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In the present work, we derive the motion of light in the weak-field limit of energy-momentum-squared
gravity (EMSG). To do so, we introduce the post-Newtonian expansion of this modified theory of gravity. It
is shown that, in addition to the Newtonian potential, a new EMSG potential affects the trajectory of
photons. As a result, in this theory, photons do not behave as predicted by general relativity (GR). To
evaluate the EMSG theory by the Solar System tests, we study light deflection and Shapiro time delay.
Regarding the results obtained in Bertotti ef al. [Nature (London) 425, 374 (2003)] and Shapiro et al. [Phys.
Rev. Lett. 92, 121101 (2004)], we restrict the free parameter of the theory and show that it lies within the
range —4.0 x 107% ms?kg™! < f} < 8.7 x 1072 ms?kg~!. This interval is in agreement with those
derived in Nazari et al. [Phys. Rev. D 105, 044014 (2022)] and Akarsu et al. [Phys. Rev. D 97, 124017
(2018)]. This consistency manifests that this theory passes these Solar System tests with flying colors.
Interestingly, it turns out that the magnitude of the EMSG correction strongly depends on the density of the
deflector. So, we investigate the possible effects of EMSG on images of a light source microlensed by a
compact dense object such as neutron stars. It is estimated that the EMSG correction to the position of
lensed images could be as large as (1-0.1) microarcseconds, which may be detected by future high-
resolution missions. Moreover, the total magnification and the shape of light curves are obtained in the
EMSG theory. It is revealed that except for a small deviation, the overall behavior of the EMSG light curves
is similar to that in GR. We also show that as long as the light source and the dense lens are aligned, the
EMSG correction is effective, and the combined light of the lensed images is different from the GR case.

This issue makes it possible to observe signatures of this theory in the microlensing regime.
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I. INTRODUCTION

The energy-momentum-squared gravity (EMSG) is an
alternative theory of gravity based on the action principle.
In addition to the usual Einstein-Hilbert term, the action
incorporates the correction term T2 = T%T 5 built of the
energy-momentum tensor, 7,4, of the matter fields [1,2].
This new scalar term made up merely of the matter fields
brings extra corrections to the right-hand side of the
Einstein field equations. So, the matter fields are not
conserved in this theory [1]. In contrast to most higher-
order theories of gravity referred to as f(R) theories, where
the gravitational Lagrangian is modified as a nonlinear
function of the Ricci scalar curvature R, in EMSG, the
higher order of the energy-momentum tensor of the matter
fields is considered to modify the general relativity (GR).
This theory has recently been taken into consideration and
examined in several contexts [3—11]. Moreover, applying
some observational measurements, its free parameter has
been constrained, e.g., see [5,12,13].
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Meanwhile, it is necessary to check the validity of the
theory by considering the local gravity as well as cosmo-
logical tests. In this aspect, it is possible to set observational
limits on the free parameter of the theory. It should be
recalled that the deflection of light is one of the most
powerful tools able to test modified theories of gravity at
different scales. Light deflection and gravitational lensing
have been studied in modified gravity theories. For in-
stance, see [14—17]. Also, it has been shown that Solar
System data such as light bending can place strong
constraints on parameters of f(R) theories [18]. In the
case of EMSG, it is also possible that the modified
gravitational Lagrangian leads to a change in the theory
of light deflection and gravitational lensing. In fact, the
effect of this modification may manifest itself in the motion
of light. So, it is interesting to investigate the motion of
light in the field of a source in EMSG and examine the
EMSG corrections to gravitational lensing.

In the present work, we derive the motion of light in the
weak-field limit of EMSG. To do so, we introduce the post-
Newtonian (PN) expansion of EMSG where slow-motion
and weak gravitational field conditions are established.

© 2022 American Physical Society
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In [12], applying the modern approach to PN gravity
[19-22], the post-Minkowskian (PM) limit of this theory
has been derived. Here, we employ the same technique to
find the near-zone metric of the EMSG fluid up to the first
PN (1 PN) order. The trajectory of photons in this spacetime
is then obtained. As the first step to test this theory in the
weak-field limit, we study light deflection and gravitational
lensing by a spherically symmetric compact object in this
work. We are interested in the possibility of constraining
the free parameter of EMSG by studying light bending. As
stellar lenses in the microlensing regime provide unam-
biguous measurements of light deflection by a compact
object, we also attempt to find signatures of this theory in
microlensing.

The paper is organized as follows. The strategy of our
calculations is clarified in Sec. II. As mentioned, this study
is restricted to the PN limit of EMSG which is introduced in
Sec. II1. In this framework, each order ¢~ is considered as a
PN correction. Appendixes A and B are devoted to the
comprehensive derivation of the PN expansion of this
theory. In Sec. IV, we then find the motion of light in
EMSG. In this section, the effect of the modification of
gravity on light deflection, Shapiro time delay, and micro-
lensing is examined. Finally, we conclude in Sec. V.

In this paper, Latin and Greek indices run over the values
{1,2,3} and {0, 1,2,3}, respectively. Moreover, in our
notation, 7, = diag(—1,1,1, 1) is the Minkowski metric
of flat spacetime and a spacetime event is labeled
by ¥ = (ct,x).

II. THE STRATEGY OF CALCULATIONS

In this work, we focus on the motion of light in the
vicinity of an EMSG source to examine signatures of the
modification of gravity in the deflection of light and
microlensing. The main goal is to study the motion of
light in the weak-field limit of this theory. So, our first task
is to build the PN limit of EMSG. To this aim, the modern
approach to PN gravity is utilized. This method is based on
the Landau-Lifshitz formulation of the gravitational theory
[22]. In [12], this reformulation of the EMSG theory is
derived comprehensively. In the following, we first mention
the standard formulation of EMSG and then rewrite its
Landau-Lifshitz one.

The action of this theory is introduced as

S:/\/—_g(ﬁR—i—ngz)d“x—i—Sm, (1)

in which g is the determinant of the spacetime metric g,
k =8zG/ c*, S, is the matter action, and R is the spacetime
curvature. Here, f is the free parameter of the theory
representing the coupling between matter and spacetime.’

'In this work, we adopt the same notation applied for the free
parameter of the EMSG theory in [12].

The EMSG field equations are derived in [1]. In our
notation, the field equations are given by

Gllv = k(T/tv + f6(gﬂvT2 - 4TZTW - 4‘1114’/))’ <2)

where G, is the Einstein tensor and

1
\P/w ==L, <T/w - E Tg/w)

oL,

1
——TT,, — 2T~
2 124 agaﬂagﬂy

(3)

Here, L,, stands for the matter Lagrangian density and 7 is
the trace of the energy-momentum tensor. It should be
mentioned that the matter Lagrangian density is indepen-
dent of metric derivatives and it is only a function of the
metric. Obviously due to the extra terms on the right-hand
side of Eq. (2), the usual energy-momentum tensor is not
conserved in this gravitational theory, ie., V,T* # 0.
Given the Bianchi identities, one can deduce that instead
of T,,, the effective energy-momentum tensor Tﬁg defined
as T, + f4(g,T* —4T5T,, — 4¥,,) would be conserved

here. So, we have
VﬂTgff =0. (4)

It should also be mentioned that, for different Lagrangian
densities that describe a perfect fluid, the EMSG field
equations (2) would be inequivalent. Therefore, for various
Lagrangian densities, this theory makes different predic-
tions. This issue is investigated in other modified theories
of gravity, cf. [23] and references therein. Throughout this
work, we utilize the standard Lagrangian density L,, = p
for a perfect fluid. During our calculation, we also assume
that the mass-current vector, pu*, is divergence free in this
theory, i.e., V,(pu*) = 0 where p is the rest-mass density
and u* = y(c,v) is the four-velocity field. Here, y = uO/ c
and v = dx/dt is the three-velocity field.

In [12], we have shown that the Landau-Lifshitz refor-
mulation of the EMSG field equations is simplified as

O = —2ke", (5)
where [J = —c—lzg—:z + V2 is the wave operator in the flat

spacetime and A*¥ is the gravitational potential defined as
" = /=9g9". Here, 7y = (=9)(Tes + fip + 1i7) s the
effective energy-momentum pseudotensor written in terms
of T%, the Landau-Lifshitz, (—g)#7, and harmonic,
(—g)1{{, pseudotensors. The definition of these pseudoten-
sors is given in Appendix A. See Egs. (AS) and (A6). In this
formulation, it is assumed that the gravitational potential
h* satisfies the harmonic gauge conditions 0,7*" = 0.
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In the following, to derive the PN approximation to the
EMSG field equations, we approximately solve the highly
nonlinear wave equation (5). It should be emphasized that,
in [12], to study the gravitational radiation effects in this
theory, Eq. (5) is solved in the wave zone; whereas, in order
to investigate the motion of light in the vicinity of an EMSG
lens, we restrict ourselves to the near-zone solutions” in the
current work. It should also be noted that this wave
equation is similar to the GR case, cf. [22]. As seen, an
explicit difference comes from the additional EMSG terms
within 7% on the right-hand side of this relation. However,
we will see that some implicit differences arise from the rest
source terms, i.e., #{; and # . This similarity with the GR
case in fact allows us to employ the same techniques
introduced in [22] to solve this wave equation. We recall
that contrary to GR, 7# is not conserved here. So, these
techniques should be applied with careful treatments. Until
now, we do not apply any approximation and Eq. (5) is only
the reformulation of the EMSG field equations after
imposing the harmonic gauge conditions.

The final point here is to answer this question: to what
PN order should we carry out our calculations and solve
this wave equation? As mentioned earlier, our goal is to test
EMSG theory in the weak deflection limit where the light
ray’s distance of closest approach, b, lies far beyond the
gravitational radius, 2GM/ ¢2, of the lens with mass M.
Therefore, we need to know the spacetime geometry far
from the gravitational radius of the lens, where 1 PN
corrections would be sufficient and higher PN orders can be
freely ignored. We recall that in the PN framework, each
order ¢2 is considered as a PN correction. Furthermore, in
[12], using a crude estimation, it has been shown that
EMSG corrections should be considerably small. It has
been revealed that the EMSG parameter f;, is at most of
the order of ¢~2. Here, we apply this estimation for the
magnitude of the EMSG parameter and treat each f}, order
as a PN correction. During our derivations, we will see that
this is a reasonable assumption. Given the above points, the
spacetime metric of an EMSG fluid is comprehensively
derived up to the 1 PN corrections in Appendix A. The
trajectory of photons in this spacetime is obtained in the
following section.

III. POST-NEWTONIAN LIMIT OF EMSG

In this section, we find the near-zone metric of the
EMSG fluid up to the 1 PN order. To do so, we first need to
obtain the relation between the components of the metric
and those of the gravitational potential 4,,. In the frame-
work of the modern approach, this relation is derived in
[12]. Next, in order to find 4, and consequently construct
the components of g,,, we should solve the wave

’In the next section, the near and wave zones are introduced in
the framework of PN gravity.

equation (5). Detailed discussions and calculations are
provided in Appendix A.

In the context of the PN approximation, the near and
wave zones are, respectively, the region inside and outside
of a sphere with the radius R ~ 1. in which A, is the
characteristic wavelength of the gravitational signals gen-
erated by the system. Moreover, the slow-motion condition,
v.2/c? < 1, and weak-field limit, U/c* < 1, are the two
essential conditions that are fulfilled in the PN limit. Here,
v, 1s a characteristic velocity within the fluid and U is the
Newtonian potential. In the modern approach to the PN
limit of GR, regarding the position of the field point and
applying these conditions as well as the iterative procedure,
the wave equations/Einstein field equations are approx-
imately solved to the required degree of accuracy [22].
Here, in a similar manner to the GR case, using the iterative
method,” we approximately solve the EMSG field equa-
tions (5) where the field point is located in the near-zone
region of spacetime.

Before introducing the near-zone solutions, let us review
the PN order of the metric components we need to study a
system at least up to the 1 PN order. As we know, to obtain
the 1 PN correction to the equation of motion of a test
particle, we should study the Lagrangian up to order c2.
Therefore, the time-time, time-space, and space-space
components of the metric should be evaluated up to
O(c™), O(c™?), and O(c™?), respectively. On the other
hand, in order to obtain the PN corrections to the propa-
gation of light rays, only O(c~?) must be known for both
time-time and space-space components of the metric.
However, for completeness, we derive all PN terms
required to study a system up to the 1 PN order. In [12],
the general expansion of the metric components in terms of
the gravitational potential 4, for a perfect fluid has been
found, see Eqgs. (29a2)—(29c) and (30) in this reference. For
the sake of convenience, we rewrite these expansions here.

1 3 1 1
=1 _hOO__ h002 _hkk 1__h00
Joo + > 8( )*+ 5 ( 5 )
1
- g ()2 4 0(c™®), (6a)
goj = —h" + O(c™), (6b)

1 |
gij = 5l]<1 +§h00> + h' —§5ijhkk + O(C_4), (6C)

(=g) = 1+ A% — ¥+ O(c™). (6d)

In the above relations, §;; is the Kronecker delta and 2** is
the trace of h/*. Considering the PN order of the EMSG

*We refer readers who are unfamiliar with the iterative
procedure in the modern approach to chapters 6 and 7 of [22].
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gravitational  potential components evaluated in
Appendix A, these expansions would in fact provide the
required PN order for the metric components stated
previously. In other words, each term in the above relations
will contribute to the 1 PN correction of the equation of
motion of a test particle in the EMSG spacetime.

We now turn to obtain the solution of the wave
equation (5). As mentioned, using the iteration method,
we solve this highly nonlinear equation in the EMSG
theory. Here, we choose a perfect fluid whose energy-
momentum tensor is described by T = (p+¢/c*+
p/c?)uu’ + pg*. In the framework of the PN limit, we
assume that the proper energy density € and the pressure p
satisfy the two conditions ¢/pc? <1 and p/pc? <1,
respectively. Similar to the GR case, we should also carry
out our calculations up to the second iterated step to achieve
the desired PN corrections for building the 1 PN order of the
near-zone metric. As this derivation is long and also
tedious, we remove this part from the main text and add
the complete calculations to Appendix A.

A. Near-zone metric

Here, we apply the final relations for the time-time, time-
space, and space-space components of /4, obtained in
Appendix A. Substituting Eqs. (A22), (A31), (A33), and
(A34) into Egs. (6a)—(6d), we arrive at

2 2 , 1
900:—1+?U+? y+V-=U +§3ti

1
+4f |:2UEMS + 2 (0uXpms + 4Pems

2
~ 4UUpyis — 8Uys — 2Uinss + 4y

—11 f{)UﬁMS} + 0(c79), (7a)
4 8ft _
2 —4
9k = O\ 1+ 35U +0(c™), (7¢)
and
/ 4 -4
(=9) = 1=8f,Ugms +gU+0(C ), (8)

for the components of the metric and its determinant,
respectively. This near-zone metric describes the spacetime
of the PN perfect fluid in the EMSG theory. As it is seen, in
addition to the well-known PN potentials, i.e., w, V, X, U,
one needs extra gravitational potentials indicated with the
index EMS to correctly study the behavior of a system in the
weak-field limit of the EMSG theory. The definition of these

potentials is given in Appendix A, see Egs. (A8c), (A8d),
(A25), and (A27b)-(A28b). Most of these new PN potentials
are constructed from the matter part of the system. The
source term of an EMSG potential, which we call the EMSG
superpotential Xgyg, itself is a gravitational potential
extending overall space. Given the Poisson integrals
(A8c) and (A25), one can show that this superpotential
satisfies the Poisson equation V2Xpys = 2Ugyms. This in
fact is equivalent to X in the well-known PN expansion of
the metric in GR. Considering the coefficients ¢~ and f7,
one can deduce that these components of the metric are truly
constructed up to the desired PN order mentioned earlier.

We have now enough information to study the dynamics
of a system/motion of light with the 1 PN corrections in the
EMSG theory. The remainder of this section is devoted to
the computation of the photon’s trajectory in the EMSG
curved spacetime.

B. Geodesic equations

We consider the geometric-optics approximation where
massless particles/photons can describe the behavior of
light rays. We first choose a pressureless perfect fluid
described by

™ |dust = puﬂl’tb' (9)

One can show that, for this fluid, the EMSG part of T%; is
given by

Tgv[s|dust = f6(C4;029’“’ + 22wt ut). (10)

To simplify this relation, we use u,u* = —c*. Inserting the
above relations into Eq. (4) and using the conservation of
rest mass V,(put) = 0, we arrive at

~ 22 f4(2 g™ + uu?)9,p
1+22fp '

(11)

u vo__
'V, =

Equation (11) reveals that in the EMSG theory, the world-
line of a dust particle is not necessarily described by the
geodesic equation. The nonzero term on the right-hand side
of this relation can be interpreted as an additional force
acting on particles that prevents them from moving on the
geodesic of spacetime. A similar issue is also pointed out in
the Palatini formalism of the generalized EMSG in [7].
In a similar fashion, for the null dust fluid, we find

u'V,u¥ = 0. (12)

To simplify the above relation, the null condition u,u* = 0
is utilized. Since the right-hand side of Eq. (12) is zero,
unlike the previous case, the worldline of a massless
particle/photon is a geodesic. As usual, this relation can
be simplified as follows:

104026-4
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dxvdxTdxP

= = =0, 13
di? o d) d (13)

where the quantities I'y ; are the Christoffel symbols. Here,
we consider that x“(1) is the worldline of photons para-
metrized by an arbitrary affine parameter 4. One can show
that by changing A to the time coordinate ¢, this relation
reduces to

dv’ 1

dt 2

dv” v’
Y < af _?F2ﬂ> v =0, (14)

where v* = dx*/dt.

In order to find the photon’s trajectory in a PN EMSG
fluid, we now apply the near-zone metric built up to the 1
PN order in the previous section. Obtaining the Christoffel
symbols and after algebraic simplification, we arrive at

— = 0;U—4c*f0;Ugys — = {(112 —4U)0;U — (40*0,U + 30,U)v/ — 40X(0;U; — 0, U;) +40,U; + 0,¥

1 1
+ 8¢2f5, {”k(akUJEMS -0, UM) - <vkakUEMS + EatUEMS> v+ ZajathEMS + 0;Ppms + 0illgys — UpmsO;U

11 1
— <2U + 7C2f6UEMS>8jUEMS - 2812/{](511\)/[5 - 5811/{1(521\)/[5 + atU]EMS:| } + O(C_4) = 0, (15)

for the geodesic equation (14). Here, Y =w+
V+1/20,X. We then use the lightlike condition
gaﬂv”vﬁ = 0 to evaluate the PN order of each term in this
relation. Using Egs. (7a)—(7c) and expanding this condi-
tion, one can deduce that

) 2U )
v = C(l -~ 4f6UEMs>nj + O(C_B), (16)
C

in which n is a unit vector that indicates the direction of light
emission. This relation shows that the coordinate velocity of
a photon is of the order of c¢. Keeping this in mind, we
neglect the small terms from Eq. (15). We then have

dv’ v? i
=- <1 + ?> ;U + 4 f,0;Upms — e [/ (0 U

+2¢ fuhUgns)] + O(c™). (17)
Substituting Eq. (16) into Eq. (17) gives

dni 2 .
E = ; (5]k - nfnk)(f)kU + ZszgakUEMs) + O(C_3)-

(18)

To achieve this expression, we use that dU/dt ~ cn*0,U
and dUgys/dt =~ cn*0,Ugys. It is obvious that, dropping
EMSG correction, this relation reduces to the GR case.
Equation (18) is the null geodesic with which we study the
motion of light in the weak-field limit of the EMSG theory.

IV. THE MOTION OF LIGHT

We launch this section by solving Eq. (18). Given the PN
order of this differential equation, its solution up to the
leading order can be written as n/ = k/ + O(c™?) where k/

|
is the jth component of a constant vector k. Then,
substituting this relation back within Eq. (16) gives v/ =
ck/ + O(c™") for the photon’s coordinate velocity. Next,
solving the differential equation dx’//dt = ck/ + O(c™"), we
obtain x(7) = x, + ck(t — t.) + O(c™2). Here, x. is the
position of the photon at the emission time #,. Up to this
order, the photon moves in a straight path. We continue our
calculation until the gravitational effects, especially those
related to the EMSG theory, appear in the photon’s trajectory.
We consider the next order of light direction as n/ =
kK +a/ + O(c™*) in which &/ is the 1PN correction to n/.
Regarding Eq. (18), this correction should satisfy the
following relation

d(lj 2 ik i1k 2 r1
— =~ (P =) OU + 26 fy0,Upys). (19)

This relation illustrates that .k = 0. Since the EMSG
correction appears in this parameter, henceforth we call it
agms- In this order, we then have

. 2U j j
v/ = C(l _?_4f(/)UEMS>kj + capys + 0(c™), (20)

for Eq. (16). Finally, for the photon’s trajectory, we arrive at
x =X+ ck(r—t.) +kx (1) +x,(t) + O(c™), (21)

where
! U "/ !
xH(t) =2 ?—i— 2cfyUgwms |dY', (22a)
le

t
xJ_(t) = C/ aEMsdt,, (22b)
fe
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indicate the longitudinal and transverse corrections to the
trajectory of photons, respectively. As seen, both of these
relativistic corrections include the EMSG terms. In fact, in
this theory, in addition to the Newtonian potential, the
EMSG potential Ugyg affects both longitudinal and trans-
verse terms in the trajectory of photons. As a result, the
photon does not behave as predicted by GR. In the
following subsections, to understand if there is a detectable
signature of the EMSG theory in the motion of light, we
examine each of these corrections.

A. Light deflection

Here, we study light deflection by a spherically symmetric
compact object. In order to derive the deflection angle, we
should find the gravitational potentials U and Ugyg induced
by this object. To do so, we place the origin of the coordinate
system in the center of the body. Our goal is to find these
potentials outside of this body where the 1py approximation
works well. So, the position of the field point would be larger
than the dimension of the compact object and as a result, we
can simplify Eqs. (A8a) and (A8c) as®

GM
U=—+0(r7), (23a)
r

GIN

Ugwms :T+O(r_3)’ (23b)
where r = |x| and

M= | pdx, (24a)

Vb
M= | p’d’x (24b)

Vb

are the material mass and the EMSG parameter of the body,
respectively. Here, V shows the volume occupied by this
body. Substituting the gravitational potentials (23a) and
(23b) back with in Eq. (19), one can arrive at

da 2G b

%: —7(M+2c2f62m)ﬁ, (25)
in which b/ = x — k/(k.x.) and x(1) = x, + ck(t — t.)+
O(c™%). To simplify this relation, we consider that the
density of the body is constant, i.e., Vp = 0. So, given
the point mentioned in Appendix C of [12], we can easily set
dM/dt = 0. Keeping this fact in mind and knowing that
db/b?)/dt =0 as well as cb?/r® =d(kx/r)/dt, we
obtain

“Here, as our aim is to find the leading order of light deflection
in the EMSG theory, we have exhibited the mass density with p
instead of p* introduced in Appendix A.

; 2G b/
Ahpis = —7M(1 + ZCZﬂ)p)ﬁ(cos @(1)+1). (26)

Here, b = |b| and cos ®(¢) = k.x/r. It should be mentioned,
in the above relation, that we assume that gy (7.) = 0 and
b < r,. Similar to the GR case, we also consider a simple
case where k.x/r =1 or t — co. Under this circumstance,
we find

4G b
apvs = —7M(1 +2c%fp) 2 (27)

for the deflection of light from a sphere with a constant
density p and mass M in the EMSG theory. Obviously, by
dropping the EMSG correction, this formula reduces to light
deflection in the weak field limit of Einsteinian relativity and
its classical results are recovered. As seen, in addition to the
mass of the system, agys depends on its density. Also,
compared to GR, the deflection of light in EMSG takes
different values depending on the value of f{. For the
positive/negative value of f{,, the EMSG version of the
deflection of light can be more/less than the GR case. Thus,
EMSG may leave an observational signature on the deflec-
tion of light from a dense compact system.

We utilize the measurement of light deflection intro-
duced in the literature to find a reasonable bound on the free
parameter of the EMSG theory. To do so, we consider that
the EMSG version of the light deflection can fully describe
the observed deflection by the Sun. Given this point and
using our results and those in [24], we set dgys = Qops- WE
then have y = 1 + 4c?f}ps where pg is the density of
the Sun and y is the parametrized post-Newtonian
(PPN) parameter exhibiting the role of space curvature
in the gravitational deflection. Regarding the numerical
value of this PPN parameter obtained in [24], i.e.,
y =0.9998 + 0.0004, one can find the interval
-1.2x107* ms’kg™! < f{, <4.0x 107 ms’kg~!. Here,
po = 1.4 gem™>. Therefore, the free parameter of this
theory should lie within this domain to justify this Solar
System test. Although this range is not more limited than
the previous studies,” there is no inconsistency with them
and it well covers the intervals obtained in [12,13]. This
means that the EMSG theory passes this Solar System test
with flying colors.

B. Shapiro time delay

The Cassini tracking measurement of the Shapiro time
delay can put another empirical constraint on the free
parameter of the modified theories of gravity. In this
subsection, benefiting this measurement, we attempt to
obtain an experimental bound on f{,.

5By studying neutron stars and binary pulsars, [12,13] show
that the free parameter of the theory lies within the range
-1077 ms? kg™! < f{, < +107% ms> kg™l
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To do so, we first derive the EMSG correction to the
Shapiro time delay. As seen, the longitudinal correction to
the trajectory of photons is described by Eq. (22a) in the
EMSG theory. In a similar fashion to the method utilized in
the previous subsection, we consider a spherically sym-
metric compact object as our gravitational system and then
insert Egs. (23a) and (23b) into the definition (22a). For the
sake of simplification, we also assume that the density of
the compact system is uniform. Regarding this point, we
have

2G fovs |
x (1) = _TM(I —|—2€2f6p)/ ’ ;dt’. (28)

fe

Given ¢/r = d(In(r + k.x))/dt, we then arrive at

2G 47 s,
X”(l‘) = —?M(l + 2sz6p) ln[ obb; e:| s (29)

for the EMSG longitudinal correction to the trajectory of
photons. Here, ry,, = r(t = tys). We also assume the case
where k.xgp ~ros and k.x,~—r,. According to the
relation (29), one can deduce that the Shapiro time delay
is given by

AR, = S M1+ 22 ) T o)
in the EMSG theory. Comparing Egs. (27) and (30) reveals
that the EMSG contribution to the light deflection and
Shapiro time delay is similar and in both cases, the same
expression (1 +2c2fyp) is added. This relation also
indicates that, for the system with high density where
gravity experiments are carried out, the EMSG effects can
be significant or even detectable.

Here, to find an experimental bound on fj, we apply
the results of [25]. It is assumed that this theory can truly
justify the measurement of the Shapiro time delay in the
Solar System situation. So, we set Argh> = A .
Using y =1+ (2.1423)x 107 [25], we find that
—4.0x 107% ms’kg™! < f) < 8.7 x 1072 ms?kg~".
This bound is also in agreement with the previous studies
[12,13]. Therefore, this theory is not ruled out by this Solar
System test. It is worthwhile to mention that the boundary
obtained here is tighter than that inferred from light
deflection. This is because the standard error of the PPN
parameter y in [25] is smaller than that in [24]. Therefore, as
expected, by improving the measurement of the Shapiro
time delay and light deflection in the Solar System, the free
parameter of this theory can be even more restricted.

C. Gravitational lensing

As seen, the density of the compact system directly
appears in the definition of light deflection and Shapiro

time delay, and the magnitude of the EMSG correction
strongly depends on it. This is also the case in [12] where
the EMSG correction to the orbital period variation of
binary pulsars is studied. As a result, for the dense system,
the EMSG effect can be significant even if the order of
magnitude of the parameter f(, is very small. In fact, the
denser the system, the more important the EMSG correc-
tions are. On the other hand, the gravitational system
considered here is the Sun, which has a very low density
compared to neutron stars studied in [12,13] to constrain
fo- This is the main reason why the interval obtained in the
earlier Secs. IV A and IV B is not more limited than what is
introduced in these papers.

In this subsection, to examine possible detectable sig-
natures of EMSG in light curves, we focus our attention on
the gravitational lensing from a dense compact object like
neutron stars. To achieve this goal, we first derive the lens
equation in the EMSG theory. Regarding the spherical
symmetry of the lens considered here and applying the
small-angle approximation, we have

d,
g—d—lsaEMs = 0, (31)

SO

which is the scalar form of the lens equation written in the
deflector’s planel. The EMSG effects are encoded in agyg
in this equation. Here, 0 and 6 stand for the angle between
the image(s)-optical axis and the source-optical axis,
respectively. Note that the line connecting the observer
to the lens is defined as the optical axis, and the lens and
source planes are perpendicular to the initial direction of the
photon path. Also, d|; and d,, show the angular diameter
distances between lens-source and source-observer, respec-
tively. It is worth pointing out that, in the following
calculations, the angular diameter distances are postulated
to be well defined in GR. These distances are not clearly
defined in this theory. Nevertheless, for a full analysis, it is
necessary to obtain these distances and their relationship to
redshift in EMSG. We leave this for the future.

Inserting the EMSG light deflection (27) into the above
relation, we then obtain

02 — 0,0 — 0%(1 + 22 flp;) = 0, (32)

in which p; is the mass density of the lens and

4GM dy, \'/?
9E_< CZ dsodlo> ’ (33)

is the Einstein angle. To find this relation, we use the fact
that b = d;,0 where d), indicates the angular diameter
distance from the lens to the observer. We should recall that
to derive this relation, it is assumed that the density of the
lens is uniform. It is also worth mentioning that Eq. (32) is
established where the point of closest approach of the
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photon to the center-of-mass of the lens, b, is much larger
than twice the Schwarzschild radius of the lens Rgy,, i.e.,
b > 2Rg,. In fact, here, photons pass far away from the
lens’s photon sphere. It means that the solutions to the lens
equation should satisfy the condition 6 > (d,,/d)0% in
this lensing scenario. This is the realm where 1py correc-
tions are sufficient to describe gravitational lensing.
Beyond this regime, strong-deflection lensing including
higher PN terms, should be investigated.

By solving the lens equation (32), we find the position of
lensed images with EMSG corrections as follows

1
s = 5 (60,562 + 40201+ 20 ). (34

As seen, like GR, there are two solutions. Furthermore,
given the EMSG corrections, the position of these images
deviates from the GR case. Therefore, investigating
Eq. (34) can provide a possible test for the EMSG theory.
Let us define the following ratio

+ +
_ Oms — Ocr

D
O

, (35)

where 0% = 05ys(fo = 0). In Fig. 1, we illustrate
this relative deviation of the EMSG image positions and
the GR ones for three cases: (i) Where the source is
completely behind the lens, ie., ¢, =0. (ii) Where
0, < Og. (iii) Where 6, > 6g. It should be mentioned
that for the third case, 0f,;q does not satisfy the desired
condition € > (d,/dy)0%. So, we ignore this solution and
exhibit other cases in this figure.

Regarding the sign of f{,, the relative deviation can be
positive or negative. Here, we consider the interval
—0.7 <D <£0.7. As mentioned earlier, we assume that
the lens is a dense star with the density of the order
10'7 kgm™. So, the density is chosen to be in the range
107 kgm™ < p, <8 x 107 kgm™. In the top panel
of Fig. 1, the relative differences for the first and second
cases in the parameter space (py, f,) are indicated by the
solid and dashed curves, respectively. The third case is
displayed by the solid curve in the bottom panel. To
visually compare our result with the previous study, the
bound —0.6 x 1073 ms?kg™! < f, < +1073¢ ms?kg™!
which is obtained in [12], is also added in these panels.
Since considerable relative differences only occur for a
large amount of f{, in the third case, this interval of f{, turns
into a single line in the bottom panel. Both panels in this
figure show that at a fixed density, the higher the free
parameter |f;|, the greater the absolute value of D.
Furthermore, for a fixed EMSG parameter, |D| grows with
increasing the lens mass density. Therefore, as expected, at
a high mass density and a large |f7|, the relative difference
will be considerable. It is seen that |D| > 0.1 for |f{| >
1073 ms?kg™! and |f}| > 1073* ms?kg~! in the top and

Density (x10'7 kg m™

0.1

)
1.0F ' ' B
\ \0.7\
0.5
05 0.25 \
0.05 035

fo' (1078 m s? kg™")
o
o

]
————

0.1
M

-0.05
_0.5f -0.2 i
-1.0¢ , , , I
2

0 4 6 8
Density (x10'7 kg m=)

FIG. 1. The representation of Eq. (35) in terms of f, and the
density of the lens for three cases 0, = 0, §;, < 0g, and 6, > 0.
The contours of equal D in the plane (p;, f{,) are shown in the
interval —0.7 <D < 0.7. In the top panel, we display the cases
where 6, = 0 and 6, < O with the solid and dashed curves,
respectively. Also, the upper and lower bounds on the EMSG free
parameter obtained in [12] are represented by the red dotted lines.
The bottom panel shows the case where 0 > 0. As 0g,g does
not satisfy the condition 6 > (d,,/d,)0% in this case, we only
study @y in this panel.

bottom panels, respectively. In fact, in this region of the
parameter space (py, f{), it is possible to detect the footprint
of EMSG on the position of images. On the other hand,
given the constraint on f{, shown by the red dotted lines in
these panels and its intersection with the D = 0.05 curve,
only a relative deviation up to 5% can be expected for the
cases 0, = 0 and 6, < Og; and in the case where 8, > 6,
there is no significant difference between the position of
images in EMSG and GR.
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To shed light on the importance of this difference, let us
estimate the EMSG correction to the Einstein angle in the
microlensing regime. We consider a compact object as a
gravitational lens and a star as a light source that are located
a few Kkiloparsecs away from the Earth. In this case,
regarding Eq. (34), we have 0EMS ~ 0 (1 + 2 f{p)). To
find this relation, we keep only linear terms in f{,. Then,
this yields ¢2f{p0 for the EMSG correction up to the
leading order. According to the sign of the EMSG param-
eter, the new Einstein ring can shrink or expand compared
to the standard one in GR. Now, in order to evaluate the
order of magnitude of this correction, two possible cases
are studied. We suppose the supermassive black hole at the
center of our Galaxy is a gravitational lens and a star at
dys = 10 pc is a source. In this case, the lens is located at
diy = 7.9 + 0.4 kpc [26] with M = (3.6 £0.2) x 10° M,
[27]. Tt is assumed that the lens is a sphere with a
Schwarzschild radius and its density is defined by p; =
(3¢®/3272G?)(1/M?). Also, we set fiy = 1073 ms?kg™".
Using this definition and ignoring the uncertainty in mass
and distances, we find that the EMSG correction to the
Einstein angle for this lens is 8.7 x 10~ pac (microarc-
seconds). Then, for this supermassive black hole, the
EMSG contribution to the position of images is insignifi-
cant and it is exceedingly faint to be detected. On the other
hand, one can show that in the same lensing scenario with a
lighter black hole, e.g., M = 50 M, the order of magni-
tude of the EMSG correction is about 0.2 uac. For the next
case, we choose another possible system in which the
stellar lens and source are located in the Galactic halo and
Magellanic Clouds at d), = 20 kpc and d,, = 50 kpc,
respectively. We also assume that the lens is a neutron
star with p; = 107 kgm™ and set f} = 1072 ms*kg~".
In this case, the EMSG correction to the Einstein angle is of
the order 5.3 pac. Moreover, for fj =107 ms?kg™!,
which is one order of magnitude smaller than the upper
limit of the EMSG free parameter obtained in [12,13], one
can find that this correction would be of the order 0.5 pac.
From these interesting astrophysical cases, we deduce that
the EMSG correction can be of the order (1 —0.1) uac.
Although this change in the image position is small, it is
expected to be measurable by future high-resolution mis-
sions such as MAXIM [28,29]. Indeed, this may provide a
direct observational test for this theory in the weak-field
limit and improve the constraint on the EMSG free
parameter, its upper limit, by at least one order of
magnitude. As the deviation for fj = —107% ms?kg™!,
which is one order of magnitude bigger than the lower limit
of the EMSG free parameter, is of the order 0.05 uac,
constraining the lower limit of f{, is beyond the sensitivity
of the planned microarcsecond-resolution missions.

From the observational point of view, the modification of
the Einstein angle could affect the measurement of some
quantities. To clarify this, we study the characteristic
timescale of a microlensing event given by tg = Rg/v .

Here, Ry = d,0g is the Einstein radius and v, is the
transverse velocity of the lens relative to the line of sight.
This timescale provides a tool to estimate the lens mass.
Obviously, the difference of the Einstein angle due to the
extra EMSG potential gives rise to the change of the
Einstein time 7. Here, we assume that the distances and the
lens transverse velocity are known. So, this change means
that the lens mass is different from what is obtained in GR.
In fact, by setting /EMS = > = /3R, one can arrive at
Mpys = 1 5 X(1 = 2¢*f(p1), whereas we have Mgr =
lEopsX I GR. Here, x=(c?/4G)(dy/(dodys))v7.
Therefore, the lens mass may be overestimated or under-
estimated utilizing the classical/GR method. The EMSG
correction to the Einstein time also reveals that depending
on the density of the lens and the free parameter of the
theory, the mass of the compact object, for instance, the
neutron star, in the EMSG theory could be smaller or larger
than the standard case inferred from GR. This fact is
consistent with the results of [5]. Nonetheless, we empha-
size that a more complete analysis should be adopted when
the distances in this theory are properly studied.

Another interesting quantity studied in microlensing is
the magnification of the primary and secondary images
which is defined as

| 6= do*

A* =
0, do,

(36)

for a steady and very small source [30]. Given this relation
and Eq. (34), for a similar source, we define the magni-
fication in the EMSG theory as

Ai — 0§MS dgiJEEMS
EMS 95 deq

1 W 2y +1) £
pu— —_— C -,
ur/u* + 8cfy/p + 4\ 2 o 2

(37)

where u = 6,/60g. Since the separation of images is too
small in a microlensing event, the images cannot be
detected individually and only the total magnification of
a source can be observed. So, we focus our attention on the
total magnification. Summing A{,,s and Agy, We arrive at

1
u\/u2 +8c*fip +4

Apms = (> +42fp +2).  (38)

for the total magnification in the framework of EMSG. For
fo = 0, this relation reduces to the GR one, cf. Eq. (11) in
[30]. It shows the consistency of the EMSG theory.

In order to reveal the influence of the EMSG terms on the
total magnification, we exhibit the relative difference
(Agms — Agr)/Agr in terms of u in Fig. 2. In this figure,
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FIG. 2. The relative difference between Agy;g and Agg in terms
of u for different values of the lens density. Here, the solid and
dashed curves show the cases with fj = 1072° ms?>kg™!' and
fo=—0.6 x 1073® ms?kg~!, respectively. These values are the
upper and lower limits on the EMSG free parameter which are
obtained in [12].

the solid and dashed curves, respectively, belong to the
upper and lower bounds of the EMSG parameter repre-
sented in [12]. This deviation is also studied in the density
range 10" kgm™ < p <8 x 107 kgm™. As seen, the
deviation grows with decreasing u# as well as increasing
p1- It means that in the situation where the source is almost
behind the dense lens, the EMSG correction is more
effective, and as a result, the combined light intensity
could be different from the GR one. Given the solid curves,
all of which take positive values in this figure, for
fi=1073¢ ms?kg~!, the images in EMSG are brighter
than those in GR. In the best case, the EMSG image is about
7% brighter. The situation is quite the opposite for
fo=-0.6x 107 ms’kg~!, and the EMSG image is
dimmer than its GR counterpart. See the dashed curves
for which Agys < Agr. Here, in the best case, the EMSG
image is about 4.5% dimmer. Therefore, the light source in
the EMSG theory would be microlensed differently com-
pared to GR; and for the positive/negative value of f{,
the EMSG image is brighter/fainter than the GR image. This
fact is also in agreement with the results inferred from Fig. 1.

In the framework of microlensing, it is also interesting to
study the shape of the light curve versus the time it takes for
the lens to move relative to the source. Here, we are
interested in studying the total magnification in terms of the
duration of a microlensing phenomenon in the EMSG
theory. To do so, we assume that the lens has a uniform
motion. It is shown that in this case, the position of the
source in terms of time is given by [30,31]

log A

t/tg

FIG. 3. The variation of the combined magnification with the
dimensionless time ¢/ tg for u,,;, = 0.1,0.3,0.5,0.7,0.9, 1.1. The
solid and dashed curves exhibit the GR and EMSG cases,
respectively. Also, the dashed curves above and below the solid
ones stand for the EMSG case with fjj = 107 ms?kg~! and
fo=-0.6 x 1073 ms?kg~!, respectively. Here, we set p; =
6 x 107 kgm™3.

TR = I R

where u,;, = u(t = t,) is the dimensionless impact param-
eter and ¢ is the time of closest approach to the lens. In the
following calculations, without losing generality, we
choose #, = 0. Substituting this relation back within
Eq. (38), we study the change of the EMSG combined
magnification in terms of time. Our results are summarized
in Fig. 3. In this figure, for different values of u,,, log A is
studied. Here, the solid and dashed curves exhibit the GR
and EMSG cases, respectively. The dashed curves above
and below the solid ones belong to the EMSG case with
fo =107 ms’kg™! and fj =-0.6x1073¢ ms’>kg~!,
respectively. This figure reveals that except for a small
deviation, the overall behavior of the light curves in EMSG
is similar to that in GR. Indeed, the smaller the dimension-
less impact parameter u,,;,, the brighter the lensed image.
This fact significantly occurs at r = ¢y, = 0. To indicate
when the deviation between the standard and EMSG cases
is considerable, we also study (Agms — Agr)/Agr in terms
of time for u,,;, < 1 in Fig. 4. In this figure, the solid and
dashed curves belong to the upper and lower bounds of the
EMSG parameter, respectively. It is seen that, in the closest
approach, which occurs at t = ¢, = 0, the absolute value of
the relative difference will be maximum. Also, similar to
Fig. 2, this deviation increases with decreasing u;,.
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FIG. 4. The relative difference between Agyg and Agr in
terms of the dimensionless time #/tg for different values of
Upmip.- The solid and dashed curves show the cases with fj =
1073 ms?kg™! and ff, = —0.6 x 10736 ms?kg~!, respectively.
Here, we assume that p; = 6 x 10'7 kgm™.

V. SUMMARY AND CONCLUSION

In this work, we have studied the behavior of light rays in
the weak-field limit of EMSG. The PN metric of an EMSG
fluid has been derived. This is the main material needed to
obtain EMSG corrections to the propagation of light rays.
We have utilized the modern approach to the PN theory. It
has been shown that in addition to the Newtonian potential,
the EMSG potential, Uy, affects both longitudinal and
transverse terms in the trajectory of photons. As a conse-
quence, in this theory, photons do not behave as predicted
by GR. To understand if there is a detectable signature of
the EMSG theory in the motion of light, we have studied
light deflection, Shapiro time delay, and gravitational
microlensing. As a first step, it has been assumed that
the deflector is compact and spherically symmetric. In fact,
because the quadratic term p? appears in the Poisson
integral of Ugys, the point-mass description cannot be
used here. For the sake of simplification, throughout this
paper, we have also considered that the density of the body
is uniform. Otherwise, due to the appearance of the time-
dependent EMSG term in the definition of light deflection,
we would encounter more complicated calculations.
Choosing the constant density body allows us to easily
evaluate and understand the EMSG correction to the
motion of light.

It has been shown that the EMSG contribution to light
deflection and Shapiro time delay is similar and in both
cases, the same expression (1 + 2c2f{p) is added to the
classical one. It means that in addition to the free parameter
of the theory, f{,, the magnitude of the EMSG correction

strongly depends on the density of the deflector. Therefore,
for the dense system where gravity experiments are carried
out, the EMSG effects can be significant or even detectable.
Regarding the results obtained in [24,25], we have
restricted the free parameter of the theory and shown that
it should lie within the range —4.0 x 107" ms?kg™! <
o <87x1072 ms?’kg™! to justify the Solar System
tests such as light bending and Shapiro time delay. Since
there is no inconsistency with this interval and those
derived in [12,13], we claim that the EMSG theory passes
these Solar System tests with flying colors. However, more
accurate measurements are needed to find a tighter bound
on the free parameter of the theory and to observe its
possible signature in the Solar System framework. In other
words, EMSG and GR cannot be distinguished only using
these classical tests of gravity with the current accuracy.
The main reason that the interval obtained from these tests
is not more limited than what is introduced in the precedent
studies is that the gravitational system considered here is
the Sun, which has a very low density.

To examine possible detectable signatures of EMSG in
light curves, we have next focused our attention on a source
microlensed by a dense object like neutron stars. Notably,
there are two images in the EMSG gravitational lensing
scenario whose positions deviate from those in GR. It has
been shown that given the sign of the EMSG parameter, the
new FEinstein ring can shrink or expand compared to the
standard one. Two interesting and possible astrophysical
systems have been applied to estimate the EMSG correc-
tion to the Einstein angle in the microlensing regime. For
these cases, we have predicted that this correction would be
as large as (1 — 0.1) pac which could be detected by future
high-resolution missions such as MAXIM [28,29]. This
advance in measurement may not only distinguish this
modified theory of gravity from GR, but can place a
stronger observational constraint on the free parameter
of the theory compared to the previous studies in this
context. It may improve the upper limit of f{, by at least one
order of magnitude.

We have then investigated the total magnification and the
shape of light curves in the EMSG theory. It is revealed
that, except for a small shift, the overall behavior of the
EMSG light curves in terms of time is similar to that in GR.
It also turns out that where the light source is almost behind
adense lens, the EMSG correction is more efficient, and the
combined light of the lensed images is different from the
GR case. Remarkably, compared to GR, for the positive f{,
the EMSG image becomes brighter, while for the negative
fo» the EMSG image becomes dimmer. In the best case, this
deviation from GR is less than 10%. However, it is possible
that in the case of the strong magnification events with
small measurement errors, the signature of EMSG theory
due to the extra gravitational potential can be detected.

To sum up, the Solar System tests such as light bending
and Shapiro time delay do not rule out this theory. In the
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gravitational microlensing scenario, a dense compact lens
like neutron stars allows us to distinguish this modified
gravity from GR. It is possible that future high-resolution
missions could provide an observational test for the EMSG
theory in the weak-field limit.

ACKNOWLEDGMENTS

I would like to thank Mahmood Roshan for reading this
paper and for his useful suggestions. This work is sup-
ported by Ferdowsi University of Mashhad.

APPENDIX A: NEAR-ZONE AND WAVE-ZONE
SOLUTIONS OF THE WAVE EQUATION

In this Appendix, we derive the approximate solution of
the highly nonlinear wave equation (5) where the field
point is situated within the near zone. Utilizing this solution
and applying expansions (6a)—(6c), one can systematically
construct the near-zone spacetime metric of a system to an
adequate degree of accuracy. To find the solution to Eq. (5),
we take the advantage of the iterative procedure introduced
in [22]. The main idea behind this method is to approx-
imately linearize this equation. Then using the retarded
Green’s function, one can integrate the linearized wave
equation.6 To do so, the source term of each iteration of the
wave equation, i.e., 7, is built in the previous step. In fact,
in this manner, Eq. (5) is no longer nonlinear in terms of /2**
and the wave equation can be integrated straightforwardly
in each iterative step. In the following, each step is
indicated with the index (n) where n shows the number
of the iteration of the wave equation. We should then solve
Dh’;r’:> = —Zkrgf”f(n_l) in every step.

It should also be mentioned that the method of extracting
the PM and PN approximations generally is similar and the
PN limit is in fact embedded within the PM approximation.
Therefore, some parts of our calculations, more specifically
the first iteration, inevitably overlap with those of [12].
However, for the sake of completeness, we discuss these
parts in detail here.

Before getting our hands dirty with the iteration pro-
cedure, let us collect all general forms of the solutions to the
wave equation we need during our calculations. Regarding
the position of the field and source points of the wave
equation, these general solutions are categorized. We
rewrite those in which the field point is located in the
near-zone region of spacetime. According to the naming
rule in [22], the solution whose source point is located in
the near (wave) zone is indicated by the index N (W) and
called the near-zone (wave-zone) solution.

®This technique is comprehensively introduced in chapter 6 of
[22]. As the mathematical form of the EMSG field equations in
landau-Lifshitz formalism is similar to the GR one, we use the
general retarded solutions to the wave equation introduced in this
reference.

The first general solution to the wave equation is the
near-zone solution given by

kS (=1 /0!
Hv _ § : e v / _ ! |1=1 3,
hN(t’x) - 2 Z!Cl <8Z) /_/\/l Tgff(t’x )|x X | d’x ’

=0

(A1)

in which the source, x’, and field, x, points both are situated
in the near zone. If we consider R to be the boundary
between the near and wave zones, we have r' = |x/| <R
and r = |x| < R in the above relation. Here, M is a three-
dimensional sphere with the radius R representing the near-
zone region. In the following, we show its boundary
with OM.

The second one is the wave-zone solution where the field
and the source points are situated in the near and the wave
zones, respectively. This solution is introduced as follows:

" f*(r—2s/c)A(s, r)ds
R—r

WY (t,x) ==
w(t:x) 2 r

. A‘” F(z—2s/¢)B(s, r)ds},

k nliriae) {

(A2)

in which A(s,r) = [;¥ P ({)p'™dp and B(s,r) =
[+ Py(&) p'="dp, where P;({) is a Legendre polynomial.
Here, ¢ = (r + 2s)/r — 2s(r + 5)/(rp), and nt/1/271) is an
angular symmetric trace-free tensor, cf. Eq. (1.154) of [22].
Moreover, for this solution, the source term of the wave
equation is written as

= ifﬂD(T) nliviain)

= A3
eff dr ( )

Here, 7 =t — r/c is the retarded time.

1. Zeroth and first iterations

We start the iterative method with the zeroth step. At this
stage, the spacetime is described by the Minkowski metric,

ie., g, =" and /=9 = 1. Then, we have Hig, = 0.
Regarding this, we construct the components of the

effective energy-momentum tensors 7" g:f(o)‘ As mentioned,

we choose a perfect fluid to describe the matter part of the
system. Considering the definition of 7%, we arrive at

1 8
Ty =P+ ] [1 +t3 (v2 + 21T + p—f)]
+0(c™?), (Ada)
Iy P VB 2p
¢ ITStJ'f(O) =p*v) +4p vl fy! {2 + 2 (H + p*ﬂ
+ 0(c™?), (A4b)
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T/k

. 1 ) )
o) =P o' |87 = (02 =237 = 2070) | + O(1),

(Adc)

where p* = ,/—gyp is the rescaled mass density and
IT = ¢/p*. In the zeroth iteration, one can show that y =
1+1% 4+ 0(c™) and p* = (1 + 1%+ O(c™))p. It should
be mentioned that, to find Eqs. (A4a)—(A4c), we apply the
normalization condition g, wu” = —c?. To completely
construct the source term of the wave equation, we also
need to build the landau-Lifshitz and harmonic pseudo-
tensors at this stage. The general form of these pseudo-
tensors is defined by

w1 (1
(-t = oy {5 13,0, 0, h"0 — nn,, 0, WP

X 8/1 h — ’7/1/1;1””8/) ],Laya/I e + ’,MM’,IL//) ayhaiap hﬂﬂ
1
+ g @0 =) (2 e = Npote)

x aﬁhwaﬂhﬂd}, (AS)

as well as
1
(=) = 57 (Oh“ O = W0, k). (A6)

where the harmonic gauge condition is imposed.
Substituting h’(’g) = 0 in the above relations, one finds that
thL(o) =0= t’IfI”(()). Therefore, Egs. (A4a)-(A4c) would be
the source terms of the wave equation in the next iteration.
It will be shown that the extra EMSG terms in these
relations induce different gravitational potentials in the next
steps. So, this is the starting point of departure from the PN
limit of GR.

Now, we solve the wave equation Dh’;]” )= —2sze‘ff(0) to

uwo g 7% . .
find h(l) = th + hW(l)‘ We first focus our attention on
the near-zone solution h”N”(l). We arrive at

4
h?\(f)(l) = ?UJF 4foUpms + O(c™), (A7a)

o 4 . 8 )
iy = pe U+ Eff)Uszs +0(c™),  (ATb)

. , Gd
h.j/\];(l) = 4f65jk<UEMs —?Efm> +0(c™), (ATc)

after inserting Eqs. (A4a)-(A4c) into integral (Al). Here,
the gravitational potentials U, U/, Ugys, and U{EMS are,
respectively, given by

*/
U=G / L&y, (A8a)
M| —x'|
) *1 . 0]
Ui =G /M |f _Ux,|d3x’, (A8b)
*/12
UEMS = G/ p—,d3x' (A8C)
M x = x|
. p*IZU/j
Ulys = G &y A8d
EMS //Vl |x _x/l X ( )

We also introduce a new parameter 9t in EMSG as

m:/ p*’2d3x’.
M

The next case is the wave-zone solution, h%(l)'

(A9)

Regarding the position of the source point as well as the
slow-motion condition and weak-field limit, in this case,
the only source term of the wave equation can be #]
and #;. On the other hand, it is shown that these terms

vanish in the zeroth step. Therefore, h;’,(j(l) =0 and con-

p I’l”ﬂ
(1) — "Ny

We can now construct the near-zone metric in the first
iteration. After substituting Eqgs. (A7a)-(A7c) within
Egs. (6a)—(6d) and some simplifications, we obtain

sequently &

o
1

1 2U _

gho = =1+ 3+ 8f3Ueus + O(c™).  (Al0Q)
by AU 8, i
o) = =5 = foUlus + 0™, (AIOD)
2U
95‘115) = <1 + ?> Six +0(c™), (A10c)
W, .

(=g9)) =1+ — = 8foUrus + 0(c™3).  (Al0d)

Given the PN corrections of the metric components, one
can easily grasp that this metric does not have enough
information to describe a relativistic system up to the 1 PN
order. Therefore, we continue the iterative procedure until
the desired relativistic corrections are achieved. As the final
point of this part, let us mention that the strange order ¢~ in
the determinant and time-time component of the metric is
completely constructed from an EMSG term. However,
since we are in the first iterated step, this term cannot be
trusted to check the time-reversal invariance of solutions.
By completing the second iteration, we find that this odd
order would not exist in the PN expansion of this
component of the metric.
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As claimed, each order f|, is treated as a PN correction.
Considering the above PN expansions of the metric
components and comparing terms with each other, for
instance, the first and third terms in the time-time compo-
nent, one can conclude that f{; must be very small and at
most of the order of ¢~2. So our previous assumption made
in Sec. II is justifiable.

2. Second iteration

By using the metric built in the previous iterated step, we
can now derive the main materials to construct the PN
. uvo g v uv
expansion of h(z) =h v T hW(z)- We launch our calcu-
lations by constructing the source term of h%(z). It should
be mentioned that, to find the desired PN order for h’g) and
consequently for ¢ ; it is necessary to build O(1) for

etf (1) order O(c~ eff( .
the following, each portion of the effective energy-momen-
tum pseudotensor is derived in detail.

Utilizing the components of gf(‘f), we find the contra-

1 for 2% and order O(1) for ré'f‘f(l). In

variant components of the standard energy-momentum
tensor of the perfect fluid as

1/1
T(()% =p*c? [1 +8f0' Ugms +3 <—02+H— U)] +0(c™),

2
(Alla)
0j o] / 1 ! 2 P
T(l) =p vl e 1+8f0 UEMS +—2 EU +H+_*_U
c p
+0(c), (A11b)
T{’f) = p&* + p*vivk + O(c7?). (Allc)
We use the fact that y(V) = 1+4f( Upys +% (50> + U)+
O(c™) and p* =[1+5 (50> +3U)]p+ O(c™) at this

stage. It is worthwhile to note that the O(c™") term in T7})

is constructed from the EMSG term that is proportional
to dM/dt.
We next derive the EMSG part of T’e‘f”f(1>, i.e., the terms

with the coefficient f7, in this effective tensor. We indicate
this part with T%;,s. One can show that for a perfect fluid
with L, = p, this part reduces to

Tens = fo <C4P29’"’ +2c%(epg™ +p*uu) + (3p* + €?) g

<8pp+4ep—|— (6p> +8pe+2¢ ))u"u”).

(A12)

Utilizing the above relation and the PN expansion of the
metric components, we arrive at

T%?\/[S( 1) =p2ctfof {1 +8£0'Uswms
L 8p -1
+— v +2H+F_4U +0(c™"), (Al3a)
C
Tos) = 20723 o' [/(1 + 8£5/ Upnis) — 4/0/ Uls

2/ (. 2 .
+5 (m <H +2L 2U> - Ufﬂ +0(c™),
c p

(A13b)

. 1 ) )
Tg;v[s( ) =p 2ttty {5”‘ +?(21J/1/‘ — (v* =201+ 8U)5/k)]
+0(c7?). (A13c)
We should mention that the ¢! order in T( DEMS is an

EMSG correction and corresponds to d9t/dt.

To complete the source term of the gravitational potential
W\ the two portions (—g(l))t’ﬁi(l) and (—g(”)t’}’l’“(l)
should also be calculated. Given the definitions (A5) and
(A6) and the components of h”N”(l), one can in principle

obtain these portions in the near zone. We first find the PN
expansion of the Landau-Lifshitz pseudotensor compo-
nents below:

1

70,U0'U + 8ctfo! <fo 0;Ugns
872G

(=g =
. 1 .
x 0 Ugpys +—28jUajUEMs>:| + O(C_l),
C

(Al4a)

(_9(1))1‘2{‘(1)
:4 Ge [30, U8/U+4(3JUk

Ay
+— G O\ fo (0,Upms @ Ugns — 20/ Upns Ok Uls

9 UY) x U]

+ 20/ Uky\isOkUpnis) + ; (0kUpms & UX — 07Uy 0, U*

+2(0Ukys = Uls)OLU) | +0(c7?),  (Al4b)
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; 1
k

o4
c*fo
nG

[a-/‘ Uo*U — %8" Uo, Ué-f"]

{ 0(0"Upns0, Ugps &

) 1
— ' Upms0 Upms) + 7(23]UEM53 U

- a"UEMsanU(sfk)] +0(c7h).  (Alde)

To obtain the PN expansion of the harmonic pseudo-
tensor components, we substitute Eqs. (A7a)—(A7c) into
Eq. (A6). We have

i 4f0/2 ) "
(=g )f{{(l G [0/ Upms O Ugpwms

- UEMsana"UEMsﬁjk] + O(C_l) (A]SC)
after some manipulations. It should be noted that since the
Landau-Lifshitz and harmonic pseudotensors are both
made of the gravitational potential in the near zone, these
pseudotensors are involved in the near-zone source terms in
the following derivation.

Now, we have enough information to build the compo-
nents of the EMSG effective pseudotensor up to the required
PN order. After gathering together Egs. (Alla)-(Allc)
and (Al3a)-(Al5c) and some simplification, we finally
arrive at

c*fo’
(—9(1))@31)_ ¥ {fo Ugwms 9, aJUEMS+ 5 Upms0;0'U - |
—2,00 _ % ) _ 2p 1 52
—I—O(c_l), (Al5a) T Togr(r) = P {l—l-c2 <21j +1I 2U>] +cfo'p
i f x{l—i— ( +2H+——2U+
(—9(1))131(1) =21 £ (0,Upns® Ugmis c? P
) 7 1o
2772 2
+ 28/UEM58kUEMS - 2UEMSak8kU]/5MS) - 1677.'GC2 VU _%v (UUEMS)
1 . k ki c2f0/2
+?(81Uk8 Ugms — Upms 00" UY) -5 V2U2ys + O(c73), (Al6a)
y4
+ O(c‘z), (A15b)
|
1= i |1 +i lvz +n+L2 430 +#[36 Ud'U + 4(0'U* — 0FU7) 0, U]
eff(1) — P 2 \2 P 4zGc? ! k
| . . 1 . )
+ szo/ |:2p*2’UJ + ? (p*z’UJ <4H +p£*> - 4p*2U] + E (28/Uk8kUEMS - 8j UEMsakU
: ; 1 .
+ 2 Ukys — 0" Ulys) 01U + 4JTGP*U’UEMS)> = fo <8P*2U1/5Ms TG (20,Ugms? Ugmis
— 2(9’UEMS(9kUlI§MS + 4('91U]]§:MS('9,(UEMS + 8ﬂGp*21}jUEMs)>:| + O(C_3), (A16b)

) = P vivk + p&k

T

It should be mentioned that, to simplify Eq. (A16), we
use the fact that

V2U? =20,U9'U — 8zGp*U, (Al17a)

V2Ulys = 20;Ugpms @' Ugpnis — 87Gp**Upys.  (A17D)

1 [, 1 .
ti e [a-/ UokuU — 5 0,U0" U&’k] +ctfy { 25k 4

1 . . . 1
+_G (20/ Ugps0FU — anUEMsanUéjk)> + fo'&* <_G 0, Ugms 0" Upms — 4P*2UEMS>] +0(c™).
T

1
< 25211 — v — 4U) + 2p*2vivk
c?

(Al6¢)

v2(UUEMs) = 28]U(9/UEMS - 47TGP*UEMS - 47TGp*2U
(Al7c)

It is worth noting that the odd terms O(c™3), O(c™?), and
O(c™") that, respectively, appear in the time-time, time-
space, and space-space components of 7/ ;'f(l) are entirely
built of the EMSG term that is proportional to d90t/dt. In
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the following, by utilizing the near-zone source terms
derived in the above relations, we attempt to find h;'\ﬁ(z).

a. Near-zone solution

To find the near-zone portion of the gravitational
potential, we utilize Eq. (A1). We first study the time-time
component of hﬁ(z). In this step, one can show that the

integral (A1) reduces to

~2.00
4G C "Tefr(1) 1 ki
00 3y —
hN(z)— 2 {/M |x_x/| d’x 6C3I (I)
1 o? _
+2c28[2/ C 2722 |x—x/|d3x/+"’}
+ h(3) [OM], (A18)

4G P 1/1 1
hOO 1+—(= 2 | § - d3 ’_
to = (e er-gv) e

after some simplification and applying the gauge condition

which is equivalent to the conservation statement
8,,1’; fr(1) = =0 at this stage. Here, the overdot stands for

the derlvative with respect to time ¢ and h(3) [0M] shows the

surface integral in this solution that actually appears after
enforcing the gauge condition. In the following, we
examine this term in detail. Moreover, Z/% is given by

(A19)

ij(t)—/Mc_zfg?f( (t,x)x/x*dx.

Inserting Eq. (A16) within Eq. (A18), we have

7 / VIZ U/2 d3x/
162Gc? Jpq |x —x'|

+c*fy L S (P 8p oy 4 2Ves ) ) o - o [ VAU EMS)CP/
mpx=x|\" e P i

_szg/ V/ZU/EMSdSX/_FLa_Z/ */‘x x’|d3x’+

272G J e —x| 2¢208 I

As seen this component is made of two portions, the
compact and noncompact parts. The compact pieces are
entirely constructed from the fluid variables restricted to the
near zone. See the first, third, sixth, and seventh integrals in
the above relation. On the other hand, the noncompact
pieces can exist beyond the near zone. In fact, the sources
of these terms are the Newtonian and EMSG potentials. See
the second, fourth, and fifth integrals of Eq. (A20). Here,
we focus on these parts.

By utilizing the fact that V'>(1/|x —x'|) = —4z8(x —x'),
one can easily simplify the noncompact parts as
follows:

vle/z a/jU/2

/ d’x' = 47:U2+?{ (—,

M = x| aom \[Jx —x|
_ U/Za/

1
ds’,
M= I> !

(A2la)

V/Z U/U/ 8/1 U/U/
/ ( FMS)CPX/:_“'”UUEMS—’_% < ( ]/'EMS)
M =X oM e —x'|

1
—U'U;Ma'| |>dS’ (A21b)

fo

27G Sy |x—X|

. 1ok _
262/ p = |y =T (1) + Oc 4)}. (A20)

v2UE UL
/ EMS By = _4HU%MS +% ( EMS
oM

Ix —x'| Ix —x'|

1
— U'tns9 (r |> ds’, (A21c¢)

in which dS; = R? sin @dOd¢p. Considering the definitions
of the standard and EMSG potentials, one can also deduce
that U o 1/R and Ugyg o« 1/R on the boundary OM. See
Appendix D of [12]. So all surface integrals in the above
relations will be proportional to o« 1/R?. In the framework
of the modern approach to the PN approximation, it is
claimed that the R dependent can be removed during
calculations. In fact, it is argued that the R-dependent terms
in the near-zone and wave-zone solutions will eventually be
canceled by each other [22]. We use this scheme here and
drop all surface integrals. Given these points, we then
simplify the time-time component as

4U 1
h%a) = 7 +4foUems + {41// +70% 4+ 20,X

+ 42 ff, <WEMS + 2UUgys + 262 Ubns

+50Xs ) | =35 T+ 0. (a2
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in which
p*/ 1 1
=G — 24+ 1 == U |d?X, A23
fogZa (e m-gv)ee. o
X = G/ P —x'|d>x' (A23b)
M
are the well-known PN potentials and
/)*/2 » . 8]7, )
=G 211 -2U
v =G [ G (a8
2U;
+ E*_i\’ls) d3x, (A24)
P
XEMS = G/ p*/2|x —x’|d3x/ (AZS)
M

are the new gravitational potentials defined in the PN limit
of the EMSG theory. For the sake of simplification, let us
break down gy in terms of several EMSG potentials as
follows:

wems = Vems + 2lgms + 8Pems — 27/{(51}313 + 2“1(321\318
(A26)
where
p*IZv
VEMS = G/ 7([‘)/, (A27a)
MPx =X
*I277/
Mpys =G | L—dx, (A27b)
M x = x|
*/ ./
Peys = G / PPy, (A27¢)
MPx =X
as well as
*12 77!
(1) pU s,
U =G d’x', A28
EMS //\/l |x _x/| X ( a)
U =G / P Usns g A28b
EMS — v _ /| : ( )
M =X

Regarding Eqgs. (6a)—(6¢), the other component of the
gravitational potential required to build the metric is 4. To
ﬁnd this component, we need to obtain its source term, i.e.,
kK. Considering Eq. (A16c¢), we have

1 1
T{c{é{f(l) P (l} —§U> +3p—@V2U2
1 1
confipe(ie (L
14 2U
- U- EMS
3 3 p*

32 f
e LAVAY EMS]—#—O(C‘l),

%VZ(UUEMS)

+

(A29)

in which Egs. (A17a)—(A17c) are inserted. Substitution of
this source term into the integral

Kk
4 ik 1 ..
hk" G / (l)eff/ Py — Zkk<t)
N T A Sl =¥ 2¢

_’_La_z Tkk |x_x,|d3x/+...
2202 J, [Dett

+ % [OM]

(A30)

gives rise to

1
hkk =12f Ugms +— {4\/ + U? +242f) (HEMS

1 2 1
_8VEMS _guEMs _u1<51\)/[S +gUUEMS

1 2G ki _
+70uXevs —szf)U%Ms) } _?I (1) +0(c™).

(A31)

V—G/ P (el 3P e (am)
M= x| 2 P

is another PN potential. It is worth mentioning that
Eq. (A30) is obtained after inserting the conservation
statement 0, 7. = 0 within the general near-zone sol-
ution (Al).

Finally, for the time-space and space-space components
of the gravitational potential, in a similar fashion to the
previous calculation, we arrive at

A 4 ,
0 _
hf\]f(2) - E{U] +20? foUpys} + O(c™), (A33)

and
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' ' 4 [ i 1
k
hj\f&) - 4f651kUEMS + e {W/" ¢/ Zkaz

1 .
+2UUgys + EattXEMS - 2C2f6U12~:Ms> + 2UIIEI§VIS

2G ix

+8XEMS]} 7Z (1) + O(c™), (A34)

in which the standard tensorial potentials W/¥ and X/* are
given by

*/
Wik=G P vy
M |x=x'|

ik — / YUY 2
iy V)
4r Ix — x|

U/ ) / )
"—75/"+%5/")d3x’, (A35a)
p

(A35b)

respectively. The EMSG tensorial potentials U{;:I;,[S and
Xf;:liv{s are also defined as

p*IZUljvlk :
U =G | B dx, A36
EMS — //Vl |x _x/| X ( a)
Uy O U’
jk EMS d3 / A36b
EMS 471_/ |x _ x/‘ X ( )

As the final point at this stage, let us focus on the surface
terms that are involved in the integrals (A18) and (A30) and

jk
and h N We
return to Eq. (Al) before enforcing the conservation
statement 8”1-’éff(l) = 0. The second term in this expansion

has an important role because it may turn to the surface
integrals in the leading PN orders. Setting / = 1, we have

C dt / eff

for the second term in the PN expansion of hj‘\’;(z). Now, we

of course in the general integral of h%(z)

(A37)

evaluate the role of this term in the PN expansion of each
component of the gravitational potential. For the time-time
component, using the conservation equation 8016“ nt

0.7°

i Tett(1 —O, one can easily show that this integral is

51mp11ﬁed as § Tgf(l)dS ;. Considering the slow-motion

condition, we find that the compact parts of Tgff(l) do not

exist at the boundary of the region M and consequently
their surface integrals vanish. Moreover, regarding
Eq. (A16b), the surface integral of the noncompact pieces
is proportional to 1/R and 1/R?. So, this part of the
integral is R dependent, and it can be discarded freely. To

simplify the time-space component of Eq. (A37), we also
use the space component of the conservation equation, i.e.,

jk
+ 8kféff(l)

to fa M ré];f(l)dSk. In a similar way, we conclude that the

607%(1) = 0. In this case, this integral is reduced

compact pieces of Eq. (A16c¢) have no role in this surface
integral and the noncompact ones all are proportional to
1/R?*. To examine the role of Eq. (A37) in the last
component of the potential, i.e., hj\];(z), we need to do
more calculations Here,
=0y [\ T M eff t (t,x)d’x. To simplify this integral, we use

the identity [22]

this integral is given by

1 .
00 Pi k Pa L j ok
Doo (T xk )4‘58 (zlx +Teffx] — OyTégix'x5),

(A38)

deduced from the conservation equations. By inserting
this relation into the integral, after some simplification,

' ik 4 PR
we arrive at —1/(2)T7 = 1/2 §, (el x* + 2l X/

=078 x’xk)dSp. Utilizing Eq. (Al6c), we find that
the noncompact pieces of the surface integral all are

proportional to 1/R and, as before, the compact parts
are zero. So, the contribution of Eq. (A37) to the PN
expansion of hj.\l;(z) lies in —1/(2¢)Z’ ¥ We exhibit this term
in Eq. (A34). In conclusion, the nonzero surface integrals
coming from this leading term in PN expansion of the
potential, all are R dependent and they can be dropped. It
can be shown that the other surface integrals from the next
PN terms in this expansion play a role in the higher PN
corrections and do not appear in the 1 PN order. Therefore,
up to the required PN order in this work, the surface

integrals have no contribution to the components of h“ﬂ( 2)

and we remove them from Egs. (A22), (A31), (A33),
and (A34).

b. Wave-zone portion

Up to this point, we have obtained the near-zone portion
of the gravitational potential in the second iteration. To
complete our derivation, we need to find its wave-zone part,

h{/l\j(z). The source terms of this potential are comprehen-
sively introduced in [12]. Let us rewrite these terms here:

8
+0(c™),

G [7 1
(e)fof(l) — (‘M% +3ctfo'M (folfm +?Mo>>

(A39a)

) = 0(c™), (A39b)
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ré];f(l) = % K%M% + 2c2f0’2mM0) <njnk - %6’"‘)
- c4fo'2imz5fk} +0(c™). (A39¢)
In the above relations, M| given by
M, = / prdPx (A40)
M

is the total matter inside the near-zone region. These PN
expansions of r’e‘ gf(l) are sufficient to construct the wave-

zone solution of the gravitational potentials in the second
iteration.

According to Eq. (A2), to evaluate this integral, one
should first rewrite the source functions in the form of
Eq. (A3). Comparing Eq. (A39) with Eq. (A3) reveals that
n=4,1=0, and

7
0, = 4G |13 38 pmy + 2 ym)|

(A41)
Therefore, for the time-time component, the f%(z) func-
tion is constant. Knowing that n = 4, one can then easily
derive the integral (A2) as

L 2GfY°, 1

h%(z) A @

(A42)

As seen, this component of the potential is a function of R.
For h%z), given Eqgs. (A39b) and (A2), one can show that
the source term of this potential does not construct the
required O(c™3) correction for this component. So, h%(2>
does not contribute to the 1 PN order of the metric.
Similarly, to build h{/l;(z), we simplify the source term of
this potential, i.e., Eq. (A39c), as follows:

nr

Télf(f(l) =—7 KZM% + 2c2fgme0> <n<ﬂ<> - 85Jk>
—c'f Effmzéjk] +0(c™), (A43)

where n</*> = nink —1/36/%. Regarding Eqs. (A3) and
(A43), one can then show that

flty = =GO (M + BESMBESM+ My)). - (Adda)

FIE, = GMy(Mq + 82 M), (A44b)

and n = 4 in this case. Regarding the these points, we have

: 261
Mvlico = =427 (A45a)
; Gy (1
k =
pyoyli—2 = 50142n<fk>ﬁ. (A45b)

It is seen that the wave-zone terms calculated here all are a
function of R. As we have learned from the modern
approach, we can drop these R-dependent terms freely.
Therefore, in the second iteration, the wave-zone portion of
the gravitational potential has no role in our calculations,
and we finally have h’(‘z”) = hx(z)'

Our final item of business in this subsection is to survey
the importance of the odd PN orders ¢~ that may appear in
the time-time component of the metric. To do so, let us
build this component. Inserting Eqs. (A22) and (A31)
within Eq. (6), we arrive at

2 2 1
g = —1 +C2U+C4(W+V—U2+28nx>

1
+ 4f(/) |:2UEMS + ? (attXEMS + 4PEMS — 4UUEMS

1 2
- 8“1(51\)43 - 22’{1(51\315 + dlgys) — llfé)U]sts}

4G

15 %) + o(c™).

(A46)

The first concerning term is Z kk(t), which is only a function
of time. It is shown this type of terms can be removed by
applying an appropriate time coordinate transformation
[22]. To examine the impact of the other odd orders
collected in O(c™3), let us return once more to the general
expansion of the metric in terms of the gravitational
potentials. As grasped from Eq. (6) for gy, h°° and A**
are the two main factors that can bring this odd order into
this expression. By considering several leading PN terms of
Eq. (Al) that can have a role in this order and also
regarding the origin of the ¢! terms in the PN expansions
of 70, and 7{f; ), we deduce that most of the O(c™)

terms from these potentials are made entirely by the EMSG
term which corresponds to (¢ £} + ¢~! f§)dIM/dt multi-
plied by terms like 0, U and 0, Ugys. We should emphasize
that although dW/dt itself is only a function of time, the
other coefficients, such as 9, U and 0, Ugys, are a function
of x and ¢. Then, we cannot treat this O(c™>) term as the
previous correction and remove it by a transformation of
the time coordinate. On the other hand, we show in
Appendix B that ¢f{,d9/dt is of the order ¢=2. Hence,
these apparently O(c™>) terms actually contribute to the
order ¢~’. The next odd-order term we should treat care-
fully comes from the unusual high-order term, 3¢*f{p*?, in

T’gé‘f(l - This term is of the order 2. So, it can produce a
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multipole moment of the order ¢ for [ =3 in the
expansion (Al) for hf\];(z)- Dropping the numerical coef-

ficients and constant parameters, this so-called multipole
moment contributes to h%@) as Oy [ p (1. x)x*dx. As

seen, after integrating, this term indeed depends only on
time. Therefore, it is a coordinate artifact and it can be
omitted along with fkk(t) by applying a suitable time
coordinate transformation. However, in general, the O(c‘7)
terms may produce during this transformation [22]. So,
using this transformation just removes the odd power ¢
and the next PN corrections with the odd power ¢~ may
appear in the PN expansion of the metric. Eventually, we
deduce that the terms with the order ¢ appearing in the
PN expansion of g(%) all have a role in the next PN
corrections and they are actually of the order ¢~7. It is
worth mentioning that the O(c~’) corrections, GR terms,
and especially those coming from EMSG terms can involve
the odd numbers of time derivatives. Consequently, like
GR, this approximate solution of the field equation is not
invariant under the time reflection up to this order. This fact
illustrates that the system described by this metric loses
energy via radiating gravitational waves. As shown, several
EMSG terms exist within this order. So, they can in
principle contribute to gravitational waves emitted from
this system. The role of the EMSG corrections in the
gravitational waves is studied in [12].

APPENDIX B: ORDER OF MAGNITUDE
OF dM/dt

In this Appendix, we survey the order of magnitude of
d9/dr which appears frequently in our calculation. To do

so, we utilize the local conservation equations derived

during the second iteration, i.e., 0,7, ff(l) = 0. Considering

the time component of 0,7, ;f<1> =0, we have

€

(B1)

and then inserting Eqgs. (Al6a) and (A16b) within this
relation, we find that

0™+ 0;(p*v7) + 22 £ (p*0,p" 4 0;(p**0))) = O(c™?).
(B2)

We have also assumed that the conservation of rest mass,
V,(pu") = 0, is established in EMSG. p* then satisfies the
continuity equation
"+ 0,(p*v’) = 0. (B3)
Applying Eq. (B3) for the Newtonian and EMSG sectors of
Eq. (B2), we deduce that
22 fp /0,0 = O(c72). (B4)
So, the energy conservation statement reveals that this term
is of the order ¢~2. On the other hand, in Appendix C of
[12], we have shown that d9t/dt is proportional to the
integration of p*v/9,p*. Given Eq. (B4), one can deduce
that ¢ f,d9/dt is indeed of the order ¢ . We use this fact

to indicate the PN order of some odd-power terms in the PN
expansion of the metric in Appendix A.
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