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We propose a new approach to study the phase transition dynamics of the Reissner-Nordström-AdS
black holes on the underlying free energy landscape. By formulating a path integral framework, we
quantify the kinetic paths representing the histories from the initial state to the end state, which provides us
a visualized, yet quantified, picture about how the phase transition proceeds. Based on these paths, we
derive the analytical formulas for the time evolution of the transition probability and provide a physical
interpretation of the contribution to the probability from one pseudomolecule (antipseudomolecule),
composed of instantons and anti-instantons, which is actually the phase transition rate from the small(large)
to the large(small) black hole state. These numerical results show a good consistency with the underlying
free energy landscape topography.
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I. INTRODUCTION

In general relativity, classical black holes are emerge
from the solutions of Einstein’s equation. The black holes
have some fascinating features. They are perfect absorbers
but emit nothing. As known, an object with nonzero
temperature has thermal radiation. This implies that the
physical temperature of the classical black hole is zero and
the black hole thermodynamics seems to be impossible.
This has all changed since the appearance of the black hole
area law [1], stating that the event horizon area of the black
hole can never decrease with the time. Bekenstein inci-
sively noticed the similarities with the second law of
thermodynamics, and proposed that every black hole
should have its own entropy which is associated with
the event horizon area by a directly proportional relation-
ship [2]. Thereafter, the four laws of black hole mechanics
[3] were formulated, analogous to the four laws of
thermodynamics. However, since the temperature of the
classical black hole is zero, it implies that these similarities
are merely formal and do not have profound physical
implications.
The whole picture has been significantly altered since the

quantum effects were considered, leading to the famous
Hawking radiation, which shows that the black holes emit
radiation with a blackbody spectrum [4]. The Hawking

radiation and the four laws of black hole mechanics
indicate that the black holes are thermodynamic systems
with temperatures. Since then, the black hole thermody-
namics has been widely used to study black hole physics. A
famous example is the Hawking-Page phase transition
occurring in the asymptotically anti–de Sitter space
(AdS), where a first-order phase transition has been found
between the thermal radiation and the large stable
Schwarzschild-anti–de Sitter black hole [5]. Recent
research shows that there is a correspondence between
the gravitational physics in anti–de Sitter space in the bulk
and one-dimensional less conformal field theories (CFT) on
the boundary via holography [6–10]. In the context of AdS/
CFT correspondence, the Hawking-Page transition can be
interpreted as the confinement/deconfinement phase tran-
sition in QCD [6]. By viewing the cosmological constant as
the thermodynamic pressure in the AdS space, the analogs
of the charged-AdS black holes and the van der Waals
fluids have been explored [9–13]. The behaviors of black
hole thermodynamics at the triple point phase transition
have also been investigated [14]. All of these studies
provide us a more profound understanding of black hole
thermodynamics.
However, the dynamics of how a black hole state or

phase transforms to another one during the phase transition
has not been investigated adequately until very recently.
Recent studies of black hole phase transition dynamics
under thermal fluctuations have been explored on the
free energy landscape by solving the corresponding
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probabilistic Fokker-Planck equation, giving rise to the
fluctuations and the mean first-passage time (i.e., the
inverse of the rate) [15,16]. The complete description of
the dynamics should include two aspects; the rate showing
how fast the black hole phase transition occurs and the path
showing how the process proceeds in the phase transition.
Thus, it is necessary for us to quantify the phase transition
path to explore the underlying dynamical process.
Since its appearance in [17], path integral methods have

been developed and used to study many physical and
chemical problems successfully [18–22]. The advantage
of such a method is that one can quantify the paths with
weights representing the histories from the initial state to the
end state. The paths will provide us a quantitative and visual
picture of the phase transition process. This certainly helps
us to understand the dynamics of phase transition better.
The phase transition of Reissner-Nordström-AdS

(RNAdS) black holes takes place in the asymptotically
AdS space with the negative cosmological constant. By
interpreting the cosmological constant as thermodynamic
pressure [11,23,24], one can formulate the extended phase
space and study the van der Waals-type phase transition in
RNAdS black holes. By choosing the black hole radius as
the order parameter, the free energy landscape can be
quantified along this order parameter. The phase transition
can then be easily analyzed on the free energy landscape
[15,16]. There are three macroscopic emergent phases; the
small, the thermodynamic transition, and the large black
hole states. The small and large black hole states are locally
stable and the thermodynamic transition black hole state is
unstable. Under the thermodynamic fluctuations, the phase
transition is possible between the locally stable small black
hole state and the locally stable large black hole state.
In this paper we study the process of such a phase

transition by using a path integral method [21,22,25–31].
The weights of different paths are from the exponentials of
the path integral actions. This implies that the weight of the
dominant path is significantly larger than that of the other
paths due to the exponential suppression in the weights of
the other paths. Then we can just consider the contribution
from the dominant path. The dominant path should satisfy
the Euler-Lagrange (E-L) equation due to the minimization
of the action or maximization of the weight, and we can
transform the E-L equation as an energy conservation
equation. Thus, the phase transition between the small
and the large black hole states can be regarded as a one-
dimensional particle under an effective potential moving
between the corresponding small and large black hole
states. In the longtime limit, the phase transition can go
back and forth many times and the kinetic paths can be
quantified. The dominant path is composed of a series of
small units named pseudomolecules, with each made from
a pair of instantons (we have referred to [28,30,31] for
using the words “pseudomolecule” and “instanton”). By
assuming that there are no interactions between the

instantons, we can quantify the probability in the dilute
gas approximation. We find that the contribution to the
probability from one pseudomolecule or one antipseudo-
molecule is actually responsible for quantifying the phase
transition rate from the small to large black hole state or
from the large to small black hole state. The expressions of
the phase transition rates can be obtained analytically. All
these results are consistent with the underlying Gibbs free
energy landscape. This paper presents a new framework to
study the dynamical phase transition process of the black
holes and the spacetimes. We address the crucial kinetic
path issue and provide a more profound understanding to
the phase transition process of the RNAdS black holes.
The paper is organized as follows. In Sec. II we illustrate

the thermodynamic properties of RNAdS black holes under
theunderlying free energy landscape. InSec. III,we introduce
thepath integral frameworkand apply it to thephase transition
of RNAdS black holes. Then, the kinetic paths, phase
transition rates, and the time evolutions of the probabilities
are presented. In Sec. IV, we present the conclusions.

II. THERMODYNAMICS OF RNAdS BLACK HOLE
AND THE FREE ENERGY LANDSCAPE

In this section we will briefly review the thermodynamic
properties of RNAdS black holes [11,15,16,32,33].
The metric of RNAdS black hole is given by (G ¼ 1

unit)

ds2 ¼ −fðRÞdt2 þ dR2

fðRÞ þ R2dΩ2; ð1Þ

where fðRÞ is given by

fðRÞ ¼ 1 −
2m
R

þ q2

R2
þ R2

l2
: ð2Þ

The parameter m represents the black hole mass, q is the
black hole charge, and l is the AdS curvature radius which
is associated with the negative cosmological constant Λ

by l ¼
ffiffiffiffi
−3
Λ

q
.

In the AdS space, the cosmological constant can be
interpreted as the thermodynamic pressure in extended
thermodynamics [11,34–36],

P ¼ 3

8π

1

l2
: ð3Þ

The Hawking temperature is given by

TH ¼ 1

4πr

�
1þ 8πPr2 −

q2

r2

�
: ð4Þ

We should note that there is a critical pressure Pc ¼ 1
96πq2

[11,16]. When P > Pc, the Hawking temperature TH is a
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monotonic increasing function of r. When P < Pc, TH has
a local minimum value Tmin and a local maximum value
Tmax, which are determined by ∂TH∂r ¼ 0. We will focus on
the regime P < Pc and Tmin < T < Tmax, where there are
three on shell solutions to the stationary Einstein field
equation; the small, the thermodynamic transition, and the
large black holes.
On the free energy landscape, the free energy of the

system is defined as a continuous function of the order
parameter. It is necessary to introduce a series of off shell
states for the study of the black hole phase transition
dynamics. In general, we can choose the radius of the AdS
black hole as the order parameter and assume a canonical
ensemble which is composed of various black hole space-
time states with different radii at the specific temperature
[5,15,16,32,33]. This includes all the possible states
appearing during the phase transition. These states are
characterized by the different black hole radii. Except for
the small, the thermodynamic transition, and the large black
holes, all the other states are off shell and do not obey the
stationary Einstein field equation. In fact, the off shell black
hole states are unstable transients resulting from the
classical thermal fluctuations of the black hole spacetimes.
They are important in characterizing the free energy land-
scape of the black hole spacetime instead of the isolated
stable black hole phases. Although the off shell states are
intermediate transient and unstable, they are still significant
as a bridge connecting between the stable black hole phases
reflected by the dominant phase transition paths as illus-
trated in Fig. 3, where the associated dynamics of the phase
transition is explicitly shown (This will be illustrated in
detail in the next section). In recent research, it was found
that there is a lower bound for the order parameter which
corresponds to the extremal black hole [37]. We denote the
lower bound of the order parameter as rex.
Replacing the Hawking temperature TH by the ensemble

temperature T in the on shell Gibbs free energy expression
G ¼ m − THS, we can generalize the on shell Gibbs free
energy to the off shell free energy as [16,32,33]

G ¼ m − TS ¼ r
2

�
1þ 8

3
πPr2 þ q2

r2

�
− πTr2; ð5Þ

where the order parameter r can take the continuous values
from rex to infinity.
We choose P ¼ 0.4Pc and q ¼ 1 in all the next calcu-

lations, rex can be calculated as 0.984, which is smaller than
the radius of the small black hole at various temperatures.
In Fig. 1, we have plotted the free energy as a function of
black hole radius r at different temperatures. From the
figure it can be seen that when Tmin < T < Tmax, the Gibbs
free energy has three local extremum points (a local
maximum point and two local minimum points). They
satisfy the equation

∂G
∂r ¼ 1

2
þ 4πPr2 −

q2

2r2
− 2πTr ¼ 0; ð6Þ

which is same as Eq. (4) when we replace the Hawking
temperature TH by the ensemble temperature T. Therefore,
the radii of the three local extremal points are actually the
three on shell solutions to the stationary Einstein field
equation.
Based on the condition of P ¼ 0.4Pc and q ¼ 1, we can

solve Eq. (6) and obtain the values of rs, rm, and rl at
different temperatures.
Furthermore, it can be seen from the Fig. 1, the small and

large black hole states corresponding to the free energy
minima are locally stablewhile the thermodynamic transition
black hole state corresponding to the free energymaximum is
unstable. Because of the thermal fluctuations, it is possible
for the phase transitions between the locally stable small
black hole state and the locally stable large black hole state.
We will study the dynamics of such phase transitions by
using path integral methods in the next section.

III. PATH-INTEGRAL AND PHASE TRANSITION
RATE OF RNAdS BLACK HOLE

A. The path integral of the RNAdS black hole
phase transition

The stochastic dynamics of the RNAdS black hole
under the thermal fluctuations can be described by the
probabilistic Fokker-Planck equation in [16]. In order to
formulate the path integral framework, it is convenient to
use the equivalent stochastic Langevin equation for the
trajectories as

0.984 2 3 4 5 6 7 8 9 10 11 12 13
−2

−1

0

1

2

3
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r

G

0.984 1.5 2
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0.88

0.92

0.96

1.6 3.4 5.2
0.3

0.6

0.9

1.2

FIG. 1. The Gibbs free energy as the function of black hole
radius r at different temperatures. The values of the temperature
from top to bottom are set as T ¼ 0.027 < Tmin, T ¼ Tmin ¼
0.0285, Tmin < T ¼ 0.03 < Tmax, Tmin < T ¼ 0.033 < Tmax,
T ¼ Tmax ¼ 0.0354, T ¼ 0.037 > Tmax.

PATH INTEGRAL AND INSTANTONS FOR THE DYNAMICAL … PHYS. REV. D 105, 104024 (2022)

104024-3



dr
dt

¼ −
∂GðrÞ
γ∂r þ ηðr; tÞ; ð7Þ

where γ is the friction coefficient, − ∂GðrÞ
γ∂r is the driving

force, and ηðr; tÞ is the fluctuating stochastic force. We
assume that ηðr; tÞ is the Gaussian white noise, which
satisfies the equations hηðr; tÞi ¼ 0 and hηðr; tÞηðr; 0Þi ¼
2DδðtÞ. The diffusion coefficient D is associated with the
friction coefficient by the Einstein relationship

Dγ ¼ kBT: ð8Þ

Theweight or the probability from the initial to final state
at time t can be quantified by the Onsager-Machlup
functional path integral as [18,25]

Pðrt; t; r0; 0Þ ¼
Z

Dr exp

�
−
Z

L½rðtÞ�dt
�

¼
Z

Dr exp

�
−
Z �

1

4

ðdrdt þ D∂βGðrÞ
∂r Þ2

D

−
1

2

∂ðD ∂βGðrÞ
∂r Þ

∂r
�
dt

�
; ð9Þ

where Dr represents the sums of all the paths connect-
ing the initial state and the end state, L½rðtÞ� is the
stochastic Lagrangian (also called the Onsager-Machlup
functional),

L ¼ 1

4

ðdrdt þ D∂βGðrÞ
∂r Þ2

D
−
1

2

∂ðD ∂βGðrÞ
∂r Þ

∂r : ð10Þ

If we assume that the diffusion coefficient is very small,
then the last term of the Lagrangian in Eq. (10) can be
ignored as

L ¼ 1

4

ðdrdt þ D∂βGðrÞ
∂r Þ2

D
: ð11Þ

From Eq. (9), we can see that the different paths
contribute to different weights, which are on the exponen-
tials. This indicates that the dominant path has the
largest weight, which can be significantly larger than the
weights of the other paths due to the exponential suppres-
sion in the weight of the other paths. Thus, we can just
consider the contributions of the dominant path. The
dominant path should obey the Euler-Lagrange equation
from the maximization of the weights or minimization of
the action,

d
dt

∂L
∂ _r −

∂L
∂r ¼ 0: ð12Þ

Substituting Eq. (11) into Eq. (12) we obtain

d2r
dt2

−
1

2

∂D
∂r
D

_r2 − 2D
∂u
∂r ¼ 0; ð13Þ

where

uðrÞ ¼ D
4

�∂βGðrÞ
∂r

�
2

: ð14Þ

Integrating Eq. (13) we obtain

ðdrdtÞ2
4D

− uðrÞ ¼ E; ð15Þ

where E is a constant.
Equation (15) can be regarded as an energy conservation

equation; 1
4D ðdrdtÞ2 is the kinetic energy term, VðrÞ ¼ −uðrÞ

is the effective potential, and E is the total energy. Thus, the
dynamics of the phase transition can be described equiv-
alently as the dynamics of one-dimensional particle with
mass 1

2D moving in the effective potential VðrÞ [19–22].
Let us assume thatD is a constant and chooseD ¼ k ¼ 1

without loss of generality. In Fig. 2, we have plotted the
Gibbs free energy and the effective potential as functions of
the black hole radius at different temperatures. It can be
seen that when T < Tmin or T > Tmax, there is only
one state whose effective potential is zero. When T ¼
Tmin or T ¼ Tmax, there are two such states. And when
Tmin < T < Tmax, there are three such states. Analyzing
Eqs. (6) and (14), we can see all these radii of the zero
effective potential states are precisely the on shell solutions
to the stationary Einstein field equation (i.e., the extremum
points of the Gibbs free energy), which are also well shown
in Fig. 2.
When Tmin < T < Tmax, there are three local maximums

whose effective potentials are zero, representing the small,
the thermodynamic transition, and the large black hole
states. Correspondingly, we denote their radii as rs, rm and
rl. In the longtime limit, the phase transitions between the
small black hole state and the large black hole state can take
place many times because of the thermodynamic fluctua-
tions. This implies that the equivalent particle can go back
and forth many times between the point r ¼ rs and the
point r ¼ rl in the effective potential VðrÞ. The dominant
path is composed of a series of smallest units of such jumps
named pseudomolecules. These pseudomolecules should
start at the locally stable states and also end at the locally
stable states. Actually, every pseudomolecule is composed
of a pair of instantons (or named pseudoparticles) whose
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paths are between the state of rs or rl and the state of rm.
There are four kinds of pseudomolecules in total; the a
pseudomolecule has the trajectory rs → rm → rs with an
instanton rs → rm and an anti-instanton rm → rs, whose
contribution to the probability is named m1, the b pseu-
domolecule has the trajectory rs → rm → rl with a pair of
instantons rs → rm and rm → rl, whose contribution to the
probability is named m2, the c pseudomolecule has the
trajectory rl → rm → rl with an anti-instanton rl → rm and
an instanton rm → rl, whose contribution to the probability
is named m3, and the d pseudomolecule has the trajectory
rl → rm → rs with a pair of anti-instantons rl → rm and
rm → rs, whose contribution to the probability is named
m4. We assume that there are no interactions between the
instantons, so that we can calculate the final contribution by
summing overall in the dilute gas approximation [30,38].
In order to calculate the probability for the phase

transition, we need to obtain the pseudomolecule paths.
Based on Eq. (13), we can plot the black hole radius as a
function of time t from small (large) black hole state to the
thermodynamic transition black hole state at different
temperatures in Fig. 3, they are actually the paths of a
and c pseudomolecules. After introducing the off shell
states, the dynamical process during the phase transition

can be revealed clearly in the paths. From the paths, it can
be seen that the phase transition between the small and
large black holes will not have a residence time in the off
shell states. This indicates that the off shell states are
unstable transient states.
The weight of one pseudomolecule contribution to the

probability is given by

M ¼ exp½−S� ¼ exp

�
−
Z

tend

tinitial

LðrðtÞÞdt
�
; ð16Þ

where S represents the action of the path,

S ¼
Z

tend

tinitial

LðrðtÞÞdt

¼ 1

4

Z
tend

tinitial

1

D

�
dr
dt

�
2

þ 2
dr
dt

∂βGðrÞ
∂r þD

�∂βGðrÞ
∂r

�
2

dt:

ð17Þ

For the weight contributions of the paths to the probability,
we assume that the initial state is located at the
locally stable small black hole state or the locally stable
large black hole state whose effective potential and kinetic
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FIG. 2. The Gibbs free energy (blue line) and the effective potential (red line) as the functions of black hole radius at
different temperatures: (a) T ¼ 0.025 < Tmin, (b) T ¼ Tmin ¼ 0.0285, (c) Tmin < T ¼ 0.031 < Tmax, (d) Tmin < T ¼ 0.033 < Tmax,
(e) T ¼ 0.0354 ¼ Tmax, and ðfÞ T ¼ 0.05 > Tmax.
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energy are zero. The energy conservation equation (15)
becomes

dr
dt

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4DuðrÞ

p
¼ �D

				 ∂βGðrÞ∂r
				: ð18Þ

Based on the free energy figure in Fig. 1, we know that the
∂βGðrÞ

∂r is greater than zero between rs and rm, and less than
zero between rm and rl. The sign of dr

dt is determined by the
process in which the system proceeds. It is positive when
the system translates from the small to the large black hole

state and negative from the large to the small black hole
state. Then, we can obtain:

From rs to rm, dr
dt ¼ D ∂βGðrÞ

∂r ;

From rm to rl,
dr
dt ¼ −D ∂βGðrÞ

∂r .

From rl to rm,
dr
dt ¼ D ∂βGðrÞ

∂r ;

From rm to rs, dr
dt ¼ −D ∂βGðrÞ

∂r .

Substituting these equations back into Eq. (17), and
being careful about the signs, we can see that the action
S ¼ 0 for the trajectories from rm to rs and from rm to rl.
This indicates that only the trajectory from the small (large)
black hole state to the thermodynamic transition black hole
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state contributes to the probability for the phase transition
from the small (large) black hole state to the large (small)
black hole state, which also corresponds to the free energy
figures in Fig. 1. In the transition from the small to the
large black hole states, the free energy is uphill for the
trajectory from the small black hole state to the thermo-
dynamic transition black hole state, and downhill from the
thermodynamic transition black hole state to the large
black hole state. The probability for the latter trajectory is 1,
so we just need to consider the probability contribution
for the former trajectory. A similar analysis can be made in
the transition from the large black hole state to the
small black hole state. Thus, in the phase transition from
the small (large) black hole state to the large (small)
black hole state, we do not need to obtain the whole path
between the small black hole state and the large black hole
state and just need to consider the path from the small
(large) black hole state to the thermodynamic transition
black hole state.
Based on the above analysis we know that the trajecto-

ries from rm to rl and from rm to rs do not have a
contribution, so we have the equations,

m1 ¼ −m2 ¼ −M1; ð19Þ

m3 ¼ −m4 ¼ −M2; ð20Þ

where the minus sign appearing in the expressions is
associated with the presence of a turning point on the
trajectory; namely, a change from the instanton (anti-
instanton) path to the anti-instanton (instanton) path
[31,39] (See the Appendix for the details). We call M1

as one pseudomolecule contribution to the probability and
M2 as one antipseudomolecule contribution to the
probability.
Then, the probability Pðrs; t; rs; t0Þ and Pðrl; t; rs; t0Þ

can be given analytically. At first, one can calculate the

probability Pðrs; t; rs; t0Þ. When there is zero pseudomo-
lecules, the probability becomes e−uðrsÞðt−t0Þ, where t − t0
represents the time interval staying at the small black
hole state.
When there is one pseudomolecule, only an a pseudo-

molecule contributes and the probability is

Z
∞

t0

dt1ð−M1Þe−uðrsÞðt1−t0Þe−uðrsÞðt−t1Þ; ð21Þ

where ð−M1Þ is one a pseudomolecule contribution to the
probability, t1 − t0 and t − t1 represent the time interval
staying at the small black hole state.
When there are two pseudomolecules, two a pseudo-

molecules contribute, or b → d, (the arrow represents the
time sequence of the pseudomolecules). The probability is

Z
∞

t0

dt1

Z
∞

t1

dt2ð−M1Þ2e−uðrsÞðt1−t0Þe−uðrsÞðt2−t1Þe−uðrsÞðt−t2Þ

þ
Z

∞

t0

dt1

Z
∞

t1

dt2ðM1M2Þe−uðrsÞðt1−t0Þe−uðrlÞðt2−t1Þe−uðrsÞðt−t2Þ:

ð22Þ

In the first term, ð−M1Þ2 represents two a pseudomolecule
contributions to the probability, t1 − t0, t2 − t1, and t − t2
are the time intervals staying at the small black hole state. In
the second term, ðM1M2Þ represents one b and one d
pseudomolecule contribution to the probability, t1 − t0 and
t − t2 are the time intervals staying at the small black hole
state, and t2 − t1 is the time interval staying at the large
black hole state.
When there are three pseudomolecules, three a pseudo-

molecules contribute, a → b → d, b → d → a, or
b → c → d, the probability is

Z
∞

t0

dt1

Z
∞

t1

dt2

Z
∞

t2

dt3ð−M1Þ3e−uðrsÞðt1−t0Þe−uðrsÞðt2−t1Þe−uðrsÞðt3−t2Þe−uðrsÞðt−t3Þ

þ
Z

∞

t0

dt1

Z
∞

t1

dt2

Z
∞

t2

dt3ð−M2
1M2Þe−uðrsÞðt1−t0Þe−uðrsÞðt2−t1Þe−uðrlÞðt3−t2Þe−uðrsÞðt−t3Þ

þ
Z

∞

t0

dt1

Z
∞

t1

dt2

Z
∞

t2

dt3ð−M2
1M2Þe−uðrsÞðt1−t0Þe−uðrlÞðt2−t1Þe−uðrsÞðt3−t2Þe−uðrsÞðt−t3Þ

þ
Z

∞

t0

dt1

Z
∞

t1

dt2

Z
∞

t2

dt3ð−M1M2
2Þe−uðrsÞðt1−t0Þe−uðrlÞðt2−t1Þe−uðrlÞðt3−t2Þe−uðrsÞðt−t3Þ: ð23Þ

In the longtime limit, the probabilityPðrs; t; rs; t0Þ is the sum of the pseudomolecule number from 0 to∞. Thus, based on
the condition uðrsÞ ¼ uðrlÞ ¼ uðrmÞ ¼ u, the probability is simplified as
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Pðrs; t; rs; t0Þ ¼ e−uðt−t0Þ −M1

Z
∞

t0

dt1e−uðt1−t0Þe−uðt−t1Þ þM1ðM1 þM2Þ
Z

∞

t0

dt1

Z
∞

t1

dt2e−uðt1−t0Þe−uðt2−t1Þe−uðt−t2Þ

−M1ðM1 þM2Þ2
Z

∞

t0

dt1

Z
∞

t1

dt2

Z
∞

t2

dt3e−uðt1−t0Þe−uðt2−t1Þe−uðt3−t2Þe−uðt−t3Þ þ…

¼ e−uðt−t0Þ þM1

X∞
n¼1

ð−1ÞnðM1 þM2Þn−1
Z

∞

t0

dt1

Z
∞

t1

dt2…
Z

∞

tn−1

dtne−uðt1−t0Þe−uðt2−t1Þ…e−uðt−tnÞ; ð24Þ

where t0 ¼ 0.
By using the Laplace transform we obtain

PðsÞ ¼ 1

sþ u
−

M1

M1 þM2

�
1

sþ u
−

1

sþ uþM1 þM2

�
:

ð25Þ

Inverting the Laplace transform, we can simplify the
Eq. (24) as

Pðrs; t; rs; 0Þ ¼
e−ut

M1 þM2

½M2 þM1eð−M1−M2Þt�: ð26Þ

In our problem, uðrsÞ ¼ uðrmÞ ¼ uðrlÞ ¼ u ¼ 0, so

Pðrs; t; rs; 0Þ ¼
1

M1 þM2

½M2 þM1eð−M1−M2Þt�: ð27Þ

An similar procedure can be applied to the calculation of
Pðrl; t; rs; 0Þ, one obtains

Pðrl; t; rs; 0Þ ¼
1

M1 þM2

½M1 −M1e−ðM1þM2Þt�: ð28Þ

B. The physical significance of one pseudomolecule or
one anti-pseudomolecule contribution to the

probability and the kinetic rates

We can consider a model for a particle moving
in a double well potential with the two stable states
denoted as A and B. We assume that the transition rate
from state A to state B is kA and the transition rate from
state B to state A is kB, while the initial state of the
particle is at state A. The PAðτÞ represents the probability of
the particle staying at state A at time τ, and the PBðτÞ
represents the probability of the particle staying at
state B at time τ. Then, one can write the classical master
equation as

dPAðτÞ
dτ

¼ −kAPAðτÞ þ kBPBðτÞ: ð29Þ

The total probability should be conserved and we obtain

PAðτÞ þ PBðτÞ ¼ 1: ð30Þ

When substituting Eq. (30) back into Eq. (29) and
integrating the τ from 0 to t, we obtain

PAðtÞ ¼
1

kA þ kB
½kB þ kAe−ðkAþkBÞt�: ð31Þ

The PBðtÞ is given by

PBðtÞ ¼ 1 − PAðtÞ

¼ 1

kA þ kB
½kA − kAe−ðkAþkBÞt�: ð32Þ

In the small-large black hole phase transition, the Gibbs
free energy landscape has the double well shape as shown
in Fig. 1. Equations (31) and (32) can then be used to
describe the time evolution of the transition probability
during the phase transition, and we should obtain the same
results as Eqs. (27) and (28) after taking the state A and B as
the small and large black hole state, respectively. When we
compare the Eqs. (27) and (28) to Eqs. (31) and (32), the
physical significance of M1 andM2 can be easily seen;M1

represents the transition rate from the small black hole to
large black hole, and the M2 represents the transition rate
from the large black hole to the small black hole.
Furthermore, based on Eqs. (27) and (28), the total

kinetic rate is given by

k ¼ M1 þM2; ð33Þ

which determines the rate or the time scale (inverse of the
rate 1

k) of the probability evolution for Pðrs; t; rs; 0Þ
and Pðrl; t; rs; 0Þ.

C. The second-order effects

The fluctuation effects on the dominate path can be
considered. Then the phase transition rate and the proba-
bility evolution will be modified.
We replaceDβGðrÞ byUðrÞ in Eq. (9) for simplification,

and the probability is given by
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Pðrt; t1; r0; t0Þ ¼ exp
�
−
½UðrtÞ −Uðr0Þ�

2D

� Z
rt

r0

Dr exp
�
−
1

D

Z
t1

t0

dt
�ð_rÞ2

4
þ ðU0ðrÞÞ2

4
−
D
2
U00ðrÞ

��

¼ exp
�
−
½UðrtÞ −Uðr0Þ�

2D

� Z
rt

r0

Dr exp
�
−
SðrðtÞÞ

D

�
: ð34Þ

We denote
R
rt
r0
Dr exp½− SðrðtÞÞ

D � as Kðrt; t1; r0; t0Þ. The action can be expanded around the classical path to the second-
order variation in yðtÞ ¼ rðtÞ − rclðtÞ, one yields

Kðrt; t1; r0; t0Þ ¼ exp

�
−
S½rclðtÞ�

D

�Z
DyðtÞ exp

�
−

1

2D

Z
t1

t0

yðtÞ
�
−
1

2

d2

dt2
þ V 00ðrclðtÞÞ

�
yðtÞdt

�
; ð35Þ

where VðrÞ ¼ ðU0ðrÞÞ2
4

− D
2
U00ðrÞ.

We expand y(t) on an infinite orthogonal basis fynðtÞg
which are also the eigenfunctions of − 1

2
d2

dt2 þ V 00ðrclðtÞÞ,
these eigenfunctions satisfy Eqs. (A2)–(A5). By using the
Gauss integral, Eq. (35) becomes [26,30,38]

Kðrt; t1; r0; t0Þ ¼
N

det½− 1
2
d2

dt2 þ V 00ðrclðtÞÞ�
exp

�
−
SðrclðtÞÞ

D

�

¼ NffiffiffiffiffiffiffiffiffiffiffiQ
nλn

p exp

�
−
SðrclðtÞÞ

D

�
; ð36Þ

where λn are the eigenvalues of the operator − 1
2
d2

dt2 þ
V 00ðrclðtÞÞ and N is a constant. More descriptions are
given in the Appendix.
This equation holds for monostable potential, but will

break down for the potential in our case which always has a
eigenfunction _rclðtÞ with zero eigenvalue. Thus, the
Gaussian approximation of the corresponding fluctuation
modes will break down. These modes are called zero modes
and their physical origin is the time-translational invariance
of the system [26,30]. Considering the case of one zeromode
(or one instanton), Eq. (35) can be replaced by [30,31,38,40]

Kðrt; t1; r0; t0Þ ¼
Z

t1

t0

dτ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ0

4πDψλ0ðt1Þ

s ffiffiffiffiffiffiffiffiffiffiffiffi
SðrclÞ
4πD

r

× exp

�
−
SðrclÞ
D

�
; ð37Þ

where λ0 and ψλ0ðtÞ satisfy Eqs. (A8)–(A10), and
ffiffiffiffiffiffiffiffiffi
SðrclÞ
4πD

q
is

the integration measure of the variables τ0.
The path integral problems of the second order in the

symmetric double well have been explored by [26–
30,38,41], while the problems become quite difficult in
the asymmetric double well. Because of the asymmetry, the
instanton has the different asymptotic behaviours in the two
sides of the time axis, and the calculations become tedious.
This has been explored in [31,40] which is based on the
method of [30,38,41]. The main procedures are shown in
the Appendix. Assume that there are no interactions

between these instantons, then the dilute gas approximation
can be used to obtain the final probability by summing over
the multi-instantons. After some heavy algebra, the final
results show the probabilities driven by the classical paths
have a correction as [31,40]

Pðrs; t; rs;0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βG00ðrsÞ

2π

r
1

M1 þM2

½M2 þM1eð−M1−M2Þt�;

ð38Þ

Pðrl; t; rs; 0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βG00ðrlÞ

2π

r
1

M1 þM2

½M1 −M1e−ðM1þM2Þt�;

ð39Þ

where M1 and M2 have a correction as

M1 →
βD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijG00ðrmÞjG00ðrsÞ
p

2π
�M1; ð40Þ

M2 →
βD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijG00ðrmÞjG00ðrlÞ
p

2π
�M2: ð41Þ

D. The numerical results

The phase transition rate is an important entity in the
dynamics of phase transition process, which quantifies the
time scale of the small (large) black hole state switching to
the large (small) black hole state. Based on Eq. (16), we use
the classical pseudomolecule paths to obtain the temperature
dependence of the phase transition rates in Fig. 4 (red lines).
If we take into account of the second-order effects, there are
some corrections to the phase transition rates as shown in
Eqs. (40) and (41).We also plot the temperature dependence
of the phase transition rates including the second-order
effects in Fig. 4 (blue lines). Note that the vertical coordinate
is the logarithm of the phase transition rate.
When we analyze the phase transition rate without the

second-order effects (red lines). The results show, upon the
increase of the temperature, the kinetic rate of phase
transition will increase from the small to the large black
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hole states transition and decrease from the large to the
small black hole states transition. As shown in Fig. 1, we
know that the barrier height from the small black hole state
to the large black hole state through the thermodynamic
transition black hole state will decrease with the temper-
ature. This indicates that the small black hole state should
be easier to be switched to the large black hole state as the
temperature increases. The barrier height from the large to
the small black hole states through the thermodynamic
transition black hole state will increase with the temper-
ature. Then the large black hole state should be more
difficult to be switched to the small black hole state. These
are consistent with the picture of quantified rates in Fig. 4.
Furthermore, when the Gibbs free energies of small and
large black holes are equal (T ¼ 0.0298), the phase
transition rates of M1 and M2 should be equal. This also
corresponds to our resulting rates well.
When we analyze the phase transition rate including the

second-order effects (blue lines), we can see that both these
curves are near to the corresponding curves without the
second-order effects (red lines). Furthermore, we note that
the curve in the left panel has a inflection point compared
with the curve without the second-order effects. It is an
interesting phenomenon which means that the second-order
effects can become significant compared to the zero-order
effects when the temperature is high. After taking account
of the second-order effects, the phase transition rate should
be determined by both the barrier height of the free energy
landscape in the exponential and the second derivatives of
the free energy landscape at the basin and at the barrier
(saddle) in the prefactor. When the temperature is high, the
barrier height of the free energy landscape from the small
black hole to the large black hole through the thermody-
namic transition black hole does not change significantly
upon the increase of the temperature. However, the pre-
factor or second-order derivatives of the free energy land-
scape at both the small black hole basin and the

thermodynamic transition black hole barrier or saddle
decrease clearly. Thus, the second-order effects become
more important than the zero-order effects, and the rate of
phase transition decreases accordingly. In the right panel,
we cannot observe such an inflection point because of the
obvious variation of the barrier height.
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0
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0.6

0.8

1

T

k

FIG. 5. The temperature dependence of the total kinetic rate.
The red lines represent only the zero-order effects are considered,
while the blue lines represent both the zero-order and second-
order effects are considered.
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FIG. 6. The time evolution of the probability Pðrs; t; rs; 0Þ at
different temperatures T ¼ 0.029, 0.0298, 0.03, and 0.031. The
red lines represent only the zero order effects are considered,
while the blue lines represent both the zero-order and second-
order effects are considered.
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FIG. 4. The kinetic rate of the phase transition between the
small and the large black hole states at the low diffusion
coefficient limit. The horizontal axis is the temperature, and
the vertical coordinate is the logarithm of transition rate. The red
lines represent only the zero order effects are considered, while
the blue lines represent both the zero order and second order
effects are considered.
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The temperature dependence of the total kinetic rates in
both the cases of zero order (red lines) and of the one
including the second order (blue lines) have been plotted in
Fig. 5. It can be seen that the total kinetic rate decreases with
the temperature at first and then increases with the temper-
ature in the zero order effects. The total kinetic rate indicates
the time scale of the probability evolution, which is the
combination of the rates from the small to large and from the
large to small black hole phase transition. The two kinetic
behaviors with the temperature reflect the temperature
dependence of each individual transition rate. When the
temperature is high, the rate from the small to large black
hole state dominates in the total kinetic rate, and the
inflection point of the total kinetic rate will appear after
taking into account the second-order effects for the same
reason as the left panel in Fig. 4. When the temperature is
low, the rate of the transition from large black hole to small
black hole dominates in the total kinetic rates.
Furthermore, the time evolutions of Pðrs; t; rs; 0Þ and

Pðrl; t; rs; 0Þ at different temperatures in both two cases are
given in Figs. 6 and 7. As seen, the Pðrs; t; rs; 0Þ and
Pðrl; t; rs; 0Þ become steady when t is large, the time of the
probability being steady is determined by the total kinetic
rate in Fig. 5.
The stationary probability can reflect the thermodynamic

stability, and it is determined by the value of the Gibbs free
energy via the Boltzmann distribution. Whether we take
into account of the second-order effects or not, the sta-
tionary probability should be equal. As shown in Figs. 6
and 7, the red line (without the second-order effects) and
the blue line (with the second-order effects) are steady to

the same value at the same temperature. When we analyze
the Figs. 6 and 7 separately, we can see that the steady state
probability Pðrs; t; rs; 0Þ decreases and the steady state
probability Pðrl; t; rs; 0Þ increases as the temperature
increases. As shown in Fig. 1, when the temperature
increases, the free energy of the small black hole state
decreases slower than that of the large black hole state. The
Boltzmann distribution tells us that the steady state prob-
ability Pðrs; t; rs; 0Þ decreases and the steady state prob-
ability Pðrl; t; rs; 0Þ increases with the temperature. When
we compare Fig. 6 with Fig. 7, we can perform the
following analyses. At T ¼ 0.0298, the Gibbs free energies
of the small black hole state and the large black hole state
are equal, the steady state probability Pðrs; t; rs; 0Þ and
Pðrl; t; rs; 0Þ should be equal. As shown in Figs. 6 and 7,
they are both equal to 0.5. When T ¼ 0.029 < 0.0298, the
free energy of the small black hole state is lower than the
free energy of the large black hole state. This indicates
that the small black hole state is more stable, thus the
steady state probability Pðrs; t; rs:0Þ is higher than the
steady probability Pðrl; t; rs; 0Þ. When T ¼ 0.03 and 0.031,
they are both larger than T ¼ 0.0298. Then the large black
hole state has lower free energy and thus becomes more
stable. Correspondingly, the steady state probability
Pðrl; t; rs; tÞ is higher than the steady state probabil-
ity Pðrs; t; rs; 0Þ.

IV. CONCLUSIONS

In conclusion, we have formulated a path integral frame-
work to investigate the dynamical phase transition of
RNAdS black hole under the free energy landscape.
There are three macroscopic emergent phases in the
extended phase space. The small and large black hole states
are stable and the thermodynamic transition black hole state
is unstable. Under the thermal fluctuations, the phase
transition is possible between the small and the large black
hole states. The corresponding dynamics can be described
by the stochastic Langevin equation, where the thermody-
namic driving force is provided by the underlyingGibbs free
energy and the stochastic force comes from the thermal
fluctuations. The contributions of the different paths to the
weights or probabilities are on the exponentials. Thus, the
dominant path, which satisfies the Euler-Lagrange equation
due to the maximization of the weights or minimization of
the action, can be regarded as the main path in which the
phase transition proceeds. Based on the dominant path, we
derive the analytical formula for the time evolution of the
transition probability. After comparing with an analogous
model for a particle moving in the double well potential, we
find that the contribution to the probability from one
pseudomolecule (antipseudomolecule) can be interpreted
as the phase transition rate from the small (large) to the large
(small) black hole state. The numerical results show a good
consistency with the underlying free energy landscape
topography. This work provides a new framework to
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FIG. 7. The time evolution of the probability Pðrl; t; rs; 0Þ at
different temperatures T ¼ 0.029, 0.0298, 0.03, and 0.031. The
red lines represent only the zero-order effects are considered,
while the blue lines represent both the zero-order and second-
order effects are considered.
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investigate the dynamics of black hole phase transition,
which can address the important issues of both the kinetic
path and the phase transition rate. This framework can also
be used to investigate other kinds of black hole phase
transition dynamics.
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APPENDIX: THE SECOND-ORDER EFFECTS

Equation (35) is written again as

Kðrt; t1; r0; t0Þ ¼ e−
S½rclðtÞ�

D

Z
DyðtÞ exp

�
−

1

2D

Z
t1

t0

dtyðtÞ

×

�
−
1

2

d2

dt2
þ V 00ðrclðtÞÞ

�
yðtÞ

�
: ðA1Þ

One can expand yðtÞ on an infinite orthogonal basis
fynðtÞg which is also the eigenfunction of the second
variational derivative of S [30],

yðtÞ ¼
X
n

cnynðtÞ; ðA2Þ

�
−
1

2

d2

dt2
þ V 00ðrclðtÞÞ

�
ynðtÞ ¼ λnynðtÞ; ðA3Þ

ynðt0Þ ¼ ynðt1Þ ¼ 0; ðA4Þ
Z

t1

t0

ynðtÞymðtÞdt ¼ δmn: ðA5Þ

By using the Gauss integral, Eq. (A1) becomes

Kðrt; t1; r0; t0Þ ¼
N

det½− 1
2
d2

dt2 þ V 00ðrclðtÞÞ�
exp

�
−
SðrclðtÞÞ

D

�

¼ N

det½− 1
2
d2

dt2 þ 1
2
w2�

det½− 1
2
d2

dt2 þ 1
2
w2�

det½− 1
2
d2

dt2 þ V 00ðrclðtÞÞ�

× exp

�
−
SðrclðtÞÞ

D

�

¼ NffiffiffiffiffiffiffiffiffiffiffiffiffiffiQ
nλ

ðhÞ
n

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiQ

nλ
ðhÞ
n

q
ffiffiffiffiffiffiffiffiffiffiffiQ

nλn
p exp

�
−
SðrclðtÞÞ

D

�
:

ðA6Þ

Here we have brought in the well-known harmonic solution
NffiffiffiffiffiffiffiffiffiffiffiffiQ

n
λðhÞn

p to eliminate the constant N, then the key issue

becomes how to calculate the factor

ffiffiffiffiffiffiffiffiffiffiffiffiQ
n
λðhÞn

p ffiffiffiffiffiffiffiffiffiffiQ
n
λn

p [26,30].

Based on the same zero points and the same pole points
at the two sides of the follow equation, it was proved that
[30,38,41]

det

�
− 1

2
∂2
t þ Vð1Þ − λ

− 1
2
∂2
t þ Vð2Þ − λ

�
¼ ψ ð1Þ

λ ðT=2Þ
ψ ð2Þ
λ ðT=2Þ

; ðA7Þ

where ψλðtÞ is the corresponding solution satisfying

�
−
1

2
∂2
t þ VðiÞ

�
ψ ðiÞ
λ ðtÞ ¼ λψ ðiÞ

λ ðtÞ; ðA8Þ

ψ ðiÞ
λ ðt0Þ ¼ 0; ∂tψ

ðiÞ
λ ðt0Þ ¼ 1; ðA9Þ

where i ¼ 1, 2.
The operator − 1

2
∂2
t þ VðiÞ has an eigenvalue λn, only if

ψ ðiÞ
λn
ðt1Þ ¼ 0: ðA10Þ

Taking λ ¼ 0 in Eq. (A7), the problem is then changed
to evaluate the ratio of the corresponding lowest
eigenfunction. This condition holds for monostable poten-
tials. However, there is always an eigenfunction _rclðtÞ
with zero eigenvalue in our case, and the Gaussian
approximation of the corresponding fluctuation modes
will break down. These modes are called zero modes
[30,31,38,40,41]. Equation (A6) should factor out the
zero modes and evaluate the determinant with the zero
eigenvalue omitted. When considering that there is only
one instanton (or one zero mode), one can rewrite
Eq. (A6) as

Kðrt; t1; r0; t0Þ ¼
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ψ ðhÞ
λ0
ðt1Þ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiQ

nλ
ðhÞ
n

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ0

ψλ0ðt1Þ

s Z
dc0

× exp

�
−
SðrclðtÞÞ

D

�
: ðA11Þ

Based on the time invariance of the instantons, one
obtains
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δðrðtþ τ0ÞÞ ¼
drðtÞ
dt

δτ0 ¼ y0ðtÞδc0

¼
�
Scl
m

�
−1
2

_rclðtÞδc0: ðA12Þ

Then, one can replace the dc0 integration by an inte-
gration over the position of the center of the instanton dτ0:

dc0 ¼
ffiffiffiffiffiffi
Scl
m

r
dτ0: ðA13Þ

The Kðrt; t1; r0; t0Þ then becomes

Kðrt; t1; r0; t0Þ ¼
Z

t1

t0

dτ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ0

4πDψλ0ðt1Þ

s ffiffiffiffiffiffiffiffiffiffiffiffi
SðrclÞ
4πD

r

× exp

�
−
SðrclÞ
D

�
; ðA14Þ

and the task changes to evaluate the λ0
ψλ0

ðt1Þ.

Based on the known solution of Eq. (A8) with zero
eigenvalue x1ðtÞ ∝ _rclðtÞ, one can find another solution
y1ðtÞ with zero eigenvalue by the D’Alembert’s construc-
tion [26,30]

y1ðtÞ ¼ Wx1ðtÞ
Z

t dt0

x21ðt0Þ
: ðA15Þ

Taking the derivative with respect to the time, one
obtains

W ¼ x1ðtÞ_y1ðtÞ − y1ðtÞ_x1ðtÞ; ðA16Þ

where W is actually the Wronskian determinant.
After using the classical equation of motion, one can

obtain the asymptotic expression of the instanton solution
_rclðtÞ when t ≪ τ0 and t ≫ τ0 (the detailed derivation can
be seen in [31]). Then the asymptotic expression of x1ðtÞ is
driven by the equation

x1ðtÞ ¼
ffiffiffiffiffiffi
m
Scl

r
_rclðtÞ; ðA17Þ

where
ffiffiffiffi
m
Scl

q
is the normalized factor. The asymptotic

expression of y1ðtÞ when t ≪ τ0 and t ≫ τ0 can be given
based on the D’Alembert’s construction (A15). Thus, the
function ψλ0ðtÞ satisfying Eqs. (A8)–(A10) can be given by
the linear combination of x1ðtÞ and y1ðtÞ [31]. By

transforming Eq. (A8) into the integral equation and
iterating once, one obtains [30,31]

ψλ0ðtÞ ¼ ψðtÞ − 2λ0
W

Z
t

t0

dt0½y1ðtÞx1ðt0Þ − x1ðtÞy1ðt0Þ�ψλ0ðt0Þ;

ðA18Þ

where ψλ0ðt0Þ ¼ 0.
One can take t ¼ t1 and use Eq. (A10), the ratio of λ0

ψðt1Þ
can be obtained as

λ0
ψðt1Þ

¼ W
2

�Z
t1

t0

dt0½y1ðt1Þx1ðt0Þ − x1ðt1Þy1ðt0Þ�ψλ0ðt0Þ
�

−1
:

ðA19Þ

Based on the known asymptotic expression of x1ðtÞ and
y1ðtÞ, the λ0

ψðt1Þ can be calculated analytically. Actually, the

result of λ0
ψðt1Þ is proportional to _rclðt0Þ_rclðt1Þ, where t0 and

t1 are the end points of the instanton path. For a pseudo-
molecule composed by an instanton and an anti-instanton,
there is a turning point of the path, namely a sign change of
_rcl, which will result in the minus sign in Eqs. (19) and
(20) [31,39].
Taking into account all the above terms, one can

calculate the corresponding Kðrt; t1; r0; t0Þ which only
has one instanton. For the multi-instantons, the probability
can be summed by the dilute gas approximation. After
some heavy algebra, the results are finally given as the
following [31]:

Pðrs;t;rs;0Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βG00ðrsÞ

2π

r
1

M1þM2

½M2þM1eð−M1−M2Þt�;

ðA20Þ

Pðrl; t; rs; 0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βG00ðrlÞ

2π

r
1

M1 þM2

½M1 −M1e−ðM1þM2Þt�;

ðA21Þ

where M1 and M2 have a correction as

M1 →
βD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijG00ðrmÞjG00ðrsÞ
p

2π
�M1; ðA22Þ

M2 →
βD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijG00ðrmÞjG00ðrlÞ
p

2π
�M2: ðA23Þ
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