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Numerical studies of the dynamics of gravitational systems, e.g., black hole-neutron star systems,
require physical and constraint-satisfying initial data. In this article, we present the newly developed
pseudospectral code ELLIPTICA, an infrastructure for construction of initial data for various binary and
single gravitational systems of all kinds. The elliptic equations under consideration are solved on a single
spatial hypersurface of the spacetime manifold. Using coordinate maps, the hypersurface is covered by
patches whose boundaries can adapt to the surface of the compact objects. To solve elliptic equations with
arbitrary boundary condition, ELLIPTICA deploys a Schur complement domain decomposition method with
a direct solver. In this version, we use cubed sphere coordinate maps and the fields are expanded using
Chebyshev polynomials of the first kind. Here, we explain the building blocks of ELLIPTICA and the initial
data construction algorithm for a black hole-neutron star binary system. We perform convergence tests and
evolve the data to validate our results. Within our framework, the neutron star can reach spin values close to
breakup with arbitrary direction, while the black hole can have arbitrary spin with dimensionless spin
magnitude ∼0.8.
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I. INTRODUCTION

Observations of gravitational waves [1–5] are treasure
troves of information about a broad spectrum of large scale
physics, such as the nature of gravity [6–11], and small
scale physics, such as properties of the equation of state of
supranuclear-dense matter [2,4,12–14]. New gravitational
wave observing runs of the LIGO-Virgo Collaboration and
improvements in detectors’ sensitivity [15] increase the
demand for a better understanding of the complex physics
present around the moment of merger of the compact
objects. This, on the other hand, requires high accuracy
numerical-relativity simulations.
Any kind of numerical-relativity simulation requires as a

starting point constraint-satisfying and self-consistent ini-
tial data (ID). In this sense, the accuracy and reliability of
the simulations depend on the accuracy of the ID. Because
of this, significant efforts have been put by the entire
numerical-relativity community into developing ID solvers.
Among these solvers are the COCAL code [16,17] for
constructing quasiequilibrium spinning binary black hole

(BBH) and binary neutron star (BNS) initial data on
circular, but not eccentricity-reduced orbits; the publicly
available FUKA code [18] for computing eccentricity-
reduced BBH, BNS, and black hole-neutron star
(BHNS) binaries with aligned or anti-aligned spins; the
public code LORENE [19–23] for quasiequilibrium or
corotational BBH, BHNS, and BNS, where only black
holes can have spins that are aligned or antialigned, and of
low magnitude; a private version of LORENE [24–26] for the
construction of quasiequilibrium, eccentricity reduced
BBH, BNS, and BHNS binaries (but with limited magni-
tude and direction of spin); the NRPYELLIPTIC code [27] for
BBHs; the SGRID [28–30] code, capable of producing BNS
configurations with arbitrary spin orientation, eccentricity,
and mass ratio; SPECTRE’s elliptic solver [31,32] for
computing BBHs ID; the private code SPELLS [33–36]
for the construction of eccentricity-reduced BBH, BNS,
and BHNS binaries with arbitrary spin and asymmetric
masses; and TWOPUNCTURES [37–39] for BBHs and non-
spinning BHNSs. As the current public ID solvers are
limited to aligned or antialigned spin directions for BHNS
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systems, developing an infrastructure for the construction
of ID with highly spinning black holes or neutron stars with
arbitrary spin directions is important.
We have developed a new pseudo-spectral code,

ELLIPTICA, as an infrastructure for the construction of ID
of various astrophysical compact objects. ELLIPTICA’s
framework is such that each compact object, like a neutron
star (NS) or black hole (BH), is implemented in a separate
module. Hence, in principle, one can combine different
modules to create ID for BBH, BNS, and BHNS systems.
In this work, we show its usage for the computation of
BHNS ID. ELLIPTICA’s general benefits over other available
codes are its suitability for efficient eccentricity reduction,
cf. [26], and its ability to compute systems in which the NS
and BH spins can point in arbitrary directions, and its
ability to compute highly spinning BHs and NSs.
The organization of the paper is as follows: in Sec. II we

present the foundation, such as the coordinate setup and the
method used for the solution of elliptic equations; in
Sec. III we cover the formalism employed to derive the
Einstein’s constraint equations and Euler’s equations for
BHNS systems; in Sec. IV we explain the algorithms
applied to construct physical and constraint-satisfying ID
for BHNSs; in Sec. V we validate the code by performing
convergence tests of BHNS ID, by comparing with
analytical approximations, and by performing dynamical
evolution of the data; in Sec. VI we present our conclu-
sions. We use geometric units with G ¼ c ¼ M⊙ ¼ 1 in
this paper. Summation over repeated indices is implied
unless otherwise mentioned.

II. ELLIPTICA’S FOUNDATION

A. Overview

ELLIPTICA is designed to construct ID for equilibrium
and quasiequilibrium astrophysical systems composed of
single or binary compact objects which can be BHs or NSs.
To construct the ID, one has to solve the constraint
equations together with Euler’s equations. The constraint
equations are derived from Einstein’s equations, and
Euler’s equations are derived from the conservation of
the stress-energy tensor and the continuity equation;
cf. Sec. III. These equations can be cast into the form of
hyperbolic-parabolic or hyperbolic-algebraic system such
as [40–43]. They can also be put into hyperbolic form and
evolved forward in an unphysical time to find a steady state
solution that satisfies the equations [27,44]. However, in
this work we express these constraint equations in the form
of coupled nonlinear elliptic partial differential equations
(PDE)s. Additionally, the NS surface location is not known
a priori. This means these coupled elliptic PDEs need to be
augmented by an algebraic equation for the NS surface.
Therefore, in this work, making ID is tantamount to a
procedure to find the solution of these equations (elliptic
plus algebraic equations). Furthermore, since the ID are

sought for a specific physical system with specific proper-
ties, the solution must be guided toward these physical
parameters throughout this procedure; cf. Sec. IV.

ELLIPTICA has been written completely in the C pro-
gramming language, but an extensive use of structures has
allowed for the incorporation of some object-oriented
design principles. It currently supports only shared-
memory multiprocessing. To generate numerical-relativity
equations in C, the open source code Cpi has been used
[45] (but other means can be used too).
As an infrastructure for construction of ID, ELLIPTICA

requires two main components, an elliptic solver and a
computational grid. In this section we present these ingre-
dients by explaining how an elliptic equation is set up and
solved using a pseudospectral method [46,47] together with
a Schur complement domain decomposition (SCDD)
method [48]. Moreover, we derive analytical expressions
for a fast computation of the Jacobian of an elliptic equation.
Finally, we illustrate our computational grid.

B. Elliptic solver

A key ingredient of many ID codes is a routine that
solves elliptic equations with given boundary conditions.
However, this undertaking is often computationally expen-
sive. To reduce the overhead, we take advantage of spectral
techniques to efficiently compute the Jacobian needed
when linearizing elliptic equations.

1. Jacobian matrix

To explain the idea, let us consider solving the
1-dimensional Poisson equation

∇2u ¼ ∂2u
∂x2 ¼ S; uj∂Ω ¼ 0 ð1Þ

for the field u ¼ uðxÞ with source S ¼ SðxÞ on a computa-
tional grid Ω ¼ fx∶x ∈ ½a; b�g. Here a and b are real
numbers and ∂Ω denotes the boundary. First, we discretize
the problem by introducing N grid points. Now, instead of
onePDEwe thus obtain one algebraic equation per grid point:

Fiðu⃗Þ ≔ f∇2u − Sgji ¼ 0; ð2Þ

here, i refers to the index of a grid point, u⃗ ¼
ðu0; u1;…; uN−1ÞT is u at each grid point, and ∇2uji is the
discretization of the derivative ∇2u at the grid point i. The
Newton-Raphson method also requires the linearization of
this equation. This involves the computation of the Jacobian
matrix

Jij ≔
δFiðu⃗Þ
δuj

; ð3Þ

where indices i and j refer to the indices of the grid points
after the discretization.ANewton-Raphson step then consists
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of u → uþ ũ, where ũ is the solution of the linear equation
Jũ ¼ −F. The method starts from an initial guess for u and
iterates until a given stopping criterion is met, e.g., until a
desired tolerance for the L2 norm jjF⃗jj is reached or if the
number of iterations exceeds some limit. The main steps of
our Newton-Raphson procedure [49,50] are summarized in
Algorithm 1.
In many cases constructing the matrix Jij [defined in

Eq. (3)] from an analytical expression is not practical.
Instead one often uses a finite difference approximation:

Jij ¼
δFiðu⃗Þ
δuj

≈
Fiðu⃗þ he⃗jÞ − Fiðu⃗Þ

h
; ð4Þ

where h is a small value, on the order of the grid spacing,
and e⃗j is the vector whose only nonzero component equals
to 1 in its j-th entry. For a 1-dimensional problem, the time
complexity of this method is about OðN × N lnNÞ in
which N is the number of grid points and N lnN comes
from a fast Fourier transformation needed to compute the
derivatives for each change u⃗ → u⃗þ he⃗j. However, one
can calculate this expression not only exactly in a closed
form but also faster with time complexity of order OðN2Þ
by using a spectral expansion. In the following we explain
this more efficient method for calculating Jij.

2. Spectral Jacobian

ELLIPTICA currently uses Chebyshev polynomials of the
first kind TiðXÞ ¼ cosði arccosðXÞÞ as the basis of the

spectral expansion [46,47], where X ¼ 2x−ðaþbÞ
a−b and

i ¼ 0; 1;…; N − 1. As the collocation points, it uses the
extrema of the Chebyshev polynomial TN−1ðXÞ which are
Xi ¼ cosð iπ

N−1Þ for each i. As discussed in Sec. II D, a
further coordinate transformation can be used to map the x
coordinates to other coordinates that are better adapted to
the domain shapes we intend to use. Here, for the sake of
simplicity, we ignore this transformation but the generali-
zation is straightforward. The field u as a function of X can
then be approximated as

uðXÞ ¼
XN−1

n¼0

ηncnTnðXÞ; ð5Þ

and consequently, the value ui ¼ uðXiÞ at each grid point i
is given by

ui ¼
XN−1

n¼0

ηncnTnðXiÞ; ð6Þ

where,

ηn ¼
�
1; if n ¼ 0 or n ¼ N − 1

2; otherwise
;

cn ¼
1

2ðN − 1Þ
XN−1

k¼0

ηkukTkðXnÞ: ð7Þ

Moreover, the second order derivative of uðxÞ with respect
to x and the variation of cn with respect to uj ¼ uðxðjÞÞ,
which are needed to calculate Jij, read

d2ui
dx2

¼
�
dX
dx

�
2 XN−1

n¼0

ηncn
d2

dX2
TnðXÞjX¼Xi

; ð8Þ

δcn
δuj

¼ 1

2ðN − 1Þ
XN−1

k¼0

ηkδjkTkðXnÞ ¼
ηjTjðXnÞ
2ðN − 1Þ : ð9Þ

Consequently, Jij is

Jij ¼
δFiðu⃗Þ
δuj

¼ δ

δuj

d2ui
dx2

þ δ

δuj
SðxÞ

zfflfflfflffl}|fflfflfflffl{¼0

¼ ηj
2ðN − 1Þ

�
dX
dx

�
2

×

�XN−1

n¼0

ηnTjðXnÞ
d2

dX2
TnðXÞjX¼Xi

�
; ð10Þ

where in the third line we have used Eq. (9). Note that the
sum in Eq. (10) can be written as

XN−1

n¼0

ηnTjðXnÞ
d2

dX2
TnðXÞjX¼Xi

¼ ∂2

∂X2

�
2
XN−1

n¼0

TnðXjÞTnðXÞ

− TjðX0ÞT0ðXÞ − TjðXN−1ÞTN−1ðXÞ
�
jX¼Xi

ð11Þ

where we have used the definition of ηn in Eq. (7) and the
relation TnðXiÞ ¼ TiðXnÞ which holds since

Algorithm 1. Newton-Raphson algorithm: the number of iter-
ations Niter and the desired tolerance tol are given.

1: set k ¼ 0
2: while (k ≤ Niter or jjF⃗ðu⃗Þjj ≥ tol) do
3: compute Fiðu⃗Þ ¼ f∇2u − Sgji at each grid point i;
4: compute Jacobian matrix Jij ¼ δFiðu⃗Þ

δuj
;

5: solve matrix equation Jũ ¼ −F for ũ;
6: set ui → ui þ ũi;
7: set k → kþ 1;
8: end while
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TiðXnÞ ¼ cos ði arccosðXnÞÞ ¼ cos

�
π

in
N − 1

�
: ð12Þ

Additionally, we have changed the notation in Eq. (11) to
emphasize that the derivative only acts on TnðXÞ which is
then evaluated at X ¼ Xi as in Eq. (10). To further simplify
the summation in Eq. (11) we use

2
XN−1

n¼0

TnðXjÞTnðXiÞ ¼ 2
XN−1

n¼0

cosðnθjÞ cosðnθiÞ

¼
XN−1

n¼0

cosðnðθi þ θjÞÞ þ
XN−1

n¼0

cosðnðθi − θjÞÞ: ð13Þ

Here we have defined θ ¼ arccosðXÞ so that θi ¼ πi
N−1 and

θj ¼ πj
N−1. Using the following identity [51]:

XN
n¼0

cosðnθÞ ¼ 1

2
þ sinððN þ 1

2
ÞθÞ

2 sinðθ
2
Þ ; ð14Þ

we write Jij in a closed form (note Xi ¼ cosðθiÞ):

Jij¼
ηj

2ðN−1Þ
�
dX
dx

�
2
� ∂2

∂X2
i

�
sinððN− 1

2
ÞðθiþθjÞÞ

2sinðθiþθj
2

Þ

�
þ ∂2

∂X2
i

�
sinððN− 1

2
Þðθi−θjÞÞ

2sinðθi−θj
2
Þ

�
−ð−1Þj d2

dX2
TN−1ðXÞjX¼Xi

�
: ð15Þ

Note that the derivatives ∂
∂Xi

only act on θi.
Some remarks are in order. First, the generalization to

higher dimensions is straightforward, and analogous to a
Chebyshev expansion in higher dimensions. Second, we
note that there is no singularity in Eq. (11). Hence, for cases
such as θi þ θj ¼ 0 or θi − θj ¼ 0 when Eq. (15) becomes
singular, we use Eq. (13) to compute Jij [i.e., we do not use
the identity in Eq. (14)]. Third, during the construction of
ID, resolution is only gradually increased, so that many
iterations of the elliptic solver per resolution are required.
Since Eq. (15) only depends on the number of grid points,
the piece of Jij coming from derivative operators, here ∇2,
remains unchanged at each resolution. Thus, Jij is calcu-
lated only once and used without any changes in an iterative
scheme. Furthermore, we note that the functional deriva-
tives do not act on the Jacobian of a coordinate trans-
formation. Thus, if there are more (and possibly nonlinear)
coordinate transformations then the computation of Jij
involves similar steps except that some extra terms and
coefficients (coming from the coordinate transformation)
need to be included. Lastly, let us illustrate how the
Jacobian of a more complicated equation is calculated.
For instance, we assume the Jacobian of the following
equation is needed:

f2ðuÞ
d2uðxÞ
dx2

þ f1ðuÞ
duðxÞ
dx

þ f0ðuÞ ¼ SðxÞ; ð16Þ

where f0ðuÞ, f1ðuÞ, and f2ðuÞ are (possibly nonlinear)
functions of u. Hence, similar to Eq. (2)

Fiðu⃗Þ ¼
�
f2ðuÞ

d2uðxÞ
dx2

þ f1ðuÞ
duðxÞ
dx

þ f0ðuÞ − SðxÞ
�

ji ¼ 0: ð17Þ

Consequently, the Jacobian reads (no implied summation
on the repeated indices)

Jij ¼ f2ðuiÞ
δ

δuj

d2ui
dx2

þ δij
df2ðuiÞ
du

d2ui
dx2

þ f1ðuiÞ
δ

δuj

dui
dx

þ δij
df1ðuiÞ
du

dui
dx

þ δij
df0ðuiÞ
du

; ð18Þ

in which, δij is the Kronecker delta and δ
δuj

d2ui
dx2 term is

calculated by Eq. (15). The terms δij
df0ðuiÞ

du , δij
df1ðuiÞ

du , and

δij
df2ðuiÞ

du are the analytic functional derivative of f0ðuiÞ,
f1ðuiÞ, and f2ðuiÞ respectively. To compute δ

δuj
dui
dx we

follow the same steps as involved in the calculation of
δ
δuj

d2ui
dx2 but instead of second order derivatives with respect

to x we have first order derivatives.
In conclusion, we have presented a fast and analytic

method to compute the Jacobian of an elliptic PDE using a
spectral method. While this spectral Jacobian method is
relatively straightforward, we are not aware of any prior
publication about it. In the next subsection we discuss how
the system Jũ ¼ −F is solved.

C. Matrix solver

Having found Fiðu⃗Þ and Jij, the Newton-Raphson
algorithm 1 requires us to solve the matrix equation
Jũ ¼ −F. The size of the matrix J depends on the
resolution, which is chosen to fit the problem under study
and the coordinate patches being used. For a real produc-
tion run, the size could be as high as 105 × 105. Direct
solvers [52] are generally inefficient for matrix equations
with such large dimensions, thus iterative solvers [48] with
proper preconditioners are commonly used in these cases.
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However, direct solvers tend to be more robust and
predictable and do not require preconditioners as opposed
to iterative solvers. As a result, direct solvers are preferred
when feasible. A possible strategy is to divide this big
system of equations into mutually exclusive and collec-
tively exhaustive subsystems with smaller dimensions, then
instead of solving the whole system at once, one can
separately solve these small subsystems which would
enable the usage of direct solvers. To reach this goal,
ELLIPTICA employs the SCDDmethod, explained in [48], to
efficiently solve Jũ ¼ −F by a direct solver.

1. Domain decomposition method

In general, domain decomposition methods, and in
particular the SCDD method, use a divide-and-conquer
principle to reduce the dimension of a matrix equation.
Thus, one can use direct solvers in a parallel fashion to
solve the whole matrix equation at once, which otherwise
would have been infeasible due to the very large dimension.
In this section we demonstrate the gist of the SCDDmethod
used in ELLIPTICA.
Often, a given manifold, here the computational grid,

cannot be covered by a single patch. A known example is a
2-sphere and its pole singularities [53]. Moreover, for a
spectral method, one desires to separate matter and vacuum
regions into different patches to avoid Gibbs phenomena
[46]. For instance, the NS and the outside of the NS should
be covered by different patches. Furthermore, it is generally
required to use different resolutions for different parts of the
grid or to compactify the outer-boundary of the computa-
tional grid to possibly cover spatial infinity. Therefore,
different patches with different properties are needed and it
is natural to cover a grid with multiple patches. We exploit
this property by using the SCDDmethod to solve equations
on each of these patches separately.
To demonstrate the idea of SCDD, consider solving a

2-dimensional elliptic equation on the grid Ω, shown in

Fig. 1, with a some boundary condition on ∂Ω. The elliptic
equation has a unique solution if appropriate boundary
conditions (BCs) are imposed. Thus, if we attempt to solve
this equation separately on each subdomain the system
would be underdetermined because the BCs on Γ are not
known yet. Therefore we impose the following BCs to
close the system [30]:

n⃗ · ∇⃗uðΩ1ÞjΓ − n⃗ · ∇⃗uðΩ2ÞjΓ ¼ 0; ð19Þ

uðΩ1ÞjΓ − uðΩ2ÞjΓ ¼ 0; ð20Þ

where n⃗ is the normal vector to the common interface Γ,
and uðΩ1ÞjΓ and uðΩ2ÞjΓ denote the solution from domain Ω1

and Ω2 evaluated on the interface Γ. Equations (19) and
(20) create a coupling between the interior of each sub-
domain and the interface and vice versa. Hence, if the
solution was known on the interface Γ, the problem would
be reduced to solve two uncoupled elliptic equations in
each subdomain. Therefore, to decouple the system it is
natural to find the solution on the interface Γ first. This
decoupling is the main idea of the SCDD method.

2. Schur domain decomposition method

We consider a grid Ω with outer-boundary ∂Ω which is
covered by subdomains (patches) Ω1;Ω2;…, and Ωs,
where s is the number of subdomains. Moreover, any
two subdomains might have one or more common inter-
faces which results in a coupling of the two subdomains. As
we mentioned earlier the goal is to find the solution on the
common interfaces first (to decouple them) and then solve
the elliptic equation for each patch independently.
Therefore, following the algorithm 1 after setting up the
matrix equation Jũ ¼ −F, we reorder this system of
equations, such that it has the following general structure:

0
BBBBBBBBBBBBBBBBBB@

B1 E1

B2 E2

. .
. . .

.

Bs Es

F11 F12 � � � F1s C11 C12 � � � C1s

F21 F22 � � � F2s C21 C22 � � � C2s

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

Fs1 Fs2 � � � Fss Cs1 Cs2 � � � Css

1
CCCCCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBBBBB@

ṽ1
ṽ2

..

.

ṽs
w̃1

w̃2

..

.

w̃s

1
CCCCCCCCCCCCCCCCCCA

¼

0
BBBBBBBBBBBBBBBBBB@

f1
f2

..

.

fs
g1
g2

..

.

gs

1
CCCCCCCCCCCCCCCCCCA

; ð21Þ
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where empty entries are zero. Let us define p; q ¼ 1;…; s.
Then, the Bp are the submatrices of the matrix J that are
interior to the pth subdomain and include outer boundary
conditions (if any exist for this subdomain). The Ep

represent the submatrices of the matrix J due to the
coupling of interior and interface of the pth subdomain.
The Fpq describe the coupling between the pth interface
and the qth interior. Finally, Cpq represent all of the
couplings between the pth interface to the qth interface.
Furthermore, each ṽp is the subvector of unknowns that is
interior to the pth subdomain and each w̃p represents the
subvector of unknowns for all interfaces. Each fp shows
the source term portion in the pth subdomain and each gp is
the left-hand side of Eq. (19) or Eq. (20) depending which
one has been imposed for the corresponding subdomain.
In this new arrangement of the matrix J, all of the

coupled and unknown values are encapsulated in the
subvector w̃ ¼ ðw̃1; w̃2;…; w̃sÞT. Thus, finding these values
results in decoupling of the system. To better explain the
idea, it is convenient to write Eq. (21) like a system of
equations with two unknowns as follows:

�
B E

F C

��
ṽ

w̃

�
¼

�
f

g

�
: ð22Þ

In order to find w̃ we write the first row in Eq. (22) as

Bṽþ Ew̃ ¼ f ⇒ ṽ ¼ B−1ðf − Ew̃Þ: ð23Þ

Then by substituting ṽ in the second row of Eq. (22), we
find the reduced system

Fṽþ Cw̃ ¼ g ⇒ ðC − FB−1EÞw̃ ¼ g − FB−1f: ð24Þ

The solution w̃ of Eq. (24) can now be found independently
of the values of ṽ and then w̃ can be back substituted into
Eq. (23) to find ṽ.

In practice, we implement the following equations for
each subdomain p (no summation is implied on the
repeated indices) [48]:

Bpṽp þ Epw̃p ¼ fp; ð25Þ

Xs

q¼1

ðCpq − FpqE0
qÞw̃q ¼ gp −

Xs
q¼1

ðFpqf0qÞ; ð26Þ

where

E0
p ¼ B−1

p Ep;

f0p ¼ B−1
p fp: ð27Þ

The system of equations (26) only involves w̃, i.e., ũ at the
interface points. It can be summarized as:

Sw̃ ¼ g0; ð28Þ

where, S is called Schur complement matrix. After solving
Eq. (28) for w̃p, ṽp is found using Eq. (25) which can be
written as ṽp ¼ f0p − E0

pw̃p. A summary of SCDD method
to solve elliptic equations is shown in algorithm 2.
Regarding the implementation of SCDD in ELLIPTICA, a

few comments are in order. First, the system of equations is
set up in the same order as Eq. (21), thus, no overhead for
reordering of the system is incurred. Second, in Eq. (27)
instead of inverting the matrix Bp directly, equations
BpE0

p ¼ Ep and Bpf0 ¼ fp are solved for E0
p and f0,

respectively. Also, we note that these calculations can be
performed in parallel since Bp’s describe the uncoupled
blocks in the J matrix. Third, many columns in the Fpq and
Cpq matrices are equal to zero because each subdomain p
only has interfaces where it touches other subdomains,
which only happens for neighboring subdomains. Since all
the matrices are stored in compressed column storage [52],
there is no computational cost for setting zero entries of Fpq

and Cpq. Fourth, the Schur complement matrix consists of
the coupling information coming from the interfaces, thus
its dimension is as big as the total number of points on all
interfaces. If we use the cubed spherical grid of Fig. 3 with
20 points in each direction in each patch, the matrix S is
approximately 56000-dimensional. Nevertheless it is quite

Algorithm 2. Schur complement domain decomposition
method.

1: Solve BE0 ¼ E for E0;
2: Solve Bf0 ¼ f for f0;
3: Compute g0 ¼ g − Ff0;
4: Compute S ¼ ðC − FE0Þ;
5: Solve Sw̃ ¼ g0 for w̃;
6: Compute ṽ ¼ f0 − E0w̃;

FIG. 1. An example of a 2-dimensional grid Ω that is covered
by two subdomains Ω1 and Ω2 with a common interface Γ. If we
solve an elliptic equation on the two subdomains, boundary
conditions on ∂Ω and Γ are required in order to guarantee a
unique solution. The boundary conditions in Eqs. (19) and (20) at
Γ couple the elliptic equations in the subdomains Ω1 and Ω2

together. Yet, once the values of the fields are known on Γ, the
elliptic equations in the two subdomains can be decoupled and
solved separately.
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sparse and hence, the use of an efficient sparse solver is
feasible to solve this matrix equation. Lastly, to invert Bp

matrices and solve Eq. (28) the open source unsymmetric
multifrontal direct solver UMFPACK [54] is used.
As an example, suppose we wish to solve the elliptic

equation ∇2uðx; yÞ ¼ Sðx; yÞ together with BC Eqs. (19)
and (20) on the 2-dimensional domainΩ that is divided into
two subdomains Ω1 and Ω2 as shown on the right of Fig. 1.
Assume further that we cover each subdomains by a grid of
four by four points. Then, the subdomains share four points
along the common interface Γ where the BCs are imposed.
These BCs couple the equations on both subdomains. The
equations are then reordered following the general structure
given in Eq. (21). After this reordering, the Jacobian
coming from the equations has the schematic form depicted
in Fig. 2.

D. Coordinate patch

Although equations in general relativity do not depend
on coordinate patches on the spacetime manifold, explicit
coordinate patches are needed when it comes to numerical-
relativity calculations. ELLIPTICA uses, but is not limited to,
Cartesian and cubed spherical [55] coordinate systems.

In this section, we illustrate how the computational grid of a
BHNS system is covered.
The essence of the transformation between Cartesian

coordinates xi ¼ ðx; y; zÞ and cubed spherical coordinates
Xi ¼ ðX; Y; ZÞ is as follows [30]:

X ¼ xI

xK
;

Y ¼ xJ

xK
;

Z ¼ xK − rin
rout − rin

; ð29Þ

where, the indices I; J; K ∈ f1; 2; 3g are all distinct, and
X; Y ∈ ½−1; 1�; Z ∈ ½0; 1�. Here

rin ¼
σinðX; YÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2 þ Y2

p ;

rout ¼
σoutðX; YÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2 þ Y2

p ; ð30Þ

in which, the inner boundary of the patch is determined by
σinðX; YÞ and the outer boundary by σoutðX; YÞ. Moreover,
each σðX; YÞ is related to Cartesian coordinates by the
equation σðX; YÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
. For instance, if a

perfect 2-sphere is required as the boundary of a patch
then σðX; YÞ ¼ C, similarly for a planar boundary
σðX; YÞ ¼ C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2 þ Y2

p
, where C is a constant.

To better capture the field falloff (expected to occur as
powers of r−1 at large radii), we replace Z by,

Z̃ ¼ σout
σout − σin

�
1 −

σin
r

�
; ð31Þ

in the outermost patches [30]. Here r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
and

still Z̃ ∈ ½0; 1�. Lastly, in order to avoid coordinate singu-
larities at the center of spheres, each spheroidal object
contains a Cartesian coordinate patch around its center.
Using these different maps, we can setup different

patches with different surfaces for various needs, e.g., to
cover the NS or the space between the compact objects.
These patches touch each other and never overlap. They tile
the entire computational domain, as depicted in Fig. 3. We
have also decided to increase the number of outermost
patches in ELLIPTICA with respect to SGRID [30]. This
leads to a more symmetric grid, higher angular resolution,
and no need for interpolation within interfaces when setting
up interface BCs, i.e., Eqs. (19) and (20).

III. FORMALISM

In this section, we present the formalism applied to
construct ID for quasi-equilibrium BHNSs. The ID of these
systems are obtained by solving Einstein’s equations and

FIG. 2. Schematic representation of the Jacobian matrix J for
the PDE ∇2uðx; yÞ ¼ Sðx; yÞ and BC Eqs. (19) and (20) when
solved on the two subdomains of Fig. 1, with four by four points
in each subdomain. Nonzero entries in J are represented by small
filled squares. The dashed lines delineate submatrices, analogous
to the submatrices in Eq. (21). Here F11 and F12 are empty since
Eq. (20) is imposed from the side of subdomains Ω1. On the other
hand, F21 and F22 are nonempty as Eq. (19) is imposed from the
side of subdomains Ω2.
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Euler’s equations. In order to make these equations
amenable to the numerical methods used here, they are
cast into elliptic type PDEs. Specifically, we use the
extended conformal thin sandwich method (XCTS)
[56,57] for the Einstein’s equations. For the fluid equations
we use the method described in [29]. Furthermore, there are
two common approaches to treat BH singularities in this
context, the excision approach [58] and the puncture
approach [59]. ELLIPTICA uses the excision approach: the
BH singularity is excised from the computation domain and
then boundary conditions are imposed on the excised
surface. Below, we present the formulas and conventions
used in ELLIPTICA.
Using the 3þ 1 formalism (see e.g., [60]), we write the

line element of a spacetime manifold as

ds2 ¼ gμνdxμdxν ¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ;
ð32Þ

where gμν is the pseudo-Riemannian metric of the space-
time manifold, α is the lapse function, βi is the shift vector
and γij is the induced metric of a spatial hypersurface Σt.
Using the normal vector nμ orthogonal to Σt, which can be
interpreted as the 4-velocity of an Eulerian observer, we
have γμν ¼ gμν þ nμnν. The extrinsic curvature on Σt is
defined by Kμν ¼ − 1

2
£nγμν, in which £n is the Lie deriva-

tive along the normal vector.

The NS matter is described by a perfect fluid, therefore,
the stress-energy tensor is

Tμν ¼ ðρ0 þ ρ0ϵþ PÞuμuν þ Pgμν; ð33Þ

¼ ρ0huμuν þ Pgμν; ð34Þ

where ρ0, ϵ, P, h, and uμ are, respectively, the rest mass
density, specific internal energy, pressure, specific enthalpy
and the 4-velocity of the fluid.
In order to employ the XCTS formalism, it is necessary

to rescale the 3-metric γij and decompose the extrinsic
curvature Kij as follows:

γij ¼ ψ4γ̄ij; ð35Þ

Kij ¼ Aij þ 1

3
Kγij: ð36Þ

Here ψ is the conformal factor, γ̄ij the conformal 3-metric,
Aij the traceless part of Kij and K ¼ γijKij. Furthermore, it
is convenient to project and then rescale the matter
quantities as:

E ¼ nμnνTμν ¼ ψ−6Ē; ð37Þ

S ¼ γijγiμγjνTμν ¼ ψ−6S̄; ð38Þ

ji ¼ −γiμnνTμν ¼ ψ−6j̄i: ð39Þ

Moreover, in the XCTS formalism Aij is related to the shift
and the time derivative of conformal metric as follows:

Aij ¼ ψ−10Āij; ð40Þ

Āij ¼ 1

2ᾱ
ððL̄βÞij − γ̄ikγ̄jlūklÞ; ð41Þ

where

ūij ¼
∂ γ̄ij
∂t ; ð42Þ

ðL̄βÞij ¼ D̄iβj þ D̄jβi −
2

3
γ̄ijD̄kβ

k; ð43Þ

α ¼ ψ6ᾱ; ð44Þ

and D̄ is the covariant derivative compatible with γ̄ij.
Finally, the Einstein equations result in five coupled non-
linear elliptic PDEs [56,57]:

D̄2ψ −
1

8
ψR̄ −

1

12
ψ5K2 þ 1

8
ψ−7ĀijĀij þ 2πψ−1Ē ¼ 0;

ð45Þ

FIG. 3. An example of a computational grid that is using cubed
spherical coordinates. Shown is the intersection of the domains
with the xy-plane. The domains on the left cover a NS, the ones
on the right cover the region around an excised BH.
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2ᾱ

�
D̄j

�
1

2ᾱ
ðL̄βÞij

�
− D̄j

�
1

2ᾱ
ūij

�
−
2

3
ψ6D̄iK

	
− 16πᾱψ4j̄i ¼ 0; ð46Þ

D̄2ðᾱψ7Þ − ðᾱψ7Þ
�
1

8
R̄þ 5

12
ψ4K2 þ 7

8
ψ−8ĀijĀij

	
þ ψ5ð∂tK − βk∂kKÞ − 2πᾱψ5ðĒþ 2S̄Þ ¼ 0; ð47Þ

where R̄ is the Ricci scalar coming from γ̄ij. These equation
must be solved with appropriate boundary conditions at
spatial infinity and on the surface of the excised regionH in
order to have a unique physical solution. Before mention-
ing these boundary conditions, it is useful to decompose βi

such that in an inertial frame it has clearly identifiable
rotational and inspiral pieces at spatial infinity:

β⃗ ¼ β⃗0 þ Ω⃗BHNS × ðr⃗ − r⃗CMÞ þ
vr

rBHNS
ðr⃗ − r⃗CMÞ: ð48Þ

Here, Ω⃗BHNS denotes the angular velocity of the BHNS
system, r⃗CM is the center of mass of the system, vr is the
radial velocity, rBHNS is the coordinate distance between the
NS and BH’s centers, and β⃗0 is determined by the elliptic
Eq. (46). Finally, the following boundary conditions are
imposed at spatial infinity:

lim
r→∞

ψ ¼ 1; lim
r→∞

βi0 ¼ 0; lim
r→∞

αψ ¼ 1: ð49Þ

The boundary conditions in Eq. (49) come from assuming
asymptotic flatness at spatial infinity, and furthermore
going to a frame that is rotating with Ω⃗BHNS with respect
to the asymptotically flat inertial frame. In order to have the
excised surface H corresponding to an apparent horizon
(zero expansion for outgoing null rays) in a state of
equilibrium, the following boundary conditions are
imposed on H [58]:

�
s̄iD̄i lnψ þ 1

4
h̄ijD̄is̄j −

K
6
ψ2 þ ψ−4

4
Āijs̄is̄j

�
H
¼ 0; ð50Þ

fβi − αsi − ϵijkΩ
j
BHðxk − x̄kBHÞgH ¼ 0; ð51Þ

fs̄iD̄iðαψÞgH ¼ 0; ð52Þ

where, si is the outward pointing unit normal on H,
s̄i ¼ ψ2si, the induced metric on H is hij ¼ γij − sisj
and h̄ij ¼ ψ4hij. Moreover, in Eq. (51), ϵijk is the totally
antisymmetric symbol and summation over repeated indi-
ces is implied, Ωj

BH is a free vector to adjust the BH spin
and x̄kBH is the coordinate of the BH’s center.
When a NS is present we also need matter equations. In

order to solve the fluid equations for an NS with an

arbitrary spin, a purely spatial vector spin (to encapsulate
the rotational part of the fluid) is introduced in [29] as
follows:

wi ¼ ϵijkΩ
j
NSðxk − x̄kNSÞ; ð53Þ

in which, x̄kNS denotes the coordinate of NS’s center and
Ωj

NS is a vector related to the spinning motion of the NS.
Furthermore, assuming the BHNS is in a quasiequilibrium
state, we introduce an approximate helical timelike Killing
vector ξμ [29]. Consequently, the fluid 4-velocity can be
projected along ξμ and a pure spatial vector Vμ [29,61] as:

uμ ¼ u0ðξμ þ VμÞ ¼ gμν ∂ϕ
∂xν þ wμ

h
; ð54Þ

where scalar ϕ encompasses the irrotational part of the
fluid. Using the approximations described in [29,30,61] the
Euler equation becomes an elliptic PDE for ϕ

cðρ0Þα
h

ψ−4γ̄ij∂i∂jϕ −
ρ0α

h
ψ−4γ̄ijΓ̄k

ij∂kϕ

þ 2
ρ0α

h
ψ−5γ̄ijð∂iψÞð∂jϕÞ þ

�
Di

ρ0α

h

�
ðDiϕÞ

Di

�
ρ0α

h
wi − ρ0αu0ðβi þ ξiÞ

	
¼ 0: ð55Þ

Here, following [30]

cðρ0Þ ¼ ρ0 þ ϵρ0c

�
ρ0c − ρ0

ρ0c

�
4

; ð56Þ

ρ0c is rest mass density at the NS’s center, and ϵ is a small
number (generally 0.1). On the NS’s surface we have
ρ0 ¼ 0, hence, the following boundary condition is
imposed on the surface [62]

DiϕDiρ0 þ wiDiρ0 − hu0ðβi þ ξiÞDiρ0 ¼ 0: ð57Þ

One more equation is needed to close the system of
Einstein-Euler equations. This equation is the equation of
state (EoS) for NS’s matter. In this work, we use a
piecewise polytropic EoS. The pieces valid between the
densities ρ1; ρ2;…; ρn [63] are written as

P ¼

8>>>>>><
>>>>>>:

K0ρ
Γ0

0 ρ0 ≤ ρ1

K1ρ
Γ1

0 ρ1 ≤ ρ0 ≤ ρ2

..

.

Kn−1ρ
Γn−1
0 ρn−1 ≤ ρ0 ≤ ρn;

ð58Þ

in which, Γi denotes the polytropic exponent and Ki the
polytropic constant. Moreover, one can write the rest mass
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density ρ0, pressure P and specific internal energy ϵ in
terms of specific enthalpy h:

ρ0ðhÞ ¼ K−ni
i

�
h − 1 − ai
ni þ 1

�
ni
;

PðhÞ ¼ K−ni
i

�
h − 1 − ai
ni þ 1

�
niþ1

;

ϵðhÞ ¼ ai þ niðh − 1Þ
ni þ 1

; ð59Þ

where ni ¼ 1
Γi−1

is the polytropic index and ai’s are
constants which ensure the continuity of EoS:

a0 ¼ 0;

ai ¼ ai−1 þ
Ki−1

Γi−1 − 1
ρΓi−1−1
i −

Ki

Γi − 1
ρΓi−1
i : ð60Þ

Lastly, the specific enthalpy h is determined by an
algebraic equation in terms of metric variables and fluid
velocities [29]:

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 − ðDiϕþ wiÞðDiϕþ wiÞ

q
;

L2 ¼ bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − 4α4½ðDiϕþ wiÞwi�2

p
2α2

;

b ¼ ½ðξi þ βiÞDiϕ − C�2 þ 2α2ðDiϕþ wiÞwi; ð61Þ

in whichC denotes a constant of integration that determines
the baryonic mass of the NS. We observe that the specific
enthalpy connects metric variables and matter variables, in
the other words, macrophysics and microphysics. In the
next section, we explain how the solution of these elliptic
equations and free parameters (such as the C above) are
found in order to construct proper ID.

IV. NUMERICAL METHOD

In this section, we demonstrate the main iteration
algorithm for the construction of ID for a BHNS system.
Input parameters for ELLIPTICA are the baryonic mass MB,
the EoS, and the angular velocity Ωj

NS in Eq. (53) for
the spin vector of the NS. Moreover, we can specify the
irreducible mass Mirr and dimensionless spin χj of the BH
and also the coordinate distance between the centers of the
NS and BH, as well as the orbital angular velocity and the
radial velocity of the system. For the free data, we currently
use:

γ̄ij ¼ δij; ð62Þ

K ¼ 0; ð63Þ

ūij ¼ 0: ð64Þ

To account for quasiequilibrium we also set ∂tK ¼ 0. Since
our numerical method is iterative, we need an initial guess
for the fields ψ , βi, α, ϕ, and h on the computational grid.
We use a superposition of well known analytic solutions
for single objects for this guess. For the star we use a
Tolman-Oppenheimer-Volkoff (TOV) solution and for the
BH a Schwarzschild solution in isotropic coordinates.
The initial value of the enthalpy h then is computed from
the TOV star and the irrotational velocity potential is set to
ϕ ¼ −ΩBHNSðyNS − yCMÞx, where yNS is the y-coordinate
of NS’s center and yCM is the y-coordinate of the system’s
center of mass (note the objects are centered on the y-axis).
Having determined the initial guess, we can now use the

Newton-Raphson algorithm (1) to solve the pertinent
coupled elliptic PDEs (45)–(47) and (55). However, due
to the presence of the matter (NS) and the use of the XCTS
formalism, several obstacles need to be overcome before we
can find a solution with the correct properties, e.g., see [36].
First, the surface of the NS star is not known in advance and
is changing at each iteration. As a result, one should find this
surface and then adjust the coordinate patches such that the
surface is a patch boundary. Otherwise spectral convergence
cannot be achieved since the matter fields are not smooth
across the star surface. Second, the NS’s center and mass
start drifting from the desired values which usually causes
instabilities. Third, BH’s mass and spin deviate from the
target values which results in a solution with the wrong
physical properties. Finally, the ADM momentum of the
system grows which gives rise to instabilities in our iterative
procedure, and will also impart a kick on the system’s center
ofmass visible during subsequent evolution. Such a drift can
also cause undesirable coordinate effects when extrapolat-
ing gravitational waves to infinity.
Therefore, it is crucial to monitor, adjust and control

various parameters and values at each step of the Newton-
Raphson algorithm (1) in order to construct ID with the
correct properties.

A. Diagnostics

As mentioned in the previous subsection, while we are
solving the coupled elliptic Eqs. (45)–(47) and (55), there is
no guarantee that the mass and spin of BH or the mass of
NS reach the target values specified in the parameter file.
Moreover, the ADM momentum of the system generally
does not vanish. In this section, we show the formulas used
to calculate spins, masses, ADM momenta and angular
momenta for a BHNS system. We also explain how we
attain the desired values for these quantities.
Starting with the NS, the baryonic mass density 4-current

is defined [60]:

JμB ¼ ρ0uμ; ð65Þ

thus, the baryonic mass density as measured by an Eulerian
observer is −JμBnμ and the baryonic mass is
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MB ¼
Z
NS

−JμBnμdV: ð66Þ

In ELLIPTICA we write Eq. (66) in terms of the 3þ 1
decomposition formalism [60] to compute the baryonic
mass:

MB ¼
Z
NS

ρ0αψ
6

ffiffiffī
γ

p
d3x; ð67Þ

where γ̄ is the determinant of γ̄ij and the integration is taken
over the volume of the NS. We note that ρ0 ¼ ρ0ðhÞ and as
shown in Eq. (61) the enthalpy depends on a constant C,
i.e., h ¼ hðCÞ, which implies ρ0 ¼ ρ0ðCÞ. So by adjusting
C we can keep the baryonic mass constant at each step of
the iteration.
For the BH, we calculate two masses, the irreducible

mass Mirr and the Christodoulou mass MChr which are
defined as follows respectively:

Mirr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiH
AH dA
16π

r
; ð68Þ

MChr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

irr þ
S2BH
4M2

irr

s
; ð69Þ

in which dA is the proper surface element of the apparent
horizon defined in ELLIPTICA as

dA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γij

∂xi
∂ya

∂xj
∂yb

s
dyadyb; ð70Þ

where ya are coordinates on the apparent horizon and SBH
is the spin of the BH which will be defined shortly. The
apparent horizon is a perfect 2-sphere in the coordinates
used, owing to the boundary conditions on the BH, i.e.,
Eqs. (50)–(52). Thus, by adjusting the radius of the
apparent horizon, we can drive the irreducible mass to
the value prescribed in the parameter file.
For the BH’s spin, we use the flat space coordinate

rotational Killing vector following [64] on the apparent
horizon:

ϕ⃗x ¼ −ðz − zcÞ∂⃗y þ ðy − ycÞ∂⃗z;

ϕ⃗y ¼ þðz − zcÞ∂⃗x þ ðx − xcÞ∂⃗z;

ϕ⃗z ¼ −ðy − ycÞ∂⃗x þ ðx − xcÞ∂⃗y; ð71Þ

in which ðxc; yc; zcÞ is the coordinate center of the BH and

ð∂⃗iÞi∈f1;2;3g are the basis vectors associated with the
coordinates used. The following integral over the apparent
horizon (AH) yields the spin of the BH:

Si ¼
1

8π

I
AH

ðϕ⃗iÞjskKjkdA: ð72Þ

The dimensionless spin is defined by

χi ≔
Si

M2
Chr

: ð73Þ

To adjust the value of the spin to the target value we note
that Kij ¼ Kijðβ⃗Þ on the apparent horizon and βi ¼
βiðΩ⃗BHÞ by Eq. (51); thus by adjusting Ωi

BH the spin is
controlled.
For the NS spin, we have two options. First we can use

the method described in [30],

Si ¼ Ji − ϵijkR
j
cPk; ð74Þ

where Ji, Ri
c, and Pi are, respectively, the angular momen-

tum, center and momentum of the NS defined in [30]. The
second option is to evaluate Eq. (72) on the NS’s surface.
Note that from Ωj

NS in Eq. (53) we cannot directly infer the
NS spin, but the values of Ωj

NS for various spins can be
found in [18,30,36].
Since the chosen free data γ̄ij in Eq. (62) satisfies the

quasi-isotropic gauge condition [60] and since K in
Eq. (62) meets the asymptotic maximal gauge condition
[60], the ADM linear momenta and angular momenta of the
system can be defined [60] as follows:

P∞
i ¼ 1

8π
lim
St→∞

I
St

ðKjk − KγjkÞð∂⃗iÞjskdA; ð75Þ

J∞i ¼ 1

8π
lim
St→∞

I
St

ðKjk − KγjkÞðϕ⃗iÞjskdA; ð76Þ

and

ϕ⃗x ¼ −ðz − zCMÞ∂⃗y þ ðy − yCMÞ∂⃗z;

ϕ⃗y ¼ þðz − zCMÞ∂⃗x þ ðx − xCMÞ∂⃗z;

ϕ⃗z ¼ −ðy − yCMÞ∂⃗x þ ðx − xCMÞ∂⃗y: ð77Þ

We note that Kij is a function of β⃗, while β⃗ itself is a
function of r⃗CM through Eq. (48). Therefore, by adjusting
the freely specifiable parameter r⃗CM, P∞

i can be driven to
zero during the solve.
Lastly, to calculate the total ADMmass of the system, we

use the following [60]:

MADM ¼ MH þ
Z
Σt

�
ψ5Eþ 1

16π

�
ĀijĀijΨ−7

− R̄ψ −
2

3
K2ψ5

�	 ffiffiffī
γ

p
d3x: ð78Þ
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Here, Σt is the spatial hypersurface where the ID
are constructed and γ̄ is the determinant of γ̄ij. MH is
defined as

MH ≔ −
1

2π

I
H
s̄iD̄iψ

ffiffiffī
h

p
d2y; ð79Þ

where h̄ ≔ detðh̄ijÞ and h̄ij is the induced metric by γ̄ij on
the excised surface H.
In summary, we use the free parameters of the

system, for instance, C and r⃗CM among others, to obtain
the requested physical properties of the system. In the
next subsection, we show how to adjust these parameters
(in a slow and smooth way) to reach a stable solution.

B. Iteration algorithm

Having set the initial fields and free data, the next step is
to refine the answers. Loosely speaking, the overall
procedure is to start at low resolution and to keep solving
the PDEs and adjusting the parameters until the error is
below a desired tolerance; then, increase the resolution as
often as needed and solve again (still adjusting the
parameters). The detailed explanation of this iteration
scheme to find a stable, unique and physical solution of
Einstein-Euler equations is as follows:
(1) Solve each elliptic Eqs. (45)–(47) and (55) one

after another using the Newton-Raphson method.
For each equation, only one step is taken in the
method [65].

(2) Update the field values Ψ ¼ fϕ;ψ ; αψ ; Big using
the relaxation scheme Ψ ¼ λΨnew þ ð1 − λÞΨold,
where Ψnew is the solution just found by the New-
ton-Raphson method and Ψold is its previous value
(usually λ ¼ 0.2 [66]).

(3) Adjust Ωi
BH to reach the target value χi� for the

dimensionless BH’s spin using

Ωi
BH;new ¼ Ωi

BH;old þ λΔχiΩBHNS; ð80Þ

where Δχi ¼ χi� − χi and χi is the current value of
dimensionless spin, and λ is usually set to 0.3.

(4) Adjust the excision radius of the BH to reach
the target value for the irreducible mass. The new
radius is

rnew ¼ rold

�
1þ λ

ΔM
M�

�
: ð81Þ

Here ΔM ¼ M� −M, M� is the target value, M is
the current value of the irreducible mass of the BH,
and λ is generally set to 0.3.

(5) Find the constant C in Eq. (67) to achieve the
prescribed value for baryonic mass of the NS.

(6) Adjust r⃗CM to drive the linear ADM momentum of
the BHNS system to zero. The linear momentum in

the z-direction is very small ( jP∞
z j

MADM
< 10−9) therefore

we only need to adjust xCM and yCM as follows:

xCM;new ¼ xCM;old þ λ
P∞
y

ΩBHNSMADM
;

yCM;new ¼ yCM;old − λ
P∞
x

ΩBHNSMADM
; ð82Þ

in which, MADM is the total ADM mass of the
system; λ generally is set to 0.2.

(7) Update the enthalpy in the patches that cover the NS
interior using Eq. (61) with the relaxation method
h ¼ λhnew þ ð1 − λÞhold; here, λ is usually set to 0.1.

(8) If we want to also determineΩBHNS (and not just use
a given value for it), we use the force balance
Eq. (83). Specifically, we find ΩBHNS such that
the following holds at the NS’s center [61]:

∂i ln½α2 −
�
βi þ ξi þ wi

hu0

��
βi þ ξi þ

wi

hu0

�	
¼ −2∂i lnΓ;

Γ ¼
αu0½1 − ðβi þ ξi þ wi

hu0Þ Diϕ
α2hu0 −

wiwi

ðα2hu0Þ2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðβi þ ξi þ wi

hu0Þðβi þ ξi þ wi
hu0Þ 1

α2

q : ð83Þ

Here ∂i ¼ ∂
∂xi and Γ is kept fixed. We use this along

the line connecting the centers of the two objects.
(9) Extrapolate matter fields ϕ,wi, and h outside the NS.

This serves two purposes. First, a smoothly extrapo-
lated h helps with step 11, where we use a root finder
to update the star surface location. Second, to
interpolate the matter fields to the new grid (of step
12) we need the values of ϕ and wi, even outside the
star, if the NS surface expands in step 11. To
extrapolate wi outside, we apply Eq. (53). For the
fields ϕ and h, at each collocation point on the NS’s
surface with coordinate radius r0, we extrapolate
them using:

fðrÞ ¼
�
aþ b

r

�
exp

�
−c0

r
r0

�
; ð84Þ

where the coefficients a and b are found by
demanding C1 continuity across the surface, c0 is
generally set to 0.01, and r is the coordinate distance
from the star’s center. Equation (84) damps the
matter fields exponentially so that the NS’s surface
cannot expand too much in one iteration. We have
found that this particular, continuous extrapolation
function works best within the iterative solve.

(10) To avoid the drifting of the NS’s center located at r⃗0
we shift the NS matter (given by h) to keep the star’s
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center fixed. Using a Taylor expansion (for small
shifts) we find that h needs to be updated as follows:

hnewðr⃗Þ ¼ holdðr⃗Þ − ðr⃗ − r⃗0Þ · ∇⃗holdðr⃗Þ: ð85Þ

(11) Find the new surface of the NS. Using a root finder
we find r such that

hðrÞ − 1 ¼ 0; ð86Þ

where r is the distance from the NS’s center. This
yields the new location of the NS’s surface in
spherical coordinates ðr; θ;ϕÞ and thereby deter-
mines the pertinent σðX; YÞ introduced in Sec. II D.

(12) If the resolution is changed or the surface of NS or
BH has been changed, create a new grid and set the
fields values using a spectral interpolation from the
previous grid. At this step a new grid with the new
surface fitting patches for the NS and BH surface are
created and the values of the fields are interpolated
from the previous grid.

(13) Exit, if all the iterations at all requested resolutions
have reached our error criterion, otherwise proceed
to step 1. The criterion we use to exit is when
Hamiltonian and momenta constraints, Eqs. (87) and
(88), are no longer decreasing (because they have
reached the truncation error for the resolution).

To give some context, the number of outermost iterations
for this BHNS system is generally about 250 at the lowest
resolution (generally 12 points at each direction in each
patch). It decreases when increasing the resolution and ends
up at about 50 at the highest resolution (generally 20 points
at each direction per patch). The maximum resolution itself
is determined by the maximum constraint violations we are
willing to tolerate. Using shared-memory multiprocessing,
the ID computation for this configuration generally takes

∼104 hours of actual wall clock time on a single Intel Xeon
node with 20 cores of FAU’s KOKO cluster. A summary of
this iterative scheme is shown in algorithm (3).

V. RESULTS

In this section, we present several validations of our
implementation and provide first proof-of-principle
dynamical simulations. In Sec. VA we test the spectral
convergence of the code for a nonspinning BHNS system
(named SXS1) and for a system (named S1S2), where both
BH and NS have high spins in arbitrary directions. In
Sec. V B we construct different sets of ID to confirm the
validity of the data when comparing to analytical approx-
imations. We further push the NS spin close to breakup
value. Finally in Sec. V C we evolve the ID (summarized in
Table I) using the BAM code [67–71], to check that the
binaries behave as expected. In all configurations, the EoS
is polytropic with K ¼ 92.12 and Γ ¼ 2 unless otherwise is
mentioned.

A. Spectral convergence test

The first test is the verification of exponential conver-
gence expected for a spectral code. We measure the
violation of Hamiltonian and momentum constraints
[60,61] using:

H ≔ R − KijKij þ K2 − 16πE ¼ 0; ð87Þ

Mi ≔ DjðKij − γijKÞ − 8πji ¼ 0: ð88Þ

We construct two sets of ID. One is SXS1 of Table I where
both BHandNS have zero spin. The other system,S1S2, has
χ⃗BH ¼ ð−0.46;−0.46;−0.46Þ and χ⃗NS ¼ ð0; 0.32; 0.32Þ.
Figures 4 and 5, show the L2 norm of H and Mi of
Eqs. (87) and (88) after the final iteration at each resolution.

Algorithm 3. main iteration scheme to find the ID for a BHNS system.

1: for each resolution do
2: while constraints have not plateaued yet do
3: Solve the elliptic Eqs. (45)–(47) and (55) one after another;
4: Update the fields being solved for using the relaxation scheme Ψ ¼ λ ·Ψnew þ ð1 − λÞ ·Ψold;
5: Adjust the BH parameter Ωi

BH to satisfy the target dimensionless spin;
6: Adjust the BH radius to satisfy the target irreducible mass;
7: Find Euler’s equation constant C to fix the NS baryonic mass;
8: Adjust the system’s center of mass r⃗CM to drive the ADM linear momenta to zero;
9: Update the enthalpy using Eq. (61) with the relaxation method h ¼ λhnew þ ð1 − λÞhold.
10: If desired, use the force balance Eq. (83) to adjust ΩBHNS.
11: Extrapolate matter fields ϕ, wi and h to the outside of the NS.
12: Shift the matter to keep the NS’s center fixed.
13: Find the new location of NS surface;
14: If needed, create a new grid and interpolate the fields values from the previous grid.
15. end while
16: end for
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Evidently, the constraint violations decay exponentially for
both ID sets, i.e., we find the expected spectral convergence.

B. Quasiequilibrium configurations

We next compare our numerical ID with known analytic
approximations. As such, we compute the binding energy
Eb [72] of a sequence in which MNS ¼ 1.31, MChr ¼ 5.81,
and χ⃗BH ¼ �0.1ẑ are kept constant but the orbital angular
velocity (ΩBHNS) is varied. We use the 3.5 post-Newtonian
(PN) approximation from [73] plus the next-to-next-to-
leading order correction of spin-orbit (SO) interaction from
[73] and compare it against our numerical results. As
shown in Fig. 6 we find good agreement between Eb
computed by PNþ SO and ELLIPTICA.
In order to test the NS spin limits in ELLIPTICA, we

construct a sequence of BHNS ID where χBH ¼ 0, Mirr ¼
5.2 and MB ¼ 1.4 are kept constant but Ωz

NS is increased

until the maximum achievable value (0.0229) for this EoS
is reached. This maximum Ωz

NS is given by the value from
which onwards ELLIPTICA’s NS surface finder fails to
converge (presumably because Ωz

NS then is too close to
the breakup spin of the NS). We use Eq. (74) to calculate
the NS spin χNS for each Ωz

NS. As shown in Fig. 7, for low
values of Ωz

NS the spin χNS is a linear function of Ωz
NS, but

for higher Ωz
NS the spin rises more and more quickly.

C. Evolution tests

To further test the IDs, we evolve them using the BAM

code [71]. Since for the construction of the ID we use an
excision method, but want to use the moving puncture
method for the evolution, we have to fill the inside of the
BH with smooth data [75–78]. Here, smooth means that the
fields have to be at least C2 across the apparent horizon. In
order to have low eccentricity in the SXS1 (see Table I)

FIG. 5. Shown is the spectral convergence of the Hamiltonian
and Momentum constraints for the S1S2 ID with respect to
resolution. The vertical axis shows the L2 norm of each con-
straint. The horizontal axis shows the number of points in each
direction in a cubed spherical patch.

TABLE I. The ID that are evolved via the BAM code in this work. We have listed the irreducible massMirr , baryonic massMB, the mass
ratio of the binary q, the initial coordinate distance s, the total dimensionless spin of each object χBH, χNS, and the EoS. Here K92
denotes a polytropic EoS with K ¼ 92.12 and Γ ¼ 2. The S1S2 ID has χ⃗BH ¼ ð−0.46;−0.46;−0.46Þ and χ⃗NS ¼ ð0; 0.32; 0.32Þ.
Name Mirr MB q s χBH χNS EoS

SXS1 8.4 1.4 6.5 82 0.0 0.0 K92
S1S2 5.2 1.4 4 56 0.8 0.45 K92

FIG. 4. Shown is the spectral convergence of the Hamiltonian
and Momentum constraints for the SXS1 ID with respect to
resolution. The vertical axis shows the L2 norm of each con-
straint. The horizontal axis shows the number of points used in
each direction inside each cubed sphere patch.
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inspiral, we perform three eccentricity-reduction steps as in
[30] to obtain the target eccentricity ≲10−3. Figure 8 shows
the results of this eccentricity reduction algorithm for
each step.

In Fig. 9, we plot the trajectories of the BH and NS from
the eccentricity reduced simulation of SXS1. As expected,
they spiral in and merge on low eccentricity orbits, without
any visible drift of the center of mass.
The trajectories show an initially straight motion for both

objects, which is related to adjustments of the gauges. To
keep the plot clean, we only show the trajectories of the BH
and NS’s centers, and not the extent of the two objects. We
track the location of the NS by the minimum in the lapse.
The small wiggles and/or jumps around merger time are
mostly due to the minimum of the lapse no longer being an
appropriate indicator for the center of the NS.
SXS1 has the same physical parameters as the first run in

the SXS collaboration catalog [79] (SXS:BHNS:0001).
In Fig. 10, we depict the extracted gravitational wave
signal emitted by this system, in the form of the dominant
mode (l ¼ m ¼ 2). The waveforms are plotted against the
retarded time u calculated as

u ¼ t − r� ¼ t − rextr − 2M lnðrextr=2M − 1Þ; ð89Þ

FIG. 6. The binding energy (Eb) of a BHNS system versus
orbital angular velocity (ΩBHNS), where the NS spin is zero and
χ⃗BH ¼ �0.1ẑ. Here, M∞ ¼ MChr þMNS and μ ¼ MChrMNS

M∞
. The

small vertical bar is the error in the numerically computed
Eq. (78). It is estimated by setting analytical ID for a Schwarzs-
child BH and then using Eq. (78) to numerically findMADM. The
difference between this numerical value and the known ADM
mass yields the error.

FIG. 7. Dimensionless neutron star spin χNS as a function of
spin-angular velocity parameter Ωz

NS. Here, χBH ¼ 0, Mirr ¼ 5.2,
MB ¼ 1.4, and the EoS is polytropic with K ¼ 92.12 and Γ ¼ 2.
The maximum χNS we can achieve is 0.63. The breakup spin for
an NS is approximately 0.7 [74].

FIG. 8. The proper distance (d) between BH and NS versus
time (t) of the SXS1 system for different ΩBHNS. After evolving
for about 3 orbits the eccentricity reduction algorithm in [30]
was used to adjust ΩBHNS and vr. The eccentricity of each
curve is as follows: ECC0 ¼ 3.1 × 10−2, ECC1 ¼ 3.8 × 10−3,
ECC2 ¼ 3.4 × 10−3, and ECC3 ¼ 9.0 × 10−4. For the reduction
we exclude the first 500 M⊙ so that the required fits are not
affected by the initial gauge adjustments (as mentioned in
Sec. V C).
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where rextr is the extraction radius, set to ∼1500 M⊙, and
M is the sum of the isolated BH and NS’s masses. As is
visible in the bottom panel, our result agrees with the
configuration SXS:BHNS:0001 from the SXS collabora-
tion catalog [79]. Note that both systems share the same
physical properties, i.e., masses, spins, and EoS, but start
from different initial separations.
As a second example, we evolve the S1S2 BHNS

system (already described in Sec. VA) that has χ⃗BH ¼
ð−0.46;−0.46;−0.46Þ and χ⃗NS ¼ ð0; 0.32; 0.32Þ. This sys-
tem presents a setup with misaligned spins (with respect to
the initial orbital angular momentum), which leads to
precession. Figure 11 depicts the 3-dimensional trajectories
of the objects. The initial coordinate distance between BH
and NS is s ¼ 56. This leads to 3 orbits before the merger.
Further analysis and gravitational waves of such systems,
with longer inspiral, are left for future work.

VI. SUMMARY

The construction of ID for self-gravitating astrophysical
systems is an indispensable task for an accurate dynamical
evolution, and consequently for an understanding of
compact binary coalescences. For this purpose, we have
developed a new code, ELLIPTICA, which provides infra-
structure to solve the constraint equations and produce ID
of such astrophysical systems.
The current version of the code uses Chebyshev poly-

nomials of the first kind to spectrally expand the fields over
the computational grid. This grid is covered by several

FIG. 9. Trajectories of BH (in red) and NS (in blue) up until
merger as described in Sec. V C. The objects start their evolution
aligned on the x ¼ 0 axis (dashed line), as computed from
ELLIPTICA. The tracks follow the evolution of the minimum of the
lapse relative to each object. The straight motion at the beginning
of each trajectory is due to gauge adjustments.

FIG. 10. Top: extracted gravitational wave strains (rh22) for the
l ¼ m ¼ 2 mode of the SXS1 system from Table I. Bottom:
comparison of rh22 between the SXS:BHNS:0001 system from
[79] (solid line) and the SXS1 system (dashed line). For visual
clarity, only the real part of both strains (Reðrh22Þ) is shown in
the plot. The alignment interval is marked with the vertical
dashed line. Waveforms in both panels are plotted against the
retarded time u defined at Eq. (89) and M is the sum of the
isolated BH and NSs masses.

FIG. 11. 3-D inspiraling and precessing trajectories of
the NS (green trajectory) and BH (red trajectory). Here,
χ⃗BH ¼ ð−0.46;−0.46;−0.46Þ, χ⃗NS ¼ ð0; 0.32; 0.32Þ, and the ini-
tial separation s ¼ 56.
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cubic and cubed sphere coordinate patches. To solve the
constraint equations, which are coupled nonlinear elliptic
PDEs, a Newton-Raphson method is used in which the
linearized equations are solved by a SCDD method and the
Jacobian is set analytically. Furthermore, the code
supports polytropes and piecewise polytropic equations
of state for the NS. The NS can have a high spin in an
arbitrary direction. The BH can also have an arbitrary spin
direction with a maximum dimensionless spin magni-
tude ∼0.8.
For testing and proof of concept, we have constructed ID

for various cases of spinning and nonspinning BH and NS
for BHNS systems. We have further verified that sequences
of BHNS ID with χBH ¼ �0.1ẑ agree well with analytical
PN approximations. Moreover, we have constructed ID for
BHNS system SXS1 that has the same physical parameters
as SXS:BHNS:0001 from the SXS catalog [79], as well as
BHNS system S1S2 where both BH an NS have generic
spins. For both cases we have confirmed the expected
spectral convergence of their Hamiltonian and momentum
constraints. We have also evolved both SXS1 and S1S2
and verified that their orbits show the expected inspiral
behavior. Furthermore, we have confirmed that the emitted

gravitational waves of the SXS1 system agree well with
results from prior studies.
In the future, we plan to achieve maximal BH spin

angular momentum by changing the conformal metric in
the vicinity of the BH like in [36] or use a puncture method
as in [80].
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