundary far into the wave zone for
convergence of the boundary series. For weak-field orbits,
the wave zone moves out into the very weak field, requiring
many steps for the numerical integrator to reach the
particle’s radius. While this problem can be overcome
with the Mano-Suzuki-Takasugi method [92] for distribu-
tional or worldtube sources, the computational cost of this
approach prohibits the application of the method to
unbounded support sources. Hyperboloidal compactifica-
tion maps the entire exterior domain onto the finite
numerical grid and therefore includes automatically any
large radii in the domain. We resolve the steep gradients
around the particle that form due to compactification
by using analytic mesh refinement [74,85,93–95].

FIG. 16. Left panel: comparison of the Newtonian-normalized t component of the self-force, F̂t, with its 4.5PN expansion. The (dark
blue) squares show our numerical results for F̂t. This data approaches the leading (normalized) PN result for large radius orbits. When
we subtract the leading PN term from the numerical data we get the (light blue) triangles. For large rp this data approaches a V2 reference
curve as expected from the PN series in Eq. (101). When we subtract the first subdominant term in the PN series and see that the residual
(orange circles) falls off as V3, as expected. We repeat this procedure with the remaining terms in the PN series to compute the other data
and find agreement with the PN series (until machine roundoff is reached). This shows our numerical results are accurate even for
extreme large radius orbits with rp ∼ 106. Right panel: comparison of the rp derivative of the Newtonian-normalized t component of the
self-force obtained from flux-balance laws with the 4.5PN expression. This figure constructed in the same way as the left panel except
we subtract terms from the PN series in Eq. (102). Again we see that our numerical results are accurate even for extreme large radius
orbits with rp ∼ 106. Accurate results for large radius orbits for self-force problem with unbounded sources are very difficult to achieve
with the standard variation of parameters approach. Our hyperboloidal method can thus be instrumental in future precision comparisons
with PN theory for self-force problems with unbounded sources, e.g., second-order self-force calculations.
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We demonstrate that our approach works exceptionally
well for these cases, as well as for distributional and
worldtube sources in Sec. V D and Appendix C 2.
Sixth, we compute solutions with high l modes very

accurately. This is essential for studies of the behavior of
the self-force and related gauge-invariant quantities near
the light ring [91,96].
Given the geometric elegance of the hyperboloidal

framework and the strong evidence for its advantages,
we conclude that future studies in black hole perturbation
theory will make heavy use of hyperboloidal foliations. We
note that the benefits we list arise not so much from the
hyperboloidal nature of the coordinates but from the
regularity of the foliation in the entire exterior domain.
This regularity allows us to include the black hole horizon
and future null infinity on our numerical grid. One would
expect similar advantages from a double-null foliation with
compactification. The main reason we prefer the hyper-
boloidal framework is its flexibility. It is straightforward to
extend hyperboloidal coordinates from Schwarzschild to
Kerr spacetimes [30,32], whereas it is highly nontrivial to
do the same for double-null coordinates.
Presently, the results discussed in this work are restricted

to the first-order scalar-self force for a particle on a circular
orbit around a Schwarzschild black hole. There are many
steps to take on the path to second-order, gravitational self-
force for a particle on a general orbit in a Kerr spacetime.
We expect that our approach will readily extend to, e.g., the
Lorenz-gauge gravitational case [14,15,21] and to Kerr
spacetime using the Teukolsky formalism [51], both of
which are commonly used in frequency domain self-force
calculations (see Appendix A for the operators in the
Regge-Wheeler-Zerilli and Bardeen-Press-Teukolsky for-
malisms using the minimal gauge).
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APPENDIX A: BLACK HOLE PERTURBATION
THEORY

Black hole perturbation theory on spherically symmetric
BH spacetime is commonly formulated either in the RWZ
or the BPT formalism. Both describes perturbative field

characterized by their spin weight p ¼ 0;�1;�2. The
RWZ approach considers specific combinations of
the perturbed metric as the propagating field on the
Schwarzschild background, whereas the BPT formulation
has scalar fields (p ¼ 0), and the propagating degrees of
freedom for the Faraday-Maxwell (p ¼ �1) and Weyl
tensors (p ¼ �2) as perturbative fields. We denote ϕp;lm

and up;lm fields with spin p within the BPT and RWZ
formalism, respectively. For scalar fields p ¼ 0, they are
trivially related by

ϕ0;lm ¼ u0;lm
r

: ðA1Þ

Hyperboloidal formulations of the RWZ and BPT
equations were first implemented in time domain using
constant mean curvature time surfaces [34,97]. In this
Appendix, we present the frequency domain expressions
for the left-hand side of Eq. (2) for a field with spin p using
the minimal gauge. We also discuss the corresponding
factors Z and F involved in the frequency-domain hyper-
boloidal transformations via Eqs. (27) and (29), respec-
tively, as well as the hyperboloidal operator A.

1. Bardeen-Press-Teukolsky formalism

With the BPT formalism, the left-hand side of Eq. (2)
reads ΔBPT

lm ϕp;lm, with

ΔBPT
lm ¼ d2

dr2
þ2ð1þpÞr−M

r2f
d
dr

−
1

f

�
lðlþ1Þ−pðpþ1Þ

r2
þ2p

ω

r2

�
M
f
−r

�
−
ω2

f

�
:

ðA2Þ

The above operator differs from the usual format for the
BPT equation by an overall factor r2f and it reduces to
Eq. (8) when p ¼ 0. With hyperboloidal transformation,
the regularization factor in Eq. (27) reads [31,32]

Z ¼ Ω1þ2pðr2fÞ−pesH; ðA3Þ

while F is still given by Eq. (32). Finally, the coefficients
α2, α1, and α0 for the operator ABPT

lm in Eq. (30) read [44]

α2 ¼ σ2ð1 − σÞ; ðA4Þ

α1 ¼ sð1 − 2σ2Þ þ σð2 − 3σ þ pð2 − σÞÞ; ðA5Þ

α0 ¼ −ðs2ð1þ σÞ þ s½2σ − pð1 − σÞ�
þ lðlþ 1Þ þ ð1þ pÞðσ − pÞÞ: ðA6Þ
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2. The Regge-Wheeler-Zerilli formalism

With the RWZ formalism, the left-hand side of Eq. (2)
reads ΔRWZ

lm up;lm, with

ΔRWZ
lm ¼ d2

dr2�
− ðPRW;Z

lm − ω2Þ: ðA7Þ

The potential PRW;Z
lm depends on the type of perturbation.

The potential for polar perturbations (RW) are (withl ≥ jpj)

PRW
lm ¼ f

r2

�
lð1þ lÞ þ ð1 − p2ÞM

r

�
; ðA8Þ

whereas the potential for axial perturbations (Z) reads (with
n ¼ ðl − 1Þðlþ 2Þ=2 and l ≥ 2)

PZ
lm ¼ f

r2

�
2n2ðnþ 1Þr3 þ 6n2Mr2 þ 18nM2rþ 18M3

rðnrþ 3MÞ2
�
:

ðA9Þ

With hyperboloidal transformation, the regularization fac-
tors in Eqs. (27) and (29) read

Z ¼ 2M
λ

esH; F ¼ Zf
r2

: ðA10Þ

Finally, the coefficients α2, α1, and α0 for the operatorARWZ
lm

in Eq. (30) read [48]

α2 ¼ σ2ð1 − σÞ; ðA11Þ

α1 ¼ 2σð1 − 3σ2Þ − sð1 − 2σ2Þ; ðA12Þ

α0 ¼ −ðs2ð1þ σÞ þ sσ2 þ VRW;Z
lm Þ; ðA13Þ

with VRW;Z
lm ¼ r2

f P
RW;Z
lm .

APPENDIX B: EVALUATION OF THE STRESS-
ENERGY TENSOR IN HYPERBOLOIDAL

COORDINATES

In order to calculate the flux towards future null infinity
and the horizon we need to consider the limits of the
integrand towards σ → 0 and σ → 1, respectively. The
relevant components of the stress energy tensor are Tττ

and Tτσ. Under the conformal rescaling,

gαβ ¼ Ω−2g̃αβ; gαβ ¼ Ω2g̃αβ; ðB1Þ

and ∇αΦ ¼ ∂αΦ. Hence, the stress-energy tensor becomes

Tαβ ¼
1

4π

�
∇αΦ∇βΦ −

1

2
g̃αβg̃μν∇μΦ∇νΦ

�
: ðB2Þ

The components Tττ and Tτσ can then be expressed as

Tττ ¼
1

4π

�
Ω2ð∂τΦÞ2 þ 1

2
g̃ττg̃μν∇μΦ∇νΦ

�
¼ 1

4π

�
Ω2ð∂τΦ̄Þ2 þ 1

2
σ2ðσ − 1Þg̃μν∇μΦ∇νΦ

�
; ðB3Þ

Tτσ ¼
1

4π

�
Ω2∂τΦ̄∂σΦ̄þ 1

2
g̃τσ g̃μν∇μΦ∇νΦ

�
¼ 1

4π

�
Ω2∂τΦ̄∂σΦ̄þ 1

4
ð1 − 2σ2Þg̃μν∇μΦ∇νΦ

�
: ðB4Þ

The second term in these expression can be written as

1

2
g̃αβg̃μν∇μΦ∇νΦ ¼ 1

2
g̃αβ½g̃ττð∂τΦÞ2 þ g̃σσð∂σΦÞ2 þ 2g̃τσ∂τΦ∂σΦþ g̃θθð∂θΦÞ2 þ g̃φφð∂φΦÞ2�: ðB5Þ

But since our scalar-field scales as Φ ¼ ΩΦ̄ then

1

2
g̃αβg̃μν∇μΦ∇νΦ ¼ 1

2
g̃αβ½Ω2g̃ττð∂τΦ̄Þ2 þ g̃σσðΦ̄þΩ∂σΦ̄Þ2 þ 2g̃τσΩð∂τΦ̄ÞðΦ̄þΩ∂σΦ̄Þ

þ g̃θθΩ2ð∂θΦ̄Þ2 þ g̃φφΩ2ð∂φΦ̄Þ2�: ðB6Þ

Inserting the components of the conformal metric we are left with

1

2
g̃αβg̃μν∇μΦ∇νΦ ¼ 1

2
g̃αβ½−4Ω2ð1þ σÞð∂τΦ̄Þ2 þ 4σ2ð1 − σÞðΦ̄þΩ∂σΦ̄Þ2 þ 4ð1 − 2σ2ÞΩð∂τΦ̄ÞðΦ̄þΩ∂σΦ̄Þ

þ 4Ω2ð∂θΦ̄Þ2 þ 4csc2θΩ2ð∂φΦ̄Þ2�: ðB7Þ

Taking our results from Eqs. (B5) and (B7) we find
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Tττ ¼
σ2

4πλ3
½λð∂τΦ̄Þ2 − ð1 − σÞσðð2 − 4σ2Þð∂τΦ̄ÞðΦ̄þ λ∂σΦ̄Þ2 þ 2λσð∂θΦ̄Þ2 − 2λðσ − 1ÞσðΦ̄þ λ∂σΦ̄Þ2

− 2λσðσ þ 1Þð∂τΦ̄Þ2 þ 2λσcsc2θ∂φΦ̄Þ�; ðB8Þ

Tτσ ¼
σ

8πλ3
½2λσð∂σΦ̄Þð∂τΦ̄Þ þ ð1 − 2σ2Þðð2 − 4σ2Þð∂τΦ̄ÞðλðΦ̄þ λ∂σΦ̄Þ2 þ 2λσð∂θΦ̄Þ2 − 2λσðσ − 1ÞðλðΦ̄þ λ∂σΦ̄Þ2

− 2λσðσ þ 1Þð∂τΦ̄Þ2 þ 2λσcsc2θ∂φΦ̄Þ�: ðB9Þ

APPENDIX C: ANALYTIC MESH REFINEMENT

This Appendix complements Sec. V D and discusses the
effects of the AMR in two cases: the accuracy on domain 1
extending between future null infinity and the particle’s
orbit for distributional sources (with qualitatively similar
results in the case of sources with unbounded support); and
scenarios with worldtube sources, whose results follow
from a code with 4-domains.

1. Treatment at I +

Contrary to the systematic pattern observed by Eq. (100),
the method to optimize the solutions’ accuracy in domain 1
is very sensitive to the particular ðl; mÞ mode, and the
improvement in accuracy is not so significant. As example,
we consider the solution for ϕ̄ret

lm with ðl; mÞ ¼ ð1; 1Þ. One
needs to employ the AMR with xB ¼ −1, i.e., the map (96)
populates the grid points around future null infinity σ ¼ 0.
Figure 17 demonstrates this effect. The top panel in Fig. 17
shows the Chebyshev coefficients of Reðϕ̄ret

lmÞ with rp ¼
1000M and ðl; mÞ ¼ ð1; 1Þ for several AMR parameters κ
for domain 1. The coefficients decay moderately fast for
κ ¼ 0, but one can improve the decay rate by varying κ
(e.g., κ ¼ 2, 3 and 4). As explained in Sec. V D, one
typically encounters and optimal value κ�lmðrpÞ on domain
1, for which the decay is the fastest. In this example, the
optimal value κ�lmðrpÞ corresponds to κ�1;1ð1000MÞ ¼ 3.
The bottom panel displays the fit of κ�1;1ðrpÞ against rp.
Contrary to the log-dependence of Eq. (100), we observe
that κ�1;1ðrpÞ quickly saturates around ∼3, according to

κ�1 ¼ 3.00 tanh

�
0.01

rp
M

þ 0.48

�
: ðC1Þ

On the other hand, we observe that the coefficients on
domain 1 for modes ðl; mÞ ¼ ð50; 50Þ and ðl; mÞ ¼
ð100; 0Þ are optimised with a map (96) with xB ¼ 1, i.e.,
with an increase of grid points around the particle.
We observe a slight improvement on the coefficients decay
rate for ðl; mÞ ¼ ð50; 50Þ and (100,0), respectively, when
κ ¼ 1 or κ ¼ 1.5, regardless of the particle location.
Because the effects on the accuracy is marginal and highly
dependent on the angular mode ðl; mÞ, we refrain from
using the AMR technique on domain 1.

2. Worldtube sources

We apply the AMR also to effective-source computa-
tions. As discussed in Sec. V B, this problem requires a 4-
domain code. The accuracy loss for large orbits arise from
domain 3 where σ ∈ ½σp; σþ�. Therefore, we use the AMR
(xB ¼ −1) on domain 3. The top panel of Fig. 18 displays
the Chebyshev coefficients for the residual field ReðΦ̄R

lmÞ
with rp ¼ 1000M and ðl; mÞ ¼ ð1; 1Þ. As previously, we

FIG. 17. AMR effect over ϕ̄ret
lm on domain 1 (between future

null infinity and particle’s orbit). Top panel: Chebyshev coef-
ficients of Reðϕ̄ret

lmÞ with rp ¼ 1000M and ðl; mÞ ¼ ð1; 1Þ in
domain 1 between the particle and future null infinity. The
improvement with AnMR is not as compelling as in domain 2
presented in Fig. 14. Bottom panel: optimal AMR parameters
plotted against rp=M with the fit Eq. (C1).
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observe the coefficients’ slow decay rate when κ ¼ 0 and
significant improvement for κ > 0. In this example, the best
decay rate is achieved for the value κ ∼ 3.5. The calibration
for the optimal k�lmðrpÞ is the same as in Eq. (100). In
particular, for ðl; mÞ ¼ ð1; 1Þ, (50,50), and (100,0), the
offsets Al;m are A1;1 ≈ −0.02, A50;50 ≈ 0.59, and
A100;0 ≈ 0.85. We show in Fig. 19 the relative error for a
fixed angular mode ðl; mÞ ¼ ð1; 1Þ for several values of
log10ðrp=MÞ ¼ f2…6g. We find exponential convergence,

but the saturation happens at larger errors as one increases
the particle’s location. Note that for rp ¼ 106M, the
solution already approaches machine precision for double
float operations. One has jΦR

1;1j ∼ 10−13, jΦR
50;50j ∼ 10−14,

and jΦR
100;0j ∼ 10−15. The high saturation error in Fig. 19

reflects limitations with respect to precision. A more
accurate calculation would require higher internal
precision.
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FIG. 19. Exponential error decay for large orbits with optimal
AMR for worldtube sources. It demonstrates the challenging
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