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In the present work, we derive the motion of light in the weak-field limit of energy-momentum-squared
gravity (EMSG). To do so, we introduce the post-Newtonian expansion of this modified theory of gravity. It
is shown that, in addition to the Newtonian potential, a new EMSG potential affects the trajectory of
photons. As a result, in this theory, photons do not behave as predicted by general relativity (GR). To
evaluate the EMSG theory by the Solar System tests, we study light deflection and Shapiro time delay.
Regarding the results obtained in Bertotti et al. [Nature (London) 425, 374 (2003)] and Shapiro et al. [Phys.
Rev. Lett. 92, 121101 (2004)], we restrict the free parameter of the theory and show that it lies within the
range −4.0 × 10−27 ms2 kg−1 < f00 < 8.7 × 10−26 ms2 kg−1. This interval is in agreement with those
derived in Nazari et al. [Phys. Rev. D 105, 044014 (2022)] and Akarsu et al. [Phys. Rev. D 97, 124017
(2018)]. This consistency manifests that this theory passes these Solar System tests with flying colors.
Interestingly, it turns out that the magnitude of the EMSG correction strongly depends on the density of the
deflector. So, we investigate the possible effects of EMSG on images of a light source microlensed by a
compact dense object such as neutron stars. It is estimated that the EMSG correction to the position of
lensed images could be as large as (1–0.1) microarcseconds, which may be detected by future high-
resolution missions. Moreover, the total magnification and the shape of light curves are obtained in the
EMSG theory. It is revealed that except for a small deviation, the overall behavior of the EMSG light curves
is similar to that in GR. We also show that as long as the light source and the dense lens are aligned, the
EMSG correction is effective, and the combined light of the lensed images is different from the GR case.
This issue makes it possible to observe signatures of this theory in the microlensing regime.

DOI: 10.1103/PhysRevD.105.104026

I. INTRODUCTION

The energy-momentum-squared gravity (EMSG) is an
alternative theory of gravity based on the action principle.
In addition to the usual Einstein-Hilbert term, the action
incorporates the correction term T2 ¼ TαβTαβ built of the
energy-momentum tensor, Tαβ, of the matter fields [1,2].
This new scalar term made up merely of the matter fields
brings extra corrections to the right-hand side of the
Einstein field equations. So, the matter fields are not
conserved in this theory [1]. In contrast to most higher-
order theories of gravity referred to as fðRÞ theories, where
the gravitational Lagrangian is modified as a nonlinear
function of the Ricci scalar curvature R, in EMSG, the
higher order of the energy-momentum tensor of the matter
fields is considered to modify the general relativity (GR).
This theory has recently been taken into consideration and
examined in several contexts [3–11]. Moreover, applying
some observational measurements, its free parameter has
been constrained, e.g., see [5,12,13].

Meanwhile, it is necessary to check the validity of the
theory by considering the local gravity as well as cosmo-
logical tests. In this aspect, it is possible to set observational
limits on the free parameter of the theory. It should be
recalled that the deflection of light is one of the most
powerful tools able to test modified theories of gravity at
different scales. Light deflection and gravitational lensing
have been studied in modified gravity theories. For in-
stance, see [14–17]. Also, it has been shown that Solar
System data such as light bending can place strong
constraints on parameters of fðRÞ theories [18]. In the
case of EMSG, it is also possible that the modified
gravitational Lagrangian leads to a change in the theory
of light deflection and gravitational lensing. In fact, the
effect of this modification may manifest itself in the motion
of light. So, it is interesting to investigate the motion of
light in the field of a source in EMSG and examine the
EMSG corrections to gravitational lensing.
In the present work, we derive the motion of light in the

weak-field limit of EMSG. To do so, we introduce the post-
Newtonian (PN) expansion of EMSG where slow-motion
and weak gravitational field conditions are established.*elham.nazari@mail.um.ac.ir
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In [12], applying the modern approach to PN gravity
[19–22], the post-Minkowskian (PM) limit of this theory
has been derived. Here, we employ the same technique to
find the near-zone metric of the EMSG fluid up to the first
PN (1 PN) order. The trajectory of photons in this spacetime
is then obtained. As the first step to test this theory in the
weak-field limit, we study light deflection and gravitational
lensing by a spherically symmetric compact object in this
work. We are interested in the possibility of constraining
the free parameter of EMSG by studying light bending. As
stellar lenses in the microlensing regime provide unam-
biguous measurements of light deflection by a compact
object, we also attempt to find signatures of this theory in
microlensing.
The paper is organized as follows. The strategy of our

calculations is clarified in Sec. II. As mentioned, this study
is restricted to the PN limit of EMSGwhich is introduced in
Sec. III. In this framework, each order c−2 is considered as a
PN correction. Appendixes A and B are devoted to the
comprehensive derivation of the PN expansion of this
theory. In Sec. IV, we then find the motion of light in
EMSG. In this section, the effect of the modification of
gravity on light deflection, Shapiro time delay, and micro-
lensing is examined. Finally, we conclude in Sec. V.
In this paper, Latin and Greek indices run over the values

f1; 2; 3g and f0; 1; 2; 3g, respectively. Moreover, in our
notation, ημν ¼ diagð−1; 1; 1; 1Þ is the Minkowski metric
of flat spacetime and a spacetime event is labeled
by xμ ¼ ðct; xÞ.

II. THE STRATEGY OF CALCULATIONS

In this work, we focus on the motion of light in the
vicinity of an EMSG source to examine signatures of the
modification of gravity in the deflection of light and
microlensing. The main goal is to study the motion of
light in the weak-field limit of this theory. So, our first task
is to build the PN limit of EMSG. To this aim, the modern
approach to PN gravity is utilized. This method is based on
the Landau-Lifshitz formulation of the gravitational theory
[22]. In [12], this reformulation of the EMSG theory is
derived comprehensively. In the following, we first mention
the standard formulation of EMSG and then rewrite its
Landau-Lifshitz one.
The action of this theory is introduced as

S ¼
Z ffiffiffiffiffiffi

−g
p �

1

2k
Rþ f00T

2

�
d4xþ Sm; ð1Þ

in which g is the determinant of the spacetime metric gμν,
k ¼ 8πG=c4, Sm is the matter action, and R is the spacetime
curvature. Here, f00 is the free parameter of the theory
representing the coupling between matter and spacetime.1

The EMSG field equations are derived in [1]. In our
notation, the field equations are given by

Gμν ¼ kðTμν þ f00ðgμνT2 − 4Tσ
μTνσ − 4ΨμνÞÞ; ð2Þ

where Gμν is the Einstein tensor and

Ψμν ¼ −Lm

�
Tμν −

1

2
Tgμν

�

−
1

2
TTμν − 2Tαβ ∂2Lm

∂gαβ∂gμν : ð3Þ

Here, Lm stands for the matter Lagrangian density and T is
the trace of the energy-momentum tensor. It should be
mentioned that the matter Lagrangian density is indepen-
dent of metric derivatives and it is only a function of the
metric. Obviously due to the extra terms on the right-hand
side of Eq. (2), the usual energy-momentum tensor is not
conserved in this gravitational theory, i.e., ∇μTμν ≠ 0.
Given the Bianchi identities, one can deduce that instead
of Tμν, the effective energy-momentum tensor Teff

μν defined
as Tμν þ f00ðgμνT2 − 4Tσ

μTνσ − 4ΨμνÞ would be conserved
here. So, we have

∇μT
μν
eff ¼ 0: ð4Þ

It should also be mentioned that, for different Lagrangian
densities that describe a perfect fluid, the EMSG field
equations (2) would be inequivalent. Therefore, for various
Lagrangian densities, this theory makes different predic-
tions. This issue is investigated in other modified theories
of gravity, cf. [23] and references therein. Throughout this
work, we utilize the standard Lagrangian density Lm ¼ p
for a perfect fluid. During our calculation, we also assume
that the mass-current vector, ρuμ, is divergence free in this
theory, i.e., ∇μðρuμÞ ¼ 0 where ρ is the rest-mass density
and uμ ¼ γðc; vÞ is the four-velocity field. Here, γ ¼ u0=c
and v ¼ dx=dt is the three-velocity field.
In [12], we have shown that the Landau-Lifshitz refor-

mulation of the EMSG field equations is simplified as

□hμν ¼ −2kτμνeff ; ð5Þ

where □ ¼ − 1
c2

∂2
∂t2 þ∇2 is the wave operator in the flat

spacetime and hμν is the gravitational potential defined as
ημν − ffiffiffiffiffiffi−gp

gμν. Here, τμνeff ¼ ð−gÞðTμν
eff þ tμνLL þ tμνH Þ is the

effective energy-momentum pseudotensor written in terms
of Tμν

eff , the Landau-Lifshitz, ð−gÞtμνLL, and harmonic,
ð−gÞtμνH , pseudotensors. The definition of these pseudoten-
sors is given in Appendix A. See Eqs. (A5) and (A6). In this
formulation, it is assumed that the gravitational potential
hμν satisfies the harmonic gauge conditions ∂μhμν ¼ 0.

1In this work, we adopt the same notation applied for the free
parameter of the EMSG theory in [12].
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In the following, to derive the PN approximation to the
EMSG field equations, we approximately solve the highly
nonlinear wave equation (5). It should be emphasized that,
in [12], to study the gravitational radiation effects in this
theory, Eq. (5) is solved in the wave zone; whereas, in order
to investigate the motion of light in the vicinity of an EMSG
lens, we restrict ourselves to the near-zone solutions2 in the
current work. It should also be noted that this wave
equation is similar to the GR case, cf. [22]. As seen, an
explicit difference comes from the additional EMSG terms
within Tμν

eff on the right-hand side of this relation. However,
we will see that some implicit differences arise from the rest
source terms, i.e., tμνLL and tμνH . This similarity with the GR
case in fact allows us to employ the same techniques
introduced in [22] to solve this wave equation. We recall
that contrary to GR, Tμν is not conserved here. So, these
techniques should be applied with careful treatments. Until
now, we do not apply any approximation and Eq. (5) is only
the reformulation of the EMSG field equations after
imposing the harmonic gauge conditions.
The final point here is to answer this question: to what

PN order should we carry out our calculations and solve
this wave equation? As mentioned earlier, our goal is to test
EMSG theory in the weak deflection limit where the light
ray’s distance of closest approach, b, lies far beyond the
gravitational radius, 2GM=c2, of the lens with mass M.
Therefore, we need to know the spacetime geometry far
from the gravitational radius of the lens, where 1 PN
corrections would be sufficient and higher PN orders can be
freely ignored. We recall that in the PN framework, each
order c−2 is considered as a PN correction. Furthermore, in
[12], using a crude estimation, it has been shown that
EMSG corrections should be considerably small. It has
been revealed that the EMSG parameter f00 is at most of
the order of c−2. Here, we apply this estimation for the
magnitude of the EMSG parameter and treat each f00 order
as a PN correction. During our derivations, we will see that
this is a reasonable assumption. Given the above points, the
spacetime metric of an EMSG fluid is comprehensively
derived up to the 1 PN corrections in Appendix A. The
trajectory of photons in this spacetime is obtained in the
following section.

III. POST-NEWTONIAN LIMIT OF EMSG

In this section, we find the near-zone metric of the
EMSG fluid up to the 1 PN order. To do so, we first need to
obtain the relation between the components of the metric
and those of the gravitational potential hμν. In the frame-
work of the modern approach, this relation is derived in
[12]. Next, in order to find hμν and consequently construct
the components of gμν, we should solve the wave

equation (5). Detailed discussions and calculations are
provided in Appendix A.
In the context of the PN approximation, the near and

wave zones are, respectively, the region inside and outside
of a sphere with the radius R ≈ λc in which λc is the
characteristic wavelength of the gravitational signals gen-
erated by the system. Moreover, the slow-motion condition,
vc2=c2 ≪ 1, and weak-field limit, U=c2 ≪ 1, are the two
essential conditions that are fulfilled in the PN limit. Here,
vc is a characteristic velocity within the fluid and U is the
Newtonian potential. In the modern approach to the PN
limit of GR, regarding the position of the field point and
applying these conditions as well as the iterative procedure,
the wave equations/Einstein field equations are approx-
imately solved to the required degree of accuracy [22].
Here, in a similar manner to the GR case, using the iterative
method,3 we approximately solve the EMSG field equa-
tions (5) where the field point is located in the near-zone
region of spacetime.
Before introducing the near-zone solutions, let us review

the PN order of the metric components we need to study a
system at least up to the 1 PN order. As we know, to obtain
the 1 PN correction to the equation of motion of a test
particle, we should study the Lagrangian up to order c−2.
Therefore, the time-time, time-space, and space-space
components of the metric should be evaluated up to
Oðc−4Þ, Oðc−3Þ, and Oðc−2Þ, respectively. On the other
hand, in order to obtain the PN corrections to the propa-
gation of light rays, only Oðc−2Þ must be known for both
time-time and space-space components of the metric.
However, for completeness, we derive all PN terms
required to study a system up to the 1 PN order. In [12],
the general expansion of the metric components in terms of
the gravitational potential hμν for a perfect fluid has been
found, see Eqs. (29a)–(29c) and (30) in this reference. For
the sake of convenience, we rewrite these expansions here.

g00 ¼ −1þ 1

2
h00 −

3

8
ðh00Þ2 þ 1

2
hkk

�
1 −

1

2
h00

�

−
1

8
ðhkkÞ2 þOðc−6Þ; ð6aÞ

g0j ¼ −h0j þOðc−5Þ; ð6bÞ

gij ¼ δij

�
1þ 1

2
h00

�
þ hij −

1

2
δijhkk þOðc−4Þ; ð6cÞ

ð−gÞ ¼ 1þ h00 − hkk þOðc−4Þ: ð6dÞ

In the above relations, δij is the Kronecker delta and hkk is
the trace of hjk. Considering the PN order of the EMSG

2In the next section, the near and wave zones are introduced in
the framework of PN gravity.

3We refer readers who are unfamiliar with the iterative
procedure in the modern approach to chapters 6 and 7 of [22].
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gravitational potential components evaluated in
Appendix A, these expansions would in fact provide the
required PN order for the metric components stated
previously. In other words, each term in the above relations
will contribute to the 1 PN correction of the equation of
motion of a test particle in the EMSG spacetime.
We now turn to obtain the solution of the wave

equation (5). As mentioned, using the iteration method,
we solve this highly nonlinear equation in the EMSG
theory. Here, we choose a perfect fluid whose energy-
momentum tensor is described by Tμν ¼ ðρþ ϵ=c2þ
p=c2Þuμuν þ pgμν. In the framework of the PN limit, we
assume that the proper energy density ϵ and the pressure p
satisfy the two conditions ϵ=ρc2 ≪ 1 and p=ρc2 ≪ 1,
respectively. Similar to the GR case, we should also carry
out our calculations up to the second iterated step to achieve
the desired PN corrections for building the 1 PN order of the
near-zone metric. As this derivation is long and also
tedious, we remove this part from the main text and add
the complete calculations to Appendix A.

A. Near-zone metric

Here, we apply the final relations for the time-time, time-
space, and space-space components of hμν obtained in
Appendix A. Substituting Eqs. (A22), (A31), (A33), and
(A34) into Eqs. (6a)–(6d), we arrive at

g00 ¼ −1þ 2

c2
U þ 2

c4

�
ψ þ V −U2 þ 1

2
∂ttX

�

þ 4f00

�
2UEMS þ

1

c2
ð∂ttXEMS þ 4PEMS

− 4UUEMS − 8Uð1Þ
EMS − 2Uð2Þ

EMS þ 4ΠEMSÞ

− 11f00U
2
EMS

�
þOðc−6Þ; ð7aÞ

g0j ¼ −
4

c3
Uj −

8f00
c

UjEMS þOðc−5Þ; ð7bÞ

gjk ¼ δjk

�
1þ 2

c2
U

�
þOðc−4Þ; ð7cÞ

and

ð−gÞ ¼ 1 − 8f00UEMS þ
4

c2
U þOðc−4Þ; ð8Þ

for the components of the metric and its determinant,
respectively. This near-zone metric describes the spacetime
of the PN perfect fluid in the EMSG theory. As it is seen, in
addition to the well-known PN potentials, i.e., ψ , V, X, U,
one needs extra gravitational potentials indicated with the
index EMS to correctly study the behavior of a system in the
weak-field limit of the EMSG theory. The definition of these

potentials is given in Appendix A, see Eqs. (A8c), (A8d),
(A25), and (A27b)–(A28b). Most of these new PN potentials
are constructed from the matter part of the system. The
source term of an EMSG potential, which we call the EMSG
superpotential XEMS, itself is a gravitational potential
extending overall space. Given the Poisson integrals
(A8c) and (A25), one can show that this superpotential
satisfies the Poisson equation ∇2XEMS ¼ 2UEMS. This in
fact is equivalent to X in the well-known PN expansion of
the metric in GR. Considering the coefficients c−2 and f00,
one can deduce that these components of the metric are truly
constructed up to the desired PN order mentioned earlier.
We have now enough information to study the dynamics

of a system/motion of light with the 1 PN corrections in the
EMSG theory. The remainder of this section is devoted to
the computation of the photon’s trajectory in the EMSG
curved spacetime.

B. Geodesic equations

We consider the geometric-optics approximation where
massless particles/photons can describe the behavior of
light rays. We first choose a pressureless perfect fluid
described by

Tμνjdust ¼ ρuμuν: ð9Þ

One can show that, for this fluid, the EMSG part of Tμν
eff is

given by

Tμν
EMSjdust ¼ f00ðc4ρ2gμν þ 2c2ρ2uμuνÞ: ð10Þ

To simplify this relation, we use uμuμ ¼ −c2. Inserting the
above relations into Eq. (4) and using the conservation of
rest mass ∇μðρuμÞ ¼ 0, we arrive at

uμ∇μuν ¼ −
2c2f00ðc2gμν þ uμuνÞ∂μρ

1þ 2c2f00ρ
: ð11Þ

Equation (11) reveals that in the EMSG theory, the world-
line of a dust particle is not necessarily described by the
geodesic equation. The nonzero term on the right-hand side
of this relation can be interpreted as an additional force
acting on particles that prevents them from moving on the
geodesic of spacetime. A similar issue is also pointed out in
the Palatini formalism of the generalized EMSG in [7].
In a similar fashion, for the null dust fluid, we find

uμ∇μuν ¼ 0: ð12Þ

To simplify the above relation, the null condition uμuμ ¼ 0

is utilized. Since the right-hand side of Eq. (12) is zero,
unlike the previous case, the worldline of a massless
particle/photon is a geodesic. As usual, this relation can
be simplified as follows:
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d2xν

dλ2
þ Γν

αβ

dxα

dλ
dxβ

dλ
¼ 0; ð13Þ

where the quantities Γν
αβ are the Christoffel symbols. Here,

we consider that xνðλÞ is the worldline of photons para-
metrized by an arbitrary affine parameter λ. One can show
that by changing λ to the time coordinate t, this relation
reduces to

dvν

dt
þ
�
Γν
αβ −

vν

c
Γ0
αβ

�
vαvβ ¼ 0; ð14Þ

where vμ ¼ dxμ=dt.
In order to find the photon’s trajectory in a PN EMSG

fluid, we now apply the near-zone metric built up to the 1

PN order in the previous section. Obtaining the Christoffel
symbols and after algebraic simplification, we arrive at

dvj

dt
− ∂jU − 4c2f00∂jUEMS −

1

c2

�
ðv2 − 4UÞ∂jU − ð4vk∂kU þ 3∂tUÞvj − 4vkð∂jUk − ∂kUjÞ þ 4∂tUj þ ∂jΨ

þ 8c2f00

�
vkð∂kUEMS

j − ∂jUEMS
k Þ −

�
vk∂kUEMS þ

1

2
∂tUEMS

�
vj þ 1

4
∂j∂ttXEMS þ ∂jPEMS þ ∂jΠEMS − UEMS∂jU

−
�
2U þ 11

2
c2f00UEMS

�
∂jUEMS − 2∂jU

ð1Þ
EMS −

1

2
∂jU

ð2Þ
EMS þ ∂tUEMS

j

��
þOðc−4Þ ¼ 0; ð15Þ

for the geodesic equation (14). Here, Ψ ¼ ψþ
V þ 1=2∂ttX. We then use the lightlike condition
gαβvαvβ ¼ 0 to evaluate the PN order of each term in this
relation. Using Eqs. (7a)–(7c) and expanding this condi-
tion, one can deduce that

vj ¼ c

�
1 −

2U
c2

− 4f00UEMS

�
nj þOðc−3Þ; ð16Þ

in which n is a unit vector that indicates the direction of light
emission. This relation shows that the coordinate velocity of
a photon is of the order of c. Keeping this in mind, we
neglect the small terms from Eq. (15). We then have

dvj

dt
¼

�
1þ v2

c2

�
∂jU þ 4c2f00∂jUEMS −

4

c2
½vjvkð∂kU

þ 2c2f00∂kUEMSÞ� þOðc−3Þ: ð17Þ

Substituting Eq. (16) into Eq. (17) gives

dnj

dt
¼ 2

c
ðδjk − njnkÞð∂kU þ 2c2f00∂kUEMSÞ þOðc−3Þ:

ð18Þ

To achieve this expression, we use that dU=dt ≃ cnk∂kU
and dUEMS=dt ≃ cnk∂kUEMS. It is obvious that, dropping
EMSG correction, this relation reduces to the GR case.
Equation (18) is the null geodesic with which we study the
motion of light in the weak-field limit of the EMSG theory.

IV. THE MOTION OF LIGHT

We launch this section by solving Eq. (18). Given the PN
order of this differential equation, its solution up to the
leading order can be written as nj ¼ kj þOðc−2Þ where kj

is the jth component of a constant vector k. Then,
substituting this relation back within Eq. (16) gives vj ¼
ckj þOðc−1Þ for the photon’s coordinate velocity. Next,
solving the differential equation dxj=dt ¼ ckj þOðc−1Þ, we
obtain xðtÞ ¼ xe þ ckðt − teÞ þOðc−2Þ. Here, xe is the
position of the photon at the emission time te. Up to this
order, the photon moves in a straight path. We continue our
calculation until the gravitational effects, especially those
related to the EMSG theory, appear in the photon’s trajectory.
We consider the next order of light direction as nj ¼

kj þ αj þOðc−4Þ in which αj is the 1PN correction to nj.
Regarding Eq. (18), this correction should satisfy the
following relation

dαj

dt
¼ 2

c
ðδjk − kjkkÞð∂kU þ 2c2f00∂kUEMSÞ: ð19Þ

This relation illustrates that α:k ¼ 0. Since the EMSG
correction appears in this parameter, henceforth we call it
αEMS. In this order, we then have

vj ¼ c

�
1 −

2U
c2

− 4f00UEMS

�
kj þ cαjEMS þOðc−3Þ; ð20Þ

for Eq. (16). Finally, for the photon’s trajectory, we arrive at

x ¼ xe þ ckðt − teÞ þ kxkðtÞ þ x⊥ðtÞ þOðc−4Þ; ð21Þ

where

xkðtÞ ¼ −2
Z

t

te

�
U
c
þ 2cf00UEMS

�
dt0; ð22aÞ

x⊥ðtÞ ¼ c
Z

t

te

αEMSdt0; ð22bÞ
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indicate the longitudinal and transverse corrections to the
trajectory of photons, respectively. As seen, both of these
relativistic corrections include the EMSG terms. In fact, in
this theory, in addition to the Newtonian potential, the
EMSG potential UEMS affects both longitudinal and trans-
verse terms in the trajectory of photons. As a result, the
photon does not behave as predicted by GR. In the
following subsections, to understand if there is a detectable
signature of the EMSG theory in the motion of light, we
examine each of these corrections.

A. Light deflection

Here, we study light deflection by a spherically symmetric
compact object. In order to derive the deflection angle, we
should find the gravitational potentials U and UEMS induced
by this object. To do so, we place the origin of the coordinate
system in the center of the body. Our goal is to find these
potentials outside of this body where the 1PN approximation
works well. So, the position of the field point would be larger
than the dimension of the compact object and as a result, we
can simplify Eqs. (A8a) and (A8c) as4

U ¼ GM
r

þOðr−3Þ; ð23aÞ

UEMS ¼ GM
r

þOðr−3Þ; ð23bÞ

where r ¼ jxj and

M ¼
Z
Vb

ρd3x; ð24aÞ

M ¼
Z
Vb

ρ2d3x ð24bÞ

are the material mass and the EMSG parameter of the body,
respectively. Here, Vb shows the volume occupied by this
body. Substituting the gravitational potentials (23a) and
(23b) back with in Eq. (19), one can arrive at

dαjEMS

dt
¼ −

2G
c

ðM þ 2c2f00MÞ b
j

r3
; ð25Þ

in which bj ¼ xje − kjðk:xeÞ and xðtÞ ¼ xe þ ckðt − teÞþ
Oðc−2Þ. To simplify this relation, we consider that the
density of the body is constant, i.e., ∇ρ ¼ 0. So, given
the point mentioned in Appendix C of [12], we can easily set
dM=dt ¼ 0. Keeping this fact in mind and knowing that
dðb=b2Þ=dt ¼ 0 as well as cb2=r3 ¼ dðk:x=rÞ=dt, we
obtain

αjEMS ¼ −
2G
c2

Mð1þ 2c2f00ρÞ
bj

b2
ðcosΦðtÞ þ 1Þ: ð26Þ

Here, b ¼ jbj and cosΦðtÞ ¼ k:x=r. It should be mentioned,
in the above relation, that we assume that αEMSðteÞ ¼ 0 and
b ≪ re. Similar to the GR case, we also consider a simple
case where k:x=r ¼ 1 or t → ∞. Under this circumstance,
we find

αEMS ¼ −
4G
c2

Mð1þ 2c2f00ρÞ
b
b2

ð27Þ

for the deflection of light from a sphere with a constant
density ρ and mass M in the EMSG theory. Obviously, by
dropping the EMSG correction, this formula reduces to light
deflection in the weak field limit of Einsteinian relativity and
its classical results are recovered. As seen, in addition to the
mass of the system, αEMS depends on its density. Also,
compared to GR, the deflection of light in EMSG takes
different values depending on the value of f00. For the
positive/negative value of f00, the EMSG version of the
deflection of light can be more/less than the GR case. Thus,
EMSG may leave an observational signature on the deflec-
tion of light from a dense compact system.
We utilize the measurement of light deflection intro-

duced in the literature to find a reasonable bound on the free
parameter of the EMSG theory. To do so, we consider that
the EMSG version of the light deflection can fully describe
the observed deflection by the Sun. Given this point and
using our results and those in [24], we set αEMS ¼ αobs. We
then have γ ¼ 1þ 4c2f00ρ⊙ where ρ⊙ is the density of
the Sun and γ is the parametrized post-Newtonian
(PPN) parameter exhibiting the role of space curvature
in the gravitational deflection. Regarding the numerical
value of this PPN parameter obtained in [24], i.e.,
γ ¼ 0.9998� 0.0004, one can find the interval
−1.2×10−24ms2kg−1<f00<4.0×10−25ms2kg−1. Here,
ρ⊙ ¼ 1.4 g cm−3. Therefore, the free parameter of this
theory should lie within this domain to justify this Solar
System test. Although this range is not more limited than
the previous studies,5 there is no inconsistency with them
and it well covers the intervals obtained in [12,13]. This
means that the EMSG theory passes this Solar System test
with flying colors.

B. Shapiro time delay

The Cassini tracking measurement of the Shapiro time
delay can put another empirical constraint on the free
parameter of the modified theories of gravity. In this
subsection, benefiting this measurement, we attempt to
obtain an experimental bound on f00.

4Here, as our aim is to find the leading order of light deflection
in the EMSG theory, we have exhibited the mass density with ρ
instead of ρ� introduced in Appendix A.

5By studying neutron stars and binary pulsars, [12,13] show
that the free parameter of the theory lies within the range
−10−37 ms2 kg−1 < f00 < þ10−36 ms2 kg−1.
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To do so, we first derive the EMSG correction to the
Shapiro time delay. As seen, the longitudinal correction to
the trajectory of photons is described by Eq. (22a) in the
EMSG theory. In a similar fashion to the method utilized in
the previous subsection, we consider a spherically sym-
metric compact object as our gravitational system and then
insert Eqs. (23a) and (23b) into the definition (22a). For the
sake of simplification, we also assume that the density of
the compact system is uniform. Regarding this point, we
have

xkðtÞ ¼ −
2G
c

Mð1þ 2c2f00ρÞ
Z

tobs

te

1

r
dt0: ð28Þ

Given c=r ¼ dðlnðrþ k:xÞÞ=dt, we then arrive at

xkðtÞ ¼ −
2G
c2

Mð1þ 2c2f00ρÞ ln
�
4robsre
b2

�
; ð29Þ

for the EMSG longitudinal correction to the trajectory of
photons. Here, robs ¼ rðt ¼ tobsÞ. We also assume the case
where k:xobs ≃ robs and k:xe ≃ −re. According to the
relation (29), one can deduce that the Shapiro time delay
is given by

ΔtEMS
Shapiro ¼

4G
c3

Mð1þ 2c2f00ρÞ ln
�
4robsre
b2

�
; ð30Þ

in the EMSG theory. Comparing Eqs. (27) and (30) reveals
that the EMSG contribution to the light deflection and
Shapiro time delay is similar and in both cases, the same
expression ð1þ 2c2f00ρÞ is added. This relation also
indicates that, for the system with high density where
gravity experiments are carried out, the EMSG effects can
be significant or even detectable.
Here, to find an experimental bound on f00, we apply

the results of [25]. It is assumed that this theory can truly
justify the measurement of the Shapiro time delay in the
Solar System situation. So, we set ΔtEMS

Shapiro ¼ ΔtobsShapiro.

Using γ ¼ 1þ ð2.1� 2.3Þ × 10−5 [25], we find that
−4.0 × 10−27 ms2 kg−1 < f00 < 8.7 × 10−26 ms2 kg−1.
This bound is also in agreement with the previous studies
[12,13]. Therefore, this theory is not ruled out by this Solar
System test. It is worthwhile to mention that the boundary
obtained here is tighter than that inferred from light
deflection. This is because the standard error of the PPN
parameter γ in [25] is smaller than that in [24]. Therefore, as
expected, by improving the measurement of the Shapiro
time delay and light deflection in the Solar System, the free
parameter of this theory can be even more restricted.

C. Gravitational lensing

As seen, the density of the compact system directly
appears in the definition of light deflection and Shapiro

time delay, and the magnitude of the EMSG correction
strongly depends on it. This is also the case in [12] where
the EMSG correction to the orbital period variation of
binary pulsars is studied. As a result, for the dense system,
the EMSG effect can be significant even if the order of
magnitude of the parameter f00 is very small. In fact, the
denser the system, the more important the EMSG correc-
tions are. On the other hand, the gravitational system
considered here is the Sun, which has a very low density
compared to neutron stars studied in [12,13] to constrain
f00. This is the main reason why the interval obtained in the
earlier Secs. IVA and IV B is not more limited than what is
introduced in these papers.
In this subsection, to examine possible detectable sig-

natures of EMSG in light curves, we focus our attention on
the gravitational lensing from a dense compact object like
neutron stars. To achieve this goal, we first derive the lens
equation in the EMSG theory. Regarding the spherical
symmetry of the lens considered here and applying the
small-angle approximation, we have

θ −
dls
dso

αEMS ¼ θs; ð31Þ

which is the scalar form of the lens equation written in the
deflector’s plane1. The EMSG effects are encoded in αEMS
in this equation. Here, θ and θs stand for the angle between
the image(s)-optical axis and the source-optical axis,
respectively. Note that the line connecting the observer
to the lens is defined as the optical axis, and the lens and
source planes are perpendicular to the initial direction of the
photon path. Also, dls and dso show the angular diameter
distances between lens-source and source-observer, respec-
tively. It is worth pointing out that, in the following
calculations, the angular diameter distances are postulated
to be well defined in GR. These distances are not clearly
defined in this theory. Nevertheless, for a full analysis, it is
necessary to obtain these distances and their relationship to
redshift in EMSG. We leave this for the future.
Inserting the EMSG light deflection (27) into the above

relation, we then obtain

θ2 − θsθ − θ2Eð1þ 2c2f00ρlÞ ¼ 0; ð32Þ

in which ρl is the mass density of the lens and

θE ¼
�
4GM
c2

dls
dsodlo

�
1=2

; ð33Þ

is the Einstein angle. To find this relation, we use the fact
that b ¼ dloθ where dlo indicates the angular diameter
distance from the lens to the observer. We should recall that
to derive this relation, it is assumed that the density of the
lens is uniform. It is also worth mentioning that Eq. (32) is
established where the point of closest approach of the
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photon to the center-of-mass of the lens, b, is much larger
than twice the Schwarzschild radius of the lens RSch, i.e.,
b ≫ 2RSch. In fact, here, photons pass far away from the
lens’s photon sphere. It means that the solutions to the lens
equation should satisfy the condition θ ≫ ðdso=dlsÞθ2E in
this lensing scenario. This is the realm where 1PN correc-
tions are sufficient to describe gravitational lensing.
Beyond this regime, strong-deflection lensing including
higher PN terms, should be investigated.
By solving the lens equation (32), we find the position of

lensed images with EMSG corrections as follows

θ�EMS ¼
1

2
ðθs �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ2s þ 4θ2Eð1þ 2c2f00ρlÞ

q
Þ: ð34Þ

As seen, like GR, there are two solutions. Furthermore,
given the EMSG corrections, the position of these images
deviates from the GR case. Therefore, investigating
Eq. (34) can provide a possible test for the EMSG theory.
Let us define the following ratio

D ¼ θ�EMS − θ�GR
θ�GR

; ð35Þ

where θ�GR ¼ θ�EMSðf00 → 0Þ. In Fig. 1, we illustrate
this relative deviation of the EMSG image positions and
the GR ones for three cases: (i) Where the source is
completely behind the lens, i.e., θs ¼ 0. (ii) Where
θs ≪ θE. (iii) Where θs ≫ θE. It should be mentioned
that for the third case, θ−EMS does not satisfy the desired
condition θ ≫ ðdso=dlsÞθ2E. So, we ignore this solution and
exhibit other cases in this figure.
Regarding the sign of f00, the relative deviation can be

positive or negative. Here, we consider the interval
−0.7 ≤ D ≤ 0.7. As mentioned earlier, we assume that
the lens is a dense star with the density of the order
1017 kgm−3. So, the density is chosen to be in the range
1017 kgm−3 ≤ ρl ≤ 8 × 1017 kgm−3. In the top panel
of Fig. 1, the relative differences for the first and second
cases in the parameter space ðρl; f00Þ are indicated by the
solid and dashed curves, respectively. The third case is
displayed by the solid curve in the bottom panel. To
visually compare our result with the previous study, the
bound −0.6 × 10−36 ms2 kg−1 < f00 < þ10−36 ms2 kg−1

which is obtained in [12], is also added in these panels.
Since considerable relative differences only occur for a
large amount of f00 in the third case, this interval of f

0
0 turns

into a single line in the bottom panel. Both panels in this
figure show that at a fixed density, the higher the free
parameter jf00j, the greater the absolute value of D.
Furthermore, for a fixed EMSG parameter, jDj grows with
increasing the lens mass density. Therefore, as expected, at
a high mass density and a large jf00j, the relative difference
will be considerable. It is seen that jDj > 0.1 for jf00j ≥
10−36 ms2 kg−1 and jf00j ≥ 10−34 ms2 kg−1 in the top and

bottom panels, respectively. In fact, in this region of the
parameter space ðρl; f00Þ, it is possible to detect the footprint
of EMSG on the position of images. On the other hand,
given the constraint on f00 shown by the red dotted lines in
these panels and its intersection with the D ¼ 0.05 curve,
only a relative deviation up to 5% can be expected for the
cases θs ¼ 0 and θs ≪ θE; and in the case where θs ≫ θE,
there is no significant difference between the position of
images in EMSG and GR.

FIG. 1. The representation of Eq. (35) in terms of f00 and the
density of the lens for three cases θs ¼ 0, θs ≪ θE, and θs ≫ θE.
The contours of equal D in the plane ðρl; f00Þ are shown in the
interval −0.7 ≤ D ≤ 0.7. In the top panel, we display the cases
where θs ¼ 0 and θs ≪ θE with the solid and dashed curves,
respectively. Also, the upper and lower bounds on the EMSG free
parameter obtained in [12] are represented by the red dotted lines.
The bottom panel shows the case where θs ≫ θE. As θ−EMS does
not satisfy the condition θ ≫ ðdso=dlsÞθ2E in this case, we only
study θþEMS in this panel.
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To shed light on the importance of this difference, let us
estimate the EMSG correction to the Einstein angle in the
microlensing regime. We consider a compact object as a
gravitational lens and a star as a light source that are located
a few kiloparsecs away from the Earth. In this case,
regarding Eq. (34), we have θEMS

E ≃ θEð1þ c2f00ρlÞ. To
find this relation, we keep only linear terms in f00. Then,
this yields c2f00ρlθE for the EMSG correction up to the
leading order. According to the sign of the EMSG param-
eter, the new Einstein ring can shrink or expand compared
to the standard one in GR. Now, in order to evaluate the
order of magnitude of this correction, two possible cases
are studied. We suppose the supermassive black hole at the
center of our Galaxy is a gravitational lens and a star at
dls ¼ 10 pc is a source. In this case, the lens is located at
dlo ¼ 7.9� 0.4 kpc [26] with M ¼ ð3.6� 0.2Þ × 106 M⊙
[27]. It is assumed that the lens is a sphere with a
Schwarzschild radius and its density is defined by ρl ¼
ð3c6=32πG3Þð1=M2Þ. Also, we set f00 ¼ 10−36 ms2 kg−1.
Using this definition and ignoring the uncertainty in mass
and distances, we find that the EMSG correction to the
Einstein angle for this lens is 8.7 × 10−9 μac (microarc-
seconds). Then, for this supermassive black hole, the
EMSG contribution to the position of images is insignifi-
cant and it is exceedingly faint to be detected. On the other
hand, one can show that in the same lensing scenario with a
lighter black hole, e.g., M ¼ 50 M⊙, the order of magni-
tude of the EMSG correction is about 0.2 μac. For the next
case, we choose another possible system in which the
stellar lens and source are located in the Galactic halo and
Magellanic Clouds at dlo ¼ 20 kpc and dso ¼ 50 kpc,
respectively. We also assume that the lens is a neutron
star with ρl ¼ 1017 kgm−3 and set f00 ¼ 10−36 ms2 kg−1.
In this case, the EMSG correction to the Einstein angle is of
the order 5.3 μac. Moreover, for f00 ¼ 10−37 ms2 kg−1,
which is one order of magnitude smaller than the upper
limit of the EMSG free parameter obtained in [12,13], one
can find that this correction would be of the order 0.5 μac.
From these interesting astrophysical cases, we deduce that
the EMSG correction can be of the order ð1 − 0.1Þ μac.
Although this change in the image position is small, it is
expected to be measurable by future high-resolution mis-
sions such as MAXIM [28,29]. Indeed, this may provide a
direct observational test for this theory in the weak-field
limit and improve the constraint on the EMSG free
parameter, its upper limit, by at least one order of
magnitude. As the deviation for f00 ¼ −10−38 ms2 kg−1,
which is one order of magnitude bigger than the lower limit
of the EMSG free parameter, is of the order 0.05 μac,
constraining the lower limit of f00 is beyond the sensitivity
of the planned microarcsecond-resolution missions.
From the observational point of view, the modification of

the Einstein angle could affect the measurement of some
quantities. To clarify this, we study the characteristic
timescale of a microlensing event given by tE ¼ RE=v⊥.

Here, RE ¼ dloθE is the Einstein radius and v⊥ is the
transverse velocity of the lens relative to the line of sight.
This timescale provides a tool to estimate the lens mass.
Obviously, the difference of the Einstein angle due to the
extra EMSG potential gives rise to the change of the
Einstein time tE. Here, we assume that the distances and the
lens transverse velocity are known. So, this change means
that the lens mass is different from what is obtained in GR.
In fact, by setting tEMS

E ¼ tobsE ¼ tGRE , one can arrive at
MEMS ≃ t2E;obsxð1 − 2c2f00ρlÞ, whereas we have MGR ¼
t2E;obsx in GR. Here, x≡ ðc2=4GÞðdso=ðdlodlsÞÞv2⊥.
Therefore, the lens mass may be overestimated or under-
estimated utilizing the classical/GR method. The EMSG
correction to the Einstein time also reveals that depending
on the density of the lens and the free parameter of the
theory, the mass of the compact object, for instance, the
neutron star, in the EMSG theory could be smaller or larger
than the standard case inferred from GR. This fact is
consistent with the results of [5]. Nonetheless, we empha-
size that a more complete analysis should be adopted when
the distances in this theory are properly studied.
Another interesting quantity studied in microlensing is

the magnification of the primary and secondary images
which is defined as

A� ¼
				 θ

�

θs

dθ�

dθs

				 ð36Þ

for a steady and very small source [30]. Given this relation
and Eq. (34), for a similar source, we define the magni-
fication in the EMSG theory as

A�
EMS ¼

				 θ
�
EMS

θs

dθ�EMS

dθs

				
¼ 1

u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ 8c2f00ρl þ 4

p
�
u2

2
þ 2c2f00ρl þ 1

�
� 1

2
;

ð37Þ

where u≡ θs=θE. Since the separation of images is too
small in a microlensing event, the images cannot be
detected individually and only the total magnification of
a source can be observed. So, we focus our attention on the
total magnification. Summing Aþ

EMS and A
−
EMS, we arrive at

AEMS ¼
1

u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ 8c2f00ρl þ 4

p ðu2 þ 4c2f00ρl þ 2Þ; ð38Þ

for the total magnification in the framework of EMSG. For
f00 ¼ 0, this relation reduces to the GR one, cf. Eq. (11) in
[30]. It shows the consistency of the EMSG theory.
In order to reveal the influence of the EMSG terms on the

total magnification, we exhibit the relative difference
ðAEMS − AGRÞ=AGR in terms of u in Fig. 2. In this figure,
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the solid and dashed curves, respectively, belong to the
upper and lower bounds of the EMSG parameter repre-
sented in [12]. This deviation is also studied in the density
range 1017 kgm−3 ≤ ρ ≤ 8 × 1017 kgm−3. As seen, the
deviation grows with decreasing u as well as increasing
ρl. It means that in the situation where the source is almost
behind the dense lens, the EMSG correction is more
effective, and as a result, the combined light intensity
could be different from the GR one. Given the solid curves,
all of which take positive values in this figure, for
f00 ¼ 10−36 ms2 kg−1, the images in EMSG are brighter
than those in GR. In the best case, the EMSG image is about
7% brighter. The situation is quite the opposite for
f00 ¼ −0.6 × 10−36 ms2 kg−1, and the EMSG image is
dimmer than its GR counterpart. See the dashed curves
for which AEMS < AGR. Here, in the best case, the EMSG
image is about 4.5% dimmer. Therefore, the light source in
the EMSG theory would be microlensed differently com-
pared to GR; and for the positive/negative value of f00,
the EMSG image is brighter/fainter than the GR image. This
fact is also in agreement with the results inferred from Fig. 1.
In the framework of microlensing, it is also interesting to

study the shape of the light curve versus the time it takes for
the lens to move relative to the source. Here, we are
interested in studying the total magnification in terms of the
duration of a microlensing phenomenon in the EMSG
theory. To do so, we assume that the lens has a uniform
motion. It is shown that in this case, the position of the
source in terms of time is given by [30,31]

u ¼
�
u2min þ

�
v⊥ðt − t0Þ

RE

�
2
�
1=2

; ð39Þ

where umin ¼ uðt ¼ t0Þ is the dimensionless impact param-
eter and t0 is the time of closest approach to the lens. In the
following calculations, without losing generality, we
choose t0 ¼ 0. Substituting this relation back within
Eq. (38), we study the change of the EMSG combined
magnification in terms of time. Our results are summarized
in Fig. 3. In this figure, for different values of umin, logA is
studied. Here, the solid and dashed curves exhibit the GR
and EMSG cases, respectively. The dashed curves above
and below the solid ones belong to the EMSG case with
f00 ¼ 10−36 ms2 kg−1 and f00 ¼ −0.6 × 10−36 ms2 kg−1,
respectively. This figure reveals that except for a small
deviation, the overall behavior of the light curves in EMSG
is similar to that in GR. Indeed, the smaller the dimension-
less impact parameter umin, the brighter the lensed image.
This fact significantly occurs at t ¼ t0 ¼ 0. To indicate
when the deviation between the standard and EMSG cases
is considerable, we also study ðAEMS − AGRÞ=AGR in terms
of time for umin < 1 in Fig. 4. In this figure, the solid and
dashed curves belong to the upper and lower bounds of the
EMSG parameter, respectively. It is seen that, in the closest
approach, which occurs at t ¼ t0 ¼ 0, the absolute value of
the relative difference will be maximum. Also, similar to
Fig. 2, this deviation increases with decreasing umin.

FIG. 2. The relative difference between AEMS and AGR in terms
of u for different values of the lens density. Here, the solid and
dashed curves show the cases with f00 ¼ 10−36 ms2 kg−1 and
f00 ¼ −0.6 × 10−36 ms2 kg−1, respectively. These values are the
upper and lower limits on the EMSG free parameter which are
obtained in [12].

FIG. 3. The variation of the combined magnification with the
dimensionless time t=tE for umin ¼ 0.1, 0.3, 0.5, 0.7, 0.9, 1.1. The
solid and dashed curves exhibit the GR and EMSG cases,
respectively. Also, the dashed curves above and below the solid
ones stand for the EMSG case with f00 ¼ 10−36 ms2 kg−1 and
f00 ¼ −0.6 × 10−36 ms2 kg−1, respectively. Here, we set ρl ¼
6 × 1017 kgm−3.
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V. SUMMARY AND CONCLUSION

In this work, we have studied the behavior of light rays in
the weak-field limit of EMSG. The PN metric of an EMSG
fluid has been derived. This is the main material needed to
obtain EMSG corrections to the propagation of light rays.
We have utilized the modern approach to the PN theory. It
has been shown that in addition to the Newtonian potential,
the EMSG potential, UEMS, affects both longitudinal and
transverse terms in the trajectory of photons. As a conse-
quence, in this theory, photons do not behave as predicted
by GR. To understand if there is a detectable signature of
the EMSG theory in the motion of light, we have studied
light deflection, Shapiro time delay, and gravitational
microlensing. As a first step, it has been assumed that
the deflector is compact and spherically symmetric. In fact,
because the quadratic term ρ2 appears in the Poisson
integral of UEMS, the point-mass description cannot be
used here. For the sake of simplification, throughout this
paper, we have also considered that the density of the body
is uniform. Otherwise, due to the appearance of the time-
dependent EMSG term in the definition of light deflection,
we would encounter more complicated calculations.
Choosing the constant density body allows us to easily
evaluate and understand the EMSG correction to the
motion of light.
It has been shown that the EMSG contribution to light

deflection and Shapiro time delay is similar and in both
cases, the same expression ð1þ 2c2f00ρÞ is added to the
classical one. It means that in addition to the free parameter
of the theory, f00, the magnitude of the EMSG correction

strongly depends on the density of the deflector. Therefore,
for the dense system where gravity experiments are carried
out, the EMSG effects can be significant or even detectable.
Regarding the results obtained in [24,25], we have
restricted the free parameter of the theory and shown that
it should lie within the range −4.0 × 10−27 ms2 kg−1 <
f00 < 8.7 × 10−26 ms2 kg−1 to justify the Solar System
tests such as light bending and Shapiro time delay. Since
there is no inconsistency with this interval and those
derived in [12,13], we claim that the EMSG theory passes
these Solar System tests with flying colors. However, more
accurate measurements are needed to find a tighter bound
on the free parameter of the theory and to observe its
possible signature in the Solar System framework. In other
words, EMSG and GR cannot be distinguished only using
these classical tests of gravity with the current accuracy.
The main reason that the interval obtained from these tests
is not more limited than what is introduced in the precedent
studies is that the gravitational system considered here is
the Sun, which has a very low density.
To examine possible detectable signatures of EMSG in

light curves, we have next focused our attention on a source
microlensed by a dense object like neutron stars. Notably,
there are two images in the EMSG gravitational lensing
scenario whose positions deviate from those in GR. It has
been shown that given the sign of the EMSG parameter, the
new Einstein ring can shrink or expand compared to the
standard one. Two interesting and possible astrophysical
systems have been applied to estimate the EMSG correc-
tion to the Einstein angle in the microlensing regime. For
these cases, we have predicted that this correction would be
as large as ð1 − 0.1Þ μac which could be detected by future
high-resolution missions such as MAXIM [28,29]. This
advance in measurement may not only distinguish this
modified theory of gravity from GR, but can place a
stronger observational constraint on the free parameter
of the theory compared to the previous studies in this
context. It may improve the upper limit of f00 by at least one
order of magnitude.
We have then investigated the total magnification and the

shape of light curves in the EMSG theory. It is revealed
that, except for a small shift, the overall behavior of the
EMSG light curves in terms of time is similar to that in GR.
It also turns out that where the light source is almost behind
a dense lens, the EMSG correction is more efficient, and the
combined light of the lensed images is different from the
GR case. Remarkably, compared to GR, for the positive f00,
the EMSG image becomes brighter, while for the negative
f00, the EMSG image becomes dimmer. In the best case, this
deviation from GR is less than 10%. However, it is possible
that in the case of the strong magnification events with
small measurement errors, the signature of EMSG theory
due to the extra gravitational potential can be detected.
To sum up, the Solar System tests such as light bending

and Shapiro time delay do not rule out this theory. In the

FIG. 4. The relative difference between AEMS and AGR in
terms of the dimensionless time t=tE for different values of
umin. The solid and dashed curves show the cases with f00 ¼
10−36 ms2 kg−1 and f00 ¼ −0.6 × 10−36 ms2 kg−1, respectively.
Here, we assume that ρl ¼ 6 × 1017 kgm−3.
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gravitational microlensing scenario, a dense compact lens
like neutron stars allows us to distinguish this modified
gravity from GR. It is possible that future high-resolution
missions could provide an observational test for the EMSG
theory in the weak-field limit.
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APPENDIX A: NEAR-ZONE AND WAVE-ZONE
SOLUTIONS OF THE WAVE EQUATION

In this Appendix, we derive the approximate solution of
the highly nonlinear wave equation (5) where the field
point is situated within the near zone. Utilizing this solution
and applying expansions (6a)–(6c), one can systematically
construct the near-zone spacetime metric of a system to an
adequate degree of accuracy. To find the solution to Eq. (5),
we take the advantage of the iterative procedure introduced
in [22]. The main idea behind this method is to approx-
imately linearize this equation. Then using the retarded
Green’s function, one can integrate the linearized wave
equation.6 To do so, the source term of each iteration of the
wave equation, i.e., τμνeff , is built in the previous step. In fact,
in this manner, Eq. (5) is no longer nonlinear in terms of hμν

and the wave equation can be integrated straightforwardly
in each iterative step. In the following, each step is
indicated with the index (n) where n shows the number
of the iteration of the wave equation. We should then solve
□hμνðnÞ ¼ −2kτμνeffðn−1Þ in every step.
It should also be mentioned that the method of extracting

the PM and PN approximations generally is similar and the
PN limit is in fact embedded within the PM approximation.
Therefore, some parts of our calculations, more specifically
the first iteration, inevitably overlap with those of [12].
However, for the sake of completeness, we discuss these
parts in detail here.
Before getting our hands dirty with the iteration pro-

cedure, let us collect all general forms of the solutions to the
wave equation we need during our calculations. Regarding
the position of the field and source points of the wave
equation, these general solutions are categorized. We
rewrite those in which the field point is located in the
near-zone region of spacetime. According to the naming
rule in [22], the solution whose source point is located in
the near (wave) zone is indicated by the index N (W) and
called the near-zone (wave-zone) solution.

The first general solution to the wave equation is the
near-zone solution given by

hμνN ðt; xÞ ¼ k
2

X∞
l¼0

ð−1Þl
l!cl

� ∂
∂t
�

l
Z
M

τμνeffðt; x0Þjx − x0jl−1d3x0;

ðA1Þ

in which the source, x0, and field, x, points both are situated
in the near zone. If we consider R to be the boundary
between the near and wave zones, we have r0 ¼ jx0j < R
and r ¼ jxj < R in the above relation. Here, M is a three-
dimensional sphere with the radiusR representing the near-
zone region. In the following, we show its boundary
with ∂M.
The second one is the wave-zone solution where the field

and the source points are situated in the near and the wave
zones, respectively. This solution is introduced as follows:

hμνWðt; xÞ ¼ k
2

nhj1j2���jli

r

�Z
R

R−r
fμνðτ − 2s=cÞAðs; rÞds

þ
Z

∞

R
fμνðτ − 2s=cÞBðs; rÞds

�
; ðA2Þ

in which Aðs; rÞ ¼ R
rþs
R PlðζÞp1−ndp and Bðs; rÞ ¼R

rþs
s PlðζÞp1−ndp, where PlðζÞ is a Legendre polynomial.
Here, ζ ¼ ðrþ 2sÞ=r − 2sðrþ sÞ=ðrpÞ, and nhj1j2���jli is an
angular symmetric trace-free tensor, cf. Eq. (1.154) of [22].
Moreover, for this solution, the source term of the wave
equation is written as

τμνeff ¼
1

4π

fμνðτÞ
rn

nhj1j2���jli: ðA3Þ

Here, τ ¼ t − r=c is the retarded time.

1. Zeroth and first iterations

We start the iterative method with the zeroth step. At this
stage, the spacetime is described by the Minkowski metric,

i.e., gμνð0Þ ¼ ημν and
ffiffiffiffiffiffiffiffiffiffi
−gð0Þ

p
¼ 1. Then, we have hμνð0Þ ¼ 0.

Regarding this, we construct the components of the
effective energy-momentum tensors Tμν

effð0Þ. As mentioned,

we choose a perfect fluid to describe the matter part of the
system. Considering the definition of Tμν

eff , we arrive at

c−2T00
effð0Þ ¼ ρ� þ ρ�2c2f00

�
1þ 1

c2

�
v2 þ 2Πþ 8p

ρ�

��

þOðc−2Þ; ðA4aÞ

c−1T0j
effð0Þ ¼ ρ�vj þ 4ρ�2c2vjf00

�
1

2
þ 1

c2

�
Πþ 2p

ρ�

��

þOðc−2Þ; ðA4bÞ

6This technique is comprehensively introduced in chapter 6 of
[22]. As the mathematical form of the EMSG field equations in
landau-Lifshitz formalism is similar to the GR one, we use the
general retarded solutions to the wave equation introduced in this
reference.
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Tjk
effð0Þ ¼ ρ�2c4f00

�
δjk −

1

c2
ððv2− 2ΠÞδjk − 2vjvkÞ

�
þOð1Þ;

ðA4cÞ

where ρ� ¼ ffiffiffiffiffiffi−gp
γρ is the rescaled mass density and

Π ¼ ϵ=ρ�. In the zeroth iteration, one can show that γ ¼
1þ 1

2
v2

c2 þOðc−4Þ and ρ� ¼ ð1þ 1
2
v2

c2 þOðc−4ÞÞρ. It should
be mentioned that, to find Eqs. (A4a)–(A4c), we apply the
normalization condition gμνuμuν ¼ −c2. To completely
construct the source term of the wave equation, we also
need to build the landau-Lifshitz and harmonic pseudo-
tensors at this stage. The general form of these pseudo-
tensors is defined by

ð−gÞtαβLL ¼ 1

2k

�
1

2
ηαβηλμ∂ρhλν∂νhμρ − ηαλημν∂ρhβν

× ∂λhμρ − ηβλημν∂ρhαν∂λhμρ þ ηλμη
νρ∂νhαλ∂ρhβμ

þ 1

8
ð2ηαληβμ − ηαβηλμÞð2ηνρηστ − ηρσηντÞ

× ∂λhντ∂μhρσ
�
; ðA5Þ

as well as

ð−gÞtαβH ¼ 1

2k
ð∂μhαν∂νhβμ − hμν∂μνhαβÞ; ðA6Þ

where the harmonic gauge condition is imposed.
Substituting hμνð0Þ ¼ 0 in the above relations, one finds that

tμνLLð0Þ ¼ 0 ¼ tμνHð0Þ. Therefore, Eqs. (A4a)–(A4c) would be

the source terms of the wave equation in the next iteration.
It will be shown that the extra EMSG terms in these
relations induce different gravitational potentials in the next
steps. So, this is the starting point of departure from the PN
limit of GR.
Now, we solve the wave equation □hμνð1Þ ¼ −2kτμνeffð0Þ to

find hμνð1Þ ¼ hμνN ð1Þ þ hμνWð1Þ. We first focus our attention on

the near-zone solution hμνN ð1Þ. We arrive at

h00N ð1Þ ¼
4

c2
U þ 4f00UEMS þOðc−3Þ; ðA7aÞ

h0jN ð1Þ ¼
4

c3
Uj þ 8

c
f00U

j
EMS þOðc−4Þ; ðA7bÞ

hjkN ð1Þ ¼ 4f00δ
jk

�
UEMS −

G
c
d
dt

M

�
þOðc−4Þ; ðA7cÞ

after inserting Eqs. (A4a)–(A4c) into integral (A1). Here,
the gravitational potentials U, Uj, UEMS, and Uj

EMS are,
respectively, given by

U ¼ G
Z
M

ρ�0

jx − x0j d
3x0; ðA8aÞ

Uj ¼ G
Z
M

ρ�0v0j

jx − x0j d
3x0; ðA8bÞ

UEMS ¼ G
Z
M

ρ�02

jx − x0j d
3x0 ðA8cÞ

Uj
EMS ¼ G

Z
M

ρ�02v0j

jx − x0jd
3x0: ðA8dÞ

We also introduce a new parameter M in EMSG as

M ¼
Z
M

ρ�02d3x0: ðA9Þ

The next case is the wave-zone solution, hαβWð1Þ.
Regarding the position of the source point as well as the
slow-motion condition and weak-field limit, in this case,
the only source term of the wave equation can be tμνLL
and tμνH . On the other hand, it is shown that these terms
vanish in the zeroth step. Therefore, hαβWð1Þ ¼ 0 and con-

sequently hαβð1Þ ¼ hαβN ð1Þ.
We can now construct the near-zone metric in the first

iteration. After substituting Eqs. (A7a)–(A7c) within
Eqs. (6a)–(6d) and some simplifications, we obtain

gð1Þ00 ¼ −1þ 2U
c2

þ 8f00UEMS þOðc−3Þ; ðA10aÞ

gð1Þ0j ¼ −
4Uj

c3
−
8

c
f00U

j
EMS þOðc−4Þ; ðA10bÞ

gð1Þjk ¼
�
1þ 2U

c2

�
δjk þOðc−4Þ; ðA10cÞ

ð−gð1ÞÞ ¼ 1þ 4U
c2

− 8f00UEMS þOðc−3Þ: ðA10dÞ

Given the PN corrections of the metric components, one
can easily grasp that this metric does not have enough
information to describe a relativistic system up to the 1 PN
order. Therefore, we continue the iterative procedure until
the desired relativistic corrections are achieved. As the final
point of this part, let us mention that the strange order c−3 in
the determinant and time-time component of the metric is
completely constructed from an EMSG term. However,
since we are in the first iterated step, this term cannot be
trusted to check the time-reversal invariance of solutions.
By completing the second iteration, we find that this odd
order would not exist in the PN expansion of this
component of the metric.
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As claimed, each order f00 is treated as a PN correction.
Considering the above PN expansions of the metric
components and comparing terms with each other, for
instance, the first and third terms in the time-time compo-
nent, one can conclude that f00 must be very small and at
most of the order of c−2. So our previous assumption made
in Sec. II is justifiable.

2. Second iteration

By using the metric built in the previous iterated step, we
can now derive the main materials to construct the PN
expansion of hμνð2Þ ¼ hμνN ð2Þ þ hμνWð2Þ. We launch our calcu-

lations by constructing the source term of hμνN ð2Þ. It should
be mentioned that, to find the desired PN order for hμνð2Þ and
consequently for gμνð2Þ, it is necessary to build Oð1Þ for

τ00effð1Þ, order Oðc−1Þ for τ0jeffð1Þ, and order Oð1Þ for τjkeffð1Þ. In
the following, each portion of the effective energy-momen-
tum pseudotensor is derived in detail.
Utilizing the components of gμνð1Þ, we find the contra-

variant components of the standard energy-momentum
tensor of the perfect fluid as

T00
ð1Þ ¼ρ�c2

�
1þ8f00UEMSþ

1

c2

�
1

2
v2þΠ−U

��
þOðc−1Þ;

ðA11aÞ

T0j
ð1Þ ¼ ρ�vjc

�
1þ 8f00UEMS þ

1

c2

�
1

2
v2 þ Πþ p

ρ�
− U

��

þOðc−2Þ; ðA11bÞ

Tjk
ð1Þ ¼ pδjk þ ρ�vjvk þOðc−2Þ: ðA11cÞ

We use the fact that γð1Þ ¼ 1þ4f00UEMSþ 1
c2 ð12v2þUÞþ

Oðc−3Þ and ρ� ¼ ½1þ 1
c2 ð12 v2 þ 3UÞ�ρþOðc−4Þ at this

stage. It is worthwhile to note that the Oðc−1Þ term in T00
ð1Þ

is constructed from the EMSG term that is proportional
to dM=dt.
We next derive the EMSG part of Tμν

effð1Þ, i.e., the terms

with the coefficient f00 in this effective tensor. We indicate
this part with Tμν

EMS. One can show that for a perfect fluid
with Lm ¼ p, this part reduces to

Tμν
EMS ¼ f00

�
c4ρ2gμνþ2c2ðϵρgμνþρ2uμuνÞþð3p2þ ϵ2Þgμν

þ
�
8pρþ4ϵρþ 1

c2
ð6p2þ8pϵþ2ϵ2Þ

�
uμuν

�
:

ðA12Þ
Utilizing the above relation and the PN expansion of the
metric components, we arrive at

T00
EMSð1Þ ¼ ρ�2c4f00

�
1þ8f00UEMS

þ 1

c2

�
v2þ2Πþ8p

ρ�
−4U

��
þOðc−1Þ; ðA13aÞ

T0j
EMSð1Þ ¼ 2ρ�2c3f00½vjð1þ 8f00UEMSÞ − 4f00U

j
EMS

þ 2

c2

�
vj
�
Πþ 2p

ρ�
− 2U

�
− Uj

��
þOðc−3Þ;

ðA13bÞ

Tjk
EMSð1Þ ¼ ρ�2c4f00

�
δjk þ 1

c2
ð2vjvk − ðv2 − 2Πþ 8UÞδjkÞ

�

þOðc−2Þ: ðA13cÞ

We should mention that the c−1 order in T00
ð1ÞEMS is an

EMSG correction and corresponds to dM=dt.
To complete the source term of the gravitational potential

hμνN ð2Þ, the two portions ð−gð1ÞÞtμνLLð1Þ and ð−gð1ÞÞtμνHð1Þ
should also be calculated. Given the definitions (A5) and
(A6) and the components of hμνN ð1Þ, one can in principle

obtain these portions in the near zone. We first find the PN
expansion of the Landau-Lifshitz pseudotensor compo-
nents below:

ð−gð1ÞÞt00LLð1Þ ¼ −
1

8πG

�
7∂jU∂jU þ 8c4f00

�
f00∂jUEMS

× ∂jUEMS þ
1

c2
∂jU∂jUEMS

��
þOðc−1Þ;

ðA14aÞ

ð−gð1ÞÞt0jLLð1Þ
¼ 1

4πGc
½3∂tU∂jUþ 4ð∂jUk − ∂kUjÞ× ∂kU�

þ c3f00

πG

�
f00ð∂tUEMS∂jUEMS − 2∂jUEMS∂kUk

EMS

þ 2∂jUk
EMS∂kUEMSÞ þ

1

c2
ð∂kUEMS∂jUk − ∂jUEMS∂kUk

þ 2ð∂jUk
EMS − ∂kUj

EMSÞ∂kUÞ
�
þOðc−2Þ; ðA14bÞ
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ð−gð1ÞÞtjkLLð1Þ ¼
1

4πG

�
∂jU∂kU −

1

2
∂nU∂nUδjk

�

þ c4f00
πG

�
f00ð∂nUEMS∂nUEMSδ

jk

− ∂jUEMS∂kUEMSÞ þ
1

c2
ð2∂jUEMS∂kU

− ∂nUEMS∂nUδjkÞ
�
þOðc−1Þ: ðA14cÞ

To obtain the PN expansion of the harmonic pseudo-
tensor components, we substitute Eqs. (A7a)–(A7c) into
Eq. (A6). We have

ð−gð1ÞÞt00Hð1Þ ¼−
c4f00

πG

�
f00UEMS∂j∂jUEMSþ

1

c2
UEMS∂j∂jU

�

þOðc−1Þ; ðA15aÞ

ð−gð1ÞÞt0jHð1Þ ¼
c3f00

πG

�
f00ð∂tUEMS∂jUEMS

þ 2∂jUk
EMS∂kUEMS − 2UEMS∂k∂kUj

EMSÞ

þ 1

c2
ð∂jUk∂kUEMS −UEMS∂k∂kUjÞ

�

þOðc−2Þ; ðA15bÞ

ð−gð1ÞÞtjkHð1Þ ¼
c4f002

πG
½∂jUEMS∂kUEMS

− UEMS∂n∂nUEMSδ
jk� þOðc−1Þ ðA15cÞ

after some manipulations. It should be noted that since the
Landau-Lifshitz and harmonic pseudotensors are both
made of the gravitational potential in the near zone, these
pseudotensors are involved in the near-zone source terms in
the following derivation.
Now, we have enough information to build the compo-

nents of the EMSG effective pseudotensor up to the required
PN order. After gathering together Eqs. (A11a)–(A11c)
and (A13a)–(A15c) and some simplification, we finally
arrive at

c−2τ00effð1Þ ¼ ρ�
�
1þ 1

c2

�
1

2
v2 þ Π −

1

2
U

��
þ c2f00ρ�2

×

�
1þ 1

c2

�
v2 þ 2Πþ 8p

ρ�
− 2U þ 2UEMS

ρ�

��

−
7

16πGc2
∇2U2 −

f00

2πG
∇2ðUUEMSÞ

−
c2f002

2πG
∇2U2

EMS þOðc−3Þ; ðA16aÞ

c−1τ0jeffð1Þ ¼ ρ�vj
�
1þ 1

c2

�
1

2
v2 þ Πþ p

ρ�
þ 3U

��
þ 1

4πGc2
½3∂tU∂jU þ 4ð∂jUk − ∂kUjÞ∂kU�

þ c2f00
�
2ρ�2vj þ 1

c2

�
ρ�2vj

�
4Πþ p

ρ�

�
− 4ρ�2Uj þ 1

πG
ð2∂jUk∂kUEMS − ∂jUEMS∂kUk

þ 2ð∂jUk
EMS − ∂kUj

EMSÞ∂kU þ 4πGρ�vjUEMSÞ
�
− f00

�
8ρ�2Uj

EMS −
1

πG
ð2∂tUEMS∂jUEMS

− 2∂jUEMS∂kUk
EMS þ 4∂jUk

EMS∂kUEMS þ 8πGρ�2vjUEMSÞ
��

þOðc−3Þ; ðA16bÞ

τjkeffð1Þ ¼ ρ�vjvk þ pδjk þ 1

4πG

�
∂jU∂kU −

1

2
∂nU∂nUδjk

�
þ c4f00

�
ρ�2δjk þ 1

c2

�
ρ�2δjkð2Π − v2 − 4UÞ þ 2ρ�2vjvk

þ 1

πG
ð2∂jUEMS∂kU − ∂nUEMS∂nUδjkÞ

�
þ f00δjk

�
1

πG
∂nUEMS∂nUEMS − 4ρ�2UEMS

��
þOðc−1Þ: ðA16cÞ

It should be mentioned that, to simplify Eq. (A16), we
use the fact that

∇2U2 ¼ 2∂jU∂jU − 8πGρ�U; ðA17aÞ

∇2U2
EMS ¼ 2∂jUEMS∂jUEMS − 8πGρ�2UEMS; ðA17bÞ

∇2ðUUEMSÞ ¼ 2∂jU∂jUEMS − 4πGρ�UEMS − 4πGρ�2U:

ðA17cÞ

It is worth noting that the odd terms Oðc−3Þ, Oðc−3Þ, and
Oðc−1Þ that, respectively, appear in the time-time, time-
space, and space-space components of τμνeffð1Þ are entirely

built of the EMSG term that is proportional to dM=dt. In
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the following, by utilizing the near-zone source terms
derived in the above relations, we attempt to find hαβN ð2Þ.

a. Near-zone solution

To find the near-zone portion of the gravitational
potential, we utilize Eq. (A1). We first study the time-time
component of hμνN ð2Þ. In this step, one can show that the

integral (A1) reduces to

h00N ð2Þ ¼
4G
c2

�Z
M

c−2τ00effð1Þ
jx − x0j d3x0 −

1

6c3
I
…kkðtÞ

þ 1

2c2
∂2

∂t2
Z
M

c−2τ00effð1Þjx − x0jd3x0 þ � � �
�

þ h00ð2Þ½∂M�; ðA18Þ

after some simplification and applying the gauge condition
which is equivalent to the conservation statement
∂μτ

μν
effð1Þ ¼ 0 at this stage. Here, the overdot stands for

the derivativewith respect to time t and h00ð2Þ½∂M� shows the
surface integral in this solution that actually appears after
enforcing the gauge condition. In the following, we
examine this term in detail. Moreover, I jk is given by

I jkðtÞ ¼
Z
M

c−2τ00effð1Þðt; xÞxjxkd3x: ðA19Þ

Inserting Eq. (A16) within Eq. (A18), we have

h00N ð2Þ ¼
4G
c2

�Z
M

ρ�0

jx−x0j
�
1þ 1

c2

�
1

2
v02þΠ0−

1

2
U0

��
d3x0−

7

16πGc2

Z
M

∇02U02

jx−x0jd
3x0

þc2f00

Z
M

ρ�02

jx−x0j
�
1þ 1

c2

�
v02þ2Π0 þ8p0

ρ�0
−2U0 þ2U0

EMS

ρ�0

��
d3x0−

f00
2πG

Z
M

∇02ðU0U0
EMSÞ

jx−x0j d3x0

−
c2f020
2πG

Z
M

∇02U02
EMS

jx−x0j d3x0 þ 1

2c2
∂2

∂t2
Z
M
ρ�0jx−x0jd3x0 þf00

2

∂2

∂t2
Z
M
ρ�02jx−x0jd3x0− 1

6c3
I
…kkðtÞþOðc−4Þ

�
: ðA20Þ

As seen this component is made of two portions, the
compact and noncompact parts. The compact pieces are
entirely constructed from the fluid variables restricted to the
near zone. See the first, third, sixth, and seventh integrals in
the above relation. On the other hand, the noncompact
pieces can exist beyond the near zone. In fact, the sources
of these terms are the Newtonian and EMSG potentials. See
the second, fourth, and fifth integrals of Eq. (A20). Here,
we focus on these parts.
By utilizing the fact that ∇02ð1=jx−x0jÞ¼−4πδðx−x0Þ,

one can easily simplify the noncompact parts as
follows:

Z
M

∇02U02

jx − x0j d
3x0 ¼ −4πU2 þ

I
∂M

� ∂ 0jU02

jx − x0j

− U02∂ 0
j

1

jx − x0j
�
dS0j; ðA21aÞ

Z
M

∇02ðU0U0
EMSÞ

jx−x0j d3x0 ¼−4πUUEMSþ
I
∂M

�∂ 0jðU0U0
EMSÞ

jx−x0j

−U0U0
EMS∂ 0

j
1

jx−x0j
�
dS0j; ðA21bÞ

Z
M

∇02U02
EMS

jx − x0j d3x0 ¼ −4πU2
EMS þ

I
∂M

�∂ 0jU02
EMS

jx − x0j

−U02
EMS∂ 0

j
1

jx − x0j
�
dS0j; ðA21cÞ

in which dSj ¼ R2
j sin θdθdφ. Considering the definitions

of the standard and EMSG potentials, one can also deduce
that U ∝ 1=R and UEMS ∝ 1=R on the boundary ∂M. See
Appendix D of [12]. So all surface integrals in the above
relations will be proportional to ∝ 1=R2. In the framework
of the modern approach to the PN approximation, it is
claimed that the R dependent can be removed during
calculations. In fact, it is argued that theR-dependent terms
in the near-zone and wave-zone solutions will eventually be
canceled by each other [22]. We use this scheme here and
drop all surface integrals. Given these points, we then
simplify the time-time component as

h00N ð2Þ ¼
4U
c2

þ 4f00UEMS þ
1

c4

�
4ψ þ 7U2 þ 2∂ttX

þ 4c2f00

�
ψEMS þ 2UUEMS þ 2c2f00U

2
EMS

þ 1

2
∂ttXEMS

��
−
2G
3c5

I
…kkðtÞ þOðc−5Þ; ðA22Þ
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in which

ψ ¼ G
Z
M

ρ�0

jx − x0j
�
1

2
v02 þ Π0 −

1

2
U0

�
d3x0; ðA23aÞ

X ¼ G
Z
M

ρ�0jx − x0jd3x0 ðA23bÞ

are the well-known PN potentials and

ψEMS ¼ G
Z
M

ρ�02

jx − x0j
�
v02 þ 2Π0 þ 8p0

ρ�0
− 2U0

þ 2U0
EMS

ρ�0

�
d3x0; ðA24Þ

XEMS ¼ G
Z
M

ρ�02jx − x0jd3x0 ðA25Þ

are the new gravitational potentials defined in the PN limit
of the EMSG theory. For the sake of simplification, let us
break down ψEMS in terms of several EMSG potentials as
follows:

ψEMS ¼ VEMS þ 2ΠEMS þ 8PEMS − 2Uð1Þ
EMS þ 2Uð2Þ

EMS;

ðA26Þ

where

VEMS ¼ G
Z
M

ρ�02v02

jx − x0j d
3x0; ðA27aÞ

ΠEMS ¼ G
Z
M

ρ�02Π0

jx − x0j d
3x0; ðA27bÞ

PEMS ¼ G
Z
M

ρ�0p0

jx − x0j d
3x0; ðA27cÞ

as well as

Uð1Þ
EMS ¼ G

Z
M

ρ�02U0

jx − x0j d
3x0; ðA28aÞ

Uð2Þ
EMS ¼ G

Z
M

ρ�0U0
EMS

jx − x0j d
3x0: ðA28bÞ

Regarding Eqs. (6a)–(6c), the other component of the
gravitational potential required to build the metric is hkk. To
find this component, we need to obtain its source term, i.e.,
τkkeff . Considering Eq. (A16c), we have

τkkeffð1Þ ¼ ρ�
�
v2 −

1

2
U

�
þ 3p −

1

16πG
∇2U2

þ c2f00

�
3ρ�2c2

�
1þ 1

c2

�
2Π −

1

3
v2

−
14

3
U −

2

3

UEMS

ρ�

��
−

1

2πG
∇2ðUUEMSÞ

þ 3c2f00
2πG

∇2U2
EMS

�
þOðc−1Þ; ðA29Þ

in which Eqs. (A17a)–(A17c) are inserted. Substitution of
this source term into the integral

hkkN ð2Þ ¼
4G
c4

�Z
M

τkkð1Þeff
jx − x0j d

3x0 −
1

2c
I
…kkðtÞ

þ 1

2c2
∂2

∂t2
Z
M

τkkð1Þeff jx − x0jd3x0 þ � � �
�

þ hkkð2Þ½∂M� ðA30Þ

gives rise to

hkkN ð2Þ ¼ 12f00UEMSþ
1

c4

�
4VþU2þ 24c2f00

�
ΠEMS

−
1

6
VEMS−

7

3
Uð1Þ
EMS−Uð2Þ

EMSþ
1

3
UUEMS

þ 1

4
∂ttXEMS− c2f00U

2
EMS

��
−
2G
c5

I
…kkðtÞþOðc−5Þ:

ðA31Þ

Here

V ¼ G
Z
M

ρ�0

jx − x0j
�
v02 −

1

2
U0 þ 3p0

ρ�0

�
d3x0 ðA32Þ

is another PN potential. It is worth mentioning that
Eq. (A30) is obtained after inserting the conservation
statement ∂μτ

μν
effð1Þ ¼ 0 within the general near-zone sol-

ution (A1).
Finally, for the time-space and space-space components

of the gravitational potential, in a similar fashion to the
previous calculation, we arrive at

h0jN ð2Þ ¼
4

c3
fUj þ 2c2f00U

j
EMSg þOðc−5Þ; ðA33Þ

and
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hjkN ð2Þ ¼ 4f00δ
jkUEMS þ

4

c4

�
Wjk þ Xjk þ 1

4
δjkU2

þ c2f00

�
δjk

�
2ΠEMS − VEMS − 6Uð1Þ

EMS − 2Uð2Þ
EMS

þ 2UUEMS þ
1

2
∂ttXEMS − 2c2f00U

2
EMS

�
þ 2Ujk

EMS

þ 8Xjk
EMS

��
−
2G
c5

I
…kkðtÞ þOðc−5Þ; ðA34Þ

in which the standard tensorial potentials Wjk and Xjk are
given by

Wjk¼G
Z
M

ρ�0

jx−x0j
�
v0jv0k−

U0

2
δjkþ p0

ρ�0
δjk

�
d3x0; ðA35aÞ

Xjk ¼ 1

4π

Z
M

∂jU0∂kU0

jx − x0j d3x0; ðA35bÞ

respectively. The EMSG tensorial potentials Ujk
EMS and

Xjk
EMS are also defined as

Ujk
EMS ¼ G

Z
M

ρ�02v0jv0k

jx − x0j d3x0; ðA36aÞ

Xjk
EMS ¼

1

4π

Z
M

∂jU0
EMS∂kU0

jx − x0j d3x0: ðA36bÞ

As the final point at this stage, let us focus on the surface
terms that are involved in the integrals (A18) and (A30) and
of course in the general integral of h0jN ð2Þ and hjkN ð2Þ. We

return to Eq. (A1) before enforcing the conservation
statement ∂μτ

μν
effð1Þ ¼ 0. The second term in this expansion

has an important role because it may turn to the surface
integrals in the leading PN orders. Setting l ¼ 1, we have

−
1

c
d
dt

Z
M

τμνeffð1Þðt; xÞd3x; ðA37Þ

for the second term in the PN expansion of hμνN ð2Þ. Now, we
evaluate the role of this term in the PN expansion of each
component of the gravitational potential. For the time-time
component, using the conservation equation ∂0τ

00
effð1Þþ

∂jτ
j0
effð1Þ ¼ 0, one can easily show that this integral is

simplified as
H
∂M τ0jeffð1ÞdSj. Considering the slow-motion

condition, we find that the compact parts of τ0jeffð1Þ do not

exist at the boundary of the region M and consequently
their surface integrals vanish. Moreover, regarding
Eq. (A16b), the surface integral of the noncompact pieces
is proportional to 1=R and 1=R2. So, this part of the
integral is R dependent, and it can be discarded freely. To

simplify the time-space component of Eq. (A37), we also
use the space component of the conservation equation, i.e.,
∂0τ

0j
effð1Þ þ ∂kτ

jk
effð1Þ ¼ 0. In this case, this integral is reduced

to
H
∂M τjkeffð1ÞdSk. In a similar way, we conclude that the

compact pieces of Eq. (A16c) have no role in this surface
integral and the noncompact ones all are proportional to
1=R2. To examine the role of Eq. (A37) in the last
component of the potential, i.e., hjkN ð2Þ, we need to do

more calculations. Here, this integral is given by
−∂0

R
M τjkeffð1Þðt; xÞd3x. To simplify this integral, we use

the identity [22]

τjkeff ¼
1

2
∂00ðτ00effxjxkÞ þ

1

2
∂pðτpjeffxk þ τpkeffx

j − ∂qτ
pq
effx

jxkÞ;
ðA38Þ

deduced from the conservation equations. By inserting
this relation into the integral, after some simplification,

we arrive at −1=ð2cÞI
…jk − 1=2

H
∂Mðτpjeffð1Þxk þ τpkeffð1Þx

j

−∂qτ
pq
effð1Þx

jxkÞdSp. Utilizing Eq. (A16c), we find that

the noncompact pieces of the surface integral all are
proportional to 1=R and, as before, the compact parts
are zero. So, the contribution of Eq. (A37) to the PN

expansion of hjkN ð2Þ lies in −1=ð2cÞI
…jk. We exhibit this term

in Eq. (A34). In conclusion, the nonzero surface integrals
coming from this leading term in PN expansion of the
potential, all are R dependent and they can be dropped. It
can be shown that the other surface integrals from the next
PN terms in this expansion play a role in the higher PN
corrections and do not appear in the 1 PN order. Therefore,
up to the required PN order in this work, the surface
integrals have no contribution to the components of hαβN ð2Þ
and we remove them from Eqs. (A22), (A31), (A33),
and (A34).

b. Wave-zone portion

Up to this point, we have obtained the near-zone portion
of the gravitational potential in the second iteration. To
complete our derivation, we need to find its wave-zone part,
hjkWð2Þ. The source terms of this potential are comprehen-

sively introduced in [12]. Let us rewrite these terms here:

τ00effð1Þ ¼ −
G
πr4

�
7

8
M2

0 þ 3c4f00M
�
f00Mþ 1

c2
M0

��

þOðc−1Þ; ðA39aÞ

τ0jeffð1Þ ¼ Oðc−1Þ; ðA39bÞ
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τjkeffð1Þ ¼
G
πr4

��
1

4
M2

0 þ 2c2f00MM0

��
njnk −

1

2
δjk

�

− c4f002M2δjk
�
þOðc−1Þ: ðA39cÞ

In the above relations, M0 given by

M0 ¼
Z
M

ρ�d3x0 ðA40Þ

is the total matter inside the near-zone region. These PN
expansions of τμνeffð1Þ are sufficient to construct the wave-

zone solution of the gravitational potentials in the second
iteration.
According to Eq. (A2), to evaluate this integral, one

should first rewrite the source functions in the form of
Eq. (A3). Comparing Eq. (A39) with Eq. (A3) reveals that
n ¼ 4, l ¼ 0, and

f00l¼0 ¼ −4G
�
7

8
M2

0 þ 3c2f00MðM0 þ c2f00MÞ
�
: ðA41Þ

Therefore, for the time-time component, the fαβðτÞ func-
tion is constant. Knowing that n ¼ 4, one can then easily
derive the integral (A2) as

h00Wð2Þ ¼
2Gf00l¼0

c4
1

R2
: ðA42Þ

As seen, this component of the potential is a function ofR.
For h0jWð2Þ, given Eqs. (A39b) and (A2), one can show that

the source term of this potential does not construct the
required Oðc−3Þ correction for this component. So, h0jWð2Þ
does not contribute to the 1 PN order of the metric.
Similarly, to build hjkWð2Þ, we simplify the source term of

this potential, i.e., Eq. (A39c), as follows:

τjkeffð1Þ ¼
G
πr4

��
1

4
M2

0 þ 2c2f00MM0

��
nhjki −

1

6
δjk

�

− c4f020 M
2δjk

�
þOðc−1Þ; ðA43Þ

where n<jk> ¼ njnk − 1=3δjk. Regarding Eqs. (A3) and
(A43), one can then show that

fjkl¼0 ¼ −
G
6
δjkðM2

0 þ 8c2f00Mð3c2f00MþM0ÞÞ; ðA44aÞ

fjkl¼2 ¼ GM0ðM0 þ 8c2f00MÞ; ðA44bÞ

and n ¼ 4 in this case. Regarding the these points, we have

hjkWð2Þjl¼0 ¼
2Gfjkl¼0

c4
1

R2
; ðA45aÞ

hjkWð2Þjl¼2 ¼
Gfjkl¼2

5c4
nhjki

r2

R4
: ðA45bÞ

It is seen that the wave-zone terms calculated here all are a
function of R. As we have learned from the modern
approach, we can drop these R-dependent terms freely.
Therefore, in the second iteration, the wave-zone portion of
the gravitational potential has no role in our calculations,
and we finally have hμνð2Þ ¼ hμνN ð2Þ.
Our final item of business in this subsection is to survey

the importance of the odd PN orders c−5 that may appear in
the time-time component of the metric. To do so, let us
build this component. Inserting Eqs. (A22) and (A31)
within Eq. (6), we arrive at

gð2Þ00 ¼ −1þ 2

c2
U þ 2

c4

�
ψ þ V −U2 þ 1

2
∂ttX

�

þ 4f00

�
2UEMS þ

1

c2
ð∂ttXEMS þ 4PEMS − 4UUEMS

− 8Uð1Þ
EMS − 2Uð2Þ

EMS þ 4ΠEMSÞ − 11f00U
2
EMS

�

−
4G
3c5

I
…kkðtÞ þOðc−5Þ: ðA46Þ

The first concerning term is I
…kkðtÞ, which is only a function

of time. It is shown this type of terms can be removed by
applying an appropriate time coordinate transformation
[22]. To examine the impact of the other odd orders
collected in Oðc−5Þ, let us return once more to the general
expansion of the metric in terms of the gravitational
potentials. As grasped from Eq. (6) for g00, h00 and hkk

are the two main factors that can bring this odd order into
this expression. By considering several leading PN terms of
Eq. (A1) that can have a role in this order and also
regarding the origin of the c−1 terms in the PN expansions
of τ00effð1Þ and τkkeffð1Þ, we deduce that most of the Oðc−5Þ
terms from these potentials are made entirely by the EMSG
term which corresponds to ðc−3f00 þ c−1f020 ÞdM=dt multi-
plied by terms like ∂kU and ∂kUEMS. We should emphasize
that although dM=dt itself is only a function of time, the
other coefficients, such as ∂kU and ∂kUEMS, are a function
of x and t. Then, we cannot treat this Oðc−5Þ term as the
previous correction and remove it by a transformation of
the time coordinate. On the other hand, we show in
Appendix B that c2f00dM=dt is of the order c−2. Hence,
these apparently Oðc−5Þ terms actually contribute to the
order c−7. The next odd-order term we should treat care-
fully comes from the unusual high-order term, 3c4f00ρ

�2, in
τkkeffð1Þ. This term is of the order c2. So, it can produce a
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multipole moment of the order c−5 for l ¼ 3 in the
expansion (A1) for hkkN ð2Þ. Dropping the numerical coef-

ficients and constant parameters, this so-called multipole
moment contributes to hkkN ð2Þ as ∂ttt

R
M ρ�2ðt; xÞx2d3x. As

seen, after integrating, this term indeed depends only on
time. Therefore, it is a coordinate artifact and it can be

omitted along with I
…kkðtÞ by applying a suitable time

coordinate transformation. However, in general, theOðc−7Þ
terms may produce during this transformation [22]. So,
using this transformation just removes the odd power c−5

and the next PN corrections with the odd power c−7 may
appear in the PN expansion of the metric. Eventually, we
deduce that the terms with the order c−5 appearing in the

PN expansion of gð2Þ00 all have a role in the next PN
corrections and they are actually of the order c−7. It is
worth mentioning that the Oðc−7Þ corrections, GR terms,
and especially those coming from EMSG terms can involve
the odd numbers of time derivatives. Consequently, like
GR, this approximate solution of the field equation is not
invariant under the time reflection up to this order. This fact
illustrates that the system described by this metric loses
energy via radiating gravitational waves. As shown, several
EMSG terms exist within this order. So, they can in
principle contribute to gravitational waves emitted from
this system. The role of the EMSG corrections in the
gravitational waves is studied in [12].

APPENDIX B: ORDER OF MAGNITUDE
OF dM=dt

In this Appendix, we survey the order of magnitude of
dM=dt which appears frequently in our calculation. To do

so, we utilize the local conservation equations derived
during the second iteration, i.e., ∂μτ

μν
effð1Þ ¼ 0. Considering

the time component of ∂μτ
μν
effð1Þ ¼ 0, we have

∂0τ
00
effð1Þ þ ∂kτ

0k
effð1Þ ¼ 0; ðB1Þ

and then inserting Eqs. (A16a) and (A16b) within this
relation, we find that

∂tρ
� þ ∂jðρ�vjÞ þ 2c2f00ðρ�∂tρ

� þ ∂jðρ�2vjÞÞ ¼ Oðc−2Þ:
ðB2Þ

We have also assumed that the conservation of rest mass,
∇μðρuμÞ ¼ 0, is established in EMSG. ρ� then satisfies the
continuity equation

∂tρ
� þ ∂jðρ�vjÞ ¼ 0: ðB3Þ

Applying Eq. (B3) for the Newtonian and EMSG sectors of
Eq. (B2), we deduce that

2c2f00ρ
�vj∂jρ

� ¼ Oðc−2Þ: ðB4Þ

So, the energy conservation statement reveals that this term
is of the order c−2. On the other hand, in Appendix C of
[12], we have shown that dM=dt is proportional to the
integration of ρ�vj∂jρ

�. Given Eq. (B4), one can deduce
that c2f00dM=dt is indeed of the order c−2. We use this fact
to indicate the PN order of some odd-power terms in the PN
expansion of the metric in Appendix A.
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