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In this article, we continue the work on translating elements of the perturbative quantum field theory
defined onMinkowski spacetime into the background independent framework of loop quantum gravity. We
present the construction of r-Fock measures for SUðNÞ gauge theories and represent the Fock vacuum of
SUðNÞ gauge fields on the loop quantum gravity Hilbert space. We treat the case of SUð2Þ explicitly and
provide a relation between these new r-Fock measures and the difeomorphism invariant measure used in
loop quantum gravity.
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I. INTRODUCTION

The loop quantum gravity (LQG) program [1–5] defines
a framework where gravity and the Standard Model
matter fields are quantized in a background independent
setting. There has been many developments in this pro-
gram, and the resulting theory has very solid mathematical
foundations. However, several issues remain unresolved, in
particular, the recovery of the continuum limit of the theory.
This issue can roughly be phrased in the question of how
quantum field theory on a fixed spacetime arises from the
quantum theory of gravity coupled to matter fields.
Understanding the continuum limit is necessary in order

to be able to extract physical predictions from the funda-
mental theory. This is the reason why it becomes important
to apprehend the link between the loop quantization and the
Fock quantization in a simpler context, where gravity is in
the semiclassical regime. This may help evaluating the
consistency of the loop quantization with the well-estab-
lished Standard Model and may provide an intuition to
construct the proper tools to treat the quantum regime of
gravity. There has been several works in this direction,
among which are the so called r-Fock representations. In
general terms, the r-Fock representations in loop quantum
gravity can be defined as specific quantum representations
of the algebras of holonomies associated to gauge fields on
fixed spacetime. Introduced in [6–8] for Abelian gauge
fields and for a scalar field in [9] on Minkowski spacetime,
they are intermediate representations that aim at connecting
the standard Fock representation and the background inde-
pendent loop representation. It is also argued that for finite
accuracy measurements at distance scales much larger than
a certain parameter characterizing the r-Fock representa-
tions, these representations are physically indistinguishable

from the standard Fock representation. They ultimately
provide an embedding of Fock states into the Hilbert space
of the loop representation, and hence, a concrete repre-
sentation of some (approximate) physical states in the loop
quantum theory. In particular, they give rise to the so-called
shadow states [10], which are projections of Fock states
into separable Hilbert subspaces. These shadow states
encode information about the fixed background geometry
on which the matter field is propagating; however, their
properties remain largely unexplored and their relation to
the quantum dynamics is entirely not understood.
In [6–8], the r-Fock representation is defined as a

representation of the standard holonomy-flux algebra of
an Abelian gauge field on Minkowski spacetime, and the
construction relies on the fact that the standard holonomy-
flux algebra is isomorphic to an algebra of “smeared
holonomies-electric field” algebra, which admits a Fock
quantization. Thanks to the existence of this algebra
isomorphism, the Fock representation of the “smeared
holonomies-electric field” algebra provides the r-Fock
representation of the standard holonomy-flux algebra.
Such isomorphism, however, does not exist for non-
Abelian gauge theories. This fact was considered an
obstruction for the generalization of the construction of
r-Fock representations for non-Abelian gauge theories.
Nevertheless, in [10], the authors proposed the construction
of an r-Fock measure for the non-Abelian case by general-
izing an operator form of the mapping between the natural
difeomorphism invariant measure in LQG and the r-Fock
measure for Uð1Þ gauge theory. While the resulting
measure is indeed well-defined, it suffered some issues
of gauge invariance and nonlocality. In the present article,
we propose a different method to construct an r-Fock
measure for non-Abelian gauge theories, which follows a
generalization of some of the steps of the construction in
the Abelian case and avoids the need for the algebra
isomorphism. Our motivation to generalize the notion of
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r-Fock measures stems from the perspective that the r-Fock
representations could play a role in understanding the
emergence of the continuum limit of loop quantum gravity
and providing elements for the construction of a renorm-
alization process for the theory.
The article is organized as follows. In Sec. II, we review

the construction of the loop representations for gauge field
theories. We then go through the construction of the r-Fock
representation for a Uð1Þ gauge theory in Sec. III. In
Sec. IV, we develop our construction of r-Fock measures
for SUðNÞ gauge theories. We explicitly work out the
details of the construction in the case of an SUð2Þ gauge
theory, leading to the definition of the r-Fock measure and
the establishment of its relation with the natural diffeo-
morphism invariant measure, then we close the section by
explaining how the construction of the r-Fock measures
extends to arbitrary SUðNÞ gauge theory. We finally
conclude in Sec. V with a few comments and outlooks.

II. THE LOOP REPRESENTATIONS
OF GAUGE FIELD THEORIES

We recall now the general idea of the “loop” construction
of gauge invariant integrals on the spaces of gauge
potentials (connections). Consider a manifold M, a Lie
group G, and its Lie algebra g. A g valued 1-form defined
on M that is subject to the transformations,

A0 ¼ g−1Agþ g−1dg; g∶ M → G; ð1Þ

[for simplicity of the notation, we think of G as a subgroup
of someGLðN;CÞ] is said to be a gauge potential while the
transformations (1) are referred to as gauge transforma-
tions. The space of the gauge potentials will be denoted by
A and the space of the gauge transformations by G.
Considering gauge invariant functions on A amounts to
dealing with the quotient space A=G. The globally defined
gauge potentials on M are related to connections defined
on a trivial principal fiber bundle overM with the structure
group G. The loop integral theory is available also for
nontrivial principal fiber bundles (see [11,12]); however,
trivial bundles only feature in the current paper.
Given a gauge potential A and a curve1 γ∶½sI; sF� → M,

we define the corresponding parallel transport, or holon-
omy, hγ ∈ G as

hγðAÞ ≔ P exp

�Z
γ
A

�
; ð2Þ

where P exp stands for the path ordered exponential, that is

hγðAÞ ¼ I þ
Z
γ
ds1Aaðγðs1ÞÞ_γaðs1Þ þ

Z
sF

sI

ds1

×
Z

s1

sI

ds2 _γaðs1Þ_γbðs2ÞAaðγðs1ÞÞAbðγðs2ÞÞ þ…

ð3Þ

The holonomy is insensitive to orientation preserving
reparametrizations of γ, and, given a metric tensor q on
M, without any loss of generality, we can assume that
the tangent vector _γðsÞ ≔ dγðsÞ=ds is normalized as
_γaðsÞ_γbðsÞqab ¼ 1. Furthermore, given a curve γ and the
curve γ−1 obtained by flipping the orientation, the corre-
sponding parallel transport is

hγ−1ðAÞ ¼ ðhγðAÞÞ−1: ð4Þ

The holonomy satisfies the natural composition law with
respect to the composition of curves, namely,

hγ0∘γðAÞ ¼ hγ0 ðAÞhγðAÞ: ð5Þ

Upon the gauge transformations (1) the parallel transport
transforms as follows:

hγðA0Þ ¼ g−1ðγðsIÞÞhγðAÞgðγðsFÞÞ: ð6Þ

To construct the loop representation [1–5] for a gauge
theory with a compact gauge group G, the configuration
space is taken to be the space of generalized connections Ā,
which is an enlargement of the space A of smooth
connections to include noncontinuous connections that
still assign well-defined holonomies to curves in the spatial
manifold. More precisely, every map γ ↦ hγðĀÞ ∈ G,
which satisfies the properties (4) and (5) is considered a
generalized connection Ā, and Ā is the space of such
connections. Then, one takes the space CylðĀÞ of cylin-
drical functions on Ā to be the space of quantum states. An
element ΨΓ of CylðĀÞ is a complex valued function
ψ ∈ C0ðGnÞ, which only depends on a finite set of
holonomies, of which the curves (edges) form a graph Γ,

ΨΓ½A� ≔ ψðhe1ðAÞ;…; henðAÞÞ; ð7Þ

where Γ ≔∪n
i¼1 ei. We say that the function ΨΓ is a

cylindrical function with respect to the graph Γ. A
cylindrical function with respect to a given graph Γ, is
also cylindrical with respect to any larger graph that
contains Γ as a subgraph, and from (6), it follows that
gauge transformations act on cylindrical functions by
acting only at the vertices of the graphs.

1We assume that the manifold M is semianalytic and that the
curves we consider on M are piecewise analytic [4].
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A linear map
R
∶CylðĀÞ → C is said to be an integral if

∀Ψ ∈ CylðĀÞ;
Z

Ψ̄ ¼
Z

Ψ;
Z

Ψ̄Ψ ≥ 0;

����
Z

Ψ
���� ≤ CkΨk; ð8Þ

withC being a fixed positive real number independent ofΨ.
Every integral

R
provides an integral

R
dμΓ defined on

C0ðGnÞ for every graph Γ, n being the number of edges in
Γ, and hence, gives rise to a family of integrals
fR dμΓ∶Γ a graph inMg. This observation was used to
define the first examples of faithful measures on Ā [13,14].
While the action of gauge transformations extends

naturally to Ā, the group G admits a natural extension to
Ḡ ≔ GM, that is the space of all G valued functions on M,
not necessarily differentiable nor even continuous.
WhenG is a compact group, the structures defined above

have quite strong properties. In particular, both spaces Ā
and Ḡ are compact with respect to natural topologies, and
the space CylðĀÞ forms a dense subalgebra of the algebra
C0ðĀÞ with respect to the supnorm.
Every integral defined on CylðĀÞ defines a Borel

measure on Ā and gives rise to a family of Borel measures
fðGn; μΓÞ∶Γ a graph in Mg. A natural diffeomorphism
invariant measure μo is defined on Ā [13–15], such that
every measure μoΓ in the corresponding family of measures
is given by

μoΓ ¼ μHG ⊗ … ⊗ μHG; ð9Þ

where μHG is the normalized Haar measure on G.
The natural measure μo is used to define the kinematical

Hilbert space H of loop quantum gravity as the space of
square integrable functions with respect to the measure μo,

H ≔ L2ðĀ; μoÞ: ð10Þ

It is useful to also introduce the space Cyl�ðĀÞ, which is
defined as the algebraic dual of the space CylðĀÞ of
cylindrical functions. We then have

CylðĀÞ ⊂ H ⊂ Cyl�ðĀÞ: ð11Þ

The scalar product defined on CylðĀÞ can be naturally
transferred to the dual space Cyl�ðĀÞ. The space Cyl�ðĀÞ
plays an important role in the context of the background
independent theory as it allows the implementation of the
spatial diffeomorphism constraint, and as we point out later,
Cyl�ðĀÞ is also the natural habitat of the r-Fock states when
mapped to the loop theory.
When the local gauge invariance is imposed, that is the

invariance with respect to the action of the gauge

transformations in Ḡ, one obtains the Hilbert space HG

of G-gauge invariant states. The Hilbert space HG admits
an orthonormal basis, where each element is called
a generalized spin network, or a G-colored network. A
G-colored network is characterized by an embedded non-
oriented graph2 Γ, a set of labels fjg associated to the
oriented edges of Γ and corresponding to nontrivial
irreducible representations of the group G and a set of G
gauge invariant tensors (intertwiners) fιg associated to the
vertices. To each vertex v, is associated a finite dimensional
intertwiner space given by the tensor product of the
representations assigned to the edges whose source is v
and the representations dual to those assigned to the edges
whose target is v, and an intertwiner at v is an invariant
tensor in this space. It follows thatH can be decomposed as
a direct sum,

HG ¼ ⨁
Γ
HG

Γ ¼ ⨁
Γ;fjg

HG
Γ;fjg: ð12Þ

In the case G ¼ Uð1Þ, the nontrivial irreducible represen-
tations can be labeled by integers, the intertwiners are
trivial, and the gauge invariance translates into the con-
dition that, at each vertex of a graph, the sum of the integers
labeling the edges vanishes. We denote the Uð1Þ-colored
networks N Γ;n⃗, where the Γ stands for the graph and n⃗ the
set of colors (integers) associated to the edges. Note that the
decomposition (12) can be generalized to the nongauge
invariant spaces CylðĀÞ and H, and it amounts to intro-
ducing additional labeling of the vertices of the graphs by
inequivalent irreducible representations of G.
Another way to recover the space of gauge invariant

functions is to work from the start with gauge invariant
quantities.
Let L be the space of oriented, piecewise analytic loops

onM. Thanks to the fact that the holonomy along a closed
loop γ depends on the gauge transformations at one point
only,

hγðA0Þ ¼ g−1ðx0ÞhγðAÞgðx0Þ; x0 ≔ γðs0Þ ¼ γðs1Þ: ð13Þ

It is easy to define gauge invariant functions. Indeed, given
a loop γ ∈ L, we define the Wilson loop function,

WγðAÞ ≔ TrðhγðAÞÞ: ð14Þ

The Wilson loops generate a dense subalgebra in
CylðĀ=ḠÞ. Therefore, in order to determine a measure
on Ā=Ḡ, it is enough to define an integral

R
on the algebra

2From here on, a graph actually consists of an equivalence
class of embedded graphs, where each graph can be obtained
from another via a sequence of the following moves: splitting an
edge, trivially connecting two edges, or changing the orientation
of an edge.
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of polynomials of the Wilson loop functions. This amounts
to constructing a linear map

R
which satisfies the con-

ditions (8) for any arbitrary polynomial Ψ of the Wilson
loops. The resulting integral would extend to all the
subalgebra of the gauge invariant cylindrical functions
CylðĀ=ḠÞ; hence, it would define a measure on Ā=Ḡ.
Note that given a measure μ on Ā=Ḡ, it is easy to

construct a gauge invariant measure on Ā. For this purpose,
one uses the Haar measure μH

Ḡ
defined on the group Ḡ (as

every topological compact group admits a normalized Haar
measure). The gauge invariant measure corresponding to μ
measure on Ā is then defined by the following integral:

Z
Ψ ≔

Z
Ā=Ḡ

dμ
Z
Ḡ
μH
Ḡ
Ψ: ð15Þ

Our method to generalize the construction of r-Fock
measures consists in embedding the Wilson loop functions
in the space of operators defined on the Fock space, then
using the Fock vacuum to define a new measure on Ā=Ḡ,
lift it to a gauge invariant measure on Ā, and finally,
characterize it in terms of graphs and the corresponding
measures.

III. THE r-FOCK REPRESENTATION
FOR Uð1Þ GAUGE THEORY

In this section, we briefly review the construction of the
r-Fock representation for the AbelianUð1Þ gauge theory, as
developed in [6].

A. The classical algebras

Consider a Uð1Þ gauge theory on Minkowski spacetime.
The phase space variables are the Uð1Þ connection 1-form
Aa and the conjugate electric field Eb, which satisfy the
Poisson algebra,

fAaðxÞ; EbðyÞg ¼ 1

q
δbaδ

ð3Þðx; yÞ; ð16Þ

where q is the charge parameter, δba is the Kronecker delta,
δð3Þðx; yÞ is the Dirac delta distribution, and x, y denote
coordinates on R3.
Given γ ∈ L, the holonomy of AaðxÞ along γ is

hγðAÞ ≔ exp

�
i
Z
γ
dsAaðγðsÞÞ_γaðsÞ

�
; ð17Þ

which can be equivalently defined as

hγðAÞ ¼ exp

�
i
Z
R3

d3xXa
γ ðxÞAaðxÞ

�
; ð18Þ

with the form factor function,

Xa
γ ðxÞ ≔

Z
γ
dsδð3ÞðγðsÞ; xÞ_γaðsÞ: ð19Þ

We then define the smeared electric field Ea
r ðxÞ as

Ea
r ðxÞ ≔

Z
d3yfrðx − yÞEaðy⃗Þ; ð20Þ

where frðxÞ is a real valued Schwartz function3 that
approximates the Dirac delta function for small r,

∀ x; y ∈ R3; lim
r→0

frðx − yÞ ¼ δð3Þðx; yÞ: ð21Þ

It follows that the holonomies and the smeared electric field
satisfy

fhγ; hαg ¼ fEa
r ðxÞ; Eb

r ðy⃗Þg ¼ 0;

fhγ; Ea
r ðxÞg ¼ i

q
Xa
γ;rðxÞhγ: ð22Þ

In the Fock representation of the Poisson algebra
generated by (16), the holonomy operator is not a well
defined. Neither is the connection in the loop representation
of the holonomy algebra. Therefore, in order to make a
contact between the two representations, M. Varadarajan
introduced in [6] the so-called r-Fock representation of the
holonomy algebra, obtained from the Fock representation
of the smeared holonomy algebra which is defined as
follows.
Let us introduce the smearing form factor,

Xa
γ;rðxÞ≔

Z
R3

d3yfrðx− yÞXa
γ ðyÞ ¼

Z
γ
dsfrðx− γðsÞÞ_γaðsÞ;

ð23Þ

and the smeared connection Ar
a,

Ar
aðxÞ ¼

Z
R3

d3yfrðx − yÞAaðyÞ: ð24Þ

A smeared holonomy associated to a loop γ ∈ L is
defined as

hrγðAÞ ≔ exp

�
i
Z
γ
ds_γaðsÞAr

aðγðsÞÞ
�

¼ exp

�
i
Z
R3

d3xXa
γ;rðxÞAaðxÞ

�
: ð25Þ

Along with the electric field EaðxÞ, they satisfy

3A further, and rather specific, restriction on the smearing
function is obtained when analyzing a result derived later on in
the present article. We refer the reader to the Appendix A for
more details.
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fhrγ; hrαg ¼ fEaðxÞ; EbðyÞg ¼ 0;

fhrγ; EaðxÞg ¼ i
q
Xa
γ;rðxÞhrγ: ð26Þ

It was shown in [6] that the Fock representation of the
algebra A generated by (16) is a representation of the
Poisson bracket algebra HAr generated by (26). Addit-
ionally, unlike the standard holonomies, the quantized
smeared holonomies ĥrγ are unitary operators in the
standard Fock representation.
Furthermore, it was also shown that the Poisson algebra

HAr generated by ðhrγðAÞ; EaðxÞÞ and the Poisson algebra
HA generated by ðhγðAÞ; Ea

r ðxÞÞ are isomorphic. This
means that any representation of the algebra HAr is a
representation of the algebra HA. In particular, the Fock
representation of the algebraHAr is a representation of the
algebraHA. This representation is what is called the r-Fock
representation of HA.

B. The r-Fock representation

Since the standard Fock representation can be recon-
structed from the expectation values of the algebra oper-
ators in the vacuum state, the strategy is to define the r-Fock
representation via the vacuum expectation values in the
Fock representation. This goes as follows.
Using the standard Fock quantization of the connection

and electric field,

ÂaðxÞ ≔
1

ð2πÞ3=2
Z

d3k

q
ffiffiffiffiffiffiffiffi
2jkjp ðe−ik⃗:x⃗c†aðkÞ þ eik⃗:x⃗caðkÞÞ

ÊaðxÞ ≔ i

ð2πÞ3=2
Z

d3k

ffiffiffiffiffi
jkj
2

r
ðek⃗:x⃗c†aðkÞ − eik⃗:x⃗caðkÞÞ; ð27Þ

where ca and c
†
a are the annihilation and creation operators,

respectively, satisfying

½caðkÞ; c†bðlÞ� ¼ δabδ
ð3Þðk; lÞ; ð28Þ

the smeared connection operator is

Âr
aðxÞ ≔

1

ð2πÞ3=2
Z

d3k

q
ffiffiffiffiffiffiffiffi
2jkjp

Z
d3yfrðx − yÞðe−ik⃗:y⃗c†aðkÞ

þ eik⃗:y⃗caðkÞÞ

¼
Z

d3k

q
ffiffiffiffiffiffiffiffi
2jkjp ðe−ik⃗:x⃗f̃rðkÞc†aðkÞ þ eik⃗:x⃗f̃rðkÞcaðkÞÞ;

ð29Þ

where f̃rðkÞ denotes the Fourier transform of frðxÞ. Hence,
the expression of the smeared holonomy operator is

ĥrγðAÞ ≔ exp

�
i
Z
γ
ds_γaðsÞÂr

aðγðsÞÞ
�

¼ exp

�
i
Z
γ
ds_γaðsÞ

Z
d3k

q
ffiffiffiffiffiffiffiffi
2jkjp ðe−ik⃗:γ⃗ðsÞf̃rðkÞc†aðkÞ

þ eik⃗:γ⃗ðsÞf̃rðkÞcaðkÞÞ
�

¼ exp

�
i
Z

d3k

q
ffiffiffiffiffiffiffiffi
2jkjp ðX̃a

γ;rðkÞc†aðkÞ þ X̃a
γ;rðkÞcaðkÞÞ

�
;

ð30Þ

where Xa
γ;rðkÞ denotes the Fourier transform of Xa

γ;rðxÞ.
The r-Fock representation ofHA is then specified via the

expectation values of the smeared holonomy and the
electric field operators in the standard Fock vacuum,
denoted j0i, namely,

h0jĥrγj0i¼ exp

�
−
Z

d3k
4q2jkj jX

a
γ;rðkÞj2

�
≕h0rjĥγj0ri

h0jĥrαÊaðxÞĥrβj0i¼
Xa
β;rðxÞ−Xa

α;rðxÞ
2q

×exp

�
−
Z

d3k
4q2jkj jX

a
α∘β;rðkÞj2

�

≕h0rjĥαÊa
r ðxÞĥβj0ri; ð31Þ

for arbitrary loops γ, α, β in L.
Through Eq. (31), the holonomy operators ĥγ are

introduced as well-defined operators in the r-Fock repre-
sentation. This fact, as shown in the following section,
allows us to explicitly relate the r-Fock representation and
the loop representation as two inequivalent representations
of the algebra HA.

C. Relating the r-Fock measure and the natural
measure for the U(1) gauge theory

Using the results above, we can explicitly define the
r-Fock measure on the space of cylindrical functions
CylðĀ=ḠÞ in the case of the Uð1Þ gauge theory. This goes
as follows [6,7].
Given a Uð1Þ-colored network state N Γ;n⃗, with graph Γ

given by a set of oriented edges EðΓÞ, where to each edge
eI is associated a representation label, that is an integer nI,
the corresponding cylindrical function provides an operator
Ψ̂ on the Fock space of the Uð1Þ Fock representation
defined via smeared holonomy operators as

Ψ̂Γ;n⃗ ≔
Y

I∈EðΓÞ
ĥreI : ð32Þ

From the definition of the smeared holonomy operator (30),
one obtains an expression for Ψ̂ in terms of the canonical
operators, namely,
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Ψ̂Γ;n⃗ ¼
Y

I∈EðΓÞ
exp

�
inI

Z
eI

ds_eaI ðsÞÂr
aðeðsÞÞ

�

¼ exp

�
i
X
I

nI

Z
eI

ds_eaI ðsÞÂr
aðeðsÞÞ

�

¼ exp

�
i
X
I

nI

Z
eI

ds_eaI ðsÞ
Z

d3k

q
ffiffiffiffiffiffiffiffi
2jkjp ðe−ik⃗:e⃗ðsÞf̃rðkÞc†aðkÞ þ eik⃗:e⃗ðsÞf̃rðkÞcaðkÞÞ

�

¼ exp

�
i
Z

d3k

q
ffiffiffiffiffiffiffiffi
2jkjp

�X
I

nIX̃a
eI;rðkÞ

�
c†aðkÞ

�
exp

�
i
Z

d3k

q
ffiffiffiffiffiffiffiffi
2jkjp

�X
I

nIX̃a
eI;rðkÞ

�
caðkÞ

�

× exp

�
−

1

4q2
X
IJ

nInJ

Z
d3k
jkj X̃

a
eI;rðkÞX̃a

eJ;rðkÞ
�
: ð33Þ

The r-Fock measure μrUð1Þ on the space of cylindrical function as well as the r-Fock vacuum j0ri are then defined as

∀N Γ;n⃗ ∈ CylðĀ=ḠÞ;Z
Ā=Ḡ

dμrUð1ÞN Γ;n⃗ðAÞ ≔ h0rjN̂ Γ;n⃗j0ri ≔ h0jΨ̂Γ;n⃗j0i ¼ exp

�
−

1

4q2
X
I;J

nInJ

Z
d3k
jkj X̃

a
eI;rðkÞX̃a

eJ;rðkÞ
�
: ð34Þ

Thanks to the decomposition (12) and the fact that the natural measure μoUð1Þ satisfies

∀N Γ;n⃗ ∈ CylðĀ=ḠÞ;
Z
Ā=Ḡ

dμoUð1ÞN Γ;n⃗ðAÞ ¼
�
1; if Γ ¼ 0̃

0; if Γ ≠ 0̃
; ð35Þ

where 0̃ stands for the trivial graph equivalence class characterized by no graph, one can relate the r-Fock measure μrUð1Þ to

the measure μo on CylðĀ=ḠÞ, and one gets

dμrUð1Þ ¼
�X

Γ;n⃗

exp

�
−

1

4q2
X
I;J

nInJ

Z
d3k
jkj X̃

a
eI;rðkÞX̃a

eJ;rðkÞ
�
N Γ;n⃗

�
dμoUð1Þ: ð36Þ

We conclude this section about the Uð1Þ r-Fock repre-
sentation by pointing out that the r-Fock states can be
identified as states in the loop representation, in particular,
the r-Fock vacuum j0ri. For the r-Fock vacuum j0ri, one
can use the Poincare invariance of the state [7], i.e., the fact
that j0ri is annihilated by the operators caðkÞ. This leads to
the identification of a state Vr

F corresponding to j0ri, which
does not belong to the Hilbert space H but rather to the
space Cyl�. It is a distributional state that acts on the states
in H and has the following expression:

Vr
F ¼

X
Γ;n⃗

exp

�
−

1

q2
X

I;J∈EðΓÞ
nInJ

Z
d3k
2jkj X̃

a
eI;rðkÞX̃a

eJ;rðkÞ
�

× hN Γ;n⃗j: ð37Þ

In the next section, we present a method to generalize the
construction of the r-Fock measure to the case of the non-
Abelian SUðNÞ gauge theory.

IV. THE r-FOCKMEASURE FOR A NON-ABELIAN
SUðNÞ GAUGE THEORY

In the case of Uð1Þ gauge theory discussed above, as
well as any Abelian gauge theory, the construction of the r-
Fock measure is based on the identification,

∀ γ ∈ L;
Z

dμrUð1ÞhγðAÞ ≔ h0jĥrγj0i; ð38Þ

which is sufficient to define the measure and its properties.
In particular, it implies that for every Uð1Þ cylindrical
function Ψ ∈ CylðĀ=ḠÞ such that ΨðAÞ ≔ ψðhγ1ðAÞ;…;
hγK ðAÞÞ, we haveZ

Ā=Ḡ
dμrUð1ÞΨðAÞ ≔ h0jψðĥrγ1 ;…; ĥrγK Þj0i: ð39Þ

This fact can be understood as a consequence of the
Abelian nature of the Uð1Þ group, but because we know
that in the case ofUð1Þ we haveWγðAÞ ¼ hγðAÞ, this result
can also be understood as a consequence of Mandelstam

MEHDI ASSANIOUSSI and JERZY LEWANDOWSKI PHYS. REV. D 105, 104025 (2022)

104025-6



identities [1,16] for Uð1Þ, which namely imply that every
Uð1Þ cylindrical function can be expressed as a linear
combination of Wilson loops.
Our aim now is to define an r-Fock measure μr on

the space of cylindrical functions for a non-Abelian SUðNÞ
gauge theory on Minkowski spacetime by generalizing the
identification (38). Mandelstam identities for SUðNÞ imply
that the natural generalization of (38) takes the form,

∀ fγ1;…; γN−1g ∈ LN−1;Z
dμrSUðNÞW

J
γ1ðAÞ…WJ

γN−1
ðAÞ ≔ h0jŴr;J

γ1 …Ŵr;J
γN−1

j0i; ð40Þ

where WJ
γi is the Wilson loop in the irreducible represen-

tation J associated to the loop γi, j0i is the Fock vacuum in
the SUðNÞ gauge theory, and Ŵr

γi is an operator associated
to the same loop γi and acting on the Fock space of the
SUðNÞ-gauge theory given by

Ŵr;J
γ ≔ Tr½ĥr;Jγ �; ð41Þ

with ĥr;Jγ being the smeared holonomy operator, which we
define later. We call the operator Ŵr;J

γ the r-Wilson loop
operator in the J representation. Note, however, that in order
to define the r-Fock measure, it is sufficient to establish the
identification (40) in the fundamental representation of the
gauge group SUðNÞ, as the results for the other representa-
tions can be in principle derived via recoupling theory.
Computing the expectation value of a product of

r-Wilson loop operators in the Fock vacuum for a non-
Abelian SUðNÞ gauge theory is not as straightforward nor
as explicit as in the Abelian case. Therefore, we first focus
on the construction for the particular case of SUð2Þ, the
simplest non-Abelian SUðNÞ group, then we present how
to generalize the calculations and the results to arbitrary
SUðNÞ groups.

A. Fock vacuum expectation value
of the SUð2Þ r-Wilson loop operator

Using a similar notation as in the Uð1Þ case, the phase
space variables of the SUð2Þ gauge theory are a suð2Þ Lie
algebra valued connection Ai

a and the conjugate field Eb
j

satisfying

fAi
aðxÞ; Eb

j ðyÞg ¼ 1

q
δijδ

b
aδ

ð3Þðx; yÞ: ð42Þ

Smearing the connection A gives the suð2Þ Lie algebra
valued 1-form4 Ar,

Ar;i
a ðxÞ ¼

Z
R3

d3yfrðx − yÞAi
aðyÞ; ð43Þ

and a smeared holonomy associated to a loop γ ∈ L in
an arbitrary representation labeled by the spin J is then
defined as

hr;Jγ ðAÞ ≔ P exp

�Z
γ
ds_γaðsÞAr;i

a ðγðsÞÞτðJÞi

�
; ð44Þ

where τðJÞi represents the three SUð2Þ generators in the
irreducible representation J. We denote byWr;J

γ the trace of
the smeared holonomy hr;Jγ .
Note that unlike the Abelian case, local gauge trans-

formations acting on the connection A do not correspond to
local gauge transformations acting on the connection Ar.
Therefore, the smeared holonomies transform covariantly
under local gauge transformation acting on Ar but do not
transform covariantly under local gauge transformation
acting on A.
Together with the electric field Eb

j , the smeared holon-
omies satisfy

fhr;Jγ ; hr;Jα g ¼ fEa
i ðxÞ; Eb

j ðyÞg ¼ 0;

fhr;Jγ ; Ea
i ðxÞg ¼ 1

q
Xa
γ;rðxÞhr;Jγð1;xÞτðJÞi hr;Jγðx;0Þ: ð45Þ

In the standard Fock representation of an SUð2Þ gauge
theory on Minkowski spacetime, the smeared connection
operator is given by

Âr;i
a ðxÞ ≔ 1

ð2πÞ3=2
Z

d3k

q
ffiffiffiffiffiffiffiffi
2jkjp

Z
d3yfrðx − yÞ

× ðe−ik⃗:y⃗ci†a ðkÞ þ eik⃗:y⃗ciaðkÞÞ

¼
Z

d3k

q
ffiffiffiffiffiffiffiffi
2jkjp ðe−ik⃗:x⃗f̃rðkÞci†a ðkÞ þ eik⃗:x⃗f̃rðkÞciaðkÞÞ

¼
Z

d3k

q
ffiffiffiffiffiffiffiffi
2jkjp e−ik⃗:x⃗f̃rðkÞðci†a ðkÞ þ ciað−kÞÞ; ð46Þ

with

½ciaðkÞ; cj†b ðlÞ� ¼ δabδ
ijδð3Þðk; lÞ: ð47Þ

Now consider the SUð2Þ smeared holonomy operator
defined as

4Thanks to the fact that all SUðNÞ bundles over a three-
manifold are trivial, we fix, once and for all, a global trivialization
which allows to regard all smooth suðNÞ Lie algebra valued
1-forms on R3 as SUðNÞ connections on a trivial bundle over the
spatial manifold.
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ĥr;Jγ ≔ P exp

�Z
γ
ds_γaðsÞÂr;i

a ðγðsÞÞτðJÞi

�

¼ P exp

�Z
γ
ds

Z
d3k

q
ffiffiffiffiffiffiffiffi
2jkjp τðJÞi ðX̃a

γ;rðs; kÞci†a ðkÞ þ X̃a
γ;rðs; kÞciaðkÞÞ

�

¼ P exp

�Z
γ
ds

Z
d3k

q
ffiffiffiffiffiffiffiffi
2jkjp τðJÞi X̃a

γ;rðs; kÞðci†a ðkÞ þ ciað−kÞÞ
�
; ð48Þ

which consists of a matrix of operators, each acting in the Fock space, where

X̃a
γ;rðs; kÞ ≔ _γaðsÞe−ik⃗:γ⃗ðsÞf̃rðkÞ: ð49Þ

We then define the r-Wilson loop operator acting in the Fock space as

Ŵr;J
γ ≔ Tr½ĥr;Jγ � ¼ Tr

�
P exp

�Z
γ
ds

Z
d3k

q
ffiffiffiffiffiffiffiffi
2jkjp τðJÞi X̃a

γ;rðs; kÞðci†a ðkÞ þ ciað−kÞÞ
��

: ð50Þ

Since the operators Âr;i
a ðxÞ in (46) commute with each other, it follows that the r-Wilson loop operators also commute with

each other, namely,

∀ γ1; γ2 ∈ L; ∀ J1; J2; ½Ŵr;J1
γ1 ; Ŵr;J2

γ2 � ¼ 0: ð51Þ

As mentioned earlier, establishing the identification (40) in
the fundamental representation, which in the SUð2Þ case
corresponds to J ¼ 1=2, is sufficient to define the measure.
Furthermore, in case of SUð2Þ, the operator on the right-
hand side of the equation in (40) consists of a single
r-Wilson loop operator. Hence, the goal is to establish the
general expression of the expectation value in the Fock
vacuum of the r-Wilson loop operator defined in (50) in
representation 1=2.

For the explicit calculations of the expectation value of the
r-Wilson loop in the standard Fock vacuum, our strategy
consists of expressing the path ordered exponential in (50) as
its defining series expansion, and by using the linearity of the
trace, we compute the trace of each term in the expansion.
Then we compute the expectation value in the Fock vacuum
of each term in the expansion and eventually, perform the
summation of the series in order to obtain the final result.
We start with the expansion of the r-Wilson loop operator,

Ŵr;1=2
γ ¼ Tr

�
P exp

�Z
γ
ds

Z
d3k

q
ffiffiffiffiffiffiffiffi
2jkjp τiX̃a

γ;rðs; kÞðci†a ðkÞ þ ciað−kÞÞ
��

¼ Tr

�X∞
n¼0

Z
1

0

ds1…
Z

sn−1

0

dsn
Yn
m¼1

Z
d3km

q
ffiffiffiffiffiffiffiffiffiffiffi
2jkmj

p τim X̃
am
γ;rðsm; kmÞðcim†am ðkmÞ þ cimamð−kmÞÞ

�

¼
X∞
n¼0

Tr

�Yn
m¼1

τim

�
P
Z
γ
ds1…dsn

Yn
m¼1

Z
d3km

q
ffiffiffiffiffiffiffiffiffiffiffi
2jkmj

p X̃am
γ;rðsm; kmÞðcim†am ðkmÞ þ cimamð−kmÞÞ: ð52Þ

It follows that the expectation of the r-Wilson loop in the Fock vacuum gives

hŴr;1=2
γ i ¼

X∞
n¼0

Tr

�Yn
m¼1

τim

�
P
Z
γ
ds1…dsn

	Yn
m¼1

Z
d3km

q
ffiffiffiffiffiffiffiffiffiffiffi
2jkmj

p X̃am
γ;rðsm; kmÞðcim†am ðkmÞ þ cimamð−kmÞÞ




¼
X∞
n¼0

Tr
�Y2n
m¼1

τim

�
P
Z
γ
ds1…ds2n

�Y2n
m¼1

Z
d3km

q
ffiffiffiffiffiffiffiffiffiffiffi
2jkmj

p X̃am
γ;rðsm; kmÞ

�	Y2n
m¼1

ðcim†am ðkmÞ þ cimamð−kmÞÞ


; ð53Þ

where in the second line we used Wick’s theorem [17] to eliminate from the sum the terms which contain the expectation
value of an odd product of ladder operators, as it vanishes, leaving a sum over even terms only. Now there are two general
expressions to be evaluated separately: the first is the expectation value of the even product of ladder operators, the second is
the trace of an even product of τi generators in representation 1=2.
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On one hand, the expectation value of the product of
ladder operators can be computed using Wick’s theorem,
and we get

	Y2n
m¼1

ðcim†am ðkmÞ þ cimamð−kmÞÞ



¼ 1

2nn!

X
σ

δaσð1Þaσð2Þ…δaσð2n−1Þaσð2nÞδ
iσð1Þiσð2Þ…δiσð2n−1Þiσð2nÞ

× δð3Þðkσð1Þ;−kσð2ÞÞ…δð3Þðkσð2n−1Þ;−kσð2nÞÞ; ð54Þ

where the sum is over the permutations on a set of 2n
elements. On the other hand, given the SUð2Þ generators τi
in representation 1=2, which satisfy

½τi; τj� ¼ ϵijkτk; Tr½τiτj� ¼ −
1

2
δij; ð55Þ

where ϵijk is the antisymmetric Levi-Cevita tensor, the trace
of the product of an even number of τi gives

Tr

�Y2n
m¼1

τim

�
¼ ð−1Þn

22n−1

X
σ̃

sgnðσ̃Þδiσ̃ð1Þiσ̃ð2Þ…δiσ̃ð2n−1Þiσ̃ð2nÞ ; ð56Þ

where the sum is over the permutations σ̃ on a set of 2n
elements, which map the ordered set f1;…; 2ng to an
ordered set fσ̃ð1Þ;…; σ̃ð2nÞg satisfying σ̃ð2sþ 1Þ <
σ̃ð2sþ 2Þ and σ̃ð2sþ 1Þ < σ̃ð2sþ 3Þ for all valid integer
values of s (implying that σ̃ð1Þ ¼ 1). For a set of 2n
elements, there are ð2n − 1Þ!! such permutations.
We then introduce the coefficients,

ϒð1=2Þ
σð2nÞ ≔ δiσð1Þiσð2Þ…δiσð2n−1Þiσð2nÞTr

�Y2n
m¼1

τim

�
; ð57Þ

which depend on the permutation σ of a set of 2n elements,
and the superscript (1=2) is to recall the representation of

the τi generators. The coefficients ϒð1=2Þ
σð2nÞ are bounded in

absolute value,

jϒð1=2Þ
σð2nÞ

j ≤ 3n=22n−1; ð58Þ

and they satisfy

X
σ

ϒð1=2Þ
σð2nÞ

¼ Tr

�Y2n
m¼1

τim

�X
σ

δiσð1Þiσð2Þ…δiσð2n−1Þiσð2nÞ

¼ ð−1Þn
22n−1

ð2nþ 1Þ!!: ð59Þ

Plugging (57) and (54) into (53) gives

hŴr;1=2
γ i ¼

X∞
n¼0

1

2nn!
P
Z
γ
ds1…ds2n

X
σ

ϒð1=2Þ
σð2nÞ

×

�Yn
m¼1

Z
d3k

2q2jkj X̃
a
γ;rðsσð2m−1Þ; kÞ

× X̃a
γ;rðsσð2mÞ;−kÞ

�
: ð60Þ

Because of the presence of the coefficientsϒð1=2Þ
σð2nÞ for which

we do not have a simplified expression, we cannot perform
the sum in (60) and reduce it to a closed form. Therefore,
the expression in (60) is our final expression for the vacuum
expectation value of a r-Wilson loop operator. As shown in
the Appendix A, the sum in (60) is convergent, and the
expectation value hŴr;1=2

γ i is always finite.
Thanks to the presence of the trace in the definition of the

r-Wilson loop operator, the final result in (60) does not
depend on choice of the SUð2Þ generators τi as long as they
satisfy (55). The gauge invariance requires an explanation:
as we pointed out above, the smeared connections and their
holonomies are not gauge covariant in any understood
sense and the corresponding Wilson loop functions are not
gauge invariant. Nonetheless, all the expectation values
hŴr;1=2

γ i are manifestly gauge invariant.

B. The Fock positive linear functional
and the SUð2Þ r-Fock measure

The Fock quantization of HAr can be achieved through
the GNS construction based on the positive linear func-
tional ΦF induced by (60),

ΦF

�XM
i¼1

aiW
r;1=2
γi

�
≔

XM
i¼1

aihŴr;1=2
γi i; ð61Þ

for any finite set of M arbitrary loops γi ∈ L and M
complex numbers ai. One can show that the linear func-
tional ΦF is positive on HAr,
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ΦF

��XM
i¼1

aiW
r;1=2
γi

��XM
i¼1

aiW
r;1=2
γi

��
¼ ΦF

�XM
i;j

ājaiW
r;1=2
γj Wr;1=2

γi

�

¼ ΦF

�XM
i;j

ājaiðWr;1=2
γj∘γi þWr;1=2

γj∘γ−1i Þ
�

¼
XM
i;j

ājaiðhŴr;1=2
γj∘γi i þ hŴr;1=2

γj∘γ−1i iÞ

¼
XM
i;j

ājaihŴr;1=2
γj Ŵr;1=2

γi i

¼
	�XM

j¼1

ajŴ
r;1=2
γj

�†�XM
i¼1

aiŴ
r;1=2
γi

�

≥ 0; ð62Þ

where in the second and the forth lines we used one of the
Mandelstam identities for the smeared Wilson loops and
the r-Wilson loop operators, respectively, and in the last
line we used the self-adjointness of the r-Wilson loop
operators. Those properties are discussed in the Appen-
dixes B and C.
Using the positive linear functional ΦF on HAr, we

define the SUð2Þ r-Fock measure on the space Ā=Ḡ as

Z
Ā=Ḡ

dμrSUð2Þ
XM
i¼1

aiW
1=2
γi ðAÞ ≔ ΦF

�XM
i¼1

aiW
r;1=2
γi

�
; ð63Þ

for any finite set of M arbitrary loops γi ∈ L and M
complex numbers ai. The existence of this measure is
proven by showing that it is continuous with respect to the
C� norm on Ā=Ḡ. The proof is similar to the one in the
Abelian case [7], and it goes as follows.
The C� norm on Ā=Ḡ is defined as

����
XM
i¼1

aiW
1=2
γi

���� ≔ sup
A∈Ā=Ḡ

����
XM
i¼1

aiW
1=2
γi ðAÞ

����

¼ sup
A∈A

����
XM
i¼1

aiW
1=2
γi ðAÞ

����: ð64Þ

The positive linear functional ΦF is defined in (61) via the
Fock vacuum expectation values of the r-Wilson operators.
Using the standard Fock representation, the Fock space is
identified as L2ðS�; dνgÞ, where S� is an appropriate space
of tempered distributions and νg is the standard Gaussian
measure with unit volume. We therefore have that

	XM
i¼1

aiŴ
r;1=2
γi



¼

Z
A∈S�

dνg
XM
i¼1

aiŴ
r;1=2
γi ðAÞ; ð65Þ

which implies that

����
	XM

i¼1

aiŴ
r;1=2
γi


���� ≤ sup
A∈S�

����
XM
i¼1

aiW
r;1=2
γi ðAÞ

����: ð66Þ

Given that the smearing function fr is a Schwartz function,
the smeared holonomies hr;Jγ ðAÞ in (44) are well-defined
SUð2Þ holonomies of the connection Ar. This means that an
element A ∈ S� is mapped via the smearing (43) to a Lie
algebra valued 1-form Ar ∈ S� ∩ Ā. Hence, we have that

∀A∈ S�;

∃Ar ∈ S� ∩ Ā∶
XM
i¼1

aiW
r;1=2
γi ðAÞ ¼

XM
i¼1

aiW
1=2
γi ðArÞ; ð67Þ

and consequently,

sup
A∈S�

����
XM
i¼1

aiW
r;1=2
γi ðAÞ

���� ≤ sup
A∈S�∩Ā

����
XM
i¼1

aiW
1=2
γi ðAÞ

����

≤ sup
A∈Ā

����
XM
i¼1

aiW
1=2
γi ðAÞ

����: ð68Þ

We therefore have

����ΦF

�XM
i¼1

aiW
r;1=2
γi

����� ¼
����
	XM

i¼1

aiŴ
r;1=2
γi


����

≤ sup
A∈Ā=Ḡ

����
XM
i¼1

aiW
r;1=2
γi ðAÞ

����; ð69Þ

which concludes the proof of existence of the measure
μrSUð2Þ on Ā=Ḡ.
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By virtue of (15), and the fact that the Wilson loops are
gauge invariant, the measure μrSUð2Þ can be extended to a

gauge invariant measure on the whole space Ā, therefore,
defining the L2ðĀ; μrSUð2ÞÞ Hilbert space.
Having now defined the measure μr on the space Ā, one

could ask about the relation between this r-Fock measure
and the natural measure μo. This relation could be estab-
lished as follows. Given the positive linear functional ΦF
on HAr, we can define a positive linear functional Φr

F on
HA as

Φr
F

�XM
i¼1

aiW
1=2
γi

�
≔ ΦF

�XM
i¼1

aiW
r;1=2
γi

�
; ð70Þ

for any finite set of M arbitrary loops γi ∈ L and M
complex numbers ai.
Recall that the loop Hilbert space admits the decompo-

sition (12) and an orthonormal basis of which the elements
are called spin networks [in the case ofSUð2Þ].Given a graph
Γ, the measures μr and μo can be restricted to a subspace ĀΓ,
which is obtained by restricting the action of generalized
connections in Ā to the edges of the graph Γ, and we denote
their restrictions μrΓ and μoΓ, respectively.
A spin network stateΨΓ;fj;ιg ∈ L2ðĀΓ; μoÞ, can always be

expressed in a nonunique way in terms of a finite linear
combination of Wilson loops associated to a set of closed
loops within the graph Γ. We then introduce a map IΓ which
associates to each spin network state inL2ðĀΓ; μoÞ a finite set
of loops and complex numbers fðγi; aiÞg, such that

if IΓðΨΓ;fj;ιgÞ ¼ fðγ1; a1Þ;…; ðγM; aMÞg;

then ∀ A ∈ ĀΓ;ΨΓ;fj;ιgðAÞ ¼
XM
i¼1

aiW
1=2
γi ðAÞ: ð71Þ

We therefore can write that for every spin network state
ΨΓ;fj;ιg, we have

Φr
F½ΨΓ;fj;ιg� ¼ Φr

F

� X
ðγi;aiÞ∈IΓðΨΓ;fj;ιgÞ

aiW
1=2
γi

�

¼ ΦF

� X
ðγi;aiÞ∈IΓðΨΓ;fj;ιgÞ

aiW
r;1=2
γi

�
: ð72Þ

Upon a choice of intertwiner bases fιg, the spin networks
form an orthonormal basis in L2ðĀΓ; μoÞ. We hence obtain

dμrΓ ¼
�X

fj;ιgΓ
ΦF

� X
ðγi;aiÞ∈IΓðΨΓ;fj;ιgÞ

aiW
r;1=2
γi

�
ΨΓ;fj;ιg

�
dμoΓ;

ð73Þ

and consequently,

dμrSUð2Þ ¼
�X

Γ

X
fj;ιgΓ

ΦF

� X
ðγi;aiÞ∈IΓðΨΓ;fj;ιgÞ

aiW
r;1=2
γi

�
ΨΓ;fj;ιg

�

× dμoSUð2Þ: ð74Þ

C. Generalization to SUðNÞ gauge theory

Based on the SUð2Þ case, the generalization of the
construction of a r-Fock measure to an arbitrary SUðNÞ
gauge theory is rather straightforward. Except for a few
modifications in the calculation of the Fock vacuum
expectation value of the r-Wilson loop operators, the steps
and results of the construction are similar to the SUð2Þ case.
In the following, we outline the main steps and results in the
general case.
Given a SUðNÞ gauge theory with a phase space para-

metrized by a suðNÞ Lie algebra valued connection A and
the conjugate field E, the definitions of the smeared
connection (43), the smeared holonomies (44) as well as
their Fock quantized counterparts (46) and (48) are the
same, up to the replacement of the SUð2Þ generators τi by
the appropriate SUðNÞ generators, which we denote λi.
Consequently, the r-Wilson loop operator in the SUðNÞ
case takes the form,

Ŵr;J
γ ≔ Tr

�
P exp

�Z
γ
ds

Z
d3k

q
ffiffiffiffiffiffiffiffi
2jkjp λðJÞi X̃a

γ;rðs; kÞðci†a ðkÞ

þ ciað−kÞÞ
��

; ð75Þ

where we kept the same notation for the canonical ladder
operators and the group representation label J for the
SUðNÞ generators.
We are therefore interested in calculating the Fock

vacuum expectation value,

hŴr;J
γ1 …Ŵr;J

γN−1
i; ð76Þ

for an arbitrary set of loops fγ1;…; γN−1g ∈ LN−1.
Similarly to the SUð2Þ case, the calculation of this
expectation value is to be done in the fundamental
representation, denoted jo, of the SUðNÞ group under
consideration. Using the expansion of the r-Wilson oper-
ators as in (52), then performing the product of N − 1 such
operators and rearranging the results as a single series, one
obtains
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hŴr;jo
γ1 …Ŵr;jo

γN−1i ¼
X∞
n¼0

�X2n
p1¼0

…
X2n−
PN−3

k¼1

pk

pN−2¼0

Tr

�Yp1

m1¼1

λjoim1

�
…Tr

� Y
PN−2

k¼1

pk

mN−2¼
PN−3

k¼1

pkþ1

λjoimN−2

�
Tr

� Y2n−
PN−2

k¼1

pk

mN−1¼
PN−2

k¼1

pkþ1

λjoimN−1

�

×

�YN−1

t¼1

Ypt

mt¼pt−1þ1

P
Z
γt

dsmt

Z
d3kmt

q
ffiffiffiffiffiffiffiffiffiffiffiffi
2jkmt

jp X̃
amt
γt;rðsmt

; kmt
Þ
	Y2n

m¼1

ðcim†am ðkmÞ þ cimamð−kmÞÞ

��

: ð77Þ

One can see that the difference in the calculation of the final
result with respect to SUð2Þ is in the presence of a product
of traces of a product of SUðNÞ generators. Unlike the

rather simple coefficients ϒð1=2Þ
σð2nÞ

in (57) for SUð2Þ, estimat-
ing the trace of a product of generators for an arbitrary
SUðNÞ group as well as performing the contraction of the
algebra indices over a product of traces is a much more
complicated task. Nevertheless, the expectation value (77)
is well defined, and one can prove the convergence of the
series (see Appendix A).
The expectation value (77) allows us to introduce the

positive linear functional ΦF on the SUðNÞ smeared
holonomies algebra as in (60). The proof of positivity of
the functional ΦF follows the same reasoning as in the
SUð2Þ case and relies simply on the validity of the SUðNÞ
Mandelstam identities for the smeared Wilson loops and
the r-Wilson loop operators. One then defines the r-Fock
measure μrSUðNÞ on Ā=Ḡ as in (63), with the proof of
existence being the same as in the SUð2Þ case, since the key
point in the proof is the fact that the smearing of a
connection A ∈ S� using a Schwartz function produces a
connection Ar ∈ S� ∩ Ā. Finally, the r-Fock measure is
extended to the whole space Ā by virtue of (15), and one
obtains a similar relation between the r-Fock measure and
the natural measure as in (74).

V. SUMMARY AND COMMENTS

In the present article, we introduced r-Fock measures for
SUðNÞ gauge theories on the space Ā of generalized
connections, that is the configuration space of the loop
quantum theory, and hence, generalizing the earlier works
of M. Varadarajan for Abelian gauge theories [6–8]. After
recalling the construction of the r-Fock representation for
the Abelian gauge theory, we focused on the definition of
an r-Fock measure for an SUð2Þ gauge theory as a concrete
example. We first presented the algebra of SUð2Þ smeared
holonomies around closed loops HAr on the three-
dimensional Riemannian flat space, then we moved to
the standard Fock representation and performed the

calculation of the Fock vacuum expectation value of the
trace of an arbitrary smeared holonomy operator, which we
call the r-Wilson loop operator. The result of this calcu-
lation is used to define a positive linear functional ΦF on
the algebra of smeared holonomies. We then use the
functional ΦF to define a gauge invariant measure μrSUð2Þ
on the space Ā, which is the r-Fock measure for the SUð2Þ
gauge theory, and expose the relation between the new
measure and the natural difeomorphism invariant measure
μoSUð2Þ. Finally, we present how the construction extends to
arbitrary SUðNÞ gauge group to obtain the corresponding r-
Fock measure.
It is important to recall few aspects which display the

contrast between the Abelian case and the non-Abelian
case. Unlike the Abelian case, in which the smeared
holonomies-electric field algebra is isomorphic to the
standard holonomy-flux algebra, the two algebras for a
non-Abelian SUðNÞ gauge group are not. Therefore, in the
non-Abelian case, the Fock representation of the smeared
holonomies algebra HAr is not a representation of the
standard holonomy-flux algebra. An aspect of this disparity
is that the smeared electric field is not a well-defined
operator on the space of cylindrical functions. Furthermore,
it is not clear yet whether the Fock representation of the
smeared holonomies algebraHAr is unitarily equivalent to
the standard Fock representation of the connection algebra.
The relation between these two representations is important
for the construction of shadow states in the loop theory
space, and their interpretation. This is a work in progress.
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APPENDIX A: CONVERGENCE OF THE RESULT
OF THE EXPECTATION VALUE OF R-WILSON

LOOP OPERATORS

i) Proof that the series in (60) is absolutely convergent.
From (60), we have
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jhŴr;1=2
γ ij ¼

����
X∞
n¼0

1

2nn!
P
Z
γ
ds1…ds2n

X
σ

ϒð1=2Þ
σð2nÞ

�Yn
m¼1

Z
d3k

2q2jkj X̃
a
γ;rðsσð2m−1Þ; kÞX̃a

γ;rðsσð2mÞ;−kÞ
�����

¼
����
X∞
n¼0

1

2nn!
P
Z
γ
ds1…ds2nX̃

ð2Þ
γ;r ðs1;…; s2nÞ

����
≤
X∞
n¼0

1

2nn!

����P
Z
γ
ds1…ds2nX̃

ð2Þ
γ;r ðs1;…; s2nÞ

����; ðA1Þ

where

X̃ð2Þ
γ;r ðs1;…; s2nÞ ≔

X
σ

ϒð1=2Þ
σð2nÞ

�Yn
m¼1

Z
d3k

2q2jkj X̃
a
γ;rðsσð2m−1Þ; kÞX̃a

γ;rðsσð2mÞ;−kÞ
�
: ðA2Þ

Also,

����P
Z
γ
ds1…ds2nX̃

ð2Þ
γ;r ðs1;…; s2nÞ

����
¼
����P
Z
γ
ds1…ds2n

X
σ

ϒð1=2Þ
σð2nÞ

�Yn
m¼1

Z
d3k

2q2jkj X̃
a
γ;rðsσð2m−1Þ; kÞX̃a

γ;rðsσð2mÞ;−kÞ
�����

≤ P
Z
γ
ds1…ds2n

X
σ

jϒð1=2Þ
σð2nÞ

j
����
�Yn

m¼1

Z
d3k

2q2jkj X̃
a
γ;rðsσð2m−1Þ; kÞX̃a

γ;rðsσð2mÞ;−kÞ
�����

≤
3n

22n−1
P
Z
γ
ds1…ds2n

X
σ

����
Yn
m¼1

δaσð2m−1Þaσð2mÞ

Z
d3k

2q2jkj X̃
aσð2m−1Þ
γ;r ðsσð2m−1Þ; kÞX̃aσð2mÞ

γ;r ðsσð2mÞ;−kÞ
����; ðA3Þ

where we used the fact that jϒð1=2Þ
σð2nÞ j ≤ 3n=22n−1. Using the expression for the functions X̃a

γ;rðs; kÞ in (49), we have

����
Z

d3k
2q2jkj X̃

ai
γ;rðsi; kÞX̃aj

γ;rðsj;−kÞ
���� ¼ j_γaiðsiÞjj_γajðsjÞj

����
Z

d3k
2q2jkj e

−ik⃗:ðγ⃗ðsiÞ−γ⃗ðsjÞÞf̃rðkÞf̃rð−kÞ
����: ðA4Þ

For the integral on the right-hand side to produce a well-defined on the wholeR3 domain, which corresponds [up to a factorffiffiffiffiffiffi
2π

p
3=2=ð2q2Þ] to the inverse Fourier transform of the function f̃rðkÞf̃rðkÞ=jkj, the function f̃rðkÞf̃rðkÞ=jkj must be

integrable. This means that we need the function f̃rðkÞ=
ffiffiffiffiffijkjp

to be square integrable, which restricts the choice of the
smearing function fr. Assuming this condition, we further obtain

����
Z

d3k
2q2jkj X̃

ai
γ;rðsi; kÞX̃aj

γ;rðsj;−kÞ
���� ≤ j_γaiðsiÞjj_γajðsjÞj

Z
d3k

2q2jkj je
−ik⃗:ðγ⃗ðsiÞ−γ⃗ðsjÞÞf̃rðkÞf̃rð−kÞj

¼ j_γaiðsiÞjj_γajðsjÞj
Z

d3k
2q2jkj f̃rðkÞf̃rð−kÞ

≕ j_γaiðsiÞjj_γajðsjÞjwr; ðA5Þ

where wr ≔
R

d3k
2q2jkj f̃rðkÞf̃rð−kÞ depends only on the smearing function fr, and it corresponds to the square of the L2 norm

of the function f̃rðkÞ=
ffiffiffiffiffiffiffiffiffiffiffiffi
2q2jkj

p
. It then follows that
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P
Z
γ
ds1…ds2n

X
σ

����
Yn
m¼1

δaσð2m−1Þaσð2mÞ

Z
d3k

2q2jkj X̃
aσð2m−1Þ
γ;r ðsσð2m−1Þ; kÞX̃aσð2mÞ

γ;r ðsσð2mÞ;−kÞ
����

≤ P
Z
γ
ds1…ds2n

X
σ

�Yn
m¼1

δaσð2m−1Þaσð2mÞ j_γaσð2m−1Þ ðsσð2m−1ÞÞjj_γaσð2mÞ ðsσð2mÞÞjwr

�

¼ ðwrÞnP
Z
γ
ds1…ds2nj_γa1ðs1Þj…j_γa2nðs2nÞj

X
σ

�Yn
m¼1

δaσð2m−1Þaσð2mÞ

�

¼ ðwrÞn
�Z

γ
ds1

Z
γ
ds2j_γaðs1Þjj_γaðs2Þj

�
n
≤ ðwrÞn; ðA6Þ

where in the last line we used the fact that the tangent vectors are normalized as _γaðsÞ_γaðsÞ ¼ 1. Therefore,

X∞
n¼0

1

2nn!

����P
Z
γ
ds1…ds2nX̃

ð2Þ
γ;r ðs1;…; s2nÞ

���� ≤
X∞
n¼0

1

2nn!
3n

22n−1
ðwrÞn ¼ 2e

3
8
wr
γ ; ðA7Þ

which shows that the series in (60) converges absolutely.
ii) Elements of the proof that the series in (77) for a

SUðNÞ group is absolutely convergent.
The steps to show that the series in (77) converges

absolutely are the same as in the proof for SUð2Þ above.
The main technical difference is in establishing a bound for
the coefficients in (77), which depend on the traces of the
products of SUðNÞ generators. In the case of SUð2Þ, we

used the fact that we have an expression for the coefficients

ϒð1=2Þ
σð2nÞ

to estimate a bound. In the general SUðNÞ case
(N ≥ 2), we can use generic properties of the trace and of
the SUðNÞ generators.
It follows from (77) that the coefficients for which we

need to estimate a bound are

ζðjoÞ
σð2nÞ ≔ δiσð1Þiσð2Þ…δiσð2n−1Þiσð2nÞTr

�Yp1

m1¼1

λjoim1

�
Tr

� Yp1þp2

m2¼p1þ1

λjoim2

�
…Tr

2
64 Y2n−

PN−2

k¼1

pk

mN−1¼
PN−2

k¼1

pkþ1

λjoimN−1

3
75: ðA8Þ

In the fundamental representation jo, we take the SUðNÞ generators to be N × N complex matrices satisfying

½λi; λj� ¼
XN2−1

k¼1

εijkλk; fλi; λjg ¼ −
1

N
δij1jo þ

XN2−1

k¼1

ϑijkλk; ðA9Þ

where 1jo is the identity element on the SUðNÞ group in representation jo, εijk is a totally antisymmetric real valued tensor
and corresponds to the structure constants of the group, and ϑijk is a totally symmetric tensor. These tensors are determined
by computing the traces of the product of the commutator or the anticommutator in (A9) with a single λm.
Given a complex N × N matrix T, the singular values ςt of T are positive numbers defined as the eigenvalues of the

matrix
ffiffiffiffiffiffiffiffiffi
T�T

p
, where � denotes the adjoint matrix, ordered in a decreasing order with respect to the index t (1 ≤ t ≤ N), that

is ς1 ≥ ς2 ≥ …ςN . These singular values satisfy several properties; in particular, we have

∀ T; S ∈ MNðCÞ; ∀ t ∈ f1;…; Ng∶

jTrðTÞj ≤
XN
t¼1

ςtðTÞ; ςtðTÞ ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðT�TÞ

p
; and ςtðSTÞ ≤ ς1ðSÞςtðTÞ ≤ ς1ðSÞς1ðTÞ: ðA10Þ

It follows from these properties that for a product of SUðNÞ generators λi, we have
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∀p ∈ Nnf0g;
����Tr

�Yp
m¼1

λjoim

����� ≤ N
Yp
m¼1

ς1ðλjoimÞ ≤ N
Yp
m¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Trð½λjoim ��λ

jo
im
Þ

q
¼ N

2p=2
; ðA11Þ

where the last equality follows from the properties in (A9) and the fact that ½λjoim �� ¼ −λjoim . Hence, we obtain that

δiσð1Þiσð2Þ…δiσð2n−1Þiσð2nÞ
����Tr

�Yp1

m1¼1

λjoim1

�����…
������Tr

2
64 Y2n−

PN−2

k¼1

pk

mN−1¼
P

N−2
k¼1

pkþ1

λjoimN−1

3
75
������ ≤ NN−1 ðN2 − 1Þn

2n
; ðA12Þ

for every permutation σ of 2n indices. The factor ðN2 − 1Þn emerges from the contraction of the algebra indices via
Kronecker deltas, where each delta stands for a sum of N2 − 1 terms. Consequently, we get

jζðjoÞ
σð2nÞ

j ≤ NN−1 ðN2 − 1Þn
2n

: ðA13Þ

We then have

hŴr;jo
γ1 …Ŵr;jo

γN−1i ≤
X∞
n¼0

����
X2n
p1¼0

…
X2n−
PN−3

k¼1

pk

pN−2¼0

Tr

�Yp1

m1¼1

λjoim1

�
…Tr

2
64 Y

PN−2

k¼1

pk

mN−2¼
PN−3

k¼1

pkþ1

λjoimN−2

3
75Tr

2
64 Y2n−

PN−2

k¼1

pk

mN−1¼
PN−2

k¼1

pkþ1

λjoimN−1

3
75

×

�YN−1

t¼1

Ypt

mt¼pt−1þ1

P
Z
γt

dsmt

Z
d3kmt

q
ffiffiffiffiffiffiffiffiffiffiffiffi
2jkmt

jp X̃
amt
γt;rðsmt

; kmt
Þ
	Y2n

m¼1

ðcim†am ðkmÞ þ cimamð−kmÞÞ

�����

≤
X∞
n¼0

NN−1 ðN2 − 1Þn
2n

����
X2n
p1¼0

…
X2n−
PN−3

k¼1

pk

pN−2¼0

YN−1

t¼1

� Ypt

mt¼pt−1þ1

P
Z
γt

dsmt

Z
d3kmt

q
ffiffiffiffiffiffiffiffiffiffiffiffi
2jkmt

jp X̃
amt
γt;rðsmt

; kmt
Þ
�

×
1

2nn!

X
σ

Yn
m¼1

δaσð2m−1Þaσð2mÞδ
ð3Þðkσð2m−1Þ; kσð2mÞÞ

����

≤ NN−1
X∞
n¼0

ðN2 − 1Þn
22nn!

X2n
p1¼0

…
X2n−
PN−3

k¼1

pk

pN−2¼0

ðwrÞn ¼ NN−1
X∞
n¼0

ðN2 − 1Þn
22nn!

ðwrÞn
�
nþ N − 2

N − 2

�
:

Performing the sum over n leads to the final result,

hŴr;jo
γ1 …Ŵr;jo

γN−1i ≤ NN−1
1F1

�
N − 1; 1;

ðN2 − 1Þwr

4

�
;

ðA14Þ

which shows that the series in (77) converges, and it is
absolutely convergent.

APPENDIX B: MANDELSTAM IDENTITIES FOR
SUð2Þ SMEARED WILSON LOOPS

The smearedWilson loop is the trace of a smeared SUð2Þ
holonomy, namely,

Wr;J
γ ≔ Tr½hr;Jγ ðAÞ�: ðB1Þ

Since

hr;Jγ ðAÞ ¼ P exp

�Z
γ
ds_γaðsÞAr;i

a ðγðsÞÞτðJÞi

�
; ðB2Þ

where Ar;i
a ðxÞ ≔ R

R3 d3yfrðx − yÞAi
aðyÞ are the compo-

nents of the Lie algebra valued 1-form Ar, the smeared
holonomies hr;Jγ ðAÞ are holonomies for the connection Ar,
and they satisfy

hr;Jρ ¼ 1J; hr;Jγ1 h
r;J
γ2 ¼ hr;Jγ1∘γ2 ; ðhr;Jγ Þ−1 ¼ ðhr;Jγ Þ� ¼ hr;J

γ−1
;

ðB3Þ

LOOP REPRESENTATION AND r-FOCK MEASURES FOR … PHYS. REV. D 105, 104025 (2022)

104025-15



whereρ is the trivial loop (class), 1J is the identity element on
the SUð2Þ group in the J representation, and the � is the
adjoint operation for the SUð2Þ group component of the
operator, not the adjoint map for operators on the Fock space
denoted †. It follows that their traces satisfy the Mandelstam
identities [1] for SUð2Þ, which means that the smeared
Wilson loops also satisfy the Mandelstam identities. In
particular, we have

Wr;1=2
γ1∘γ2 ¼ Wr;1=2

γ2∘γ1 ; Wr;1=2
γ1 Wr;1=2

γ2 ¼ Wr;1=2
γ1∘γ2 þWr;1=2

γ1∘γ−12 ;

ðB4Þ
which are the Mandelstam identities of the first and second
kind, respectively. We also have that

∀ γ ∈ L; jWr;1=2
γ j ≤ Wr;1=2

ρ ¼ 2: ðB5Þ

Using the last two equations, it follows that

Wr;1=2
γ ¼ Wr;1=2

γ−1
: ðB6Þ

APPENDIX C: MANDELSTAM IDENTITIES FOR
SUð2Þ R-WILSON LOOP OPERATORS

The fact that the r-Wilson loop operators satisfy a sort of
operator counterparts of the classical Mandelstam identities
is intuitive, but not straightforward because we are dealing
with operators on the Fock space.Hence, one needs to review
the derivation of the Mandelstam identities in order to make
sure that the promotion of the Wilson loops to operators on
the Fock space does not spoil the properties they satisfy.
We begin with few important observations. Since the

operators Âr;i
a ðxÞ in (46) commutewith each other, it follows

that the SUð2Þ smeared holonomy operators in (48) satisfy

ĥr;Jρ ¼ 1J ⊗ Î and ĥr;Jγ1 ĥ
r;J
γ2 ¼ ĥr;Jγ1∘γ2 ; ðC1Þ

where Î is the identity operator on the Fock space. This
implies that

ĥr;Jγ ĥr;J
γ−1

¼ 1J ⊗ Î and ðĥr;Jγ Þ−1 ¼ ðĥr;Jγ Þ� ¼ ĥr;J
γ−1
: ðC2Þ

Consequently, we have

Ŵr;J
ρ ¼ ð2J þ 1ÞÎ and detG½ĥr;Jρ � ¼ Î; ðC3Þ

where detG stands for the determinant of the group compo-
nent of the operator. Then, thanks to the fact that the operators
Âr;i
a ðxÞ are self-adjoint, it follows that

∀ γ ∈ L; detG½ĥr;Jγ � ¼ detG½ĥr;Jρ � ¼ Î; ðC4Þ

which consists of a generalization of the unit determinant
property of the SUð2Þ group elements.
One can now proceed with the derivation of the

Mandelstam identities for the r-Wilson loop operators.
The Mandelstam identities of the first kind follow from
the cyclic property of the trace and the commutativity of the
operators Âr;i

a ðxÞ, and we have

Ŵr;J
γ1∘γ2 ¼ Ŵr;J

γ2∘γ1 : ðC5Þ

The second family of Mandelstam identities is part of the
identities of the second kind. These identities are derived
from the fact that in K dimensions, a K þ 1 totally
antisymmetric tensor identically vanishes. The contrac-
tion of the tensor δA1

½B1
…δAKþ1

BKþ1� with K þ 1 holonomies, or

smeared holonomies in our case, gives rise to the second
family of Mandelstam identities. Following the derivation
developed in [16], and using the results presented above,
one arrives at the desired identities. A particularly impor-
tant identity for our work is

Ŵr;1=2
γ1 Ŵr;1=2

γ2 ¼ Ŵr;1=2
γ1∘γ2 þ Ŵr;1=2

γ1∘γ−12 ; ðC6Þ

which we use to show that the linear functional defined in
(61) is a positive linear functional on the algebra of smeared
Wilson loops.
Finally, using the self-adjointness of the operators Âr;i

a ðxÞ
and Eqs. (C2) and (C6), we get that the r-Wilson loop
operators Ŵr;J

γ are self-adjoint operators,

ðŴr;J
γ Þ† ¼ Ŵr;J

γ : ðC7Þ
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