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We perform general relativistic, magnetohydrodynamic simulations of merging binary neutron stars
incorporating neutrino transport and magnetic fields. Our new radiative transport module for neutrinos
adopts a general relativistic, truncated-moment formalism. The binaries consist of two identical, irrotational
stars modeled by the Skyrme Lyon (SLy) nuclear equation of state. They are initially in quasicircular orbit
and threaded with a poloidal magnetic field that extends from the stellar interior into the exterior, as in
typical pulsars. We insert neutrino processes shortly after the merger and focus on the role of neutrinos in
launching a jet following the collapse of the hypermassive neutron star (HMNS) remnant to a spinning
black hole (BH). We treat two microphysical versions: one (a “warm-up”) evolving a single neutrino
species and considering only charged-current processes and the other evolving three species ðνe; ν̄e; νxÞ and
related processes. We trace the evolution until the system reaches a quasiequilibrium state after BH
formation. We find that the BHþ disk remnant eventually launches an incipient jet. The electromagnetic
Poynting luminosity is ∼1053 erg s−1, consistent with that of typical short gamma-ray bursts. The effect of
neutrino cooling shortens the lifetime of the HMNS and lowers the amplitude of the major peak of the
gravitational wave power spectrum somewhat. After BH formation, neutrinos help clear out the matter near
the BH poles, resulting in lower baryon-loaded surrounding debris. The neutrino luminosity resides in the
range ∼1052−53 erg s−1 once quasiequilibrium is achieved. Comparing with the neutrino-free models, we
observe that the inclusion of neutrinos yields similar ejecta masses and is inefficient in carrying off
additional angular momentum.
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I. INTRODUCTION

The coincident detection of gravitational waves (GWs)
and electromagnetic (EM) signals from the first established
neutron star binary (NSNS) merger GW170817 [1–7]
provides a unique opportunity to study systematically
the properties of compact objects, nuclear physics, and
electromagnetism in strong gravity. The simultaneous
detection of GW and EM signals from the NSNS mergers
is the prime target of multimessenger astronomy and can
provide us with important information about high-energy
astrophysics phenomena in strong gravity, the synthesis of
heavy nuclei, the properties of dense, nuclear matter, etc. In
particular, the observation of GW170817 coincident with
the short gamma-ray burst (sGRB) GRB170817A [8]
demonstrated that NSNS remnants can power sGRBs
[1,9,10]. In addition, this GW observation and its associ-
ation with kilonova AT 2017gfo/DLT17ck [11] indicate
that, in contrast to black hole (BH) binary mergers,
compact binary mergers where at least one of the

companions is a neutron star (NS) are likely to be followed
by various processes involving electromagnetic and neu-
trino emission. To systematically interpret multimessenger
signals and their relation to the properties of the binary
system, it is necessary to perform full general relativistic,
magnetohydrodynamic (GRMHD) simulations incorporat-
ing detailed microphysical processes.
It has been long established that magnetic fields play a

critical role in the fate of NSNS merger remnants. The
Kelvin-Helmholtz instability (KHI) at the contact surface
once the NSs touch for the first time triggers the expo-
nential amplification of the magnetic field strength [12–15].
Subsequently, material is ejected due to orbital angular
momentum advection and to torques [16,17]. There has
been a series of systematic numerical studies of the effect of
magnetic fields on NSNS mergers (see, e.g., Refs. [15,18–
30] and references therein). In particular, we have shown
that NSNS remnants consisting of a BHþ disk can launch
a collimated, mildly relativistic outflow—an incipient jet—
with duration and luminosity consistent with typical sGRB
central engine lifetimes and magnitudes, as well as with the
Blandford-Znajek mechanism [31] (hereafter BZ) for*lsun11@illinois.edu
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launching jets and their associated Poynting luminosities
[26,32]. We also reported that a jet is launched following
the delayed collapse of a hypermassive neutron star
(HMNS) remnant if the initial pulsarlike magnetic field
(i.e., magnetic filed that extends from the neutron star
interior into its exterior) in the binary companions has a
sufficiently large-scale poloidal component aligned to the
orbital angular momentum of the system. The simulations
in Ref. [33] suggest that this initial poloidal component is
needed to amplify the magnetic energy to ≳1050 erg in the
BHþ disk remnant, a threshold value that is required for jet
launching. It is worth emphasizing that the emergence of a
jet does not require relying on the development of a large-
scale poloidal magnetic field component in the HMNS, but
only initially, as in typical pulsars, which is what we
reported in Ref. [26]. In addition, our GRMHD simulations
of merging black hole–neutron star (BHNS) binaries,
where the NS is endowed with a magnetic field that
extends from the stellar interior into the exterior, show
that a jet may be launched from the highly spinning BHþ
disk remnant if the initial BH spin satisfies a=MBH ≳ 0.4
and an approximate alignment of the magnetic moment
with the total angular momentum of the system is
present [32,34].
Neutrino processes (e.g., cooling and emission) may also

have significant effects on the fate of NSNS merger
remnants. It has been suggested that neutrino pair annihi-
lation could carry a large amount of energy from the inner
region of the disk [35–38]. The thinning of the disk may
result in a favorable geometry for jet launching [28,35],
though the duration and energy of neutrino emission in
NSNS mergers are likely to be insufficient for the outflows
to break out from the ejecta shell and form relativistic jets
[38]. It is also believed that neutrino-driven winds, in which
neutrinos absorbed in the disk can lift matter out of its
gravitational potential, are a crucial mechanism of mass
loss for NSNS mergers [39–42]. Moreover, it was recently
suggested that the jet launching mechanism could be a joint
process of two widely accepted GRB central engine
models: a BH model, where a stellar-mass BH is sur-
rounded by a neutrino cooling-dominated accretion flow
first proposed in Ref. [35], and the BZ mechanism [31],
where the BH rotational energy is extracted by the magnetic
field. According to Ref. [43], an initially nonspinning BH
may first launch a thermal “fireball” via neutrino annihi-
lation, followed by a more powerful, Poynting-flux domi-
nated jet via the BZ process once the BH is spun up by
accretion. Neutrinos may also have important effects on the
magnetorotational instability (MRI), which is one of
the main mechanisms to amplify the magnetic field to
the strength required for jet launching (typically ≳1015 G;
see, e.g., Ref. [44]). As the joint contribution and inter-
action between neutrino transfer and magnetic fields may
produce copious interesting effects in compact binary
mergers, numerical simulations of mergers with full global

and microphysical ingredients are crucial in determining
the real physics of the jet-launching mechanism underlying
recent observations, such as GRB 170817A and GRB
160625B [8,45].
Neutrino transport schemes in compact binary simula-

tions have been developed and improved somewhat slowly.
This is mainly because of long-standing complications with
numerically solving Boltzmann’s equation of radiation
transport, whose requirement of evolving a system in
six-dimensional phase space plus time for each species
of neutrinos makes its application computationally expen-
sive and impractical. Moreover, the interaction timescale
between matter and radiation is shorter than the dynamical
timescale of magnetohydrodynamics (MHD) matter in
optically thick regions, making the numerical simulation
more challenging to perform with sufficient resolution. To
achieve neutrino transport in compact binary merger
systems, simplifications of the exact transport equations
have been applied. These include the simplest leakage
schemes, which are based on the assumption that the
neutrino diffusion timescale is much longer than the weak
interaction timescale [46,47]. With a leakage scheme, one
can trace the approximate local energy variation of neu-
trinos and neutrino cooling but cannot treat nonlocal
neutrino-matter interactions and neutrino heating. More
sophisticated are truncated moment formalisms, in particu-
lar, the two-moment (M1) scheme with analytic closure
[48–51], and a mixed leakage–one moment scheme [52] for
evolving binary merger systems. Recently, an improvedM1
scheme was proposed in Ref. [53] and evolves the neutrino
number density and yields a local estimate of the average
neutrino energy. It shows that the composition of the polar
ejecta in a NSNS merger is less neutron rich than in their
previous simulations, where the neutrino spectrum was
assumed to be energy independent in optically thin regions.
More recently, a general relativistic Monte Carlo (MC)
scheme has been implemented for the simulation of an
unequal-mass NSNS merger [54,55]. This has shown that
MC and M1 have similar and consistent outcomes of
ejected material and neutrino outflow, except for a factor of
∼2 difference in the luminosity of heavy-lepton neutrinos.
However, the studies above are purely hydrodynamic
simulations and do not study the joint effect of neutrino
radiation and magnetic fields.
A recent GRMHD study of the NSNS postmerger phase

that includes a neutrino leakage scheme, in which the
remnant is seeded with a poloidal magnetic field 17 ms
after merger, reports that the strong toroidal field (∼1016 G)
around a HMNS remnant is able to launch a magnetically
driven outflow [56]. Neutrino cooling may help to reduce
the baryon load in the polar region above the HMNS.
However, the maximum attainable Lorentz factor in these
simulations (ΓL ≲ 5) is too low to explain most sGRBs
[57]. It is also claimed that, with a better neutrino evolution
scheme that includes pair annihilation and radiative
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processes, the Lorentz factor could be boosted to higher
values. Therefore, a numerical GRMHD study of NSNS
merger with a neutrino transport scheme that includes key
interactions would provide new information regarding the
merger remnant, radiation signals, jet-launching mecha-
nism, and many other important features. More recently, a
GRMHD simulation of a BHNS merger with neutrino
transfer using a combined leakage-moment method has
been performed in Ref. [58]. It finds that during the merger
dynamical mass ejection and accretion disk formation
occur shortly after tidal disruption. The magnetic field is
strengthened due to magnetic winding and MRI. Moreover,
postmerger mass ejection due to magnetically induced
turbulent viscosity takes place ∼300–500 ms after the tidal
disruption, with the neutrino luminosity dropping quickly
below ∼1051 erg s−1. It also claims that a high-intensity
Poynting flux is generated a few hundred ms after merger
and remains strong for 1–2 s, which agrees with the
duration of typical sGRBs.
In this work, we perform GRMHD simulations of NSNS

mergers modeled using a piecewise polytropic representa-
tion of the nuclear SLy nuclear equation of state (EOS) [59]
and initially endowed with a poloidal magnetic field
extending from the stellar interior to the exterior, as in
pulsars. Shortly after merger, we insert neutrino transfer
using an M1 closure scheme. We performed two versions:
(i) a simplified “warm-up” version involving only one
neutrino species ðν̄eÞ and considering only charged-current
interactions (called “Rad-Simp”) and (ii) a full, more
realistic version that evolves three neutrino species and
considers additional microphysical processes (“Rad-Full”).
We compare our results to simulations that include
neither magnetic fields nor neutrino transport (“Unmag”)
as well as those that include only magnetic fields (“Mag”)
and those that include only neutrinos transport
(“Unmagþ Rad”).
We find that neutrino processes enhance the angular

momentum transport accelerating the collapse of the
HMNS. As a consequence, in neutrino transport cases,
the GW waveform is shorter in duration, though its strain
amplitude remains above the sensitivity curve of next
generation GW observatories, such as the Einstein
Telescope (ET), between 1 and 5 kHz, assuming a source
distance of 50 Mpc. We note that the most prominent peak
in the strain may be detectable by aLIGO and Aþ as well.
We also find that neutrinos do not have significant impact
on the growth of the magnetic field, but they have the effect
of clearing out the polar region above the BH poles,
inducing a lower baryon load in surrounding debris. A
magnetically driven jet is launched after ≳10 ms following
the collapse of the HMNS. However, the delay time
between the peak GW (i.e., the binary merger) and the
emergence of the jet is significantly shorter in neutrino
radiation cases. The outgoing EM Poynting luminosity
[LEM ∼ 1053 erg s−1] is roughly consistent with sGRB

models [60–62] and the luminosity associated with the
BZ mechanism [31].
A key motivation of our project has been to implement a

neutrino transport scheme into our Illinois GRMHD code,
which has been used successfully to treat compact binary
mergers (see, e.g., Refs. [63–68], including those involving
magnetized neutron stars [33,69]). While the M1 scheme
we adopt is not the most advanced and the results we report
here are not likely the final answers, they are sufficient to
generate a preliminary sketch of the combined influence of
magnetic fields and neutrino transport on compact binary
mergers and other astrophysical scenarios in strong gravi-
tational fields.
The structure of the paper is summarized as follows. In

Sec. II, we introduce our implementation of M1 radiation
transport and the microphysical interactions responsible for
thermal neutrino emission. A more detailed description and
a strong-field test of our M1 scheme are presented in
Appendices A–F. We next describe our adopted numerical
setup and initial conditions in Sec. III. We discuss the
effects of the magnetic field and thermal neutrino emission
on the nature of the merger, properties of the remnant
and ejecta, and the strength and detectability of GW and
EM signals in Sec. IV. Finally, we summarize our findings
and identify some limitations of our simulations in Sec. V.
Throughout the paper, we adopt geometrized units
ðG ¼ c ¼ 1Þ except where stated otherwise. Greek indices
denote all four spacetime dimensions, while latin indices
imply spatial parts only.

II. FORMALISM AND METHOD

A. Numerical methods

The simulations in this work are performed using the
original Illinois GRMHD code [70], coupled with our newly
developed neutrino radiation moment formalism and trans-
port module. The code is embedded in the CACTUS infra-
structure [71] using CARPETas the moving-mesh refinement
scheme [72]. The code evolves the Baumgarte-Shapiro-
Shibata-Nakamura (BSSN) gravitational field equations
[73,74] coupled to the moving puncture gauge conditions
[75,76], using fourth-order centered spatial differencing,
except on shift advection terms, where a fourth-order
upwind differencing is used. In all our evolution cases,
we set the damping coefficient ηβ appearing in the shift
condition to 2.7=M, whereM is the Arnowitt-Deser-Misner
(ADM) mass of the system. The BSSN evolution equations
are embedded with fifth-order Kreiss-Oliger dissipation
[77]. We also adopt the generalized Lorenz gauge [78,79]
to evolve Maxwell’s equations and employ a damping
parameter ζ ¼ 4.1=M to avoid the rise of spurious mag-
netic fields due to interpolations across refinement levels
(see Ref. [78] for details). Time integration is performed
using the method of lines with a fourth-order Runge-Kutta
integration scheme with a Courant-Friedrichs-Lewy factor
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of 0.5. In the absence of neutrinos, this code has been
thoroughly tested and used in the past in various scenarios
involving compact binaries (e.g., Refs. [33,63–69]). The
incorporation of radiation in the optically thick limit was
previously used and tested in Ref. [80]. For implementation
details, see Refs. [70,79–81].

B. Evolution of radiation fields

1. Radiation fields: M1 transport

We adopt and generalize the radiation transport approach
described in Ref. [80], in which a basic radiation transport
scheme applicable for optically thick gases was embedded
in the Illinois GRMHD code. The local properties of the
radiation can be described by the specific intensity
Iν ¼ Iðxμ;Ni; νÞ, where xμ is the coordinate position, Ni

is the direction of radiation, and ν is the frequency with
Nμ ¼ pμ=ðhνÞ, with pμ the 4-momentum of the photon and
h the Planck constant. The quantities above are measured in
the local Lorentz frame of a fiducial observer. The
evolution of Iν can be described by the Boltzmann equation
for radiation transport, which is a 6þ 1-dimensional
integrodifferential equation system whose numerical inte-
gration requires extremely large computational resources.
To realize the numerical evolution of radiation fields,
several approximations need to be imposed. First, we
adopt the moment formalism (see, e.g., Ref. [82]) and
consider the three lowest moments. We use the energy-
(frequency-)integrated equations and the energy-averaged
emissivities and opacities. For an observer comoving with
the fluid, the energy moments of interest are the radiation
energy density,

E ¼
Z

dνdΩIν; ð1Þ

the radiation flux,

Fα ¼ hαγ

Z
dνdΩIνNγ; ð2Þ

and the radiation stress tensor,

Pαβ ¼ hαγhβδ

Z
dνdΩIνNγNδ; ð3Þ

where dΩ is the solid angle measured in the local Lorentz
frame and hαβ ¼ gαβ þ uαuβ is the projection tensor onto
the orthogonal slices of the fluid 4-velocity uα. We note that
Fα is orthogonal to the fluid 4-velocity. With the above
expressions, one can decompose the radiation tensor in
terms of an observer comoving with the fluid as

Rαβ ¼ Euαuβ þ Fαuβ þ Fβuα þ Pαβ: ð4Þ

In the numerical evolution, the highest-order radiation
moments, E and Fi, are used as the primitive variables
for the radiation (neutrino) fields. We then obtain F0 using
Fαuα ¼ 0, where uα satisfies uαuα ¼ −1with uμ ¼ ðu0; 0Þ.
The radiation stress tensor Pαβ is computed as a function of
E and Fα according to the Minerbo closure scheme [83],
which is an interpolation between the analytical expres-
sions in optically thick and thin limits (see Appendix A). At
each time step, the primitive variables are computed from
the conserved variables, which are related to quantities
measured by normal observers (see below) using a four-
dimensional (4D) Newton-Rasphson solver described in
Appendix B.
One can also decompose the radiation stress-energy

tensor according to the normal observer

Rαβ ¼ Ēnαnβ þ F̄αnβ þ F̄βnα þ P̄αβ; ð5Þ

where nα is the unit vector normal to the constant t slice.
The barred quantities,

Ē ¼ nαnβRαβ ¼ α2R00; ð6Þ

F̄α ¼ −γαρnβRβρ ¼ αðRα0 þ βαR00Þ; ð7Þ

P̄αβ¼ γαργ
β
σRρσ ¼Rαβ−αðnαRβ0þnβRα0Þþα2nαnβR00;

ð8Þ

are the radiation energy density, flux, and stress tensor
with respect to a normal observer, respectively. Here,
γαβ ¼ gαβ þ nαnβ is the projection operator onto slices of
constant t, and α and βμ are the lapse and shift functions,
respectively. Note that Eqs. (6)–(8) can also be regarded as
the purely normal, mixed normal-spatial, and purely spatial
components of Rαβ, respectively [84]. They are directly
related to the conserved radiation variables for the radiation
dynamical equations (see Sec. II B 2). The conversion
between the fluid-frame variables and the normal-frame
variables is given by Refs. [84,85],

Ē ¼ W2Eþ 2WvαF̄α þ vαvβP̄αβ; ð9Þ
F̄α ¼ W2vαEþWðgαβ − nαnβÞFβ

þWvαvβFβ þWðgαβ − nαnβÞvγPβγ; ð10Þ

P̄αβ ¼ W2vαvβEþWðgαγ − nαnγÞvβFγ

þWðgγβ − nγnβÞvαFγ

þ ðgαγ − nαnγÞðgβδ − nβnδÞPγδ; ð11Þ

where the 4-velocity is decomposed into its orthogonal and
tangent parts

uα ¼ Wðnα þ vαÞ; ð12Þ
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with vα ¼ ð0; ui=W þ βi=αÞ, andW ≡ −nαuα ¼ αu0 is the
Lorentz-factor between normal and fluid observers. Note
that by construction vα is purely spatial, nαvα ¼ 0.

2. Radiation evolution

Following Ref. [80], the dynamics of the radiation field
can be expressed as

Rαν
;ν ¼ −Gα; ð13Þ

where Gα ¼ R
dνdΩðκνIν − ηνÞNα is the radiation four-

force density which describes the interaction between the
radiation field and matter. In the energy-integrated moment
formalism, the four-force terms can be written in the
covariant form as

Gα ¼ ρ0½ðκaE − ηÞuα þ ðκa þ κsÞFα�; ð14Þ

where ρ0 is the rest-mass density and η, κa, and κs represent
the energy-averaged emissivity, absorption opacity, and
scattering opacity, respectively. They are computed as
functions of temperature, density, and the chemical poten-
tial via the major microphysical interactions listed in
Sec. II D 2. Their analytic expressions, derived from
Refs. [86,87], are bounded by the opposite limits of local
thermal equilibrium (LTE) and free-streaming. In our
implementation, we interpolate the limiting values follow-
ing the method of interpolating Pαβ to accommodate

regions with different optical depths (see Appendix D
for a detailed derivation). Note that, in LTE, η can be
written by invoking Kirchhoff’s law, using the frequency-
integrated neutrino thermal equilibrium intensity B̄: η ¼
κa4πB̄ ¼ κaaRT4 [80,84], where T is the temperature of the
fluid and aR is a constant chosen based on the type of
radiation. For photons, aR is the radiation constant a, and
for neutrinos, aR ¼ 7aN ν=16, where N ν is the number of
left-handed neutrino and right-handed antineutrino species
contributing to thermal processes.
One can perform a normal projection of Eq. (13) and

obtain the energy equation

∂tτ̄ þ ∂iðα2 ffiffiffi
γ

p
R0iÞ ¼ s̄ − ðα2 ffiffiffi

γ
p ÞG0; ð15Þ

where τ̄ ¼ ðα2 ffiffiffi
γ

p ÞR00 ¼ ffiffiffi
γ

p
Ē is the radiation energy

density and s̄ is given by

s̄ ¼ α
ffiffiffi
γ

p ½ðR00βiβj þ R0iβj þ RijÞKij

−ðR00βi þ R0iÞ∂iα�
¼ ffiffiffi

γ
p ðαP̄ijKij − F̄i∂iαÞ: ð16Þ

Similarly, the spatial projection of Eq. (13) yields the
momentum equations (see Refs. [80,84] for detailed
derivations)

∂tS̄i þ ∂iðα ffiffiffi
γ

p
Ri
jÞ ¼ α

ffiffiffi
γ

p �
1

2
Rαβgαβ;i −Gi

�
; ð17Þ

where S̄i is the radiation momentum density. They form the
conserved variables of the dynamical equations. We note
that, although described in different notations, Eqs. (15)
and (17) are equivalent to the evolution equations in
previous works (e.g., Eqs. (3.39) and (3.40) in Ref. [48]
and Eqs. (16) and (17) in Ref. [50]) in conservative form.
We use the Harten-Lax–van Leer (HLL) approximate

Riemann solver to evolve Eqs. (15)–(17), in which we
adopt the characteristic speed of radiation field following
Ref. [50] for the HLL fluxes at cell interfaces. Note that
Eqs. (15)–(17) require the computation of PαβðE;FαÞ and
source terms Gα for closure. We adopt the prescription
presented in Ref. [83] regarding the radiation pressure
PαβðE;FαÞ, which is an interpolation of its optically thin
and thick limits. Since the closure equation for Pαβ is a
nonlinear function of E and Fα, the recovery of primitive
variables requires a four-dimensional solver. A detailed
description of the closure scheme and the recovery of the
primitive variables are summarized in Appendices A and B,
respectively. For the source terms, we adopted two ver-
sions: (i) the warm-up Simplified Scheme (Rad-Simp),
which assumes a purely neutron-rich environment, where
the net electron fraction Ye is zero, and accounts for only
the charged-current interaction of electron anti-neutrinos,
and (ii) the Full Scheme (Rad-Full), which includes three

TABLE I. Comparison of the two microphysics versions
employed here.

Microphysics scheme Simplified Full

Ye 0 Evolved

Yp 0 Ye

Yn 1 1 − Ye

Emission:
eþ þ n → pþ ν̄e ✓ ✓
e− þ p → nþ νe ✗ ✓
e− þ eþ → νi þ ν̄i ✗ ✓
γ → νi þ ν̄i ✗ ✓
N þ N → N þ N þ νi þ ν̄i ✗ ✓

Absorption:
pþ ν̄e → eþ þ n ✓ ✓
nþ νe → e− þ p ✗ ✓
νi þ ν̄i → e− þ eþ ✗ ✓
νi þ ν̄i → γ ✗ ✓
N þ N þ νi þ ν̄i → N þ N ✗ ✓

Scattering:
ν̄e þ n → ν̄e þ n ✓ ✓
fνe; νig þ n → fνe; νig þ n ✗ ✓
fνe; ν̄e; νig þ p → fνe; ν̄e; νig þ p ✗ ✓
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species of neutrinos: νe, ν̄e, and νx, where νx is the sum of
muon and tau neutrinos and their antiparticles, called the
“heavy-lepton neutrinos” (Rad-Full). This scheme includes
all the important interactions whose reaction rates are based
on the evolved electron fraction Ye using Eq. (18) and the
temperature. A description of the source terms and the two
schemes is summarized in Sec. II D 2 (see also Table I).

C. Evolution of metric and MHD fields

As in our previous magnetized NSNS studies, the Illinois

GRMHD code solves the equations of ideal GRMHD in a
conservative scheme via high-resolution shock capturing
methods for the evolution of matter and magnetic field. The
equations for metric, matter, and magnetic field, including
radiation source terms, are given in Ref. [80]. Additionally,
to compute Ye used in the radiation source terms, we now
evolve the quantity ρ�Ye following [48,50]

∂tðρ�YeÞ þ ∂j½ðρ�YeÞvj� ¼ −sgnðνiÞα ffiffiffi
γ

p
mN

�
η − κaE
hϵνi

�
;

ð18Þ

where

sgnðνiÞ ¼

8>><
>>:

1 for νe;

−1 for ν̄e;

0 for νx;

mN is the nucleon rest mass; hϵνi is the local mean energy
of neutrinos, which is approximated as F5ðηνÞ=F4ðηνÞT,
with FkðηνÞ the Fermi integral FkðηνÞ ¼

R
∞
0 xk=ð1þ

expðx − ηνÞÞdx, and ην ¼ μν=ðkBTÞ, with μν the chemical
potential evaluated using the analytic expressions detailed
in Appendix D 1. We note that the Fermi integrals can be
efficiently evaluated using the polynomial approximations
in Ref. [88].
We evolve the MHD equations using the standard HLL,

approximate Riemann solver with a simpler, dissipative
dispersion relation (see Eq. (50) in Ref. [89]). Required by
the dispersion relation, the sound speed c2s ¼ ðdP=dρ0Þs=h
consists of a cold and a thermal component of pressure
(see Sec. II D), where h is the specific enthalpy and s is the
specific entropy. The thermal part is based on an analytic
expression for a semidegenerate neutron gas of non
zero temperature. The analytic derivation and our imple-
mentation of the sound speed are described in detail in
AppendixC 3.Notice that, as in standard hydrodynamic and
MHD simulations, we integrate the ideal GRMHD equa-
tions on the whole numerical grid by imposing a tenuous
constant-density atmosphere ρ0;atm ¼ 10−10ρ0;maxð0Þ,
where ρ0;maxð0Þ is the initial maximum value of the rest
mass of the system.

D. EOS, neutrino processes, and source terms

1. Finite-temperature treatment

Our NSNS binaries are modeled by a piecewise polytropic
representation of the SLy nuclear EOS [59]. A cold EOS is
adequate to model the NS prior to merger. However, during
merger, considerable shock heating increases the internal
energy. To account for this, we adopt an EOS that has
both a thermal and cold contribution to the total energy
density, E ¼ Ecold þ Eth, and total pressure,P ¼ Pcold þ Pth.
Specifically, Pcold ¼ κiρ

Γi
0 , with κi and Γi the corresponding

polytropic constant and the polytropic exponent in the rest-
mass density range ρ0;i−1 ≤ ρ0 ≤ ρ0;i, respectively, fitted for
SLy [90]. Note that the cold energy density is given by
Ecold ¼ Pcold=ðΓi − 1Þ. The thermal terms are the sum of
nucleon and radiation (other than neutrino) contributions: (1)
Eth ¼ Erad þ Enucl and (2) Pth ¼ Prad þ Pnucl. The nucleon
parts are based on a semidegenerate neutron gas expression
that asymptotes to a Maxwell-Boltzmann gas in the
nondegenerate limit. The radiation part includes photons
and relativistic electron and positron pairs, which follow a
Stefan-Boltzmann relation. Details of treatments of thermal
EOS are summarized in Appendix C 1.
To implement the temperature-dependent thermal energy

density and pressure in our simulations, we set our evolved
value of E to Ecold þ Eth using Eq. (C3) and solve for the
temperature T. After obtaining T, we calculate the thermal
pressure Pth base on Eq. (C4) and then obtain the total
pressure P ¼ Pth þ Pcold for the next iteration. This method
provides a physically reasonable estimate of temperature.
Note that such a formalism requires modifications in the
MHD primitive solver for the computation of the Jacobian.
The details of finding the temperature, as well as the
modification of the primitives solver, are summarized in
Appendix C 2. See also Appendix D 1 for a detailed
description of this treatment of thermal energy density
and pressure.

2. Opacity and emissivity

As shown in Eq. (14), the source termsGα are determined
by the radiation energy densityE, energy fluxFμ, absorption
opacity κa, scattering opacity κs, and emissivity η. The
relevant interactions are summarized in Table I. For neutrino
emission, they include the charged-current interactions

e− þ p → nþ νe; ð19Þ

eþ þ n → pþ ν̄e; ð20Þ

and three pair process interactions: electron-positron pair
annihilation

eþ þ e− → νi þ ν̄i; ð21Þ

plasmon decay,
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γ þ γ → νi þ ν̄i; ð22Þ

and nucleon-nucleon bremsstrahlung,

N þ N → N þ N þ νi þ ν̄i: ð23Þ

Here, the subscript i represents all neutrino species, and N
stands for nucleons. We can safely omit neutron decay
(n → pþ e− þ ν̄e) from consideration here. The reason is
that, even when the leptons in some regions become
sufficiently hot to lift their degeneracy and partially remove
the blocking factor that inhibits the decay at T ¼ 0, the
decay time (≳14 min) greatly exceeds the time it takes the
HMNS remnant to collapse to a BH as well as the time for
which we follow the evolution in our simulation.
The inverse reaction of the interactions above are

responsible for neutrino absorption. Therefore, we need
to compute both κa and η for Eqs. (19)–(23). Lastly, we also
consider the neutral-current neutrino scattering off nucle-
ons,

νi þ N → νi þ N: ð24Þ

Note that we neglect electron-neutrino/antineutrino scatter-
ing for simplicity, noting that its contribution to the opacity
is smaller than that for nucleon scattering by a typical factor
of ∼100 in the HMNS remnant (see also Ref. [91]). We do
note for future work that electron scattering is inelastic and
contributes to the thermalization of neutrinos [92,93], while
nucleon scattering is conservative. We also note that for
neutrino energies of ∼10 MeV, cross sections of the
charged-current absorptions of electron-type neutrinos
are ∼100 times greater than that of the electron-neutrino
scattering [87].
Following Ref. [50], at every iteration, we first compute

κa for the inverse of Eqs. (19) and (20) (charged-current
interactions), κs for Eq. (24), and η for Eqs. (21) and (22)
(thermal emission) based on the formalism in Ref. [86]. We
then compute η for Eqs. (23) using Eq. (49) in Ref. [87].
These expressions require the knowledge of the fluid
temperature and the chemical potential, which are com-
puted analytically.
Next, using either κa or η computed above, we calculate

η for the two charged-current interactions [Eqs. (19) and
(20)] and κa for the three thermal pair processes. In the
optically thick region, we impose the LTE condition and
use the energy-integrated version of Kirchhoff’s law,

ηKir ¼ 4πB̄κa; ðcharged currentÞ;
κa ¼ η=4πB̄; ðpair processesÞ; ð25Þ

where the energy-integrated equilibrium intensity B̄ðTÞ is
defined in Sec. II B 2. This method maintains the thermal
equilibrium of neutrinos with the fluid in the optically thick

region. In the optically thin region, as the neutrinos can be
out of thermal equilibrium, ηKir may be inaccurate in
estimating the emission of electron-type neutrinos.
Therefore, we adopt an expression for the total emissivity
by interpolating between ηKir and ηfs, where ηfs is the
expression for the free-streaming emission rate for charged-
current interaction in Ref. [86]. Here, we adopt an inter-
polation method similar to the M1 formalism [see
Eq. (D2)], which estimates the emissivity based on optical
thickness. Note that this is different from the interpolation
methods in Ref. [50], which adopts a step function in terms
of the optical depth.

III. NUMERICAL SETUP

A. Initial condition

We consider initial NSNS configurations in a quasie-
quilibrium circular orbit computed using our Compact
Object Calculator (COCAL) code [94,95]. The binaries
consist of two identical, irrotational NSs, modeled by
the SLy nuclear EOS [59], as in Ref. [90]. Specifically,
we use the SLyM2.7 (magnetized and unmagnetized,
hereafter denoted as “Mag” and “Unmag,” respectively)
configurations treated previously in Ref. [96], for which the
ADM mass of the system is MADM ¼ M ¼ 2.7 M⊙, and
the companions have an initial coordinate separation of
45 km (see Table I in Ref. [96]). We defineM0 ¼ 3.02 M⊙
as the total rest mass of the system. We note that the
SLy EOS satisfies current observational constraints
on NSs. The maximum-mass configuration of an
isolated star predicted by SLy is Mmax

sph ¼ 2.06 M⊙ con-

sistent with (i) Mmax
sph > 2.072þ0.067

−0.066 M⊙ from the NICER
and XMM analysis of PSR J0740þ 6620 [97],
(ii) Mmax

sph > 2.01þ0.017
−0.017 M⊙ from the NANOGrav analysis

of PSR J1614-2230 [98], (iii) Mmax
sph > 2.01þ0.14

−0.14 M⊙ from
the pulsar timing analysis of PSR J0348þ 0432 [99], and
Mmax

sph > 2.14þ0.20
−0.18 M⊙ from the NANOGrav and the Green

Bank Telescope [100]. In addition, SLy predicts that a star
with a mass of 1.4 M⊙ has a radius of R ¼ 11.46 km and a
tidal deformability of Λ1.4 ¼ 306.4. These values are
consistent with (i) R ¼ 11.94þ0.76

−0.87 km obtained by a
combined analysis of x-ray and GW measurements of
PSR J0740þ 6620 [101], (ii) R ¼ 11.9þ1.4

−1.4 km for a NS
with mass in the range 1.16 M⊙–1.6 M⊙ at the 90%
credible level from the combined analysis of the LIGO/
Virgo Scientific Collaboration (LVSC) of the progenitors of
GW170817 with the radio-timing observations of the
pulsar J0348þ 0432 [99,102], and (iii) Λ1.4 ¼ 190þ390

−120
for a NS with mass of 1.4 M⊙ at the 90% credible level
from the LVSC analysis of GW170817 [102].
In the magnetized cases, the NSs are initially endowed

with a dipolelike magnetic field generated by the vector
potential [103]
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Aϕ ¼ πr20I0ϖ
2

ðr20 þ r2Þ3=2
�
1þ 15r20ðr20 þϖ2Þ

8ðr20 þ r2Þ2
�
; ð26Þ

where r0 and I0 are the loop radius and current, which
determine the geometry and strength of the magnetic field.
r2 ¼ ϖ2 þ z2, ϖ2

cm ¼ ðx − xcmÞ2 þ ðy − ycmÞ2, where
ðxcm; ycm; 0Þ is the center of mass of the NS, determined
by the coordinate of the maximum value of the rest-mass
density. We set I0 and r0 such that the maximum value of
the magnetic-to-gas-pressure ratio in the NS interior is
β−1ratio ≡ Pmag=Pgas ¼ 0.003125. The resulting initial mag-
netic field strength at the NS pole measured by a normal
observer is Bpole ≃ 1015.3 G. As in Ref. [32], we initially
impose a low, variable atmospheric density ρ0;atm that
satisfies β−1ratio ¼ 100 (see Eq. (4) in Ref. [32]). This setup
mimics the magnetically dominant environment in a pulsar-
like magnetosphere and validates the evolution of the
exterior magnetic field. While the magnetic field we
imposed is astrophysically large, we choose it so that
following merger, the rms value of the field strength in the
HMNS remnant is close to the values reported in very-high-
resolution (with a local resolution of Δx ¼ 17.5 m) sim-
ulations [14], which showed that the KHI during merger
can boost the rms B-field to 1015.5 G, with local values
reaching 1017 G. Moreover, recent NSNS simulations
[104] with a local numerical resolution of Δx ¼ 37 m
have also shown that a pure poloidal magnetic field with a
strength of ∼1011 G in the interior of NSs can be amplified
to rms values of ∼1016 G within the first ∼5 ms after
merger.

B. Neutrino insertion

To probe the effects of neutrino emission in our binary
remnant, in all our cases, we insert the neutrino radiation at
tinsert ∼ 1350M ≈ 18 ms (or t − tmer ∼ 226M ∼ 3 ms after
merger). The initial neutrino energy is based on the local
fluid temperature, which is related by an analytic expres-
sion to the thermal energy density of fluid matter (see
Sec. II D). In the low-density region where ρ0 ¼ ρatm, we
set T ¼ Tatm ¼ 103 K, which is ∼7 orders of magnitude
lower than the temperature in the central region of HMNS
and ∼6 orders of magnitude lower than the treatment
in Ref. [50].
In a hot NS in LTE, the energy density of each chirality

state of ultrarelativistic neutrinos is

Eν;state ¼
7

16
aT4; ð27Þ

where a is the usual radiation constant. Let N ν be the
number of neutrino species involved. Then, N ν has
the maximum value of 6 when all the possible species
of the Standard Model are considered (i.e., νe, ν̄e, νμ, and
their antiparticles). If we assume that only the left-handed

neutrino states couple to the weak interactions, then the
energy density of each neutrino (and antineutrino) species i
becomes

Eν;i ¼
7

16
N ν aT4: ð28Þ

In Rad-Simp, we set N ν ¼ 1 for ν̄e, while in Rad-Full, we
setN ν ¼ 1 for both νe and ν̄e andN ν ¼ 4 for νx. Note that
the neutrino helicity may be flipped if the magnetic
moment of the neutrinos is considered [105]. It is believed
that the left-handed neutrino rotates to the right-handed one
when the magnetic fields are transverse to neutrino propa-
gation [106]. Other effects such as nonequilibrium quantum
kinematics and coherent flavor evolution of neutrinos are
also not captured in a thermal description [107]. Here, we
ignore these effects.
At tinsert, we assign the radiation primitive variables E ¼

Eν;i for each species of neutrinos evolved and set the flux
Fα ¼ 0. This method can describe well the interior of the
HMNS system where the density and temperatures are
sufficiently high. In the outer regions of the merger
remnant, matter may not have attained thermal equilibrium.
However, as Eν;i scales as T4, its value in the atmosphere
becomes negligibly small compared with the interior value.
After setting the primitive variables, we compute the
conserved variables τ̄ and S̄i and the source terms Gα

for radiation evolution.

C. Neutrino evolution

After initializing E and Fα, we compute the conserved
variables ðτ̄; S̄iÞ and reconstruct the primitive variables to
the left and right of the grid cell surfaces using the
monotonized central (MC) scheme [108]. Then, we com-
pute the conserved quantities at the cell faces, together with
the left- and right-going wave speed using the method
described in Ref. [50] to obtain the flux quantities α2

ffiffiffi
γ

p
R0i

and α
ffiffiffi
γ

p
Ri
j. Next, we compute the spatial derivative terms

in Eqs. (15) and (17). After this, we compute the source
terms s̄ in Eq. (15) and the term Rαβgαβ;i in Eq. (17). With
these values, we compute the opacities and emissivities
using the method described in Appendix D, which depends
on the matter density and temperature. To avoid overly stiff
source terms, we set the maximum value of frequency-
integrated opacity at 10 km−1, which could yield a suffi-
ciently high optical depth (≳20) to model the optically
thick environment inside the high-density region. With this
prescription, we can evolve the radiation field using explicit
time stepping at a modest resolution. Finally, we compute
the four-force terms which are required to evolve the
radiation and MHD variables.
With the conserved quantities ðτ̄; S̄iÞ computed at a given

time step, we now need to recover the primitive variables
ðE;FiÞ. Because of the nonlinearity in the closure scheme,
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a numerical root finder is needed. After the fluid velocity vi

is found by the MHD primitive solver, we adopt a 4D
Newton-Raphson solver that computes the radiation primi-
tive variables from the radiation evolution variables. The
solver requires an 4 × 4 Jacobian matrix which governs the
coefficient of the first-order terms. Line searches and
backtracking methods are adopted for faster convergence
[109]. The elements of the Jacobian can be evaluated
analytically. Detailed descriptions, including the relevant
equations, the expression for the Jacobian matrix, and other
numerical settings are given in Appendix B.

D. Grid setup

In all our simulations, we use the same grid setup as in
Ref. [96], which consists of two sets of nested boxes with
nine refinement levels centered on each star, with adjacent
levels differing in size and resolution by factors of 2. When
two boxes overlap, they are replaced by a common box
centered on the center of mass of the system. The half-
length of each grid level is ð2835.26=2n−1Þ km, where n is
the level number. The innermost refinement level has a grid
spacing of ∼0.027M ∼ 111 m. The number of grid points
across the initial NS equatorial radius is NNS ¼ 82. In all
our cases, we use reflection (equatorial) symmetry over the
orbital plane. As reported in Ref. [33], orbital plane
symmetry does not impact the final outcome of the
evolutions. The detailed grid hierarchy is summarized in
Table II in Ref. [96].

E. Diagnostics

To verify the reliability of our numerical results, we
monitored the L2 normalized constraints computed from
Eqs. (40) and (41) in Ref. [63]. In all our simulations, we
find that during the inspiral the Hamiltonian constraint
violation remains below 0.2% and oscillates between 0.2%
and 0.4% during the HMNS phase. Then, it peaks
at 0.8% at BH formation and then gradually approaches
to ≲0.1%. The normalized momentum constraint violation
remains smaller than 0.4% during the inspiral and peaks at
∼5.5% at BH formation and gradually relaxes to ∼0.3%
following the onset of the steady state. Similar values were
reported in our long-term simulations of spinning NSNS
modeled by piecewise EOSs [66].
After BH formation, we locate and track the position of

the BH apparent horizon using the AHFinderDirect thorn
[110]. The BH mass MBH and its dimensionless spin
parameter ã ¼ a=MBH are calculated using the isolated
horizon formalism [111]. We adopt a modified version of
the PSIKADELIA thorn to compute the Weyl scalar Ψ4

decomposed into s ¼ −2 spin-weighted spherical
harmonics at different radii between 50M ∼ 200 km
and 300M ¼ 1200 km [112]. We compute the rest-mass
accretion rate _M following Eq. (A11) in Ref. [113]. The
mass of escaping matter (ejecta) is computed as

Mesc ¼ −
R
r>r0

ffiffiffi
γ

p
ρ0nμuμd3x, where the integral is

restricted by the two conditions: (i) −1 − u0 > 0,
where u0 is the time component of 4-velocity, and
(ii) having positive radial velocity vr > 0.Mesc is computed
at various coordinate radii r0 from 30M ∼ 120 km
to 100M ∼ 400 km in order to verify that it is r0 indepen-
dent. We compute the rate of escaping mass _Mesc ¼
−
R
vr

ffiffiffi
γ

p
ρ0nμuμdS [113] flowing across spherical surfaces

at coordinate radii between rext ¼ 50M ∼ 200 km
and 350M ∼ 1400 km.
To track the conservation and transport of angular

momentum, we compute the angular momentum carried
off by gravitational radiation JGW using Eqs. (3.22)–(3.24)
in Ref. [112]. We also compute the angular momentum
carried off by fluid, EM field, and neutrinos via

Ji;fluid ¼
Z
V
ϵijkxjTkl

fluiddV; ð29Þ

Ji;EM ¼
Z
V
ϵijkxjTkl

EMdV; ð30Þ

Ji;ν ¼
Z
V
ϵijkxjRkldV: ð31Þ

Here, ϵijk is the three-dimensional (3D) Levi-Civita sym-

bol, and Tαβ
fluid and Tαβ

EM are the stress-energy tensors
associated with the perfect fluid and the electromagnetic
field given by Eqs. (44) and (42) in Ref. [80], respectively.
We monitor the conservation of the total mass and
angular momentum Mint and Jint computed via
Eqs. (19)–(22) in Ref. [114], which coincide with the
ADM mass and ADM angular momentum initially. In all
our evolved configurations, we find that the total mass
and total angular momentum are conserved to within ∼1%
and ∼5%, respectively. In addition, we monitor the
conservation of the rest mass M0 ¼

R
ρ�d3x, where

ρ� ≡ − ffiffiffi
γ

p
ρ0nμuμ, which is conserved to within ∼0.6%.

Moreover, we compute the outgoing EM Poynting

and neutrino luminosities LEM ¼ −
R
TrðEMÞ
0

ffiffiffiffiffiffi−gp
dS and

Lν ¼ −
R
Rr
0

ffiffiffiffiffiffi−gp
dS, across spherical surfaces of coordi-

nate radii between rext ¼ 50M ∼ 200 km and
350M ∼ 1400 km. For Magþ Rad-Full cases, we compute
the neutrino luminosity for each species. To study the effect
of neutrinos on MRI in our evolution, we compute the
number of grid points resolved by the fastest growing MRI
mode λMRI [64], namely, the λMRI-quality factor
QMRI ≡ λMRI=dx, where dx is the local grid spacing. A
successful capture of MRI must satisfy the condition
QMRI ≳ 10, and λMRI must fit inside the remnant
[115,116]. Lastly, to study the effective turbulent viscosity
due to the magnetic field and compare it to the effective
viscosity induced by neutrinos [see Eq. (E1)], we compute
the effective Shakura-Sunyaev αSS parameter [117] by
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FIG. 1. Three-dimensional volume rendering of the rest-mass density ρ0, normalized to its initial maximum value ρ0;max ¼
8.65 × 1014 g cm−3 (log scale), at selected times for Unmag (left) and Mag (right) cases (see Table II). The bottom right panel highlights
the system after an incipient jet is launched. White lines shows the magnetic field lines emanating from the BH polar region, and the
arrows indicate plasma velocities. The BH apparent horizon is shown as a black sphere. Here,M ¼ 2.7 M⊙ ¼ 0.0133 ms ¼ 3.99 km is
the ADM mass.
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αSS ≡ hTEM
r̂ ϕ̂

=hP⟫
t
(see Eq. (26) in Ref. [118]), where the

brackets denote a time-averaged quantity.

IV. EVOLUTION RESULTS

A. General properties of merger

The inspiral phase of the NSNS models listed in Table II
is summarized in the first rows of Fig. 1. The frozen-in
magnetic field is simply advected with the matter, while
GWs carry away angular momentum, causing the orbital
separation to shrink. We observe that all our cases merge
roughly at tmerge ∼ 15 ms (see the second row and Table III
in Ref. [96]). Here, we define the merger time tmerge as the
time of peak GW amplitude. Following merger, a transient
remnant forms with two, massive central cores rotating
about each other that gradually coalesce. They form a
highly differentially rotating HMNS, surrounded by a low-
density cloud of matter from fall-back tidal debris.
As weare primarily concerned with the influence of

neutrino emission on the launching of jets, we inserted
neutrinos in Unmag and Mag at t − tmerge ≈ 226 ∼ 3 ms
following merger (see first row in Fig. 2). In the following
sections, we describe the final outcome of our simulations
with different magnetic field content, neutrino transport,
and the two microphysics versions. For comparison, we
also include the SLy cases without neutrinos previously
treated in Ref. [96].
As mentioned before, we denote the unmagnetized case

as “Unmag” and its simplified neutrino radiation counter-
part as “Unmagþ Rad-Simp”. The magnetized case is
denoted as “Mag,” and its neutrino radiation counterparts is
denoted as “Magþ Rad-Simp” and “Magþ Rad-Full,”
based on their microphysical schemes (see Table I).
Important quantities from these simulations are summa-
rized in Table II.

B. Final configuration

1. Unmagnetized NSNS binaries

The left column in Fig. 1 displays several key moments
during the evolution of Unmag, while its neutrino counter-
part is shown in the left column in Fig. 2. The HMNS
remnant in Unmag lasts for approximately t − tmerge ¼
700M ≈ 9.3 ms (see the left column of Fig. 1), followed by
the formation of a highly spinning BH with a mass MBH ≃
2.55 M⊙ and spin aBH=MBH ≃ 0.70 immersed in an
accretion disk of radius ∼25M ≈ 100 km which contains
∼2.2% of the total mass of the system (see Table II). By
contrast, the HMNS remnant in Unmagþ Rad-Simp col-
lapses at 550M ≈ 7.4 ms forming a spinning BH with mass
MBH ¼ 2.59 M⊙ and spin parameter aBH=MBH ¼ 0.71
immersed in an accretion disk that extends to ∼40M ≈
160 km and contains ∼1.8% of the total rest-mass of the
binary (see the left column of Fig. 2). We observe that
neutrino radiation induces an effective viscosity (see TA
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Ē
G
W
≡

E
G
W
=M

A
D
M
an
d
Δ
J̄ G

W
≡

J G
W
=J

A
D
M
de
no
te
th
e
fr
ac
tio

n
of

en
er
gy

an
d
an
gu
la
rm

om
en
tu
m

ca
rr
ie
d

of
f
by

gr
av
ita
tio

na
l
ra
di
at
io
n.

_ M
½M

⊙
=s
�i

s
th
e
re
st
-m

as
s
ac
cr
et
io
n
ra
te
,
M

di
sk
½M

⊙
�d

en
ot
es

th
e
re
st

m
as
s
of

th
e
ac
cr
et
io
n
di
sk

on
ce

it
be
gi
ns

se
ttl
e
in
to

a
st
ea
dy

st
at
e

(t
−
t B

H
∼
4
5
0
M

∼
6
m
s)
.M

es
c=
M

0
de
no
te
s
th
e
re
st
-m

as
s
fr
ac
tio

n
of

es
ca
pi
ng

m
at
te
r
fo
llo

w
in
g
th
e
pe
ak

am
pl
itu

de
of

G
W
s.
B
rm

s½G
�is

th
e
rm

s
va
lu
e
of

th
e
m
ag
ne
tic

fi
el
d
at
th
e

H
M
N
S
po
le
ju
st
be
fo
re

co
lla
ps
e.
L
E
M
½er

g
s−

1
�is

th
e
Po

yn
tin

g
lu
m
in
os
ity

dr
iv
en

by
th
e
je
t,
w
hi
ch

is
av
er
ag
ed

ov
er
th
e
la
st
∼
5
m
s
be
fo
re

th
e
te
rm

in
at
io
n
of

ou
r
si
m
ul
at
io
ns
.α

SS
is

th
e
ef
fe
ct
iv
e
Sh

ak
ur
a-
Su

ny
ae
v
m
ag
ne
tic

vi
sc
os
ity

pa
ra
m
et
er
.L

kn
ov
aðe

rg
s−

1
Þa

nd
τ p

ea
k
ðd
ay
sÞ

ar
e
th
e
pe
ak

lu
m
in
os
ity

an
d
th
e
ri
se

tim
e
of

th
e
ki
lo
no
va

pr
oj
ec
te
d
fr
om

ou
r
ca
se
s,

re
sp
ec
tiv

el
y.
L
ν
ðer

g
s−

1
Þi
s
th
e
to
ta
ln

eu
tr
in
o
lu
m
in
os
ity
,a
nd

Δ
J̄ ν

≡
J ν
=J

A
D
M
is
th
e
fr
ac
tio

n
of

an
gu
la
r
m
om

en
tu
m

ca
rr
ie
d
of
f
by

ne
ut
ri
no
s
(a
tl
at
e
tim

es
).
A
n
em

pt
y
ce
ll
de
no
te
s

“n
ot

ap
pl
ic
ab
le
”.

M
od
el

τ H
M
N
S

t B
H

M
B
H

ã
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below), causing the angular velocity of the Unmagþ
Rad-Simp transient to become almost uniform in the inner
core. This causes an earlier collapse compared with
Unmag. In both cases, the accretion rate _M begins to settle
after t − tBH ∼ 380M ≃ 5 ms, reaching a value of
∼4 M⊙s−1 (see Fig. 3). The insert displays the fraction
of the dynamical ejection of rest mass following merger.
We find that neutrinos do not significant enhance the
ejection of matter. In both cases, Mesc=M0 ≃ 1 × 10−3.
These values are consistent with those reported previously
in Refs. [119,120]. We note that transient kilonova sig-
natures powered by the radioactive decay of heavy ele-
ments formed via rapid neutron capture (r-process)
nucleosynthesis can be detected if the ejected mass is
greater than 10−3 M⊙ [121,122]. We compute the esti-
mated peak bolometric luminosity and the rise time of
kilonova for these cases using an analytical model recently

derived in Ref. [41], which assumes thatMesc is spherically
distributed and expanding homologously (see Eqs. (8)–(10)
in Ref. [96]). We find that the peak kilonova luminosities of
the two unmagnetized cases are Lknova ≈ 1041.3�0.2 erg s−1,
the rise time is ∼4–11h, and an effective temperature
Tpeak ∼ 103.4 K (see Table II). Converting the peak temper-
ature to peak wavelength using the relation λpeak ¼ 1.35 ×
103 nmðTpeak=103.33 KÞ−1 [41], we find λpeak ∼ 1150 nm.
This emission may be observed by current or future
instruments such as ALMA or the Vera C. Rubin observa-
tory [123,124].

2. Magnetized NSNS binaries

The basic dynamics and final outcome of the magnetized
cases in Table II are displayed in the right column of Fig. 1
and in the middle and right columns of Fig. 2 for case Mag,

FIG. 2. Three-dimensional volume rendering of the rest-mass density ρ0, normalized to its initial maximum value ρ0;max ¼
8.65 × 1014 g cm−3 (log scale), at selected times for Unmagþ Rad-Simp (left), Magþ Rad-Simp (middle), and Magþ Rad-Full (right)
cases (see Table II). The bottom middle and right panels highlight the system after an incipient jet is launched. White lines shows the
magnetic field lines emanating from the BH polar region, and the arrows indicate plasma velocities. The BH apparent horizon is shown
as a black sphere. Here, M ¼ 2.7 M⊙ ¼ 0.0133 ms ¼ 3.99 km is the ADM mass.
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Magþ Rad-Simp, and Magþ Rad-Full, respectively.
Consistent with our previous results (see e.g., [26,96]),
in all cases we find that a magnetically supported jet is
launched following the collapse of the transient HMNS.
These results may indicate that incipient jets are the typical
outcome of NSNS undergoing delayed collapse.
Figure 4 shows that during the HMNS phase the wave-

length λMRI of the fastest-growing mode is resolved by
more than ten grid points (top panel). In addition, λMRI fits
in the bulk of the HMNS (bottom panel), i.e., the region
where the rest-mass density is ρ0 ≳ 1011 g=cm3, well above
of the floor density. Therefore, we conclude that MRI-
induced turbulence is resolved and operating in our
systems. We observe that angular momentum is transferred
from the inner to the outer layers of the HMNS due both to
magnetic winding and magnetic turbulence. Magnetic
winding operates on a timescale of [125,126]

τA ∼
RHMNS

vA

∼ 1 ms
�

ρ

1015 g=cm3

�
1=2

� jBj
1015 G

�
−1
�
RHMNS

105 cm

�
: ð32Þ

The transport of angular momentum induces the formation
of a massive, nearly uniformly rotating core surrounded by
a Keplerian cloud of matter (see Fig. 5). Here, vA ∼
jBj= ffiffiffiffiffiffiffiffi

4πρ
p

is the Alfvén speed, B is the strength of the
magnetic field, and ρ and RHMNS are the characteristic rest-
mass density and radius of the remnant, respectively.
Similar results are reported in Ref. [96] and, together with
the discussion of neutrino viscosity below, suggest that
neutrino effects do not influence the growth of MRI. We
note that the relativistic smoothed particle hydrodynamics

simulations in Ref. [127] suggest that the growth rate of the
MRI is significantly reduced by neutrino effects if the
magnetic field is lower than ≲1014 G inside the HMNS.
However, it is expected that typical vales of the magnetic
field in the HMNS are ≳1015.5 G due to the KHI [15,128].
Calculating the effective Shakura-Sunyaev αSS param-

eter in the HMNS for the magnetized cases in Table II, we
found that it ranges between 0.01 and 0.09. Similar values
have been reported in high-resolution NSNS merger
simulations (see, e.g., Ref. [130]). These results explain
why turbulent magnetic fields can redistribute angular
momentum and damp the differential rotation effectively
on an effective turbulent magnetic viscous timescale due to
MRI (see Eq. (7) in Ref. [126]),

FIG. 3. Rest-mass accretion rate as a function of time for all
cases in Table II. The insertion displays the ejected rest-mass
fraction Mesc=M0 measured on a coordinate sphere of radius r ¼
100 M ≈ 400 km following merger.

FIG. 4. Contours of the quality factor Q ¼ λMRI=dx on the
equatorial plane (top) and the rest-mass density of the transient
HMNS normalized to its initial maximum value (log scale) along
with λMRI (white line) on the meridional plane (bottom) for
Magþ Rad-Full at t − tGW ≈ 390M ∼ 5.2 ms. Similar behavior
is observed in all magnetized cases in Table II (see Fig. 7 in
Ref. [96]).
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τvis ∼ ðαSSΩÞ−1 ∼ R3=2
HMNSM

−1=2
HMNSα

−1
SS

∼ 1 ms

�
C
0.3

�
−3=2

�
MHMNS

3 M⊙

��
αss
10−2

�
−1
; ð33Þ

where MHMNS is the characteristic mass of the HMNS and
C ¼ MHMNS=RHMNS is its compaction.
As described in Ref. [127], the diffusion of neutrinos

trapped in the HMNS also induces an angular momentum
transport. We observe (see Fig. 5) that neutrino transport
helps drive the central core of the HMNS to nearly uniformly
rotation, causing the HMNS in the Magþ Rad cases to
collapse ∼4 ms faster than in Mag (see Table II). Because of
this effect, more material from the external layer of the
HMNS remains inside the innermost stable circular orbit
(ISCO) during the BH formation, which induces the for-
mation of lighter accretion disks (≲25%) in the Magþ Rad
cases than in the Mag case (see Table II). Note that neutrino
radiation can also help trigger the collapse of the HMNS by
reducing the thermal support, though we do not observe a
significant change in the gas temperature in our simulations.
We caution that the collapse time of a short-lived HMNS
depends on the strength of the seed magnetic field (see, e.g.,
Fig. 2 in Ref. [22]), as well as on the numerical resolution,
even in nonmagnetized evolutions [131,132].
As described in Refs. [44,127], for MRI wavelengths

shorter than the neutrino mean free path, neutrino radiation
induces a drag on the velocity with a damping rate
independent of the wavelength. Here, we study the vis-
cosity and dragging effect due to neutrinos on the sup-
pression of MRI. Comparing the analytical estimates of the
effective viscosity due to neutrino diffusion νneutrino [see
Eq. (E1)] and the effective viscosity induced by MHD

turbulence using an α-disk model νMHD [133,134], we find
that νneutrino does not have an significant effect on the
suppression of MRI both inside HMNS and in the disk. The
magnetic field strength in the HMNS in all our simulations
exceeds the critical strength of the magnetic field,
Bcrit ∼ 1014 G, below which the viscosity can significantly
suppresses the growth of the MRI [127]. The viscous effect
is controlled by the Elsasser number Eν ≡ v2A=ðνneutrinoΩÞ
[44,135,136], which is Eν ≳ 10 in our simulations. This
value indicates that the effective viscosity induced by
neutrinos has little effect on to the growth of MRI (see
Figs. 4 and 7 in Ref. [96]). On the other hand, when the
wavelength of the fastest-growing MRI mode is shorter
than the mean free path of heavy-lepton neutrinos (which
gives the most restrictive constraint among all species),
neutrinos can induce a drag force. Using the scaling relation
of the heavy lepton neutrino mean free path [44]

FIG. 6. Rest-mass density normalized to its initial maximum
value ρ0;max (log scale) on the meridional x-z plane for Mag (top),
Magþ Rad-Simp (middle), and Magþ Rad-Full (bottom) cases
at t − tBH ≈ 11.5 ms. A BH apparent horizon is displayed as a
black semicircle, while arrows indicate fluid velocities.

FIG. 5. Average rotation profile of the HMNS (see Eq. 2 in
Ref. [129]) for Mag (blue) and Magþ Rad-Full (red) on the
equatorial plane following merger along with the Keplerian
angular velocity profile. Times after neutrino insertion are
included. The arrow marks the coordinate radius containing
50% of the rest mass of the HMNS.
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lν ¼ 104
�

ρ0
1013 g cm−3

�
−1
�

T
10 MeV

�
−2

cm; ð34Þ

we observe that neutrino drag becomes significant only
when the magnetic field is lower than the critical magnetic
field strength (≲1014 G) in the HMNS, and hence neither
the effective neutrino viscosity nor drag force has a
distinguishable influence on the development of MRI in
our simulations during the HMNS phase.
We also estimate analytically the shear viscosity due to

nucleon-nucleon scattering using Eq. (14) in Ref. [137] as a
function of T and ρ0. We note that this expression assumes
nonsuperfluid matter and ignores the collisions of electrons
and muons. We find that it has a comparable magnitude as
νneutrino deep inside the HMNS but decreases quickly as
r > 5 km (see Fig. 13 in Appendix E). Therefore, we
conclude that MHD-induced viscosity is the dominant
viscosity source. The transport of angular momentum in
the neutrino-involved cases is more substantial due to both
MRI and neutrino-induced effective shear viscosity (see
Appendix E for more detailed discussions regarding
viscosities). Note that we ignore the bulk viscosity due
to Urca interactions and hyperons processes, since the shear
viscosity is most important in transporting and redistrib-
uting angular momentum in the HMNS, which leads to its
collapse. Bulk viscosity is mainly important during the late
inspiral phase [138].
The transient HMNS remnant collapses to a BH with

mass MBH ∼ 2.4–2.6 M⊙ and with spin a=MBH ∼ 0.62 for
Mag and a=MBH ∼ 0.68 for Magþ Rad cases (see
Table II). By t − tBH ∼ 450M ∼ 6 ms following BH for-
mation, when the accretion rate _M begins to settle down
(see Fig. 3), we observe that magnetic-dominated regions
(B2=ð8πρ0Þ ≳ 1) above the BH poles begin to expand and
reverse the fall-back debris inflow. Magnetic winding
above that BH poles, which began during the HMNS
phase (see the third-row right panel in Fig. 1 and top panels
in Fig 2), induces the formation of a tightly wound helical
magnetic funnel. As the accretion near the equator proceeds
and neutrino processes take place, the baryon-loaded
environment inside the funnel gradually becomes thinner,
allowing a magnetically driven jet to emerge eventually
(see bottom panels in Figs. 1 and 2). We note that in the
Magþ Rad cases a magnetically supported jet is launched
after t − tBH ∼ 750M ∼ 10 ms, while in Mag, it is launched
at t − tBH ∼ t − tBH ∼ 1800M ∼ 24 ms [96]. Figure 6 dis-
plays the rest-mass density on the meridional plane for the
above cases. We observe that the rest-mass density inside
the funnel of the Magþ Rad cases is a factor of ∼10 lighter
than in Mag. This suggests that neutrino radiation reduces
the baryon-loaded environment in the polar region above
the BH poles. As we do not observe an enhancement of the
magnetic field strength following BH formation, the funnel
emptying due to neutrinos makes it easier for the magnetic
pressure gradients above the BH poles to overcome the fall-

back ram pressure of the infalling material. Similar results
have also been reported in Ref. [56]. We note that by t −
tBH ∼ 6 ms the accretion rate is ∼2 M⊙=s and the rest mass
of the accretion disk is ∼0.2 M⊙ (see Table II). Therefore,
the disk will be accreted in Δt ∼Mdisk= _M ∼ 0.1 s, roughly
consistent with the lifetime of a sGRB central engine
[139,140].
Figure 7 displays the outgoing Poynting luminosity LEM

as a function of t − tjet for cases in Table II. We observe that
LEM ∼ 1053 erg s−1. As pointed out in Ref. [96], the
Poynting luminosity roughly agrees with the theoretical
range we derived in Ref. [141] for BHþ diskþ jet systems
arising from compact binary mergers containing NSs or
from the magnetorotational collapse of massive stars. The
luminosities are also in accord with the narrow range
characterizing the observed luminosity distributions of over
400 GRBs [60,142].
Following Ref. [96], we assess if the BZ mechanism is

likely operating in the BHþ disk remnant. We begin
by comparing the outgoing Poynting luminosity LEM in
our simulations (see Fig. 7) with that from the BZ
mechanism [143]

LBZ ∼ 1052
�

ã
0.75

�
2
�

MBH

2.8 M⊙

�
2

jBpj216 erg s−1; ð35Þ

where jBpj16 ≡ jBpj=1016 G is the strength of the magnetic
field at the BH poles. The EM Poynting luminosity in our
simulation is ∼1053 erg s−1 (see Table II). Next, we
estimate that jBpj ∼ 1016 G, and hence LBZ ∼ 1052 erg s−1,
in rough agreement. We also estimate the magnetic field-to-
BH angular frequency ratio ΩF=ΩH on a meridional plane
passing through the BH centroid and along coordinate
semicircles of radii rBH and 2rBH. We find that in all cases

FIG. 7. Outgoing EM Poynting luminosities extracted at a
coordinate sphere of radius r ¼ 160M ∼ 640 km as a function of
t − tjet for all magnetized cases in Table II.
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ΩF=ΩH ∼ 0.2–0.6. As pointed out in Ref. [96], deviation
from the split-monopole value ∼0.5 [144] may be due to
artifacts such as the deviation from strictly force-free
conditions, deviations from monopole geometry, and/or
lack of resolution. Our above results suggest that the BZ
mechanism is likely operating in our system, as we
concluded in Refs. [26,129].
Roughly 3 × 10−2 of the total initial mass escapes the

system after steady state in Mag and Magþ Rad-Full cases
and 1.5 × 10−2 of the total mass escapes in the Magþ
Rad-Simp case. We estimate that the peak kilonova
luminosity and rise time of the case Magþ Rad-Simp
are ≈1041.5 erg s−1 and ≈9.6hours, respectively. For
Magþ Rad-Full, the peak kilonova luminosity reaches
≈1041.6 erg s−1 at around ≈11.1h. Moreover, we estimate
that the peak kilonova luminosity, the rise time, and the
peak temperature for the magnetized cases are similar to
those in the unmagnetized cases (see Table II).

C. GW signals

Figure 8 displays the dominant l ¼ m ¼ 2 mode of the
GW strain hþ versus time, shifted by tmerge for the
unmagnetized (top panel) and the magnetized (bottom
panel) cases. Vertical lines mark the neutrino insertion
and BH formation time, respectively. We note that during
the inspiral the GW amplitude difference between these
cases is ≲3%, with the peak amplitudes shifted by
∼80M ∼ 1 ms. This result is anticipated because the seed
magnetic field is initially dynamically unimportant.
Following merger, nonaxisymmetric rotation and oscilla-
tion modes of the HMNS, which persist until stellar
collapse to a BH, trigger the emission of quasiperiodic
GWs. We observe that dissipation of energy and angular
momentum due to GW radiation is more efficient in the
unmagnetized cases, where the GWamplitude is a factor of
∼1.5 larger than that in the magnetized cases. As pointed
out in Ref. [96], magnetic turbulence is an efficient
mechanism in damping differential rotation and driving
the system into an almost axisymmetric configuration. We
also note that neutrino transport of angular momentum (see
Fig. 5) enhances the triggering the stellar collapse to a BH.
Figure 9 displays the power spectrum at a distance of

50 Mpc for all cases in Table II along with the sensitivity
curves ZERO_DET_HIGH_P for aLIGO, Aþ, and ET in
Ref. [145]. The spectra show three distinctive peaks, which
were previously referred to as f2−0; fpeak, and f2þ0 in
Refs. [146,147] and also studied in Refs. [96,148–150]. It
has been suggested that the most prominent peak, fpeak, is
due to the rotation of the bar-deformed HMNS [151].
However, the origins of f2−0 and f2þ0 are still debatable.
One possible explanation of the origin of f2−0 is the
nonlinear interaction between the quadrupole and quasir-
adial modes, and f2þ0 is the result of the nonlinear
interaction of fpeak with other nonquasiradial modes

[151]. Another possible origin of these two modes is the
nonlinear oscillations of the two repeatedly colliding and
bouncing stellar cores [149]. As a result, it is expected that
fpeak ≈ ðf2−0 þ f2þ0Þ=2 for typical HMNS remnants [149].
In our cases, we note that the three peaks ðf2−0; fpeak; f2þ0Þ
are located at ð2.8� 0.05; 3.8� 0.1; 4.7� 0.1 kHz) and
hence roughly agree with this relation. Moreover, the
location of fpeak agrees with the rotation half-period of
the bar mode in HMNS at∼0.26� 0.02 ms, confirming the
bar-mode origin of fpeak. We also note that the main
frequency fpeak in the unmagnetized cases is well above
the sensitivity curve of aLIGO, and therefore it may be
detected with the current sensitivity. By contrast, the main
frequency in the magnetized cases is only marginally above
it. The other peak frequencies are either marginally above
or below the sensitivity curve of aLIGO. These results
suggest that the next-generation GWobservatories, such as
Aþ or the ET (see Fig. 9), are required to characterize the
GW signals from GW170817-like remnant events.
Furthermore, the majority of the spectrum between 0
and 5 kHz can be detected by both Aþ and the ET, which
suggests the potential successful detection of such a source.

FIG. 8. GW strain of the dominant mode h22þ for unmagnetized
(top panel) and magnetized (bottom panel) cases at a source
distance of 50 Mpc. Vertical lines mark the neutrino insertion
(Magþ Rad cases) and BH formation times.
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As shown in the top panel in Fig. 9, the spectra of the two
unmagnetized cases show a high resemblance, with several
lower dips in the Unmagþ Rad-Simp cases as a result of the
slightly shorter HMNS lifetime. The main peak fpeak for the
Mag case lies above aLIGO noise curve, while the two cases
with neutrinos have significantly reduced main peaks. On the
other hand, the f2−0 and f2þ0 peaks are relatively well
preserved. This suggests that the reduced ringdown phase in
the neutrino cases may have a contribution to fpeak but has
little impact on the other two peaks. The relationship between
the ringdown waveform and fpeak can also be inferred from
comparing our waveforms with the results of the general-
relativistic hydrodynamics simulations in Refs. [149,150]
with the SLy EOS and an initial NS mass of 1.35 ofM⊙. We
find that the frequencies of the three peaks in their models are
roughly consistent with our unmagnetized cases.
We also assess if any signature of the magnetic field or

neutrino radiation can be observed in the GWs. For this, we
compute the match function MGW defined in Ref. [153]

MGW ¼ max
ðϕc;tcÞ

hh1jh2ðϕc; tcÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihh1jh1ihh2jh2i
p ; ð36Þ

where hh1jh2i is the noise-weighted inner product defined
as [153]

hh1jh2i ¼ 4Re
Z

∞

0

h̃1ðfÞh̃�2ðfÞ
ShðfÞ

df; ð37Þ

where h ¼ hþ − ih×, h̃ is the Fourier transform of the strain

amplitude
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h̃þðfÞ2 þ h̃×ðfÞ2

q
of the dominant mode

ðl; mÞ ¼ ð2; 2Þ, and ShðfÞ is a given detector sensitivity.
We note that the value of MGW at which two GW
waveforms can be distinguishable potentially by instru-
ments depends on the signal-to-noise ratio (SNR).
In particular, two signals are indistinguishable when
MGW ≳ 0.9978 for a SNR of 15 or when MGW ≳
0.9992 for a SNR of 25 [154]. Using the sensitivity curves
in Ref. [155] and assuming a source distance of 50 Mpc, we
find the following:

(i) MGW ¼ 0.9708 between Unmag and Mag with a
SNR of ∼3 for aLIGO, ∼1 for KAGRA, ∼7 for Aþ,
and ∼30 for ET.

(ii) MGW ¼ 0.9998 between Unmag and Unmagþ
Rad-Simp with a SNR of ∼3 for aLIGO, ∼1 for
KAGRA, ∼7 for Aþ, and ∼30 for ET.

(iii) MGW ¼ 0.9993 between Mag and Magþ
Rad-Simp with a SNR of ∼3 for aLIGO, ∼1 for
KAGRA, ∼7 for Aþ, and ∼30 for ET.

(iv) MGW ¼ 0.9989 between Mag and Magþ Rad-Full
with a SNR of ∼3 for aLIGO, ∼1 for KAGRA, ∼7
for Aþ, and ∼30 for ET.

Notice that a SNR of ∼30 requires a GWevent at a distance
of ∼2 Mpc for KAGRA, ∼6.0 Mpc for aLIGO, or
∼12.0 Mpc for Aþ. GW170817, the closest GW signal
detected to date, had a luminosity distance of 40þ8−14 Mpc
[1]. Therefore, it is unlikely that the current GW detectors
can discern any signature frommagnetic fields or neutrinos.
However, next-generation observatories (e.g., ET) can
easily observe their imprints on the GWs.

D. Neutrino emission

We calculate the angular momentum carried off by
neutrinos after merger. Our numerical results suggest that
the angular momentum loss due to neutrino emission is
negligible. Figure 10 shows the evolution of each compo-
nent of angular momentum as a function of Δt ¼ tret − tBH
for Magþ Rad-Full (see Table I). The quantities are
measured on a spherical surface with coordinate radius
R ¼ 300M ≈ 1200 km. We observe that the angular
momentum carried off by neutrinos ΔJν is less than 1%
of the total angular momentum Jint and less than 10% of
angular momentum loss due to GW radiation and escaping
fluid matter. In the other two remaining cases, ΔJν is even

FIG. 9. GW power spectrum of the dominant mode ðl; mÞ ¼
ð2; 2Þ at a distance of 50 Mpc for unmagnetized (top panel) and
magnetized (bottom panel) cases. The solid-dark, dashed-, and
dotted-light gray curves displays the noise sensitivity curves of
aLIGO (ZERO_DET_HIGH_P configuration), Aþ, and the Einstein
Telescope (ET-D) [152], respectively. Main spectral frequencies
are denoted as fpeak and f2�0.
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smaller as shown in Table II. Therefore, we conclude that
angular momentum loss due to neutrinos is negligible. This
result is consistent with the calculation in Ref. [156], in
which it has been found that the emission of neutrinos is
very inefficient in carrying off angular momentum and may
even increase the angular momentum if the polytropic
index is less than the critical value 0.45 for a slowly rotating
NS. For rapidly rotating stars, the critical polytropic index
may increase. In our simulations, the SLy EOS is para-
metrized with polytropic indices ranging between
0.48–0.55 [90], which is close to the critical value.
Therefore, it is expected that neutrino emission has neg-
ligible effect on carrying off angular momentum.
Moreover, we find that the angular momentum loss rate
dΔJν=dt is around 1048 g cm2 s−2, which agrees with the
estimate in Ref. [51] using the general-relativistic momen-
tum formalism [48]. Note that Fig. 10 also displays the
quantity Jinsert − ΔJGW − ΔJfluid − ΔJEM − ΔJν, where
Jinsert is the total angular momentum Jint at tinsert, to track
the conservation of the total interior angular momentum
JintðtÞ ¼ Jinsert − ΔJGW − ΔJfluid − ΔJEM − ΔJν. We
observe that Jint is conserved within ∼1% after the system
reaches a steady state.
Figure 11 displays the luminosities of ν̄e in Rad-Simp

cases and of the three species in Magþ Rad-Full
as a function of Δt ¼ tret − tBH. The luminosities are
measured on a sphere with coordinate radius
R ¼ 300M ≈ 1200 km. We observe that the ν̄e neutrino
luminosity in Unmagþ Rad-Simp peaks at Δt ¼ 0 with
the value ∼3 × 1052 erg s−1. Then, it gradually decreases,
reaching a steady-state value of ∼1052 erg s−1. By contrast,
the neutrino luminosity in Magþ Rad-Simp peaks at

∼2 × 1053 erg s−1 at Δt ≈ 135M ∼ 1.8 ms and settles down
at ∼2 × 1053 erg s−1 at Δt≳ 450M ≳ 6 ms. This difference
in the luminosity is likely due to the turbulent magnetic
viscosity, which raises the temperature in the HMNS and
the disk, increasing the number and energy of neutrinos.
Similarly, the luminosities of ν̄e and νe in Magþ Rad-Full
show analogous behavior to that in Magþ Rad-Simp due
to a similar thermal environment. However, we observe that
the luminosity of νx behaves differently in the two cases,
starting to rise quickly at Δt ≈ 300M ≈ 4 ms and reaching
a peak value of ∼1053 erg s−1 at Δt ≈ 750M ≈ 10 ms.
Differences between the two electron-type neutrinos are
negligible compared to differences between the electron-
type and heavy-lepton neutrinos. Similar behavior has been
also reported in Ref. [54]. The dominance of the scattering
opacity over the absorption opacity in a large region of the
system may cause a significant uncertainty in the heavy-
lepton neutrinos luminosity. Because of the analytic closure
scheme, the neutrino diffusion rate depends heavily on the
choice of energy spectrum, which depends on the fluid
temperature. Nevertheless, the electron-type neutrino lumi-
nosity obtained in our cases broadly agrees with previous
M1 and MC studies [54,157].

V. CONCLUSIONS

To understand multimessenger observations, numerical
simulations of compact binary mergers involving magnetic
fields, neutrinos, and detailed microphysics are required.
As another step toward this goal, we reported here our
implementation of a radiative transport scheme for neutrino
processes in our Illinois GRMHD code. This implementation
uses the general-relativistic, truncated moment formalism
in which the first two moments of radiation, i.e., energy
density E and the fluxes Fα, are evolved. To close the

FIG. 10. Different components of angular momentum as
functions of Δt ¼ tret − tBH for Magþ Rad-Full, measured on
a spherical surface with coordinate radius R ¼ 300M ≈ 1200 km.
Here, Jint is the total interior angular momentum, and ΔJGW,
ΔJfluid, ΔJEM, and ΔJν denote the angular momentum carried by
GWs, fluid, electromagnetic fields, and neutrinos, respectively.

FIG. 11. Neutrino luminosities for the different neutrino species
for Rad cases in Table II as a function of Δt ¼ tret − tBH. The
luminosities are measured at radius R ¼ 300M ≈ 1200 km.
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evolution equations, the radiation stress Pαβ is interpolated
between the optically thick and thin limits using the
analytic expression in Ref. [83] (see the current paper’s
Appendix A). The code has been tested in multiple
regimes, including those handled by our earlier radia-
tion-GRMHD code in Ref. [80]. Here, we presented the
nontrivial, strong gravity test of “thermal Oppenheimer-
Snyder collapse” in Appendix F to assess its capability of
evolving radiation fields and computing interactions
between radiation and matter in optically thick, thin, and
transition regions in a strong gravitational field containing
matter and a BH.
We used this radiation evolution module to incorporate

neutrino interactions in GRMHD simulations of NSNS
mergers that undergo delayed collapse to a BH. In
particular, we considered binaries modeled using a piece-
wise representation of the cold SLy nuclear EOS previously
reported in Ref. [96], augmented by a nonzero temperature
contribution appropriate for semidegenerate neutrons. The
neutrinos are inserted shortly after the binary merger
(t − tmerge ∼ 225M ∼ 3 ms). To probe the effects of neu-
trino radiation, we adopted two version for the micro-
physics. In the first warm-up version, denoted as Rad(Sim),
we only considered the interactions of ν̄e, setting the
electron fraction Ye ¼ 0. In the second version, denoted
as Rad-Full, we evolved three neutrino species νe, ν̄e, and
νx and their antineutrinos and took all related interactions
into account. We found that during the HMNS phase, the
remnant is subjected to an effective viscosity due to
turbulent magnetic fields, which induces the formation a
massive central core surrounded by a Keplearian cloud of
matter. We noted that the MRI would not be affected by
neutrino-induced effective viscosity and drag forces as
discussed earlier [44], since in our simulations the magnetic
field in the HMNS is B≳ 1015 G and exceeds a critical
field strength. However, our simulations indicate that
neutrino advective transport may assist in reducing the
differential rotation of the HMNS. These processes reduce
the lifetime of the remnant by ≳4 ms compared to that in
the neutrino-free cases.
Following BH formation, we observed that the BH

remnants are more massive and have higher spins when
neutrinos are included, while the disk accretion rate
( _M ∼ 2 M⊙=s) and the fraction of escaping mass
(Mesc ∼ 8 × 10−3 M⊙) show no noteworthy differences
after a quasisteady state is achieved. We note that the latter
is roughly consistent with the ejecta mass reported by a
previous hydrodynamic SPH simulation of NSNS mergers
with a neutrino leakage scheme [41], as well as another
GRMHD simulation of NSNS mergers [119,120]. We also
estimated the peak kilonova luminosity, the rise time, and
the effective temperature/wavelength inferred by our sim-
ulations and concluded that the signals may be observed by
current or future instruments such as ALMA or the Vera C.
Rubin observatory [123,124].

In all cases, a magnetically supported jet is launched
after t − tBH ≳ 750M ≳ 10 ms. However, neutrino proc-
esses reduce the baryon-loaded environment in the polar
region above the BH poles, allowing the emergence of the
jet ∼1000M ∼ 15 ms earlier than in cases without neutri-
nos. The disk accretion time (jet’s fuel) is ∼0.1 s, which is
consistent with the lifetime of the sGRBs central engine.
We also found strong evidence that the Blandford-Znajek
mechanism for launching jets is operating in our systems.
In our simulations, we found that neutrinos are ineffi-

cient in carrying off angular momentum, which is in
agreement with previous analytic studies [156]. The angu-
lar momentum loss rate due to neutrino emission is
∼1048 g cm2 s−2, which is consistent with the previous
GR simulations [51]. We found that neutrino luminosity is
approximately 1052−53 erg s−1 in our cases, which agrees
with the previous compact binary merger simulations using
M1 or MC transport methods [54,157].
To probe if magnetic field and neutrino signatures can be

observed by current and/or future GW observatories, we
computed the GW power spectrum of the dominant mode
assuming a source distance of 50 Mpc. We found that only
its main frequency fpeak is well above the sensitivity curves
of aLIGO and Aþ. By contrast, in the magnetized cases,
the other key frequencies are at most marginally above
these curves. These results suggest that only next-gener-
ation GWobservatories, such as the Einstein Telescope, are
required to characterize fully the GW signals from the
remnant of GW170817-like events. In addition, we com-
puted the match function between waveforms from systems
with different magnetic field and neutrino content. We
found that at a distance of 50 Mpc only the next generation
of ground-based GW detectors, such as the Einstein
Telescope, can observe imprints of the magnetic field
and neutrinos.
We also realize several limitations to our implementation

and suggest some future improvements. First, the calcu-
lation of temperature is based on an approximate analytic
expression, which in turn determines the net-electron
fraction, opacities, and emissivities. Currently several more
realistic, finite-temperature EOSs have been proposed.
They are based on a finite-temperature liquid drop model
with a Skyrme nuclear force [158], on the relativistic mean-
field model extended with the Thomas-Fermi approxima-
tion [159], or on a statistical model that consists of an
ensemble of nuclei and interacting nucleons in nuclear
statistical equilibrium [160]. These EOSs are in tabular
form, which is rendered as functions of baryon density,
temperature, and the net electron fraction. We hope to
implement these in future investigations. Also, even though
the M1method provides a reasonable first approximation to
radiative transport [50], neutrino luminosities and the
outflow composition have a non-negligible dependence
on the analytic closure schemes [53,161]. Moreover, the
energy-integrated M1 scheme is unable to provide
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information about the neutrino energy spectrum. However,
an energy-dependent transport scheme is computationally
expensive for a full merger simulation, especially when
magnetic fields are present. Monte Carlo techniques have
been used in neutron star simulations [54] and have been
found to yield results similar to those of M1 schemes. The
major disagreement comes from the luminosity of heavy-
lepton neutrinos. In regions where heavy lepton neutrinos
have high scattering and low absorption opacities, the M1
scheme has greater errors due to the difficulty of predicting
the correct neutrino energy spectrum. We hope to explore
improvements to our neutrino scheme in the future.
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APPENDIX A: RADIATION CLOSURE SCHEME

We compute the radiation pressure using the M1 closure
scheme, which is an interpolation between the optically
thin and optically thick limits. Following Refs. [48,50], we
express the radiation pressure terms as

Pαβ ¼ 3χðζÞ − 1

2
Pαβ

thin þ
3½1 − χðζÞ�

2
Pαβ

thick; ðA1Þ

where the factor χ is given by the Minerbo closure
function [83]

χðζÞ ¼ 1

3
þ ζ2

6 − 2ζ þ 6ζ2

15
; ðA2Þ

where the quantity ζ ¼ FαFα=E2, with Fα the radiation
flux and E the radiation energy density. We note that ζ goes
to 0 in the optically thick region and to 1 in the optically
thin region. The optically thick limit of radiation pressure is
given by [80]

Pαβ
thick ¼

E
3
hαβ; ðA3Þ

where hαβ ¼ gαβ þ uαuβ is the projection tensor onto the
orthogonal slices of the fluid 4-velocity. In the optically
thin limit, we have

Pαβ
thin ¼

FαFβ

FμFμ
E: ðA4Þ

Note that, Eq. (A4) reduces to the form adopted in Ref. [50]
in asymptotically flat spacetimes, which is satisfied in our
simulations at a large distance from our binaries.

APPENDIX B: RECOVERING PRIMITIVE
VARIABLES

The evolution of the radiation conservative variables
ðτ̄; S̄iÞ [see Eqs. (15) and (17)] involves the calculation of
the radiation primitive variables ðE; FiÞ at each iteration,
which in turn requires a 4 × 4 root finder given the closure
expressions (A1) and (A2). In our code, we use a Newton-
Raphson solver to find the roots of the set of functions
fμðE;FiÞ,

fi ¼ α
ffiffiffi
γ

p ½Eu0ui þ F0ui þ Fiu0 þ P0
i �=S̄i − 1; ðB1Þ

and

f4 ¼ ðα2 ffiffiffi
γ

p Þ½Eðu0Þ2 þ 2F0u0 þ P00�=τ̄ − 1; ðB2Þ

where S̄i and τ̄ are computed at a given iteration, while E
and Fi are known values at the previous iteration. We apply
the Newton-Raphson method to solve for the set of
equations fμðE;FiÞ ¼ 0. The solver returns the primitive
variables ðE;FiÞ as values at the current iteration when all
four functions reduce below the tolerance fμ < 10−12.
The first-order Newton-Raphson method requires a

matrix of partial derivatives, namely, the Jacobian

Jf ¼

2
64

∂S̄i∂Fj

∂S̄i∂E
∂τ̄
∂Fj

∂τ̄
∂E

3
75; ðB3Þ

in which the derivatives can be evaluated analytically. The
specific components of Jf are
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∂ τ̄
∂E ¼ α2

ffiffiffi
γ

p �
4ðu0Þ2

3
þ ðA − BζÞ

�ðF0Þ2
FαFα

−
g00 þ ðu0Þ2

3

�
þ g00

3

�
; ðB4Þ

∂Si
∂E ¼ α2

ffiffiffi
γ

p �
4u0ui
3

þ ðA − BζÞ
�
F0Fi

FαFα
−
u0ui
3

��
; ðB5Þ

∂τ
∂Fi

¼ α2
ffiffiffi
γ

p �
2ðgi0 þ vig00Þ

�
u0 þ AE

F0

FαFα

�

þ ðFi − viF0Þ
�

Bffiffiffiffiffiffiffiffiffiffiffi
FαFα

p
�ðF0Þ2
FαFα

−
g00 þ ðu0Þ2

3

�

− AE
2ðF0Þ2
ðFαFαÞ2

��
; ðB6Þ

and

∂S̄j
∂Fi

¼ α
ffiffiffi
γ

p ��
u0 þ AEF0

FαFα

�
δij

þðgi0 þ vig00Þ
�
uj þ AE

Fj

FαFα

�

þ ðFi − viF0Þ
�

Bffiffiffiffiffiffiffiffiffiffiffi
FαFα

p
�
F0Fj

fαFα
−
u0uj
3

�

−AE
2FjF0

ðFαFαÞ2
��

; ðB7Þ

where

A≡ 3χ − 1

2
¼ 1

5
ð3ζ2 − ζ3 þ 3ζ4Þ; ðB8Þ

and

B≡ 1

5
ð6ζ − 3ζ2 þ 12ζÞ: ðB9Þ

Once the Jacobian is computed, the solver performs lower
upper (LU) decomposition and back substitution in the
Jacobian to find the direction of the Newton step. Then, the
code uses line searches and backtracking methods (see
Sec. 9.7 in ref. [109]) to reduce the number of iterations for
convergence. After obtaining ðE; FiÞ, we impose a floor
value of radiation energy density Eatm ¼ 10−9Emax and set
the radiation fluxes to zero if E < Eatm to reliably evolve in
the regions with low radiation energy. Knowing the values
of the primitive variables, we then recompute the conserved
variables and impose the radiation contributions to the total
stress-energy tensor in the BSSN equations.

APPENDIX C: FINITE-TEMPERATURE EOS

To treat neutrinos, it is necessary to evolve NSs with
finite-temperature matter. However, in our simulations, we
adopt an SLy nuclear EOS to model the cold component
and employ an approximate analytic expression for the hot
component. Notice that our simplified, analytic method of
computing the temperature and the opacity during the NS
evolution can be straightforwardly extended to realistic,
tabulated, thermal EOSs.

1. Thermal energy density and pressure

Our simplified, analytic hot nuclear EOS assumes that
the total nucleon energy density and pressure consists of
two parts,

E ¼ Ecold þ Eth; ðC1Þ

P ¼ Pcold þ Pth; ðC2Þ

where Pcold and Ecold are the cold pressure. On the other
hand, the energy density and the thermal component are
given by the sum of the nucleon and thermal radiation
components

Eth ¼ Enuc þ Erad; ðC3Þ

Pth ¼ Pnuc þ Prad: ðC4Þ

The nucleon part of the thermal energy density is based
on a semidegenerate, ideal neutron gas expression that
limits to a Maxwell-Boltzmann gas in the nondegenerate
limit [162]

Enuc ¼
3

2
nkBT min

�
1;
2ð3π2Þ1=3mnuc

18ðℏcÞ2 n−2=3kBT

�
; ðC5Þ

where mnuc is the nucleon mass, n ¼ ρ0=mnuc is the
nucleon number density, kB is Boltzmann’s constant, and
T is the temperature of the fluid. This expression accom-
modates both the low-temperature semidegenerate and the
high-temperature Maxwell-Boltzmann limits. The thermal
nucleon part of the pressure is given by

Pnuc ¼ ðγ − 1ÞEnuc; ðC6Þ

with γ ¼ 5=3, as the nucleons are essentially nonrelativ-
istic. We note that in most NSNS merger and postmerger
scenarios the second term in the brackets in Eq. (C5) is
greater than or comparable to 1 throughout the matter.
Therefore, for simplicity, we typically can adopt the
simpler expression Enuc ¼ ð3=2ÞnkBT. The “radiation” part
of the energy density includes photons and relativistic
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electron and positron pairs and follows a Stefan-Boltzmann
relation,1

Erad ¼ Eph þ Epair ¼
�
1þ 7

4

�
aT4 ¼ 11

4
aT4; ðC7Þ

and

Prad ¼
1

3
Erad: ðC8Þ

Combining nucleon and radiation components, the thermal
energy density and pressure, we typically can adopt the
simplification

Eth ¼
3

2
nkBT þ 11

4
aT4; ðC9Þ

Pth ¼ nkBT þ 11

12
aT4: ðC10Þ

2. Numerical implementation

After the update of rest-mass density ρ0 and the total
specific internal energy ϵ at each iteration, we obtain the
thermal part of the specific internal energy according to

ϵth ¼ ϵ − ϵcold ðC11Þ

and the thermal energy density as

Eth ¼ ρ0ϵth: ðC12Þ

The cold part of the specific internal energy and pressure
for SLy can be modeled by a four-piece piecewise poly-
tropic EOS:

Pi
cold ¼ κiρΓi

0 ; ðC13Þ

ϵicold ¼
Pi
cold

ρ0ðΓi − 1Þ ¼
κiρΓi−1

0

Γi − 1
: ðC14Þ

Here, κi and Γi are the corresponding polytropic constant
and the polytropic exponent of the rest-mass density in the
range ρ0;i−1 ≤ ρ0 ≤ ρ0;i, respectively [90]. Once the ther-
mal energy density is computed, we use Eqs. (C9) and
(C10) to compute the temperature and the thermal pressure.
We use the HARM 2D primitive solver to compute the

MHD variables [163,164]. It finds roots of a two-dimen-
sional system with variables

v2 ≡ vivi; ðC15Þ

and

W ¼ wγ2 ¼ ρ0ð1þ ϵþ P=ρ0Þ
1 − v2

: ðC16Þ

In this setup, the total pressure P needs to be expressed as
functions of v2 and W, while the derivatives dP=dW and
dP=dv2 are needed for the Jacobian. Let us begin with the
temperature-dependent thermal pressure and energy den-
sity. Simple algebraic manipulations of Eqs. (C9) and (C10)
yield

ρ0ϵth ¼ 3Pth − 1.5nT ¼ 3ðP − Pcold − 0.5TÞ: ðC17Þ

Next, using Eq. (C16), we obtain

P ¼ 0.25 ½Wð1 − v2Þ − ρ0ð1þ ϵcoldÞ þ 3Pcold þ 1.5nT�:
ðC18Þ

From Eq. (C18), we calculate the derivatives

dP
dW

¼ 0.25ð1 − v2Þ; ðC19Þ

and

dP
dv2

¼ 0.25

��
−1 − ϵcold þ ð3Γi − 1ÞPcold

ρ0

�
dρ0
dv2

þ 1.5
dðnTÞ
dv2

−W

�
: ðC20Þ

in which the derivative dðnTÞ=dv2 is given by

dðnTÞ
dv2

¼ T
mn

dρ0
dv2

þ ρ0
mn

dT
dv2

¼ T
mn

dρ0
dv2

þ ρ0
mn

�
dT
dρ0

dρ0
dv2

�
: ðC21Þ

The first term in Eq. (C21) can be computed directly. To
find the second term, we begin setting the radiation
constant a ¼ 1 in the thermal pressure (Eq. (C10), and
by taking a derivative with respect to the temperature, we
have

dPth

dT
¼ 11

3
T3 þ ρ0

mn
: ðC22Þ

Next, we express dPth=dT using P and Pcold as

dPth

dT
¼ dPth

dρ0

dρ0
dT

¼
�
dP
dρ0

−
dPcold

dρ0

�
dρ0
dT

; ðC23Þ

1Note that electron-positron pairs become relativistic and the
7aT4=4 is appropriate only when kBT > 2mec2 ∼ 1 MeV. How-
ever, in NSNS mergers, the temperature is typical≳10 MeV, and
hence we always keep this term.
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and

dP
dρ0

¼ dP
dW

dW
dρ0

¼ dP
dW

�
1

1 − v2
dw
dρ0

�

¼ 0.25

�
dðρ0 þ ρ0ϵþ PÞ

dρ0

�
; ðC24Þ

where we used Eq. (C19) for dP=dW. Expanding this
equation, we obtain

3

�
dP
dρ0

�
¼ 1þ ρ0

�
dðϵcold þ ϵthÞ

dρ0

�
þ ϵcold þ ϵth: ðC25Þ

On the other hand, taking the derivative of the thermal
energy density (Eq. (C9) with respect to temperature and
using Eq. (C12), we find

dϵth
dρ0

¼ 1

ρ0

�
11T3 þ 1.5

ρ0
mn

−
dρ0
dT

ϵth

�
dT
dρ0

: ðC26Þ

Inserting the above expression in Eq. (C25), we find

3

�
dP
dρ0

�
¼ 1þ ρ0

�
dϵcold
dρ0

�
þ ϵcold

þ
�
11T3 þ 1.5

ρ0
mn

�
dT
dρ0

: ðC27Þ

The last term in this equation can be computed using
dP=dρ0 in Eq. (C23) and equating it with Eq. (C22),

dρ0
dT

¼
1.5 ρ0

mn

1þ ϵcold þ ð1 − 3ΓiÞ Pcold
ρ0

; ðC28Þ

which allow us to compute the second term in Eq. (C21).
Finally, we use Eq. (C20) to get

dP
dv2

¼ 0.25

�
−W þ 1.5

T
mn

dρ0
dv2

�
; ðC29Þ

which completes the derivative terms in the Jacobian of the
finite-temperature HARM 2D solver.

3. Sound speed

The sound speed of the fluid cs can be obtained using the
derivative of P with respect to ρ0 at constant entropy
c2s ¼ ðdP=dρ0Þ=hjs, where h is the specific enthalpy. Using
the relations in Eqs. (C4), (C6), and (C8), we have

c2s ¼
1

h

�
dPcold

dρ0
þ dPnuc

dρ0
þ dPrad

dρ0

�
s
; ðC30Þ

where

dPcold

dρ0
¼ Γi

Pcold

ρ0
; ðC31Þ

dPnuc

dρ0
¼ ∂Pnuc

∂ρ0 þ ∂Pnuc

∂T
dT
dρ0

				
s
; ðC32Þ

and

dPrad

dρ0
¼ ∂Prad

∂T
dT
dρ0

				
s
: ðC33Þ

The term ðdT=dρ0Þjs is calculated by using the isentropic
condition, where the total entropy per baryon stot ¼ snuc þ
srad is constant, or dstot ¼ dsnuc þ dsrad ¼ 0. From
Eqs. (C9) and (C10), we obtain

snuc ¼ kB

�
5

2
þ ln

�
1

n

�
mBkT
2πℏ2

�
3=2

��
; ðC34Þ

and

srad ¼
11

3

mB

ρ0
aT3; ðC35Þ

which gives

dsnuc þ dsrad

¼
�
kB

�
−
dn
n

�
þ 3

2
kB

dT
T

�
þ
�
11a

T2dT
n

þ 11aT3
dn
n2

�
�
kB

�
−
dρ0
ρ0

�
þ 3

2
kB

dT
T

�
þ
�
3srad

dT
T

− srad
dρ0
ρ0

�
¼ 0:

ðC36Þ

Simplifying the above, we obtain

FIG. 12. Ratio srad=kB (log scale) as a function of ρ0 and T. The
boxes show the parameter space typical for the NSNS remnant,
accretion disk, and ejecta.
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dT
dρ0

				
s
¼

�
2 srad

kB
þ 2

6 srad
kB

þ 3

�
T
ρ0

¼ σs2
T
ρ0

; ðC37Þ

where σs2 ¼ ð2srad=kB þ 2Þ=ð6srad=kB þ 3Þ. Applying
relation (C37) to (C32) and (C33), the sound speed reads

c2s ¼
1

h

�
Γi

Pcold

ρ0
þ 2

3
εnucð1þ σs2Þ þ

4

3
σs2εrad

�
: ðC38Þ

In most regions of the NSNS remnant, the ratio srad=kB
remains small. As shown in Fig. 12, srad=kB stays ≲10−3
for the NSNS remnant and ≲10−2 in the accretion disk,
even though it may reach ∼0.2 in the ejecta. Hence, for
most regions, σs2 → 2=3, which reduces Eq. (C38) to

c2s ≈
1

h

�
Γi

Pcold

ρ0
þ 10

9
εnuc þ

8

9
σs2εrad

�
: ðC39Þ

In our numerical implementation, we approximate the
sound speed by

c2s;code ¼
1

h

�
Γi

Pcold

ρ0
þ 8

9
ðεnuc þ εradÞ

�
; ðC40Þ

for efficiency. We note that this approximation of the
isentropic sound is valid when the εnuc is smaller than
the other two terms in Eq. (12). However, even if εnuc is
larger, the above expression underestimates the sound
speed by at most ∼20%, which is smaller than the
overestimation of computing the characteristic speed c�
for the HLL Riemann solver using the approximated
general GRMHD dispersion relation. According to
Ref. [165], compared to the original, full dispersion
relation, (Eq. (27) of Ref. [163]), the simplified expression
adopted in our code overestimates the maximum character-
istic speed by a factor ≤ 2. Note that this approximate
dispersion relation has been widely used in various codes
including Whisky-MHD [166], GRHydro [167], and HARM

3D [168].

APPENDIX D: NEUTRINO SOURCE TERMS

The calculation of the radiation four-force density Gα

requires three key quantities [see Eq. (14)]: (1) the neutrino
emissivity η, (2) the absorption opacity κa, and (3) the
scattering opacity κs. Following Ref. [50], we first compute
the absorption opacity of electron neutrinos due to two
charged-current interactions, which are the absorption of νe
onto neutrons according to Eq. (A11) in Ref. [86] (hence-
forth “RJS”) and the absorption of ν̄e onto protons
according to Eq. (A12) in RJS. The inverse processes of
the two interactions are responsible for the emission of
electron-type neutrinos. In the optically thick limit, we
apply the energy-integrated Kirchhoff law [50]

ηKir ≈
Z

∞

0

κaBνðενÞdεν ≈
7

8
N νκaaT4; ðD1Þ

where the specific intensity Bν is the Fermi-Dirac intensity
and the absorption opacity κa is an energy-averaged (e.g.,
Rosseland mean) opacity. In the optically thin limit,
Eqs. (B1) and (B2) in RJS give the free emission rates
of the two charged-current interactions, from which we
obtain the emissivity in the free-streaming regime ηfs.
Hence, the total emissivity from the charged-current
interaction is given by the interpolation between ηKir and
ηfs with the same method used to interpolate the radiation
stress tensor

η ¼ 3χðζÞ − 1

2
ηfs þ

3½1 − χðζÞ�
2

ηKir; ðD2Þ

where χ and ζ are defined in Appendix A. We then consider
the free emission of three pair processes, including electron
pair annihilation, plasmon decay, and nucleon-nucleon
bremsstrahlung. RJS gives the emission rate due to pair
annihilation and plasmon decay for electron-type neutrinos
in their Eqs. (B8) and (B11) and those for heavy-lepton
neutrinos in their Eqs. (B10) and (B12). The emission rate
for nucleon-nucleon bremsstrahlung is given in Ref. [87].
Note that the expression of the emissivity for the two
heavy-lepton species and their antineutrinos (nμ, ν̄μ, ντ, and
ν̄τ) are the same, so we can merge the four types of particles
as νx and evolve them together as a single variable. Next,
the inverse of the pair processes contributes to the absorp-
tion opacities and is again computed using Kirchhoff’s law.
Note that, for heavy lepton neutrinos,N ν ¼ 4 as a result of
lumping two species (plus antineutrino) together, while
N ν ¼ 1 for νe and ν̄e. Lastly, we consider the scattering
opacities for all species given by Eq. (A6) in RJS.
The calculation of the terms above requires the knowl-

edge of neutrino temperature, nucleon number density,
neutrino chemical potential, and net electron fraction, as
well as terms such as the Pauli blocking factor. We evolve
the nucleon density, while the temperature is computed as
in Appendix C. In the following, we summarize our
treatment to obtain the other ingredients.

1. Chemical potentials

For the chemical potential of neutrinos, which are used in
computing the blocking factors, we adopt the expressions
in Ref. [86],

μνe ¼ μceqνe ½1 − expð−τνeÞ� þ μ0νe expð−τνeÞ; ðD3Þ

where τνe is the optical depth, which is estimated as the
minimum of the line integrals of total opacity along the
three Cartesian directions, and μceqνe ¼ μe þ μp − μn −Q is
the chemical potential of electron neutrinos in chemical
equilibrium. Here, Q ¼ 1.2935 MeV ≈ 2 × 10−6 erg is the
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rest-mass energy difference between a neutron and a
proton, and μ0νe is the chemical potential in low-density,
transparent matter, which, by simplicity, we set to zero. For
μe, μp, and μn, we use Eq. (11.2.4) in Ref. [169].

2. Pauli blocking factors

We need to compute the Pauli blocking factor that
appears in the absorption and scattering opacities and
emissivity in various neutrino processes. They are obtained
as integrals over momentum of the Fermi distribution
function for the relevant nucleons and electrons involved
in the reactions. We adopt expressions for YNN, Ynp, Yn,
Yp, and Ye obtained in Ref. [170] for equilibrium mixtures.
These quantities are defined as follows:

(i) YNN defines the phase space fractions of free
neutrons (when N ≡ n) or protons (when N ≡ p),
due to the Pauli blocking effects in nucleon scatter-
ing reaction [see Eq. (24)].

(ii) Ynp defines the phase space fraction of free nucleons
due to the absorption by neutrons [the inverse
reaction of Eq. (19)].

(iii) Yn, Yp, and Ye define the number fraction of
neutron, proton, and electron. For completely dis-
sociated matter, the nucleon fractions are
Yn ¼ 1 − Ye, and Yp ¼ Ye.

APPENDIX E: SHEAR VISCOSITY COMPARISON

As suggested by Ref. [44], the diffusion of neutrinos
trapped inside a HMNS can induce momentum transport,
acting like an effective shear viscosity on length scales
longer than the neutrino mean free path. In addition, if the
neutrino mean free path is longer than the MRI wavelength,
neutrinos induce a drag on the velocity field due to the
Doppler effect between the fluid motion and the back-
ground radiation field [171,172]. According to Ref. [127],
the effective viscosity and drag from neutrinos may then
have a significant impact on the MRI inside a HMNS if
magnetic fields are weaker than 1014 G. However, high-
resolution simulations of NSNS mergers have shown that
seed magnetic fields can be boosted from ∼1011 G to
∼1016 G within the first ∼5 ms following merger (see, e.g.,
Refs. [15,104,128]). Therefore, the viscous effect on MRI
due to neutrinos may be neglected. To assess the effect of
neutrino momentum transport in our simulations, we
compute the effective neutrino viscosity using the approxi-
mate analytical expression as in [173]

νneutrino¼3.8×1022

×

�
T

1MeV

�
2
�

ρ0
2.8×1014 gcm−3

�
−1

gcm−1 s−1;

ðE1Þ
which considers six species of nondegenerate neutrinos
in local thermodynamic equilibrium and takes neutrino

scattering as the dominant source of opacity. For the
effective magnetic turbulent viscosity induced by MHD
turbulence, we adopt the shear viscosity of an “α-disk”
model [133,134],

νMHD ¼ 2

3

P
ρ0

αSSΩ−1; ðE2Þ

where αSS is the Shakura-Sunyaev stress parameter (see
Sec. III E) and Ω is the characteristic angular frequency of
the HMNS. Figure 13 displays νneutrino and νMHD as
functions of radius along the x-axis Magþ Rad-Full by
solid and dashed curves, respectively. Note that νMHD is
computed using an averaged value of αSS ∼ 0.1. The gray
vertical regions span the approximate radii of the HMNS
surface and disk outer boundary. Top and bottom panels
show their behaviors at t ∼ 18 ms (or ∼0.5τHMNS; see
Table II) and t ∼ 21 ms (just after BH formation),

FIG. 13. Effective shear viscosity ν=ρ0 due to neutrinos (solid
curves), MHD turbulence (dashed curves), and nuclear inter-
actions (dotted curves) along the x-axis Magþ Rad-Full during
the HMNS (top panel) and BHþ disk (bottom panel) phases. The
gray vertical regions mark the approximate HMNS surface and
disk outer boundary, respectively.
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respectively.We find that νMHD is a factor of≳10 larger than
νneutrino inside the bulk of the HMNS. Therefore, we
conclude that neutrino effective viscosity due to diffusion
can be ignored whenever the magnetic field strength is
≳1014 G, as is the case here. We evaluate the effect of
viscosity on the linear growth of the MRI using the viscous
Elsasser number Eν ≡ v2A=ðνneutrinoΩÞ [44,135,136], which
needs to be smaller than 1 for the effective neutrino viscosity
to significantly affect the MRI growth. Using the average
value of Alfvén speed and angular frequency in our cases,
we find thatEν > 104 inside the HMNS andEν > 102 in the
disk.We also evaluate the critical field strength belowwhich
neutrino viscous effects become important [44], scaled to
typical parameters inside our HMNS:

Bcrit¼3.1×1013
�

ρ0
2.8×1014 gcm−3

�

×

�
νneutrino

3.8×1022 gcm−1 s−1

�
1=2

�
Ω

104 s−1

�
1=2

G: ðE3Þ

We findBcrit is at least a factor of 100 smaller than the typical
field strength in the HMNS remnant (see Sec. IV). Similarly,
the growth rate of MRI is hardly affected by the neutrino
drag. As the neutrino drag can only be induced if the
wavelength of the fastest growingMRI mode is shorter than
the neutrinomean free path, there exists an upper limit of the
magnetic field strength which cannot exceed∼1014 G in the
HMNS remnant because λMRI is proportional to the mag-
netic field strength [44,127]. Note that from Ref. [127]
neutrino drag is only important inside the HMNS but not in
the disk, where the drag damping rate is smaller than the
angular frequency. Therefore, we conclude that the effective
viscosity due to MHD turbulence dominates over that
induced by neutrino radiation in our simulations.
We also consider the microscopic shear viscosity of

nucleon matter in the cores of the HMNS, which, for
nonsuperfluid matter, is dominated by neutron-neutron and
neutron-proton scattering mediated by strong interactions
[174]. Note that the temperatures of interest in our
models are mostly greater than the critical temperature T ∼
108–10 K below which dripped neutrons are likely to form
Cooper pairs and undergo phase transitions to superfluid
[175,176]. The shear viscosity due to in-vacuum nucleon-
nucleon scattering in the nonsuperfluid liquid core was first
estimated by Refs. [177,178], and an approximate and
widely used fitting formula is given by Ref. [137]

νn¼8.2×1014

×

�
T

1MeV

�
2
�

ρ0
2.8×1014 gcm−3

�
9=4

g cm−1 s−1: ðE4Þ

Another possible contribution to the shear viscosity comes
from the collision of electrons and muons. According to
Ref. [178], the shear viscosity is dominated by neutrons in

nonsuperfluid matter. Therefore, we ignore the effects from
electrons and muons.
In Fig. 13, the dotted curves represent the viscosity due

to the nucleon processes above using Eq. (E4). Near the
core of the HMNS, the microscopic shear viscosity is
comparable to νn. Nevertheless, at radius greater than 5 km,
it quickly diminishes and becomes negligibly small com-
pared to νMHD and νn. Therefore, in our simulations, the
shear viscosity due to nucleon scattering is minuscule and
can be ignored as well. We again note that although the
bulk viscosity has larger magnitude, the nucleon shear
viscosity is most important during the inspiral and does not
redistribute angular momentum in the remnant. It is the
shear viscosity, which helps drive the HMNS to collapse
and drives disk accretion onto the remnant BH. To con-
clude, the viscous effects due to neutrino diffusion, drag,
and nucleon-nucleon scattering are small compared to the
MHD turbulence in our systems.

APPENDIX F: CODE TEST—HEATED
OPPENHEIMER-SNYDER COLLAPSE

1. General description

Here, we summarize results from one important test of
our radiative transport scheme in a strong gravitational
field. Other tests, including those involving shocks, have
been previously performed in Ref. [80] and reproduced
here. The collapse of a general relativistic, homogeneous,
and pressureless sphere is given by the analytic
Oppenheimer-Snyder (OS) solution [179]. We consider a
thermal radiation perturbation to OS collapse in Ref. [180],
in which the radiation is treated in the relativistic, thermal
diffusion approximation for an optically thick radiation
field that remains dynamically unimportant to the space-
time and collapsing dust sphere and where LTE is main-
tained throughout the collapse. The solution for the interior
radiation field and outgoing flux as a function of radius and
time were determined analytically in this case (see also
Exercise 5.20 in Ref. [181]). In Ref. [182], we solved the
full Boltzmann radiative transfer equation coupled to the
radiation moment equations numerically to obtain the exact
interior radiation intensity and flux for both optically thick
and thin cases. The two methods showed close agreement
in the optically thick limit. In Ref. [80], we again performed
numerical simulations of “Heated OS collapse,” now with
the radiative transfer module in our Illinois GRMHD code,
constrained to the optically thick limit. Again, the results
closely matched the analytic solution. Recently, we carried
out a similar treatment using a two-moment radiation
transport scheme in the reference-metric formalism, again
for an optically thick radiation field [84] in spherical
symmetry. To test the reliability of our M1 implementation
here, we again simulate heated OS collapse. For the first
time, we not only treat the radiation field in the optically
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thick interior but also the outgoing field in the vacuum
exterior, which is optically thin.
In our test, we set the initial areal radius R0 ¼ 10M, from

which the initial rest-mass density ρ0;ini ¼ 2.39 × 10−4M−2.
We set P0;ini ¼ 10−6ρ0;ini to make matter pressure dynami-
cally unimportant and E0;ini ¼ 10−5ρ0;ini to make radiation
pressure unimportant, to recover heated OS collapse. We
also set viini ¼ Fi

ini ¼ 0. The temperature of the sphere is
initially set by the LTE condition E ¼ aT4. We choose the
gray absorption opacity by setting the initial optical depth
τa ¼ Rκaρ0 ¼ 25 and set the scattering opacity κs to zero.
During collapse, the interior remains optically thick as the
density increases with R−3. We construct the initial metric
based on the analytical OS solution, which matches a
closed-Friedmann interior to the Schwarzschild exterior
[183]. To be consistent with previous work, we adopt the
hyperbolic driver conditions for the lapse and shift func-
tions (see Eqs. (17) and (18) in Ref. [80]) with the same
choice of freely specifiable constants a1, a2, a3, b1, and b2.
Our grid consists of four nested refinement boxes centered
in the sphere, with adjacent levels differing in size and
resolution by factors of 2. The outer boundary is at
xmax ¼ 60M and dx ¼ 0.12M on the coarsest level. We
note that the sphere is initially resolved by ≈2167 grid
points across the diameter on the four levels. We endow the
initial exterior regions with a low-density atmosphere
with ρ0;atm ¼ 10−12ρ0;ini. To track both the interior and
exterior evolution, we lift the “zero-temperature approxi-
mation” (E ¼ 0) imposed by Refs. [84,180] at the stellar
boundary and instead impose an outgoing radial radiation
boundary condition in the near vacuum at the outer edge of
our grid.
The profiles of rest-mass density, radiation energy

density, and radiation flux as functions of radius at select
moments of our heated OS collapse model are displayed in
Fig. 14. The dotted and solid curves represent the numerical
and analytical solutions, respectively. In the following
sections, we describe our results and assess their reliability
in regions with different optical thickness. We first compare
our results in the optically thick region (stellar interior)
with previous thermal OS collapse simulations using
the Eddington closure schemes (with Eddington factor
1=3), and then we locate the photon trapping radius
at the transition region and explain the behavior of
radiation fields across it. Finally, we describe the free
propagation of the radiation field in the optically thin
exterior.

2. Optically thick region: Diffusion approximation

In Fig. 14, we show the comparisons of our numerical
results computed using 50 Lagrangian fluid tracers for the
rest-mass density ρ0 (top panel), radiation energy density
E (middle panel), and radiation flux scalar magnitude
F≡ FμFμ (bottom panel) with the analytic solutions

summarized by Eqs. (D11)–(D13) in Ref. [80]. Our
numerical solutions lie on top of the analytical ones in
the stellar interior for the rest-mass density and radiation
energy density (top and middle panels in Fig. 14). The
radiation flux matches the analytical solution after the

FIG. 14. Numerical (dotted curves) and analytical (solid
curves) solutions at various times for the rest-mass density
(top panel), radiation energy density E (middle panel), and
radiation flux F (bottom panel) vs areal radius R for a heated
OS collapse with initial areal radius R0 ¼ 10 M. The blue
triangular dotted curve in the stellar exterior at the latest time
represents the curve ∼R−1=2.
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initial transient phase (bottom panel in Fig. 14).
Our numerical values also match the results in Ref. [84]
in the stellar interior. Notice that we also recover the
expected difference in F between the numerical and
analytical results during the early phase of collapse, as
reported and explained in Ref. [84] (which refers it as
the “initial transient” phase). The difference originates
from the computation of a (vanishingly) small quantity
by subtracting two nearly equal quantities during
the recovery of primitive variables in the region
with a spatially nonconstant lapse. Nevertheless, at late
stages, when the gauge and radiation characteristics have
reached the stellar center, the numerical result of F
becomes close to the analytical solution from the diffusion
equation, as expected. Therefore, we conclude that the
code reproduces the evolution of heated OS collapse
consistent with previous works in the stellar interior
(optically thick regions). Also, for this limit, our primitive
solver matches the analytical expressions for the primitive
variables (see Eqs. (65)–(67) in Ref. [80]) using Eddington
closure.

3. Photon-trapping radius

According to Ref. [184], if the matter accretion rate is
greater than _ME ≡ LE=c2, where LE is the Eddington limit,
there exists a surface at radius rtrap within which the
radiation is trapped and eventually falls into the BH
with the gas. This photon trapping radius rtrap is defined
by setting the infall speed of the gas equal to the
approximate outward diffusion speed of the radiation
(∼c=τ). At this radius, the radiation momentum density
changes its direction, from inward inside rtrap to outward
outside.
To approximate rtrap in our OS collapse model, we

compute the optical depth by integrating κaρ0 along the x-
axis. The top panel of Fig. 15 shows the stellar dust
velocity, the diffusion speed of the radiation, c=τ, and the
radiation momentum density along the x-axis at t ¼
36.84M (corresponding to the maroon curve in Fig. 14).
From the plot, the intersection between the diffusion speed
and the gas velocity is at around x ¼ 3.2 M, which agrees
with the location at which the radiation momentum density
S̄x turns over. As shown in the bottom panel, S̄x becomes
negative at radius smaller than 3.2 M, indicating the
radiation field is trapped and falls inward following the
collapse of the star. We define the position x ¼ 3.2M,
labeled by the magenta vertical line in Fig. 15, as the radius
of photon trapping of the model. It is expected that the
radius would move inward with time and eventually freeze
at 2M at BH formation. The consistency between trapping
radius and flux direction turnover provides another useful
check on our code.

4. Decay of radiation flux at large radius

With the M1 closure scheme of radiation, we are able to
study radiation transport in the optically thin exterior region
of the system. In the exterior, free propagation of radiation
at the speed of light is expected. As shown in the middle
and bottom panels of Fig. 14, the distance between the
initial stellar surface at R0 ¼ 10M and the radius marking
the outermost nonzero E and F profiles approximates the
time of evolution, indicating free propagation at the speed
of light. At large radius, the magnitude of energy density
equals that of the radiation flux E ¼ F. This is confirmed in
the two panels as well, where both E and F slowly fall
together for radius R > 30M roughly as R−1=2, as indicated

FIG. 15. Top panel: photon-trapping radius during OS collapse
(magenta) where the radiation momentum density S̄x flips
direction (blue). This radius can be also identified by equating
the radius at which the gas velocity (green) equals the approxi-
mate radiation diffusion speed (cyan). Bottom panel: the change
of sign (direction) of S̄x. Results are shown at t ¼ 36.84M, when
the areal surface of the star is at R ≈ 3.7M.
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in Fig. 14. Note that as the star is collapsing the radiation
source is not steady; therefore, the flux does not decay as
R−2 as it would for a constant source.
One of the most important quantitative results is the

exponential attenuation of the luminosity measured by a
distant observer in the late stage of collapse, after the stellar
surface has reached its gravitational radius at R ¼ 2M
[183,185,186]:

Lrad ∼ exp

�
−

t

3
ffiffiffi
3

p
M

�
: ðF1Þ

The light is dominated by photons deposited in the unstable
photon circular orbit at R ¼ 3M. They leak out at an
exponential decay rate. To check our code, we perform a
collapse model with the initial areal radius Rini ¼ 4M and
follow the collapse up to t ¼ 57M. This is approximately
four times the collapse time, which is defined the time at
which the stellar surface passes through an areal radius of
R ¼ 2M for the first time. We fit our data for the flux F at
R ¼ 23M from t ¼ 22M to t ¼ 56M with the exponential
expression

F → expð−t=t1Þ; ðF2Þ

where t1 is constant. We find that t1=M ¼ 5.15þ0.18
−0.17 .

Comparing with Eq. (F1), the fitted decay rate of the
asymptotic flux data has less than 1% deviation from the

theoretic result, i.e., t1=M ¼ 3
ffiffiffi
3

p
≈ 5.20. The correspond-

ing plot is shown in Fig. 16. We conclude that the
exponential decay of the asymptotic flux at large radius
is correctly identified by our M1 code, showing its
reliability in optically thin regions as well.
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