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The general parametrization of spherically symmetric and asymptotically flat black hole spacetimes in
arbitrary metric theories of gravity was suggested in Rezzolla and Zhidenko [Phys. Rev. D 90, 084009
(2014)]. The parametrization is based on the continued fraction expansion in terms of the compact radial
coordinate and has superior convergence and a strict hierarchy of parameters. It is known that some
observable quantities, related to particle motion around the black hole, such as the eikonal-quasinormal
modes, radius of the shadow, frequency at the innermost stable circular orbit, and others, depend mostly on
only a few of the lowest coefficients of the parametrization. Here we continue this approach by studying the
dominant (low-lying) quasinormal modes for such generally parametrized black holes. We show that, due
to the hierarchy of parameters, the dominant quasinormal frequencies are also well determined by only the
first few coefficients of the expansion for the so-called moderate black hole geometries. The latter are
characterized by a relatively slow change of the metric functions in the radiation zone near the black hole.
The nonmoderate metrics, which change strongly between the event horizon and the innermost stable
circular orbit, are usually characterized by echoes or by the distinctive (from the Einstein case) quasinormal
ringing which does not match the current observational data. Therefore, the compact description of a black
hole spacetime in terms of the truncated general parametrization is an effective formalism for testing strong
gravity and imposing constraints on allowed black hole geometries.
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I. INTRODUCTION

The near future observations of black holes in the
gravitational and electromagnetic spectra should allow us
to test Einstein theory and its alternatives in the strong-
gravity regime via determining the black hole geometry [1].
At the same time, the current observational data still leave a
great deal of room for deviations from Einstein gravity [2].
In order to avoid the consideration of various astrophysical
phenomena in each theory of gravity, case by case, and
have a universal and powerful formalism for comparison of
the experimental data with theoretical predictions, the
general parametrization of spherically symmetric and
asymptotically flat black hole spacetime was developed
in [3] and extended to the axial symmetry in [4]. This
parametrization is based on the double expansion in the
form of the infinite continued fraction in terms of the
compact radial coordinate and respectively the equatorial
plane. The expansion is similar in spirit to the parametri-
zed post-Newtonian (PPN) formalism, but valid in the

whole space outside the event horizon up to spatial infinity.
It possesses superior convergence and a strict hierarchy of
parameters, so that constraining the parameters by obser-
vations should tell which theory of gravity is closer to the
given experimental data.
The parametrization formalism of [3,4] has been broadly

used for finding various analytical black hole metrics [5]
which serve as analytic approximations to the solutions
obtained numerically. Using this approach to describe the
black hole geometry a number of phenomena in the
background of these parametrized black hole metrics,
such as quasinormal modes (QNMs) [6], particle motion,
Hawking radiation [7], shadows, and the Blandford-Znajek
effect have been studied in [8]. The initial parametrization
was generalized to the case of higher-dimensional black
holes [9] and to four-dimensional wormhole space-
times [10].
The general parametrization [3,4] contains an infinite

number of parameters. It was shown in [11] that some
astrophysically relevant quantities such as the eikonal
quasinormal modes, the radius of the shadow, the frequency
at the innermost stable circular orbit etc., must depend
mostly on a few of these parameters—at least for a broad
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class of black hole geometries calledmoderate. A moderate
black hole metric implies that the metric functions do not
change quickly within the radiation zone, i.e., between the
event horizon and the innermost stable circular orbit. In
other words the geometry goes over into the asymptotic
regime (described via post-Newtonian approximations)
relatively slowly, as it occurs for the Schwarzschild black
hole and its analogs in various alternative theories of
gravity. This concept is compatible with our understanding
that, in a true theory of gravity, the observable quantities
should not deviate from their Schwarzschild values by
orders, but rather, at most by tens of percent. Otherwise,
such strong deviations would be observable within the post-
Newtonian regime.
The opposite, nonmoderate black hole metric can be

indistinguishable from the Kerr form in the whole space,
except for a very small region near its horizon, where the
deviation is huge. Then, such a geometry would also be
experimentally indistinguishable from the Kerr one, leav-
ing a weak imprint only in the form of gravitational echoes
at late times when the signal is almost completely
damped [12].
When considering a parametrized approximate metric

instead of some exact black hole solution (once the latter is
numerical), the criterium of sufficient accuracy of the
approximation is evident; the physical “effect”, which is
the deviation of some measurable physical quantities from
their Schwarzschild values, must be at least one order larger
than the relative error of the approximation due to the
truncation of the parametrization. Using the eikonal char-
acteristics of spherically symmetric black holes (such as
eikonal-quasinormal modes, the radius of the shadow, and
the frequency at the innermost stable circular orbit) we have
shown in [11] that moderate metrics can be very well
described by only three parameters in this case, and owing
to the strong hierarchy of coefficients, five parameters are
sufficient if one order higher accuracy is necessary.
It is known that the quasinormal modes in the regime of

high multipole numbers (eikonal regime) are linked to the
parameters of the null geodesics [13] and this link, although
not obligatory for gravitational and other nonminimally
coupled field, is guaranteed for test fields [14], once the
black hole is spherically symmetric and asymptotically flat
or de Sitter. Therefore, a number of phenomena, such as the
radius of shadows, characteristics of particle motion, and
accretion are intrinsically linked to the eikonal-quasinormal
modes as well. In this context, despite a number of papers
on testing of the parametrized black holes [15], no
convincing work has been done so far for the characteristics
beyond the eikonal regime that are not connected to particle
motion. First of all, no such analysis was suggested for the
low-lying quasinormal modes, which are especially impor-
tant because they dominate in a signal. The analysis of
quasinormal modes in [16] was aimed at the attempt to
solve the inverse problem; from the quasinormal spectrum
to parametrization, which evidently could not be effectively

solved via determining only the value of the domi-
nant mode.
In the present paper we will consider the dominant

quasinormal modes for a general parametrized black hole
of [3] and show that the strict hierarchy of parameters is
indeed present; the low-lying quasinormal modes strongly
depend on the lower coefficients andmuch less on the higher
ones. Therefore, the dominant quasinormal modes of an
asymptotically flat spherically symmetric black hole essen-
tially depend upon only three first coefficients of the para-
metrization. Higher coefficients can only slightly correct
quasinormal modes. The exception from this picture is
provided by nonmoderate metrics which either do not satisfy
the constrains of the post-Newtonian regime or have so
strong a deviation from the Schwarzschild quasinormal
ringing that it would immediately be seen in the current
experiments.
Here we use the approach of parametrization of the

metric and not of the effective potential used in [17].
Unfortunately, this approach does not allow us to find
gravitational quasinormal modes for the general case unless
the underlying gravitational theory is specified. It was
shown in [18] that it is possible to find a mixed scalar-fðRÞ
theory in which the given metric is an exact solution.
However, for the general static spherically symmetric black
hole in the corresponding theory, the equations for axial-
gravitational perturbations, which do not couple to the
scalar-field degree of freedom, still depend on a free
parameter of the theory. In order to avoid the ambiguity,
in the present paper we study quasinormal modes of test
fields, which usually are qualitatively similar to the
gravitational ones and approach the latter very quickly
when the multipole number is increased.
The paper is organized as follows. In Sec. II we briefly

review the general parametrization of [3] and suggest some
basic constraints on the values of the parametrization
coefficients. Section III introduces the master wave equa-
tions and the methods used for calculations of quasinormal
modes. Section IV is devoted to the quasinormal modes of
moderate black holes, while Sec. V considers quasinormal
ringing and the echoes which take place for nonmoderate
black hole geometries. Finally, in Sec. VI we summarize
the obtained results and mention some open questions.

II. THE PARAMETRIZED BLACK
HOLE METRIC

The metric of a spherically symmetric black hole can be
written in the following general form,

ds2 ¼ −N2ðrÞdt2 þ B2ðrÞ
N2ðrÞ dr

2 þ r2ðdθ2 þ sin2θdϕ2Þ; ð1Þ

where r0 is the event horizon, so that

Nðr0Þ ¼ 0: ð2Þ
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Following [3], we will use the new dimensionless variable

x≡ 1 −
r0
r
; ð3Þ

so that x ¼ 0 corresponds to the event horizon, while x ¼ 1
corresponds to spatial infinity. In addition, we rewrite the
metric function N as follows:

N2 ¼ xAðxÞ; ð4Þ

where AðxÞ > 0 for 0 ≤ x ≤ 1. Using the new parameters ϵ,
a0, and b0, the functions A and B can be written as

AðxÞ ¼ 1 − ϵð1 − xÞ þ ða0 − ϵÞð1 − xÞ2 þ ÃðxÞð1 − xÞ3;
BðxÞ ¼ 1þ b0ð1 − xÞ þ B̃ðxÞð1 − xÞ2: ð5Þ

Here the coefficient ϵ measures the deviation of r0 from the
Schwarzschild radius 2M,

ϵ ¼ 2M − r0
r0

:

The coefficients a0 and b0 can be considered as
combinations of the PPN parameters,

a0 ¼
ðβ − γÞð1þ ϵÞ2

2
; b0 ¼

ðγ − 1Þð1þ ϵÞ
2

:

Current observational constraints on the PPN parameters
imply a0 ∼ b0 ∼ 10−4, so that from here and on we will
consider them as null.
The functions Ã and B̃ are introduced through infinite

continued fraction in order to describe the metric near the
horizon (i.e., for x ≃ 0),

ÃðxÞ ¼ a1
1þ a2x

1þ…

; B̃ðxÞ ¼ b1
1þ b2x

1þ…

; ð6Þ

where a1; a2;… and b1; b2;… are dimensionless constants
to be constrained from observations of phenomena which
are localized near the event horizon. At the horizon, only
the first term in each of the continued fractions survives,
ðÃð0Þ ¼ a1; B̃ð0Þ ¼ b1Þ which implies that near the hori-
zon only the lower-order terms of the expansions are
essential.
The parametrization coefficient ϵ is fixed as follows:

ϵ ¼ 2M
r0

− 1≡ 2C − 1; ð7Þ

where the ratio C≡M=r0 is called the compactness.
Since the Kerr-Newman black hole compactness obeys

the inequality

1=2 ≤ C < 1; ð8Þ

the range of values for ϵ in General Relativity is

0 ≤ ϵ < 1: ð9Þ

At the same time, the experimental data suggests
existence of the neutron stars with the compactness
C ≈ 0.2 (M ≈ 1.5 M⊙, R ≈ 11 km) [19]. This imposes a
lower bound on the allowed values of ϵ; at least, for the
highly rotating black holes,

ϵ≳ −0.6: ð10Þ

Otherwise, if a black hole with such compactness could
exist, the corresponding neutron stars would collapse. One
could assume the existence of some phenomenon that
prevents the neutron star from collapsing even though its
compactness is higher than the black hole one. Yet, it is
unnatural to expect that such a hypothetical mechanism
changes the above bound significantly.
Since the angular momentum of a neutron star can

prevent its collapse, the above bounds are, strictly speaking,
valid for the highly rotating black holes only. However, it is
natural to assume that the compactness of slowly rotating
and nonrotating black holes are of the same order of
magnitude. The additional assumption that the star col-
lapsing into a black hole further increases the compactness
and the lower bound for ϵ. Assuming existence of the stable
maximum-mass neutron stars, which can have the compact-
ness C ≈ 0.3 (M ≈ 2 M⊙, R ≈ 10 km) [20], increases the
above bound to

ϵ≳ −0.4:

At the same time the upper bound for the values of ϵ,
i. e., the maximally allowed compactness of the black hole,
seems to be impossible to estimate. In Einstein gravity there
is the uniqueness theorem claiming that the Schwarzschild/
Kerr solution is the only external geometry for the black
hole [21]. However, it is not guaranteed that such unique-
ness will be provided in all alternative theories of gravity.
In other words, we cannot exclude a possibility to have two
black holes of the same size but with different masses,
where different black hole solutions were realized during
the formation of black holes. Such nonuniqueness occurs,
for example, in the Einstein-Weyl theory. In this case a
more massive black hole is described by a higher value of ϵ.
After all, because of enormous distances to black holes, the
current experimental data do not allow us to constrain the
radius of them even up to some reasonable margins.
Substituting the above expression (6) for ÃðxÞ into (5),

we find that the expansion of AðxÞ has the form,
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AðxÞ ¼ 1 − ϵð1 − xÞ þ ða0 − ϵÞð1 − xÞ2 þ ð1 − xÞ3a1
1þ a2x

1þ…

:

Then, assuming that the surface gravity must be positive at
the event horizon, we have the following bound,

dN2ð0Þ
dx

¼ Að0Þ ¼ 1 − 2ϵþ a0 þ a1 > 0: ð11Þ

In the following sections we will show that the low-lying
quasinormal modes of moderate black hole geometries
are well determined by only the three coefficients of the
parametrization. In this case, the metric functions are

N2ðrÞ ¼ 1 −
r0ðϵþ 1Þ

r
þ r30ðϵþ a1Þ

r3
−
r40a1
r4

;

B2ðrÞ ¼
�
1þ r20b1

r2

�
2

: ð12Þ

The parameters ϵ, a1, and b1 are such that when they all are
equal to zero, the Schwarzschild limit is reproduced.
Within the approximation (12) the deviation of observable
quantities are at least one order larger than the relative error.
For a more accurate approximation, such that the error is
two orders smaller than the “effect”, one can use the
expansion (6) to include higher coefficients, a2 and b2, in
the metric functions.

III. THE MASTER WAVE EQUATIONS AND THE
METHODS FOR CALCULATIONS OF THE

QUASINORMAL MODES

The general covariant equations for the test scalar Φ and
electromagnetic Aμ fields in the black hole background
have the following form,

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νΦÞ ¼ 0;

1ffiffiffiffiffiffi−gp ∂μðFρσgρνgσμ
ffiffiffiffiffiffi
−g

p Þ ¼ 0; ð13Þ

where Fμν ¼ ∂μAν − ∂νAμ. After the separation of varia-
bles Eqs. (13) can be reduced to the Schrödinger-like form
(see, e.g., [6]),

∂2Ψ
∂t2 −

∂2Ψ
∂r2� þ VðrÞΨ ¼ 0 ð14Þ

where the “tortoise coordinate” r� is defined by the relation

dr� ¼
BðrÞ
N2ðrÞ dr: ð15Þ

The effective potentials for the scalar and electromag-
netic fields are

VðrÞ ¼ N2ðrÞlðlþ 1Þ
r2

þ 1 − s
2r

d
dr

N4ðrÞ
B2ðrÞ ; ð16Þ

where l ¼ 1; 2;… are the multipole numbers and s ¼ 0
(s ¼ 1) corresponds to the scalar (electromagnetic) field,
respectively. The effective potential for the electromagnetic
field has the form of the positive definite potential barrier,
while this is not always so for a scalar field.
Quasinormal modes ωn are frequencies corresponding

to solutions of the master wave equation (14) with the
requirement of the purely outgoing waves at infinity and at
the event horizon,

Ψ ∝ e−iωt�iωr� ; r� → �∞: ð17Þ
In order to find low-lying quasinormal modes wewill use

the two methods; the time-domain integration method and
the WKB method.
In the time domain, we can integrate the wavelike

equation (14) in terms of the light cone variables u ¼
t − r� and v ¼ tþ r�. We will use the discretization
scheme proposed in [22],

ΨðNÞ ¼ ΨðWÞ þ ΨðEÞ − ΨðSÞ

−
Δ2

4
VðSÞðΨðWÞ þ ΨðEÞÞ þOðΔ4Þ; ð18Þ

where we introduced the following notations for the points:
N ≡ ðuþ Δ; vþ ΔÞ, W ≡ ðuþ Δ; vÞ, E≡ ðu; vþ ΔÞ,
and S≡ ðu; vÞ. The Gaussian initial data are imposed on
the two null surfaces, u ¼ u0 and v ¼ v0. Then, the
dominant quasinormal frequencies can be extracted from
the time-domain profiles imagined as a sum of exponents
with the help of the Prony method [23].
In the frequency domain we will use the WKB method

suggested in [24] and extended to higher orders in [25–27].
The method achieved even higher accuracy via the use of
the Padé approximants [27,28]. The higher-order WKB
formula has the following form [29],

ω2 ¼ V0 þ A2ðK2Þ þ A4ðK2Þ þ A6ðK2Þ þ � � �
− iK

ffiffiffiffiffiffiffiffiffiffiffi
−2V2

p
ð1þ A3ðK2Þ þ A5ðK2Þ þ A7ðK2Þ…Þ;

ð19Þ
where K is half-integer. The corrections AkðK2Þ to the
eikonal formula are of the order k and polynomials in K2

with rational coefficients, which depend on the values of
higher derivatives of the potential VðrÞ at its maximum. In
order to increase the accuracy of the WKB formula, we will
follow the Matyjasek-Opala approach [27] and use the
Padé approximants. Here we will use the sixth-order WKB
method with m̃ ¼ 5 (where m̃ is defined in [27,29]),
because this choice provides the best accuracy in the
Schwarzschild limit (when all the expansion coefficients
are zero) and a good concordance with the results obtained
from the time-domain integration.
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IV. QUASINORMAL RINGING OF MODERATE
BLACK HOLES

From the constraints discussed in Sec. II we see that the
values of the parameter ϵ must not be smaller than −0.6. It
follows from (11) that, for the spherically symmetric black
holes, it cannot be larger than 0.5 if a0 ¼ a1 ¼ 0, because at
larger values no event horizon exists. If the black hole
geometry is moderate, i.e., the metric functions change
sufficiently slowly in the radiation zone, the higher coef-
ficients of the parametrization cannot bemuch larger then the
lower ones. In that case the upper bound on ϵ does not change
much. Therefore, we will constrain it here by the range

−0.5 ≤ ϵ ≤ 0.5: ð20Þ
From Fig. 1 we see that the parameter of deviation of the

black hole radius from its Schwarzschild value is the most
important parameter; quasinormal frequencies depend
strongly on it and may vary by quite a few tens of percent.
The larger ϵ is, the smaller the real oscillation frequency
and damping rate is. Thus, black holes, which are more

compact than the Schwarzschild one, have smaller oscil-
lation frequencies which damp for a longer time. Since for
the moderate black holes the dependence of the quasinor-
mal modes on the parametrization coefficients is similar
for s ¼ 0 and s ¼ 1, we further consider the quasinormal
modes of the electromagnetic field (s ¼ 1).
From Figs. 2 and 3 we can see that once the higher

coefficients a1 and b1 do not exceed ϵ by an order which is
necessary to keep the metric moderate—they change the
quasinormal frequencies only by several percent. Even if
we do not limit these coefficients we see that the quasi-
normal modes quickly approach the asymptotic regime
when further increasing of a1 and b1 does not change the
quasinormal modes. On the other hand, large negative
values of a1 are excluded by the inequality (11), and
negative values of b1 usually correspond to the nonmo-
derate geometry, which we discuss in the next section.
Finally, from Figs. 4 and 5 one can immediately see that

the coefficients a2 and b2 can correct the value of the
quasinormal mode by only a few percent and, if these
coefficients are not seemingly larger than the ϵ, a1 and b1,

FIG. 1. Real and imaginary parts of the fundamental quasinormal mode (l ¼ 1) of the electromagnetic (s ¼ 1, top panels) and scalar
field (s ¼ 0, bottom panels) as a function of ϵ for various a1 and b1: a1 ¼ 0.9, b1 ¼ 0.5 (cyan); a1 ¼ 0.1, b1 ¼ 0.2 (red); a1 ¼ 0.2,
b1 ¼ −0.1 (blue); a1 ¼ b1 ¼ 0 (black); a1 ¼ −0.5, b1 ¼ −0.1 (magneta).
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(which is usually the case for a great number of known
black hole solutions [11]) the correction allowed by
coefficients a2 and b2 stay within one percent for the
fundamental mode and within a couple of percent for the

first overtone. Although the higher overtones are generally
more sensitive to the small changes of the metric and,
thereby, to the higher coefficients, these modes are less
relevant for the gravitational-wave signal analysis.

FIG. 2. Real and imaginary parts of the fundamental quasinormal mode (s ¼ 1, l ¼ 1, n ¼ 0) for b1 ¼ 0.5 and various ϵ as a function
of a1, and the relative deviation from ω0, corresponding to a1 ¼ 0: ϵ ¼ −0.5 (blue); ϵ ¼ 0 (black); ϵ ¼ 0.25 (red); ϵ ¼ 0.5 (magenta).

FIG. 3. Real and imaginary parts of the fundamental quasinormal mode (s ¼ 1, l ¼ 1, n ¼ 0) for a1 ¼ 0.5 and various ϵ as a function
of b1, and the relative deviation from ω0, corresponding to b1 ¼ 0: ϵ ¼ 0.5 (magenta); ϵ ¼ 0.25 (red); ϵ ¼ 0 (black); ϵ ¼ −0.25 (cyan);
ϵ ¼ −0.5 (blue).

FIG. 4. Real and imaginary parts of the fundamental quasinormal mode (n ¼ 0, top panels) and the first overtone (n ¼ 1, bottom
panels) of the electromagnetic field (s ¼ 1, l ¼ 1) for a1 ¼ b1 ¼ 0.5, b2 ¼ 0 and various ϵ as a function of a2, and the relative deviation
from ω0, corresponding to a2 ¼ 0: ϵ ¼ 0.5 (red), ϵ ¼ 0 (green), ϵ ¼ −0.5 (blue).
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From the above data we conclude that there is indeed a
strict hierarchy of the coefficients of the parametrization,
and the higher coefficients are much less important than the
lower ones when determining dominant quasinormal modes.
If we want to describe low-lying quasinormal frequencies
with the relative error of about one-two percents, it is suf-
ficient to include only the three parameters ϵ, a1, and b1,
provided that the evident constraints on the compactness are
imposed.

V. QUASINORMAL RINGING AND ECHOES
OF NONMODERATE BLACK HOLES

Here we will consider the other situation, when the
higher coefficients are much larger than the lower ones.
In Fig. 6 one can see the effective potential of the
electromagnetic field for ϵ ¼ −0.5 in two particular cases;
one for which all other coefficients are equal to zero and the
other when a1 ¼ 20. The first case is characterized by a

FIG. 5. Real and imaginary parts of the fundamental quasinormal mode (s ¼ 1, l ¼ 1, n ¼ 0) for a1 ¼ b1 ¼ a2 ¼ 0.5 and various ϵ
as a function of b2, and the relative deviation from ω0, corresponding to b2 ¼ 0: ϵ ¼ 0.5 (red), ϵ ¼ 0 (green), ϵ ¼ −0.5 (blue).

FIG. 6. Effective potentials and time-domain profiles (s ¼ 1,
l ¼ 1, r0 ¼ 1) for b1 ¼ a2 ¼ b2 ¼ … ¼ 0 and ϵ ¼ −0.5: a1 ¼
0 (ω ≈ 0.562 − 0.301i, red) and a1 ¼ 20 (ω ≈ 0.3–0.6i, blue).

FIG. 7. Effective potentials and time-domain profiles (s ¼ 0,
l ¼ 0, r0 ¼ 1) for b1 ¼ a2 ¼ b2 ¼ � � � ¼ 0 and ϵ ¼ 0.5: a1 ¼ 0
(ω ≈ 0.153 − 0.120i, red) and a1 ¼ 4 (ω ≈ 0.13–0.21i, blue).
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relatively slowly changing effective potential, while the
second case is represented by a distinctive, very high and
narrow peak, which is quite close to the event horizon.
Generally speaking, the strong change of the metric
function in the radiation zone could lead either to a high
peak of the effective potential or a very deep negative
gap near the event horizon. The latter would almost
definitely signify the existence of a bound state with
negative energy, causing instability of the perturbations.
Therefore, the typical picture of the effective potential for a
stable perturbation is a distinctive high peak.
Such a distinctive behavior of the effective potential results

in an enormously strong deviation of the quasinormal modes
from their Schwarzschild values. Thus, on Fig. 6 we see that
the quasinormal modes of the electromagnetic perturbations
for a nonmoderate geometry are characterized by much a
smaller real oscillation frequency and a much higher damp-
ing, and the deviation is of the order of hundreds of percent.
Such a strong deviation from the Einstein theory is not only
beyond the allowed range in observations of gravitational
waves fromblack holes [1], but, in extremecases,would even
show itself as violations of the known observational con-
straints in the post-Newtonian regime.

From Fig. 7 we see that for the fundamental scalar-field
mode a large deviation from the Schwarzschild behavior
manifests itself for even smaller values of a1.
The other case of nonmoderate black hole spacetimes is

the black hole geometry which looks as Schwarzschildian
everywhere, except for a very small region near the event
horizon. Such geometries do not change the classical
radiation processes, such as quasinormal modes, shadows,
accretion of matter, etc., but at very late times produce
additional, and still elusive, scattering of gravitational
waves called echoes [12]. Then, the nonmoderate geometry
can be different from some moderate Schwarzschild-like
black hole in such a small region that it does not impact
(significantly) the time-domain profile. From Fig. 8 we see
that the additional peak of the effective potential is so
narrow that it allows the signal to tunnel into the horizon
rather than reflect to infinity causing no observable echo in
the time-domain profile and almost no change in the ring-
down phase. However, once the additional peak near the
effective potential is broader, it can produce echoes, and
still will not significantly influence the quasinormal ringing
and other astrophysically relevant observables (see Fig. 9).

FIG. 8. Effective potentials and time-domain profiles (s ¼ 0,
l ¼ 2, r0 ¼ 1) for ϵ ¼ a1 ¼ a2 ¼ b2 ¼ � � � ¼ 0, b1 ¼ −0.3
(ω ≈ 0.9667 − 0.2237i, red) and ϵ ¼ a1 ¼ a2 ¼ b3 ¼ � � � ¼ 0,
b1 ¼ −0.99 and b2 ¼ 10 (ω ≈ 0.9762 − 0.2230i, blue).

FIG. 9. Effective potentials and time-domain profiles (s ¼ 0,
l ¼ 1, M ¼ 0.5) for r0 ¼ 0.435, ϵ ¼ 1.3, a0 ¼ 1.5, a1 ¼ 0.13,
a2 ¼ 0 b1 ¼ b2 ¼ � � � ¼ 0 (ω ≈ 0.791 − 0.172i, red) and
r0 ¼ 0.2, ϵ ¼ 4, a0 ¼ 7, a1 ¼ 0.5, a2 ¼ −8, a3 ¼ 8,
a4 ¼ −0.1, a5 ¼ 0, b0 ¼ b1 ¼ b2 ¼ � � � ¼ 0 (blue, echo).
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VI. CONCLUSIONS

Here we considered low-lying quasinormal modes for
the general parametrized spherically symmetric black hole
suggested in [3]. We have shown that there is a strong
hierarchy of the coefficients of the parametrization such
that every order of expansion is roughly one order less
important. This way, if one wants to determine quasinormal
modes with the relative error of about one to two percent,
only three coefficients are sufficient provided that the
evident constraints on the compactness are imposed and
the metric changes moderately in the radiation zone
between the event horizon and the innermost stable circular
orbit. The case of nonmoderate stable black hole spacetime
is characterized by a high distinctive peak of the effective
potential near the event horizon, which leads either to
an enormous deviation in quasinormal frequencies from
their Einsteinian values by hundreds of percent or to a

Schwarzschild-like metric which changes strongly only in a
tiny zone in the vicinity of the event horizon, resulting in a
Schwarzschild-like quasinormal modes accompanied by
echoes at very late times.
Therefore, we conclude that astrophysically observable

quantities can be very well described by the general para-
metrization of the black hole spacetime truncated at the first
or, atmost, second order of the continued-fraction expansion.
Our work can be extended to the case of rotating black

holes, at least once the perturbation equations allow for the
separation of variables [30].
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