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Ultracompact objects with photonspheres are known to mimic many observational features of black
holes. It has been suggested that anomalous tidal heating or the presence of resonances in gravitational
wave signals would be a clear imprint of a surface or absence of a horizon. Such claims and studies are all
based on a frequency-domain analysis, assuming stationarity. Here we show that the object needs to first
“fuel-up” until it reaches the stationary regime. The presence of a stable light ring and large light-travel
times inside the object may in fact delay enormously the “charging-up” and effectively contribute to the
effacement of structure. In other words, black hole mimickers behave as black holes more efficiently than
previously thought. Our results have implications for other resonant systems with sharp resonances,
including “floating orbits” around spinning black holes. A proper accounting of the self-force for such
systems seems to be both mandatory, and would have important applications for tests of horizon physics.
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I. INTRODUCTION

The advent of gravitational-wave (GW) astronomy [1,2]
and of very-long baseline interferometry [3,4] opened
exciting new windows to the invisible Universe [5–9].
These observatories are tailored to study compact objects,
such as black holes (BHs), and have therefore a tremendous
discovery potential. The detection at large signal-to-
noise ratios of compact-binary inspirals allows for unprec-
edented tests of general relativity in the strong-field regime
[5–7,9–11].
One of the foundational issues to address in the next

decades concerns BH themselves: are they described well
by general relativity [12] in vacuum, and up to which extent
are matter effects important and measurable [13–15]? At
the core of these questions is the assumption that massive
and dark objects are indeed BHs. Fortunately, GW
astronomy and precise electromagnetic measurements
allow us to probe the near-horizon region and to quantify
the presence of horizons in the spacetime [6,16].
It turns out that the dynamics—at least at the perturbative

level—of very compact horizonless objects is only subtly
different from that of BHs. When placed in a binary, a
compact object will be tidally deformed by its companion,
changing the multipolar structure of the gravitational field.
Tidal love numbers of BHs vanish, whereas those of
horizonless objects are small but nonzero [17–19]; the
prompt ringdown of BHs, caused by trapping of GWs at the
photonsphere, is common to all sufficiently compact
objects, although late-time echoes should appear in

horizonless geometries [6,20–25], and in fact these have
already been searched in LIGO data with conflicting
conclusions [22,26–31]. Finally, compact and horizonless
geometries absorb GWs in a substantially different way
from BHs: the horizon is a one-way surface, whereas GWs
are bound to escape from any horizonless alternative. Thus,
tidal heating can also be a good indicator of the BH nature
of compact objects [18,32].
It has been pointed out that horizonless compact objects

would have low-frequency oscillation modes, which could
be excited by orbiting bodies [33–37]. This is in contrast
with BHs, whose modes of oscillation are localized close to
the photonsphere, where matter on stable orbits cannot
exist [38]. These resonances enhance GWemission, leading
to a faster inspiral and a potentially-detectable dephasing
with respect to BH spacetimes.
Previous analysis of detectability of resonance-crossing

in BH mimickers were done in the frequency domain [33–
37]. By definition, the analysis assumes that the field is
stationary, and then superposes an adiabatic evolution to
evolve the particle in its motion, driven by GW emission.
The sole purpose of this work is to point out that the
assumption of stationarity for BH mimickers may not and
in fact does not hold in a large region of parameter space.
Very compact objects behave as a cavity, which have a very
large “build-up time,” the time taken for arbitrary initial
conditions to reach a stationary state. The build up time is
of the order of the inverse of the resonance width itself,
typically much larger than the timescale for evolution via
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GWs. Thus the conclusions of previous works need to be
revisited.
Since our analysis relies only on the existence of

resonances, it is clear that our results have important
implications for other systems. These include, for example,
floating orbits around spinning BHs [39,40], or any other
systems with sharp resonances. We note that our results and
conclusions are consistent with classical results on electro-
magnetic cavities [41].

II. SETUP

A. The theory

Wewill work with a simple toy-model, that of a massless
scalar field Φ around a compact horizonless object of mass
M in a spacetime background of metric gμν, such that the
line element is written as

ds2 ¼ −fdt2 þ dr2

g
þ r2dΩ2

2; ð1Þ

where dΩ2
2 ¼ dθ2 þ sin2θdφ2 is the metric on the two-

sphere.
The scalar field will be excited by introducing a pointlike

particle of mass mp coupled to it and orbiting around
the central object. Letting τ denote the proper time of the
point particle along the world line zμpðτÞ ¼ ðtpðτÞ;
rpðτÞ; θpðτÞ;φpðτÞÞ, then its stress-energy tensor is
given by

Tμν ¼ mpffiffiffiffiffiffi−gp dt
dτ

dzμp
dt

dzνp
dt

δðr − rpðtÞÞ
r2

δð2ÞðΩ −ΩpðtÞÞ; ð2Þ

and the full dynamics of the system is described by the
action

S½g;Ψ�¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R½g�
16π

−gμν∂μΨ∂νΨ�−2αΨT
�
: ð3Þ

Here, R½g� denotes the Ricci scalar of the metric, α > 0 is a
coupling constant, and T is the trace of the stress-energy
tensor of the particle.
We consider the point particle to act as a small pertur-

bation. Thus, the background spacetime is fixed and taken
to be the Schwarzschild exterior geometry and an internal
geometry describing the compact horizonless object, with
coordinates ft; r; θ;ϕg. All that remains is to solve the
scalar field equation of motion coupled to the pointlike
particle:

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νΨÞ ¼ αT: ð4Þ

Throughout the rest of the paper we set α ¼ 1 without loss
of generality.

B. The background

For background, we use constant-density stars. Their
interior is described by the metric functions [42]

f ¼
�
3

2

�
1 −

2M
R

�
1=2

−
1

2

�
1 −

2Mr2

R3

�
1=2

�
2

; ð5Þ

g ¼ 1 −
8πρ

3
r2; ð6Þ

where R is the star’s radius, M is its mass, and ρ ¼
3M=ð4πR3Þ is its density.
The geometry above only describes “realistic” stars

when R > 9M=4, otherwise the pressure diverges some-
where inside the star. Above some compactness, the
geometry admits two light rings at the roots of 2f ¼ rf0
[43]. When r < 3M, they are located at

r ¼ 3M; ð7Þ

r ¼ R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4R2 − 9MR

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9MR − 18M2

p ; ð8Þ

where the first root coincides with the unstable light ring in
vacuum Schwarzschild, and the second solution corre-
sponds to a stable light ring located inside the star. As
discussed elsewhere, unstable light rings work as a trapping
region slowly leaking energy out, and are responsible for
the late time ringdown of gravitational wave signals
involving BHs [6,43], or for the fading appearance of stars

]44,45 ]. Stable light rings do not automatically imply linear
instability, but they are linked to nonlinear instability
mechanisms, which we will not discuss further [46,47].
The (coordinate) frequency of light at the stable light ring
as measured by a far-away observer is [47]

ΩLR2 ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MðR − 9M=4Þp

R2
; ð9Þ

corresponding to a transit time of 2π=ΩLR2 to a distant
observer.
We can also calculate the transit time between the light

ring and the center of the star, which dictates the period of
trapped oscillations, and therefore of the ensuing echoes in
the waveform [6,20,21]. It turns out that this time, T light, is
also approximately T light ≈ 2π=ΩLR, although this may be a
fortuitous aspect of very compact constant density
stars [48].
For definiteness, we will mostly focus on a configuration

with R ¼ 2.26M and compare it with less compact geom-
etries. This choice is close to the maximum possible
compactness for this equation of state (the so-called
Buchdahl limit), and the spacetime has two photonspheres,
being sufficiently compact to mimic some aspects of BHs.
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III. THE BUILD-UP TIME OF BLACK HOLE
MIMICKERS

A. A scattering approach

An object which is sufficiently compact as to develop
photonspheres is expected to behave as a cavity
[6,16,20,21,46,47]. Radiation is trapped in its interior,
bouncing back and forth between its center or surface
and the unstable photonsphere. The effective potential
“felt” by massless fields is depicted in Fig. 1.
Consider now that such cavity is being bombarded by a

constant flux of radiation I from a spin-s wave carrying
angular momentum l. Such flux can correspond, for
example, to that component radiated by an orbiting body
which is directed toward the central object. When it hits the
barrier a small fraction Z tunnels in, and one gets a reflected
flux ð1 − ZÞI . Here, the absorption coefficient Z is
frequency-dependent. Denote by T0 the roundtrip time
of radiation inside the cavity. Then after T0, the radiation
inside the barrier is now impinging from within, and a
fraction Z2I tunnels out, adding to the outgoing flux at
large distances. After a time NT0 with N an integer, one
finds the outside flux to be

FNT0
¼ð1−ZÞIþZ2I

XN
j¼0

ð1−ZÞj¼I −IZð1−ZÞNþ1:

ð10Þ

This simple exercise predicts that the flux at large distances
should be increasing in time steps of T0 and relaxing to the
final state on a timescale

τ ¼ T0

Z
: ð11Þ

The final state is that of an outgoing flux I , as it should
since the object is not absorbing.

The absorption factors can be worked out analytically in
the low-frequency limit [9,49,50]

Zslm ¼ C

�ðl − sÞ!ðlþ sÞ!
ðl!Þ2

�
2

; ð12Þ

C ¼ 4ð2MωÞ2lþ2

� ðl!Þ2
ð2lÞ!ð2lþ 1Þ!!

�
2 Yl
k¼1

�
1þ 16M2ω2

k2

�
;

ð13Þ

where s refers to the spin of the perturbing field (s ¼ 0 for
scalars, s ¼ −1 for vectors and s ¼ −2 for tensors) and l,m
refer to the multipolar mode of the perturbation.
Plugging in numbers, we find, for example,

Z010¼
16M4ω4

9
; Z020¼

64M6ω6

2025
; Z220¼

256M6ω6

225
:

Thus, at low frequencies, the build-up time is very large and
consequently any assumption on stationarity must be
carefully justified, as we will see in practice below.
Notice the amusing fact that this calculation is similar to
how the greenhouse effect for planet Earth is estimated in a
naive approach.
Note finally, that the timescale (11) is the timescale that

the system needs to “settle,” and is of the same order of
magnitude as the resonant timescale, as implied by its
quasinormal modes [6,51]. In other words, a system
composed of a compact object behaves as a cavity or
resonator with lifetime (11).

B. Resonances and forced oscillators

As discussed in the Introduction, we are interested in
discussing possible resonances in our system, when the
forced frequency ω induced by the orbital motion of
the particle matches one of the natural frequencies ω0 of
the compact object. To interpret our findings, it is useful to
recall the results of a simple forced system with resonances,
the forced harmonic oscillator (FHO). This is a particularly
well-suited description as we just saw that one can interpret
the timescale to reach stationarity of a very compact object
in terms of its resonant frequencies.
Take therefore a FHO described by the equation

d2Ψ
dt2

þ Γ
dΨ
dt

þ ω2
0Ψ ¼ F0 cosωt; ð14Þ

with F0 a force per unit mass. The solution to the above
which starts off at Ψðt ¼ 0Þ ¼ ∂tΨðt ¼ 0Þ ¼ 0 is

FIG. 1. Depiction of the effective potential governing massless
fields on a horizonless but ultracompact geometry. The peak of
the potential corresponds to the unstable photonsphere, and the
potential in its vicinities is indistinguishable from that of a BH
spacetime. The centrifugal barrier in the object interior produces
an effective cavity in the spacetime, from which waves slowly
tunnel out or in. A cavity illuminated from the exterior “heats-
up,” in a manner akin to a greenhouse effect.
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Ψ¼F0

ðω2
0−ω2Þ

ðω2
0−ω2Þ2þΓ2ω2

ðcosωt−e−Γt=2 cosωΓtÞ

þF0

Γω
ðω2

0−ω2Þ2þΓ2ω2
ðsinωt−e−Γt=2 sinωΓtÞ; ð15Þ

where ωΓ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 − Γ2=4

p
.

From this simple analysis it is easy to see that when
Γt ≪ 1 and for small damping Γ ≪ ω0, the field grows on a
timescale

τFHO ≈
2π

ω − ω0

: ð16Þ

This analysis is valid for short timescales and off the
resonance. On resonance ω ¼ ω0, the field attains a
maximum on a timescale of τ ∼ 1=Γ. As we suggested
above, for compact horizonless objects one should identify
1=Γ [Γ is intrinsic to the resonating system and corresponds
roughly to its mode ωI as we detail below, see Eq. (23)]
with the timescale (11).

IV. NUMERICAL RESULTS

We now wish to show, via explicit numerical examples,
that the previous picture is correct, and that the handling of
resonances must be made carefully, especially when done
in the frequency domain.

A. A point particle orbiting a compact object

We start by placing a pointlike particle in circular orbit
around a constant-density star,

rp ¼ const; θp ¼ π

2
; φp ¼ Ωt: ð17Þ

For nonrotating compact objects, it is well known that the
Schwarzschild geometry admits stable timelike circular
geodesics for radius larger than the innermost circular
stable orbit (ISCO) at rISCO ¼ 6M [52]. Their orbital

frequency is Ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
M=r3p

q
. While they can excite some

proper modes of very compact constant-density stars
(reference values are shown in Table I), the timescales
of these resonances are too large to be probed by our
numerical setup in a reasonable time frame with sufficient
accuracy. The only possibility would be to consider
unstable circular geodesics, which have larger frequencies
and are able to excite modes which grow on smaller
timescales. However, since we eventually want to under-
stand the impact of energy loss on the orbit, unstable
motion is not an option.
The only remaining possibility is to consider nongeodesic

motion. Thus, we consider a particle following nongeodesic
motion around a nonrotating compact object. To make the
motion as simple as possible and still satisfy the requirement

that it excites resonant modes, we consider the motion to be
equivalent to that around a Kerr BHwithmassM and spin a.
In this case, the angular frequency Ω, energy E and angular
momentum Lz of the orbital motion are

Ω ¼
ffiffiffiffiffi
M

p

r3=2p þ a
ffiffiffiffiffi
M

p ; ð18Þ

ϵ≡ E
mp

¼ r3=2p − 2Mr1=2p þ a
ffiffiffiffiffi
M

p

r3=4p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3=2p − 3Mr1=2p þ 2a

ffiffiffiffiffi
M

pq ; ð19Þ

Lz ≡ Lz

mp
¼

ffiffiffiffiffi
M

p ðr2p − 2a
ffiffiffiffiffi
M

p
r1=2p þ a2Þ

r3=4p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3=2p − 3Mr1=2p þ 2a

ffiffiffiffiffi
M

pq ; ð20Þ

where 0 ≤ a=M ≤ 1 is now a free “knob” (which, were the
central object a spinning BH, would be the BH spin). We
note that, while this is not geodesic motion, the sole purpose
of prescribing such motion is to allow us to investigate
resonances and resonance-crossing in realistic timescales
with acceptable accuracy. The nature of the motion is not
relevant to the resonances we want to focus on.
As we show in the Appendix, the timescale associated

with the excitation of the resonance is independent of this
choice, being completely controlled by the frequency of the
circular orbit. Our imposition of this artificial motion is
purely pragmatic, as this is a simple way to make stable
circular orbits have higher frequency without having to
change the geometry of the central object.1

TABLE I. The lowest l ¼ 1 scalar quasinormal frequencies of a
uniform-density relativistic star with R ¼ 2.26M. We also show
the corresponding orbital radius at which the mode would be
excited, calculated by equating the orbital frequencyΩ in Eq. (18)
to the real part of the QNM frequency and solving for rp. The
value of a corresponds to that (fictitious spin) used in expression
for the orbital frequency Ω [cf. Eq. (18)]. For less compact stars,
resonant frequencies are impossible to excite with matter on
circular orbits. For example, for R ¼ 6M the lowest dipolar QNM
frequency is Mω ¼ 0.262189 − i0.204880.

rp=M

MωQNM a ¼ 0M a ¼ 0.9M

0.0881 − i1.197 × 10−7 5.051 4.780
0.1259 − i2.687 × 10−6 3.981 3.674
0.1633 − i2.470 × 10−5 3.347 3.011

1Non-geodesic motion may (and will, in this setup) excite also
the modes of a nonrotating black hole, contradicting our claims in
the introduction. Note however, that this is a pure artifact of
nongeodesic motion, which was also seen in triple systems [53].
However, these modes are much short-lived in comparison with
the low-frequency modes of horizonless geometries that we are
interested in; hence we will not investigate this issue further.
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To calculate the field amplitude and energy fluxes, we
used two different numerical schemes. One works in the
time domain, and it smoothes the pointlike character of the
orbiting object [33,45,54–57]. The other technique is based
on separation of angular variables using spheroidal har-
monics [58] in the frequency domain, where one can apply
standard Green function techniques [59–62]. The latter
assumes a stationary profile and is used to benchmark our
results at asymptotically late times. Both approaches are
well documented and have been widely tested in the past.
We also note that similar techniques have been employed in
the past for the problem of particle scattering by the same
relativistic constant density stars introduced in Sec. II [63–
66], where a transient excitation of quasinormal modes can
also be observed.
For the time-domain code, we use as initial data

Ψjt¼0 ¼ ∂tΨjt¼0 ¼ 0: ð21Þ

Such initial data leads in general to an initial burst of energy
which has no implication in the long term results we
discuss here. Also, for both codes we compute the scalar
energy flux F emitted to far-away distances through

F ¼ dE
dt

¼ lim
r→∞

1

r2

Z
dΩ∂tΨ∂rΨ: ð22Þ

This quantity scales with m2
p and we will often choose to

work in terms of the scale invariant energy flux q−2F ,
where q ¼ mp=M is the mass ratio of the binary.

B. The build-up time

We take a ¼ 0.9M in Eq. (18) because it is one of the
smallest values for the spin that allow us to probe a fast-
growing resonance, while keeping the circular motion
stable. Our time-domain numerical results are summarized
in Figs. 2–3.
In spacetimes without trapping regions, in this context

without photonspheres, the initial data relaxes on a few
dynamical timescales to a final stationary result, which
coincides with that obtained via a frequency-domain
approach. This behavior is apparent for the dipolar mode
of an R ¼ 4M uniform-density star in Fig. 2 (results are
similar for the quadrupolar mode).
By contrast, for spacetimes which are sufficiently com-

pact as to have photonspheres, the approach to stationarity
is a long process. As explained above in Sec. III, the
photonsphere is responsible for a potential barrier, through
which waves need to tunnel and “build-up” until a sta-
tionary state is reached. The very first stages of this process
are—in accordance with the analysis of Sec. III A—a slow
growth of the outgoing flux in steps of T0, the light travel
time inside the photonsphere (see also the inset of Fig. 3,

FIG. 2. Evolution of the scalar energy flux F by a point-particle of mass mp, made to orbit a constant-density star of mass M on a
circular orbit of constant radius rp (the orbit is not allowed to evolve). We normalize the flux by the mass ratio q ¼ mp=M. The results
refer to the dipolar mode (l ¼ 1), but results are similar for higher multipoles. Except for the right bottom panel, the star has radius
R ¼ 2.26M, and the frequency ω corresponds to the angular frequency Ω of the circular orbit, with a ¼ 0.9M in Eq. (18)
(rISCO ≈ 2.321M). At late times, the flux asymptotes to a constant which agrees with the value computed in the frequency-domain. The
relaxation time is large for stars with photonspheres, but very short for less compact stars, where the system quickly becomes stationary,
as seen in the right-bottom panel.
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where such steps are clear). A few other features are worth
highlighting. The relaxation time is in good agreement
with the analysis of Sec. III A. For R ¼ 2.26M and
rp ¼ 1.14rISCO–Mωl¼1 ¼ 0.193 as set by Eq. (18)—our
numerical results indicate a relaxation timescale τ ∼
6500M; 4500M for l ¼ 1, 2, whereas Eq. (11) would
indicate τ ∼ 4000M; 3100M respectively (we evaluated
the amplification factors numerically). The relaxation time
increases when the circular orbit radius increases, again in
line with prediction (11). The proper oscillation modes of
cavities govern to a good extent their dynamical behavior,
so we calculated the QNMs of scalar fields in a constant-
density star with known methods [38,67]. They are shown
in Table I. The QNM frequencies are located in the complex
plane, and we write them as

ωQNM ¼ ωR þ iωI: ð23Þ

Our results also show finer details, in particular beatings
and finer structure at small timescales, apparent in Fig. 2.
A zoom-in forMω ¼ 0.167M (rp ¼ 1.28rISCO) is shown in
Fig. 3 for the dipolar mode. These features can be under-
stood with the three different scales of the problem: the
orbital timescale, T=2 ¼ π=Ω ∼ 19M shows up as the
smallest timescale in the problem and is clear in the inset
of Fig. 3 (the 1=2 factor appears since we are discussing
fluxes); the orbital frequency MΩ ¼ 0.1668 is close to the

resonant QNM frequency MωR ¼ 0.1633 (see Table I).
The forced harmonic oscillator of Sec. III B then anticipates
a beating mode of frequency Ω − ωR, i.e., a beating period
τbeating ∼ 1800M, in good agreement with our numerics.
Notice also that steps of ∼150M are clear in Fig. 3, which
correspond to the travel time of waves inside the cavity,
hence to the buildup of the field in the cavity.
Finally, to excite the resonance, one needs to tune to

frequencies closer to the resonant QNM. Our results are
shown in Fig. 4, again for the dipolar mode. The flux
reaches amplitudes which are two orders of magnitude
larger, but large timescales min ð1=ωI; 2π=ðΩ − ωRÞÞ are
required for this build-up. The frequency needs to be very
fine-tuned in order to properly excite the resonance, since
as expected from the driven-harmonic oscillator, the band-
width of the resonance peak is δω ∼ ωI . Hence, when ωI is
very small as it happens for the proper modes of horizonless
ultracompact objects, the region of the parameter space
where the resonance can be triggered is limited and in
addition the resonance takes a lot of time to develop. As we
will see below, the combination of the two conditions can
jeopardize the ability to effectively excite a resonance in a
binary system.
One could question the generality of our results consid-

ering the artificial motion that we took for the point particle.
However, in Appendix we repeat the analysis for a ¼ 0M,
which makes motion geodesic. By placing the particle at
radii that yields the same orbital angular frequency as the
ones presented in Fig. 2, we observe that the timescales
involved are exactly the same for every single case, with
only the relative magnitude between the fluxes changing.
Note that in order to excite the quasinormal mode with
MωQNM ¼ 0.16333 − i2.470 × 10−5 with a circular geo-
desic, the point particle would have to be placed at

FIG. 3. Scalar energy flux by a point particle in circular orbit at
rp ¼ 1.28rISCO, with angular frequency Ω given by Eq. (18) with
a ¼ 0.9M, around a constant density star of radius R ¼ 2.26M
(the orbit is not evolving, the particle remains at fixed rp). There
are three different timescales in the signal: a high-frequency
component corresponding to the “direct signal” with an orbital
period T=2 ¼ π=Ω ∼ 19M (the 1=2 factor appears since we are
showing fluxes); the traveling time 150M of waves inside the
cavity potential; a lower frequency “envelope” corresponding to
the excitation of the QNM of the constant density star with
frequency MωQNM ¼ 0.16333 − i2.470 × 10−5. This leads to a
beating whose frequency is given by the semi-difference between
the orbital and the QNM frequency 2π=ðΩ − ωQNMÞ ∼ 1800M.

FIG. 4. Resonant excitation of the dipolar QNM of a constant-
density star of radius R ¼ 2.26M with frequency MΩ ¼ MωR ¼
0.1633 (cf. Table I), corresponding to a point particle at
rp ¼ 3.011M. A small deviation of this radius resulting in
frequency shift of δΩ ≳ 2ωI can significantly hinder the ex-
citation of the resonance. This is in agreement with standard
results for the driven-harmonic oscillator, where the frequency
bandwidth of the resonance peak is δΩ ∼ ωI .
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rp ¼ 3.347M, i.e., at an unstable orbit. This would impede
the study of inspiralling trajectories if we were using
this setup.

V. INSPIRALLING OBJECTS AND
CONSEQUENCES FOR GRAVITATIONAL-WAVE

PHYSICS

What we have shown is that very compact objects are
good “absorbers” of GWs for a limited but long amount of
time. This is a pure spacetime geometry effect, whereby
GWs get trapped within the photonsphere. The trapping
takes a timescale of the order of (11), after which radiation
is re-emitted. These objects then recycle GWs with a certain
delay time. Thus, the physics of these objects must take into
account such delay.
What we argue now is that there are two main effects,

none of which was considered with due care in the
literature. The first concerns the dynamics away from
the resonances. When these dynamics happen on short
timescales—such as the final stages of the coalescence—
then the cavity has not time to “fuel up” and absorbs most
of the impinging radiation: horizonless compact objects
then behave to a good approximation as BHs, with
equivalent absorption properties, and possibly indistin-
guishable from them. The second effect concerns the
crossing of resonances, a rather generic effect not particular
to compact horizonless objects: we show that frequency-
domain evolutions do not capture the entire physics and
must be complemented by addition constraints, when time
evolutions are prohibitive.

A. Adiabatic evolution of orbits and energy balance

To study GW-driven inspirals, we consider adiabatic
evolutions, where the point particle is always on a circular
orbit with some associated energy and angular momentum.
We place the particle at some initial radius r0, and
determine the initial energy and angular momentum
according to Eqs. (19)–(20). Then, we need to evaluate
the backreaction on these, due to emission of energy (and
angular momentum). As we argue in this work, the flux
needs to include the energy loss to infinity, but it should
also include the energy piling up within the cavity.
However, considering effects of the cavity is a challenging
problem which we will not address here. In this work, we
will only take into account the energy radiated away to
infinity, but we insist that the cavity may play an important
role. For circular orbits, the angular momentum net balance
is completely determined by the energy balance so we only
need to solve

dE
dt

¼ −F ; ð24Þ

with the appropriate initial energy, and use this to evolve

dr
dt

¼ −F
�
dr
dE

�
; ð25Þ

again with the appropriate initial conditions. Having the
updated value for rp, we can compute the angular fre-
quency Ω again using

dΩ
dt

¼
�
dr
dt

��
dΩ
dr

�
: ð26Þ

This procedure can be applied both for the time and the
frequency-domain. However, the flux computed in the
frequency-domain implicitly assumes stationarity, i.e., that
the oscillations around the average flux vary out to zero
much faster than the timescale on which the particle
inspirals. For the systems we are discussing, this implies
the cavity has had time to fuel-up. For the time-domain
instead, the energy balance is done at every instant and
therefore can account for the inhomogeneities in the flux as
the star is relaxing or the cavity is fueling-up.

B. Off resonance

The results above have important implications for GW
emission. As the small object of mass mp inspirals, the
frequency is changing. For objects on a quasicircular orbit
millions of years prior to merger, a “stationary state” (to be
read as where the frequency-domain calculation yields the
same result as time-domain) is reached. However, in the
late stages of inspiral, the frequency is varying rapidly and
hence not allowing the compact object to “fuel up.” This
happens whenever the frequency change

Δω≳ ωR; ð27Þ

and the corresponding inspiral time is small enough that
does not allow for relaxation, tinspiral < τ [cf. Eq. (11)]. Let
us start the process at some rpðt ¼ 0Þ ¼ r0. Then, for
quasicircular orbits, and including only GW reaction [68]

rpðtÞ ¼ ðr0 − 4βtÞ1=4; ð28Þ

β ¼ 64

5
M2mp: ð29Þ

The time taken to inspiral from r0 to rpðtÞ can also be
written in terms of the initial and final GW frequency ω0,
ωf as
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tinspiral ¼
22=3M4=3ð1 − ðω0=ωfÞ8=3Þ

βω8=3
0

: ð30Þ

We thus find,

tinspiral
τ

∼ 10−2
100M
T0

10−5M
mp

�
Mω

0.06

�
10=3

: ð31Þ

In other words, cavity effects during extreme mass ratio
inspirals should be taken into account. Time or frequency
domain analysis should then include the temporary pile up
of energy in the cavity as the inspiral progresses. We will
not dwell on this important topic here, except to highlight
two aspects. The first is that a proper analysis should take
into account radiation reaction, by a proper modeling of the
entire system. It is a challenging problem, but one that
would bear many fruits. The second aspect is that the above
also shows how the BH limit is approached in a natural
way. The BH limit can be thought of as the T0 → ∞ limit of
the previous construction. In this limit, the central object is
a perfect absorber during the entire inspiral, and the delay
time between receiving and returning radiation diverges.
Therefore, a proper handling of the cavity problem should
recover the BH result continuously.
Note that previous works suggested that the cavity would

only be important for the evolution of the binary when the
traveling time inside it is comparable (or larger) than the
radiation-reaction timescale [18,34]. However, as discussed
above, energy can be trapped by being reflected back and
forth in the cavity until it saturates. This process corre-
sponds to multiple travel times, as dictated by Eq. (11). In
general, this timescale can be much bigger than the travel
time inside the cavity, which makes the latter more relevant
for larger mass-ratios than what was previously considered.

C. Crossing resonances

The above results strongly suggest that in order to excite
a resonance, the system needs to spend at least a time
∼1=ωI in a frequency band δω ∼ ωI around the resonance
at ωR. Rigorous estimates for simple linear differential
equations were obtained in Refs. [69,70]. We can work out
the consequences for GW science: the time δtcross that the
system takes to cross the resonance is [33]

δtcross ∼ ωI=ðdΩ=dtÞ; ð32Þ

with

dΩ
dt

¼
�
dΩ
dr

��
dr
dE

�
F : ð33Þ

Then, for the resonance to be effectively excited

ωIδtcross ≳ 1

⇔ q ≲ qmax ¼
ðMωIÞ2
q−2F

�
dϵ
dr

�
=

�
M

dΩ
dr

�
: ð34Þ

In this estimate, orbital quantities on the right-hand side are
meant to be evaluated at the radius where the resonance is
excited, and the flux is to be taken outside the resonance,
since this is the actual energy flux emitted by the system
while the resonance grows.
Figure 5 shows frequency-domain results for the nor-

malized energy flux emitted in the dipolar mode, as a
function of the radius of the point particle. For the
very-compact star with R ¼ 2.26M, we can distinguish
the narrow resonant peak resulting from the excitation of
the proper mode of the star with frequency MωQNM ¼
0.1633 − i2.470 × 10−5 (cf. Table I). Frequency-domain
calculations assume stationarity of the field and flux, by
construction. For such an assumption to be justified, one
needs to fill criteria (34). This implies that, in order to
efficiently excite the resonance, the mass of the point
particle needs to be mp ≲ 10−5–10−4M.
In order to test the robustness of this estimate, we studied

inspiralling trajectories also in the time-domain, therefore
not subjected to a stationarity assumption. To simplify both
the procedure and the physical interpretation of the results,
we only took into account the dipolar mode in the

FIG. 5. Energy flux F emitted in the dipolar mode as a function
of the radius of the circular orbit of the point particle. We present
results for stars with different compactness. For the very compact
configuration with R ¼ 2.26M, the orbital motion resonantly
excites the QNM with frequency MωQNM ¼ 0.1633 − i2.470 ×
10−5 (corresponding to an orbital radius rp ¼ 3.011M). Off-
resonance, the flux drops several orders of magnitude, which can
hamper the inspiral of the particle if only this multipole is
considered (this behavior had also been observed in Ref. [34]).
The off-resonance values can be used in condition Eq. (34) to
estimate how small the mass of the point particle needs to be for it
to spend enough time near the QNM frequency so that the
resonance fully develops. Note that these are frequency-domain
results, for which the particle sits at each rp without backreaction
from the radiation, and they would coincide with those from an
adiabatic evolution in the frequency domain.
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evolution. A useful quantity to evaluate the discrepancy
between the two frameworks is the number of orbital cycles
N that the point particle does around the central object

N ðtÞ ¼ φðtÞ
2π

; ð35Þ

as it sweeps some fixed frequency band, parametrized by its
initial and final orbital radius.
Our findings are summarized in Fig. 6. We show both the

absolute value of the number of cycles for different mass
ratios, as well as the relative difference ΔN with respect to
the number of cycles performed around the less compact
star with radius R ¼ 2.5M. For all cases, we start the
motion at radius rp ¼ 3.05M, which corresponds to an
orbital frequency of Ω ¼ 0.1606 ≈ ωR − 110ωI . In the
time-domain, we wait a time tstart ∼ 2000M before starting
the inspiral to let the initial burst of energy be washed away,
and for the system to reach a (quasi)stationary state.
For stars where no resonance is excited (R ¼ 2.3M and

R ¼ 2.5M), the frequency-domain results show a relative
difference of ∼5% to the time-domain ones at the end of our
monitoring of the binary. This discrepancy is independent
of the mass ratio and can be attributed to small numerical
differences accumulated over many orbits. Moreover, for
the R ¼ 2.3M configuration we would need to wait much
longer to start the time-domain inspiral from a complete

stationary state. As expected from Fig. 5, the inspiral for the
more compact geometry performs less cycles, since the flux
is larger so the binary is losing energy faster. Also, the
number of cycles is scaling with the inverse of the mass
ratio, which is consistent with the typical inspiral time-
scale tinspiral ∝ M2=mp.
For the very-compact configuration R ¼ 2.26M, where a

resonance can be excited, the differences are more sound-
ing. The frequency-domain analysis again presents a
scaling with the inverse of the mass ratio. Clearly, this
does not hold for the time-domain analysis. For the smallest
mass ratio presented, q ¼ 0.0005, the shape of the time-
domain curves are similar to the frequency-domain ones,
which indicates the binary is evolving in a quasistationary
state. The resonance is properly excited and the particle
falls in the flux “well” that comes after the resonance peak
(cf. Fig. 5), which stalls the inspiral. Consequently, the
number of cycles increases at a fixed radius as if the particle
was “frozen” there. This stalling would be less significant if
we were taking into account higher multipoles.
However, as the mass of the point particle increases so do

the differences between the time and frequency-domain
analysis. For the intermediate mass ratio of q ¼ 0.001M,
the inspirals have similar behaviors initially, but the
resonance is less pronounced in the time-domain, since
the particle does not spend enough time there for it to
totally grow. Similarly, the particle also does not get stuck

FIG. 6. Top row: number of cyclesN performed by a point-particle during an inspiral around a constant-density star, as a function of
the particle’s radius. The particle starts at rp ¼ 3.05 and evolves via radiation reaction in the time- and frequency-domain. Notice how
the two results are different close to a resonance, unless the mass of the point particle is very small. Bottom row: difference in the number
of cycles performed by the point particle with respect to those around the less compact star R ¼ 2.5M, ΔN ðRÞ ¼ N R −N 2.5M. The
larger the mass ratio, the more the frequency-domain analysis differs from that in the time-domain, indicating that the stationary
assumption—used by construction in the frequency domain—is not appropriate to evolve the system. The upper limit mass ratio for
(quasi)stationarity of the binary is qmax ∼ 5 × 10−4, in agreement with the analytical estimate of Eq. (34).
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at the “zero” of the frequency-domain flux as before. The
small wiggles observed can be attributed to the oscillations
in the flux as the system relaxes to stationarity, as discussed
in the previous section. Since in this configuration the
relaxation timescale is comparable to the inspiral timescale,
the wiggles become noticeable. Finally, for the highest
mass ratio considered, q ¼ 0.01M, the particle quickly
crosses the resonance, and this never develops. As a
consequence, the time-domain results disagree completely
with the frequency-domain. We conclude that for the
system studied, the adiabatic approximation employed in
the frequency-domain is only appropriate when the mass
ratio is smaller than qmax ∼ 5 × 10−4. This upper bound
agrees with the estimate given in Eq. (34).

VI. DISCUSSION

We have shown that spacetimes with photonspheres
behave as cavity resonators in electromagnetism [41,71].
They have large “build-up” times, dictated by the trans-
mission amplitudes at the photonsphere, and are prone to
resonances. A proper accounting of the evolution of such
systems demands that one takes into account the energy
piling up within the photonsphere. For systems evolving
rapidly under radiation reaction, such horizonless objects
are effectively absorbers and should mimic BHs well
indeed. A proper modeling of this process, and the full
evolution of an extreme mass ratio system is an open
problem.
Such systems also have resonances, which can be probed

by orbiting bodies. However, we argued that, for the
resonance to fully develop in a binary, the latter has to
evolve slower than the time needed for the resonance to
grow. Such a condition imposes stringent constraints on
possible observational tests.
In this work, we focused on a simple toy-model of a

scalar field around a constant-density star, and considered
an artificial motion for the point-particle that is not dictated
by its equations of motion. Nonetheless, all our analytical
estimates for the relaxation timescale (11), resonance
growth time, and upper limit on the mass ratio that excites
a resonance in an inspiralling binary (34) are model
indepedent and agree with the numerical results for the
particular system that we studied. Therefore, our conclu-
sions should be applicable to any astrophysical system.
References [34,37] studied extreme-mass-ratio inspirals

(q < 10−4) around spinning horizonless compact objects
(see also [33,35] for nonspinning analysis and [36,53] for
hierarchical triple systems). As in our toy-model, the low-
frequency QNMs of the spinning exotic compact object can
be resonantly excited during the inspiral, which leads to
non-negligible effects in the waveform that need to be
considered for the detection and parameter estimation of
these sources. However, they work in the frequency-
domain and ignore the growth time of the resonance,
implicitly assuming stationarity at all instants. As

concluded, such approximation is only correct when the
mass ratio of the system obeys the condition of Eq. (34).
In Fig. 7, we apply this estimate to the type of systems

studied in Refs. [34,37]. Typically, the resonance width for
these exotic compact objects is δω ∼ ωI ∼ ω2lþ3

R [33,34]. In
a binary system, the frequency of the emitted GWs is
determined by the orbital frequency, and for circular orbits
corresponds to ωGW ¼ 2Ω. Then, for every orbital fre-
quency Ω (or radial location of the particle), we can
compute how light the point particle needs to be in order
to resonantly excite an ECO with a QNM mode of
frequency ωR ¼ 2Ω, ωI ∼ ð2ΩÞ2lþ3. For the off-resonance
flux F , we used the same values as in Kerr, since the
relative difference with respect to an horizonless ultra-
compact object should be small (though non-negligible
when accumulated over many orbits). We only took into
consideration the quadrupolar mode l ¼ 2, and higher
multipoles will typically increase F , therefore placing
even more stringent limits on the mass ratio. We conclude
that for the reference value of q ¼ 3 × 10−5 used in most
results presented in Ref. [34], the particle would only be
able to excite resonances in ECOs with spins a > 0.9M,
and on a limited region of the parameter space where it is
very close to the central object.
Our conclusions can also be applied to massive scalar

theories [72–74], where matter orbiting a Kerr BH can
resonantly excite superradiant modes, which might lead to
so called floating orbits [9,75]. In these orbits, the energy
absorbed by the horizon is positive and counterbalances the
loss of energy to infinity [39,76]. As a consequence, the
inspiral freezes and the radiated energy is solely provided
by the rotational energy of the BH. These resonances occur

FIG. 7. Largest mass ratio predicted by the estimate (34) that
would allow the resonant excitation, by GWs, of a QNM of an
exotic compact object with frequency ωR ¼ 2Ω. We considered
that ωI ∼ ω2lþ3

R [33,34] and only took into account the quad-
rupolar mode in the energy flux, making this estimate
conservative, since F will increase if higher multipoles are
considered. We show orbital frequencies Ω corresponding to
radius of the particle from rp ¼ 10M up to almost the ISCO for
each spin. For mass ratios larger than these limits, the particle
crosses the resonance too quickly for it to effectively grow.
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for ω2
res ¼ μ2s − μ2sðMμs=ðlþ 1þ nÞÞ2, where μ ¼ ms=ℏ is

the reduced mass of the scalar field, and have typical widths
of δω ∼ ωI ∝ μ4lþ5

s [39,77]. These are even more narrow
than the QNMs of ECOs just discussed. Generically, the
off-resonance energy flux is dominated by GWs, which
means that for the same orbital frequency one would need
even smaller mass ratios than the ones in Fig. 7 in order to
properly excite superradiant resonances of massive scalars.
One might question if additional dissipation mechanisms

could undermine the fueling-up of the cavity and excitation
of resonances. GWs are known to interact very weakly with
matter, with effects only being relevant at the Hubble
timescale [78–81]. Hence, any additional channel of dis-
sipation should be subdominant with respect to the emis-
sion of waves to infinity and the trapping of energy by the
central object on the timescales of interest for these
systems. We cannot rule out, however, that extremely stiff
equations of state giving rise to large viscosities and large
sound speeds strongly suppress resonances in compact
objects. Even in such case, our results still apply to other
systems, including resonances of massive boson fields
around spinning BHs.
The conclusions of this work have obvious implications

to GW astronomy, since a large class of binaries might not
be able to probe mechanisms indicative of new physics as
effectively as suggested by previous studies employing a
frequency-domain analysis, which have largely dominated
GW modelling in EMRIs. Being the latter one of the most
important scientific targets for the upcoming space-based
LISA mission [5,82], in particular to test GR and hunt for
new fundamental physics, we hope our work draws the

attention of the community to the necessity of better
understanding GW emission in less conventional systems
that are not typical binaries in GR.
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APPENDIX: UNSTABLE CIRCULAR GEODESICS

In this Appendix, we present results similar to the ones
discussed in Sec. IV B but considering the point particle is
on circular geodesics, i.e., with a ¼ 0M in Eqs. (18)–(20).
Our results are summarized in Fig. 8.We put the particle at a
radius that yields the same frequency as those presented in

FIG. 8. Same analysis as in Fig. 2 but considering circular geodesics around Schwarzschild, i.e., a ¼ 0M in Eq. (18)–(20). We do not
show an analogous plot for the Mω ¼ 0.192 since the particle would have to be put at the light-ring (rp ¼ 3.0M) and we are only
considering timelike motion.
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Fig. 2. Apart from a change in the absolute values for the
flux, the relaxation timescales are in complete agreement
with the ones obtained before, indicating the artificial
motion we considered there is irrelevant to the excita-
tion of the constant-density star’s QNMs. As previously

mentioned, to excite the fastest growing QNM of the star
(see Table I) with geodesic motion wewould have to put the
particle at unstable circular orbits, i.e., rp < rISCO ¼ 6.0M
for a ¼ 0M, which would prevent us from studying inspir-
alling trajectories.
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