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We discuss cosmology based on a Cuscuta-Galileon gravity theory, which preserves just two degrees of
freedom. Although there exist no additional degrees of freedom, introduction of a potential of a scalar field
changes the dynamics. The scalar field is completely determined by matter fields. Giving an exponential
potential as an example, we discuss the cosmological dynamics. The gravitational “constant” GF appeared
in the effective Friedmann equation becomes time dependent. We also present how to construct a potential
when we know the evolution of the Hubble parameter. When we assume the ΛCDM cosmology for the
background evolution, we find the potential form. We then analyze the density perturbations, which
equation is characterized only by a change of the gravitational “constant” Geff , which also becomes time
dependent. From the observational constraints such as the constraint from the big-bang nucleosynthesis and
the constraint on time-variation of gravitational constant, we restrict the parameters in our models. The time
dependence of the gravitational constant in the effective Friedmann equation, we may have a chance to
explain the Hubble tension problem.
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I. INTRODUCTION

In order to explain the accelerated expansion of the
Universe [1,2] we require a mysterious energy, so-called
dark energy. The dark energy candidates are a cosmological
constant [3], a scalar field [4,5], a vector field [6,7], a
massive tensor field [8–10], or even modification on the
general relativity [11]. However, until now, these candi-
dates or deviations from general relativity (GR) have not
been detected in the solar system scale [12].
To address the above problem, many modified gravity

theories with various types of screening mechanisms, such
as chameleon screening [13,14], symmetron screening
[15], and Vainshtein screening [16,17], have been pro-
posed. These mechanisms use an effective potential to vary
a mass of a scalar field [13,14] or coupling between
a matter field and a scalar field [15,18], also nonlinear
form of equation of motion of the scalar field leads to
suppression on a fifth force [16,17,19–23].
Another solution to the previous problem is constructing

new gravitational theories which propagate only two
degrees of freedom as GR. Recently, two types of theories
have been developed: One is called minimally modified
gravity [24–29] whose gravitational Hamiltonian is con-
strained to provide only two degrees of freedom. The other
one is called cuscuton gravity theory [30,31] or its extended

version [32,33]. The extended cuscuton theory is gener-
alization of the original cuscuton theory in the context of
the beyond Horndeski theories [34], in which the second-
order time derivatives of a scalar field in the equation of
motion disappears, thus the scalar field is a nondynamical
field. Both theories have some relation as shown in
the Ref. [27].
In this work we consider the modified gravity with two

degrees of freedom in the extended cuscuton framework.
To find cosmological solutions we have to define explicit
form of theory, one example has been given in the Ref. [33].
We are interested in the explicit form inspired from the
Cuscuta-Galileon gravity [35] which is a Galileon gener-
alization of the original cuscuton gravity. Its cosmological
dynamics of the model has been studied in Ref. [36] where
the Cuscuta-Galileon provides the sequence of the thermal
history of the Universe successfully; however, the model
actually has three degrees of freedom. Therefore, it is
interesting to investigate cosmological solutions of the
Cuscuta-Galileon gravity which has only two degrees of
freedom whether the model still provides the thermal
history of Universe correctly or not.
The paper is organized as follows. In Sec. II, we will give

our Cuscuta-Galileon gravity theory and show that it has
two dynamical degrees of freedom. In Sec. III, we apply it
to cosmological model and present the effective Friedmann
equation assuming the flat Friedmann-Lemaître-Robertson-
Walker (FLRW) metric. In order to study the cosmological
dynamics, in Sec. IV, we analyze the cosmological
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evolution assuming the exponential potential. We then
discuss the evolution of the Hubble expansion parameter
and the effective gravitational constant in the Friedmann
equation. The evolution of the Hubble parameter shows the
tendency to fill the gap appearing in the Hubble tension
problem. In Sec. V, we also present how to construct the
potential when we know the evolution of the Hubble
parameter and apply it to obtain the ΛCDM model.
In Sec. VI, we analyze the density perturbations. We find

the gravitational constant in the evolution equation of the
density contrast is modified and becomes time-dependent.
We then give the constraints on the parameters in the
theories from observation. The discussion and remarks
follow in Sec. VII.
We also present the rescaling property in this model in

Appendix A, the overview of the original cuscuton gravity
theory with the construction of a potential when we know
the evolution of the Hubble parameter in Appendix B,
the detailed analysis of the cosmological dynamics for the
exponential potential in Appendix C, the analysis for the
case with a vacuum energy in Appendix D, and some
peculiarity in the vacuum case in Appendix E.

II. CUSCUTA-GALILEON THEORY

We discuss the Cuscuta-Galileon gravity, in which the
minimum contribution of a Galileon-type scalar field is

included in the cuscuton gravity theory. The action is
given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
M2

PLRþ α2M2
PL

ffiffiffiffiffiffiffi
−X

p

þ α3MPL ln

�
−

X
Λ4

�
□ϕ − VðϕÞ þ 3α23X

�
þ SMðgμν;ψMÞ; ð2:1Þ

where X is defined as

X ≡ gμν∂μϕ∂νϕ;

and α2 and α3 are dimensionless coupling constants,
respectively, while Λ is a cutoff-scale constant with mass
dimension. This model is one of a special case of the
extended cuscuton gravity theory [32]; however, it is
not the same as their application to dark energy [33].
The original cuscuton model is obtained by setting α2 ¼
μ2=M2

PL and α3 ¼ 0. This action has also found by
covariantization of the minimally modified gravity [27].
Taking the variation of the above action with respect to

the scalar field ϕ and the metric gμν, we find the following
basic equations:

α2M2
PL

1ffiffiffiffiffiffiffi
−X

p
�
□ϕ −

1

2X
∇X ·∇ϕ

�
þ α3MPL

�
−2∇

�
□ϕ

X

�
· ∇ϕ − 2

ð□ϕÞ2
X

þ□ðlnð−XÞÞ
�
− 6α23□ϕ − V;ϕ ¼ 0;

M2
PLGμν ¼ Tμν − gμνV þ α2M2

PL
1ffiffiffiffiffiffiffi
−X

p ½−gμνX þ ∂μϕ∂νϕ�

þ α3MPL

�
−2∂μϕ∂νϕ

□ϕ

X
þ 2

X
∂ðμX∂νÞϕ − gμν

1

X
ð∇X · ∇ϕÞ

�
þ 3α23ðgμνX − 2∂μ∂νϕÞ:

Assuming the conservation of energy-momentum of matter
field, i.e., ∇νTμν ¼ 0, and using the Bianchi identity
∇νGμν ≡ 0, we recover the first equation for ϕ from the
second Einstein equations. Hence only the Einstein equa-
tions are independent in the present model. We do not
have additional degrees of freedom in addition to the
Einstein equations, The scalar field ϕ does not carry
new degree of freedom just as the original cuscuton. We
will prove it below.
Note that this model is completely different from the

original one (α3 ¼ 0). Because as we show in Appendix A,
we can always set α3 ¼ 1 without loss of generality, which
means that the perturbation approach for the original theory
does not provide an appropriate approximation even for the
case of jα3j ≪ 1. However we shall keep α3 in the text in
order to see the coupling dependence. Since the results for
α3 < 0 can be obtained by the change of the sign of ϕ, we
assume α3 ≥ 0 in this paper.

A. Degrees of freedom

According to the method in Refs. [37–39] we use the
3þ 1 decomposition metric and choose the unitary gauge:

ds2¼−N2dt2þhijðdxiþNidtÞðdxjþNjdtÞ; ϕ¼ϕðtÞ;

the action (2.1) can be written in the Arnowitt-Deser-
Misner (ADM) form as

S ¼
Z

dtd3xN
ffiffiffi
h

p �
1

2
M2

PLð3Rþ KijKij − K2Þ

þ
�
α2M2

PLj _ϕj
N

− VðϕÞ − 3α23 _ϕ
2

N2

�

þ
�
−
2α3MPLj _ϕj

N
þ C1

�
K

�
:
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Note that in this section we will not consider contribution
from the matter Lagrangian. 3R is the three-dimensional
Ricci scalar, Kij is the extrinsic curvature, K is the trace of
Kij, and C1 is an integration constant.
Following calculations in Ref. [40] since the scalar field

is a function of time, the fundamental variables are only N,
Ni, and hij which are the lapse function, the shift vector,
and the three-dimensional metric, respectively. Their con-
jugate momenta are

πN ¼ ∂L
∂ _N

¼ 0; πi ¼
∂L
∂ _Ni ¼ 0;

πij ¼ ∂L
∂ _hij

¼ 1

2

ffiffiffi
h

p �
−
2α3MPLj _ϕj

N
þ C1

�
hij

−
1

2
M2

PL

ffiffiffi
h

p
ðKhij − KijÞ:

Thus the primary constraints are πN and πi. Using the
Legendre transformation, the Hamiltonian is given by

H ¼
Z

d3xðHþ NiHi þ λNπN þ λiπiÞ; ð2:2Þ

where

H ¼ N
ffiffiffi
h

p �
2

M2
PL

�
πijπij
h

−
π2

2h

�
−
1

2
M2

PL
3R

−
�
α2M2

PLj _ϕj
N

− VðϕÞ
�

þ π

M2
PL

ffiffiffi
h

p
�
−
2α3MPLj _ϕj

N
þ C1

�

−
3

4M2
PL

�
C2
1 −

4α3MPLC1j _ϕj
N

��
Hi ¼ −2hikDjπ

kj;

and λN and λi are Lagrange multipliers.
The secondary constraints are given by

0 ¼ _πN ¼ −
∂H
∂N ≈ −

∂H
∂N ≡ C;

0 ¼ _πi ¼ −
∂H
∂Ni ≈Hi:

The ≈ means equality when the constraints are imposed.
However the momentum constraint is not a first-class
constraint because one of the Poisson brackets with other
constraints does not vanish. Therefore we introduce

H̄i ¼ Hi þ πN∂iN:

On the constraint surface we find H̄i ¼ Hið≈0Þ because
of πN ¼ 0. Then we can consider H̄i as the momentum

constraint. The Poisson brackets of constraints are (see
definition of the Poisson bracket in Refs. [36,40])

fπiðxÞ; πNðx0Þg ¼ 0;

fπiðxÞ; H̄jðx0Þg ¼ 0;

fπiðxÞ; Cðx0Þg ¼ 0;

fH̄i½fi�; π̄N ½φ�g ¼
Z

d3yπNfi∂iφ ≈ 0;

fH̄i½fi�; C½φ�g ¼
Z

d3yCfi∂iφ ≈ 0;

fπNðxÞ; Cðx0Þg ¼ ∂2H
∂N2

δðx − x0Þ;

where we have used the smeared constraint forms which are
defined as

H̄i½fi�≡
Z

d3xfiðxÞH̄iðxÞ

π̄N ½φ�≡
Z

d3xφðxÞπNðxÞ

C½φ�≡
Z

d3xφðxÞCðxÞ:

Since H in the Hamiltonian (2.2) is a linear function of
the lapse function, i.e., ∂2H=∂N2 ¼ 0, the last Poisson
bracket is equal to zero. Consequently, all of constraints are
the first-class constraints.
We have 10 variables which is equal to 20 dimensions in

phase space with 8 first-class of constraints. Thus degrees
of freedom of the theory can be calculated by

d:o:f: ¼ 1

2
ðvariables × 2 − 1st class × 2 − 2nd classÞ

¼ 1

2
ð10 × 2 − 8 × 2 − 0Þ

¼ 2: ð2:3Þ

As a result, the theory has 2 degrees of freedom.

III. DYNAMICS OF FLRW SPACETIME

We consider the flat Friedmann-Lemaître-Robertson-
Walker (FLRW) metric and choose the unitary gauge as

ds2 ¼ −NðtÞ2dt2 þ aðtÞ2dx2; ϕ ¼ ϕðtÞ:

Substituting the metric into the above action, and then
varying with respect to ϕ, N, and a, after setting N ¼ 1
we find

6α3MPLð3H2 þ _HÞ − V;ϕ − 3α2M2
PLHϵ _ϕ

þ 6α23ð3H _ϕþ ϕ̈Þ ¼ 0; ð3:1Þ
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3M2
PLH

2 − ρ − VðϕÞ þ 6α3MPLH _ϕþ 3α23 _ϕ
2 ¼ 0; ð3:2Þ

3M2
PLH

2 þ 2M2
PL

_H þ P − VðϕÞ þ α2M2
PLj _ϕj

þ α3ð2MPLϕ̈ − 3α3 _ϕ
2Þ ¼ 0; ð3:3Þ

where ϵ _ϕ ≡ sgnð _ϕÞ, and ρ and P are total matter density
and pressure, respectively. Since ϵ _ϕ changes the value

discretely, we should assume that _ϕ ≠ 0 and it does not
change the sign during the evolution of the universe.
We may have two branch solutions. The solution with
ϕ ¼ constant is incompatible with the timelike ansatz.
However we can discuss the limiting case as _ϕ → 0, which
will give two different solutions unless H vanishes.
We may assume that matter components consist of

perfect fluids such as matter and radiation, that is,

ρ ¼
X
i

ρi; P ¼
X
i

Pi; with Pi ¼ wiρi; ð3:4Þ

where wi describes the equation of state of ith matter
component. The matter (ρm, Pm) and radiation (ρr, Pr) are
given by wm ¼ 0 and wr ¼ 1

3
, respectively.

As we show in Sec. II, the first equation for the scalar field
ϕ is derived from the Einstein equations. In what follows,
we rewrite the above basic equations to solve them.
Introducing new Hubble parameter by

H̄ ≡H þ α3M−1
PL

_ϕ;

we rewrite the above three equations of motion as

6H̄2 þ 2 _̄H − 6α3M−1
PLH̄ _ϕþα2j _ϕj −

1

3α3MPL
V;ϕ

−
α2
α3

MPLH̄ϵ _ϕ ¼ 0; ð3:5Þ

3M2
PLH̄

2 ¼ ρþ VðϕÞ; ð3:6Þ

3H̄2 þ 2 _̄H − 6α3M−1
PLH̄ _ϕþα2j _ϕj þM−2

PLðP − VðϕÞÞ ¼ 0:

ð3:7Þ

From Eqs. (3.5) and (3.7), we find

H̄2 ¼ 1

3M2
PL

ðP − VðϕÞÞ þ 1

9α3MPL
V;ϕ þ

α2
3α3

MPLH̄ϵ _ϕ:

With Eq. (3.6), we obtain the following equation

H̄ϵ _ϕ ¼ α3
α2M3

PL

�
ρ − Pþ 2VðϕÞ −MPL

3α3
V;ϕ

�
; ð3:8Þ

or

H̄2 ¼ α23
α22M

6
PL

�
ρ − Pþ 2VðϕÞ −MPL

3α3
V;ϕ

�
2

: ð3:9Þ

From Eqs. (3.6) and (3.9), we obtain one constraint
equation

1

3
ðρþ VðϕÞÞ ¼ α23

α22M
4
PL

�
ρ − Pþ 2VðϕÞ −MPL

3α3
V;ϕ

�
2

:

ð3:10Þ

This constraint equation gives the relation between the
scalar field ϕ and matter and radiation, once we assume the
potential VðϕÞ. The scalar field ϕ is no longer dynamical,
but it is fixed by matter fluid (ρ, P).
For the perfect fluids, we find the time evolution of their

densities as

ρi ∝ a−3ð1þwiÞ; Pi ¼ wiρi;

from the energy conservation equation. Hence ρ and P are
given by some known function of the e-folding number
N ≡ lnða=a0Þ as ρðNÞ and PðNÞ, where a0 is the present
value of the scale factor.
Solving the constraint equation (3.10) for the scalar field

ϕ in terms of the e-folding number N, we find

ϕ ¼ ϕðNÞ:

Since

H̄ ¼ H þ α3
MPL

_ϕ ¼ HZðNÞ;

where

ZðNÞ≡ 1þ α3
MPL

dϕ
dN

;

we obtain the effective Friedmann equation from
Eq. (3.6) as

H2 ¼ 1

3M2
PLZ

2ðNÞ ½ρðNÞ þ VðϕðNÞÞ�: ð3:11Þ

This equation gives the solution of the scale factor,
a ¼ aðtÞ. The prefactor Z−2 modifies the Friedmann
equation from the general relativistic one. Note that there
is no kinetic term of a scalar field.

IV. EXPONENTIAL POTENTIAL

In order to analyze the cosmological evolution, we have
to give a concrete form of the potential VðϕÞ. Here we shall
assume an exponential potential,
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V ¼ ϵVM4
PL exp ðλα3M−1

PLϕÞ; ð4:1Þ

where λ is a coupling constant. Without loss of generality,
we can normalize the coefficient of the potential as
ϵV ¼ �1 because of rescaling of a scalar field ϕ.
Assuming there exist matter and radiation as matter

components, the constraint equation (3.10) is

1

3
ðρm þ ρr þ VÞ ¼ α23

α22M
4
PL

�
ρm þ 2

3
ρr þ

�
2 −

λ

3

�
V

�
2

;

which is rewritten as

�
2 −

λ

3

�
2

V2 þ
�
2

�
2 −

λ

3

��
ρm þ 2

3
ρr

�
−
α22M

4
PL

3α23

�
V

þ
�
ρm þ 2

3
ρr

�
2

−
α22M

4
PL

3α23
ðρm þ ρrÞ ¼ 0: ð4:2Þ

This must have a real solution for V. If λ ¼ 6, we always
have a simple solution

V ¼ 3α23
α22M

4
PL

�
ρm þ 2

3
ρr

�
2

− ðρm þ ρrÞ:

For the case of λ ≠ 6, we have a quadratic equation.
Before solving it, we shall take the limit of a → ∞ (or
equivalently ρm; ρr → 0). Eq. (4.2) gives

VðV − V∞Þ ¼ 0;

where

V∞ ≡ 3α22
ðλ − 6Þ2α23

M4
PL: ð4:3Þ

We then normalize the variables and parameters by V∞,
which are described by those with a tilde. The quadratic
equation for V is now

Ṽ2 −
�

2

λ − 6
ð3ρ̃m þ 2ρ̃rÞ þ 1

�
Ṽ

þ 1

ðλ − 6Þ2 ð3ρ̃m þ 2ρ̃rÞ2 − ðρ̃m þ ρ̃rÞ ¼ 0; ð4:4Þ

where

Ṽ ≡ V
V∞

; ρ̃m ≡ ρm
V∞

; and ρ̃r ≡ ρr
V∞

:

In order to have a real solution for Ṽ, the following
condition should be satisfied:

D≡ 1þ 4

λ − 6
½ðλ − 3Þρ̃m þ ðλ − 4Þρ̃r� ≥ 0:

This condition gives the constraint on ρm and ρr. We can
classify the possible cases by the exponent λ of the
potential. We summarize the classification in Table I, in
which we show the range of ρ̃m and ρ̃r for existence of a
real solution Ṽ.
For λ ≥ 6 or λ ≤ 3 (λ ≠ 0), we find the full range of the

densities. In the case of 4 ≤ λ < 6, there exists some upper
bound on densities (or lower bound for a scale factor). For
the case of 3 < λ < 4, depending on the parameters, there
are two possibilities: Either the full range of the densities is
possible or two separated finite ranges of the scale factor
are possible, i.e., a ≤ a1 or a2 ≤ a ða2 < a1Þ. The latter
case happens either when λ is close to 4 or matter density is
large enough.
The solution ϕ� is given by

ϕ� ¼ MPL

λα3
ln

�
3α22

ϵVðλ − 6Þ2α23
Ṽ�

�
; ð4:5Þ

where

Ṽ� ≡ Ṽðϕ�Þ ¼
1

2

�
1þ 2

λ − 6
ð3ρ̃m þ 2ρ̃rÞ �

ffiffiffiffi
D

p �
:

We call them � branches, respectively. In order to exist the
real solution, we have the constraint such that

ϵVṼ�ðρ̃m; ρ̃r; λÞ ≥ 0;

which means that the potential is positive definite (ϵV ¼ 1)
for the case of Ṽ�ðρ̃m; ρ̃r; λÞ > 0, otherwise it is negative
definite (ϵV ¼ −1). ϵ _ϕ is determined from Eq. (4.5). For
example, for λ > 6, ϕþ decreases as a increases (or
densities decrease), which gives ϵ _ϕ ¼ −1.
In order to derive the effective Friedmann equa-

tion (3.11), we have to evaluate the prefactor Z−2. Using
the relation

TABLE I. The existence range of ρ̃m and ρ̃r for the solution of
Eq. (4.4) for Ṽ. For λ ≥ 6 or λ ≤ 3 (λ ≠ 0), we find the full range
of the densities. In the case of 4 ≤ λ < 6, there exists some upper
bound on densities (or lower bound for a scale factor). For the
case of 3 < λ < 4, depending on the parameters, there are two
possibilities (see the detail in the text and Appendix).

Exponent Existence range

(a) λ > 6 0 ≤ ρ̃m, ρ̃r < ∞
(b) λ ¼ 6 0 ≤ ρ̃m, ρ̃r < ∞
(c) 4 < λ < 6 ðλ − 3Þρ̃m þ ðλ − 4Þρ̃r ≤ 1

4
ð6 − λÞ

(d) λ ¼ 4 ρ̃m ≤ 1
2

(e) 3 < λ < 4 ðλ − 3Þρ̃m ≤ ð4 − λÞρ̃r þ 1
4
ð6 − λÞ

(f) λ ¼ 3 0 ≤ ρ̃m, ρ̃r < ∞
(g) 0 < λ < 3 0 ≤ ρ̃m, ρ̃r < ∞
(h) λ < 0 0 ≤ ρ̃m, ρ̃r < ∞
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α3
MPL

dϕ�
d ln a

¼ 1

λ

d lnV�
d ln a

¼ 1

λ

�∂ ln Ṽ�
∂ρ̃m

dρ̃m
d ln a

þ ∂ ln Ṽ�
∂ρ̃r

dρ̃r
d ln a

�

¼ −
1

λ

�
3
ρ̃m
Ṽ�

∂Ṽ�
∂ρ̃m þ 4

ρ̃r
Ṽ�

∂Ṽ�
∂ρ̃r

�
;

we find

Z� ¼ 1þ α3
MPL

dϕ�
d ln a

¼ F�ðρ̃m; ρ̃r; λÞ
S�ðρ̃m; ρ̃r; λÞ

ffiffiffiffi
D

p ;

where

S�ðρ̃m; ρ̃r; λÞ≡ 2Ṽ� ¼ 1þ 2

λ− 6
ð3ρ̃m þ 2ρ̃rÞ �

ffiffiffiffi
D

p
;

F�ðρ̃m; ρ̃r; λÞ≡
�
1þ 2

λðλ− 6Þ ð3ðλ− 3Þρ̃m þ 2ðλ− 4Þρ̃rÞ
� ffiffiffiffi

D
p

�
�
1þ 2

λðλ− 6Þ ððλ− 3Þð2λ− 3Þρ̃m þ 2ðλ− 2Þðλ− 4Þρ̃rÞ
�
:

Since

ρm þ ρr þ Vðϕ�Þ ¼ ρm þ ρr þ V� ¼ V∞

2
R�ðρ̃m; ρ̃r; λÞ;

where

R�ðρ̃m; ρ̃r; λÞ≡ 1þ 2

λ − 6
ððλ − 3Þρ̃m þ ðλ − 4Þρ̃rÞ �

ffiffiffiffi
D

p
;

we obtain the effective Friedmann equation as

H2 ¼ 1

3M2
PL

V∞Dðρ̃m; ρ̃r; λÞS2�ðρ̃m; ρ̃r; λÞR�ðρ̃m; ρ̃r; λÞ
2F2

�ðρ̃m; ρ̃r; λÞ
:

ð4:6Þ

A. Two limiting stages

We first consider two limiting stages (a → ∞ and
a → 0), assuming their existence. Those correspond to
ρm; ρr → 0 and ρm; ρr → ∞, respectively.

1. a → ∞ ðρm; ρr → 0Þ
In this limit, the potentials for two branch solutions are

approximated as

ṼðϕþÞ ¼ Ṽþ ≈ 1þ 1

λ − 6
½λρ̃m þ ðλ − 2Þρ̃r�

Ṽðϕ−Þ ¼ Ṽ− ≈ −ðρ̃m þ ρ̃rÞ þ
½ðλ − 3Þρ̃m þ ðλ − 4Þρ̃r�2

ðλ − 6Þ2 :

We find ϵV ¼ þ1 for þ branch (Ṽþ > 0), while ϵV ¼ −1
for − branch (Ṽ− < 0).
For the þ branch solution Ṽþ, we find

M2
PLH

2 ≈
V∞

3
;

which gives the de-Sitter type accelerating universe as

aðtÞ ∝ exp ½H∞t�; ð4:7Þ

where

H∞ ≡M−1
PL

ffiffiffiffiffiffiffi
V∞

3

r
¼ jα2j

ðλ − 6Þα3
MPL:

In order to explain the present acceleration of the universe
in this model, we have a strong constraint on the coupling
constant as

jα2j
ðλ − 6Þα3

∼Oð10−60Þ ≪ 1:

The scalar field approaches as

ϕ → ϕ∞ ≡MPL

λα3
ln

�
3α22

ðλ − 6Þ2α23

�
:

For the other branch solution ϕ−, we find

M2
PLH

2 ¼ 1

3Z2
ðρm þ ρr þ V−Þ ≈

λ2

3ðλ − 6Þ2 V∞ρ
2
m ∝

1

a6
;

because ρm ≫ ρr as a → ∞. It gives the asymptotic
behavior as

aðtÞ ∝ t1=3;

which is the expansion law for the stiff matter (P ¼ ρ) in
general relativity (GR), although matter density dominates
the universe. The scalar field approaches as

ϕ → −∞:
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2. a → 0 ðρm; ρr → ∞Þ
The asymptotic behaviors of the two branch solutions

(V�) and the Friedmann equation become the same
forms as

Ṽ� ≈
1

λ − 6
ð3ρ̃m þ 2ρ̃rÞ;

and

M2
PLH

2 ≈
λ2

3ðλ − 6Þ
ð3ρm þ 2ρrÞ2½ðλ − 3Þρm þ ðλ − 4Þρr�

½3ðλ − 3Þρm þ 2ðλ − 4Þρr�2
:

If λ ≠ 3, 4,

M2
PLH

2 ≈

8<
:

λ2

3ðλ−3Þðλ−6Þ ρm for ρm ≫ ρr ðMDÞ
λ2

3ðλ−4Þðλ−6Þ ρr for ρm ≪ ρr ðRDÞ
;

where MD and RD denote matter dominant stage and
radiation dominant stage, respectively.
This gives

aðtÞ ∝
�
t
2
3 for ρm ≫ ρr ðMDÞ
t
1
2 for ρm ≪ ρr ðRDÞ

;

which is the same as the evolution history in the standard
big-bang model. However the effective gravitational con-
stant in the Friedmann equation GF is different from
the Newtonian gravitational constant GN ≡ ð8πM2

PLÞ−1.
Note that the scalar field approaches in this limit as

ϕ� → ∞;

for both branches.
GF shows a gap between the values at radiation dominant

stage and at the matter dominant stage. In fact, we find

GF ¼
8<
:

λ2

ðλ−3Þðλ−6ÞGN for ρm ≫ ρr ðMDÞ
λ2

ðλ−4Þðλ−6ÞGN for ρm ≪ ρr ðRDÞ
:

One may wonder what happens if 3 ≤ λ ≤ 6, when
GF < 0. As we show in Appendix C, in such a case, there
is no limit of a → 0. The scale factor a is bounded from
below, that is a ≥ aminð> 0Þ.
In the cases of λ ¼ 3 and λ ¼ 4, we find strange

behaviors in the Friedmann equation as follows: For λ ¼ 3,

M2
PLH

2 ≈

(
9
4
ρ2m
ρr

for ρm ≫ ρr ðMDÞ
ρr for ρm ≪ ρr ðRDÞ

;

for which the expansion law becomes

aðtÞ ∝
�
t for ρm ≫ ρr ðMDÞ
t
1
2 for ρm ≪ ρr ðRDÞ

:

On the other hand, for λ ¼ 4, there exists no solution in
this limit.

B. Whole history

In the two liming stages, we may find an appropriate
evolution of the universe, i.e., radiation=matter dominance
in the early stage (a → 0), and de Sitter expansion for
þ branch in the early stage (a → ∞). However the above
two limiting stages can be disconnected if there exists some
finite scale factor at which the Hubble parameter H
vanishes or diverges, or H2 becomes negative. It may
happen when one of the following conditions is satisfied

ðiÞ Dðρ̃m; ρ̃r; λÞ ≤ 0;

ðiiÞ S�ðρ̃m; ρ̃r; λÞ ¼ 0;

ðiiiÞ R�ðρ̃m; ρ̃r; λÞ ≤ 0;

ðivÞ F�ðρ̃m; ρ̃r; λÞ ¼ 0:

In fact H vanishes when S�ðρ̃m; ρ̃r; λÞ ¼ 0, while it
diverges when F�ðρ̃m; ρ̃r; λÞ ¼ 0. In those cases, the above
two limits are disconnected at that point. On the other hand,
when Dðρ̃m; ρ̃r; λÞ < 0 or R�ðρ̃m; ρ̃r; λÞ < 0, no solution
exists in such a range of densities ρ̃m, ρ̃r (or a scale
factor a).
In what follows, we just discuss one simple case (λ > 6).

For the other cases, we show them in Appendix C.

1. Exponential potential with λ > 6

In this case, we find D > 0, which guarantees the
solution exists for full range of densities, i.e., 0 ≤ ρm,
ρr < ∞. For the ϕ− branch, there exists one point where H
vanishes, that is, it happens when

ð3ρ̃m þ 2ρ̃rÞ2 ¼ ðλ − 6Þ2ðρ̃m þ ρ̃rÞ:

which is obtained from the condition (ii). We find the
corresponding scale factor acr as

ρrðacrÞ ¼
ðλ − 6Þ2

4
V∞ if it happens in RD

ρmðacrÞ ¼
ðλ − 6Þ2

9
V∞ if it happens in MD:

Since we find

H2 ∝ ða − acrÞ2;

near a ¼ acr, the universe approaches acr exponentially
with respect time as
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aðtÞ ≈ acr ∓ a� expð∓ K�tÞ as t → �∞;

where a� andK� are positive constants. As a result, we have
two histories of the universe (a1ðtÞ and a2ðtÞ) as

a1ðtÞ ∝

8>><
>>:

t
1
2 in t → 0

ðRDÞ
acr as t → ∞

;

or

a1ðtÞ ∝

8>><
>>:

t
1
2 → t

2
3 in the early stage

ðRDÞ ðMDÞ
acr as t → ∞

;

and

a2ðtÞ ∝
�
acr as t → −∞

t
1
3 as t → ∞

:

For theþ branch, both denominator and numerator in the
right hand side of the Friedmann equation (4.6) do not
vanish for any values of ρm, ρr. Hence the above two limits
are connected. We find radiation dominant era and matter
dominant era in the early stage of the universe, which is
followed by de Sitter accelerating expansion.

aðtÞ ∝

8>><
>>:

t
1
2 → t

2
3 in the early stage

ðRDÞ ðMDÞ
expðH∞tÞ as t → ∞

:

2. Summary of exponential potential

Here we summarize the results on the cosmic evolution
in Tables II, III and Figs. 1, 2. The details for the case of
λ ≤ 6 are given in Appendix C.
As we show in the tables and schematic figures, the

acceleration of the universe is obtained only for the þ
branch solutions with a positive definite potential (ϵV ¼ 1).
For the case with λ < 6, we may not have radiation/matter

FIG. 1. The schematic evolution curves of the universe with
positive exponential potential. (a), (b), � � �, (h) correspond to the
classification in Table II and the suffixes � denote the branches.

TABLE III. The classification of cosmic evolution of the
universe with the negative exponential potential (ϵV ¼ −1).
The notations are the same as those in Table II.

Exponent þbranch −branch

(a) λ > 6 � � � M½acr� → P½1=3��
(b) λ ¼ 6 P½1=4� → P½1=3� when α2=α3 ≳Oð1Þ

M½acr� → P½1=3� when α2=α3 ≪ Oð1Þ
(c) 4 < λ < 6 � � � M½acr� → P½1=3�
(d) λ ¼ 4 M½amin� → M½acr� M½amin� → P½1=3�
(e) 3 < λ < 4 M½amin� → M½acr� M½amin� → P½1=3�
(f) λ ¼ 3 RD=MD → M½acr� RD=MD → P½1=3�
(g) 0 < λ < 3 RD=MD → M½acr� RD=MD → P½1=3�
(h) λ < 0 RD=MD → M½aðSÞcr � RD=MD → P½1=3�

TABLE II. The classification of cosmic evolution of the
universe with the positive exponential potential (ϵV ¼ 1).
RD=MD denotes the Friedmann universe of radiation dominant
stage, possibly followed by matter dominant stage. dS means de
Sitter accelerating universe, while P[p] gives the power-law
expanding universe with the power-exponent p (a ∝ tp). M½a�
shows Minkowski spacetime with the scale factor a, while S[a]
means a singularity at finite scale factor a.

Exponent þ branch − branch

(a) λ > 6 RD=MD → dS RD=MD → M½acr�
(b) λ ¼ 6 P½1=4� → M½acr� when α2=α3 ≪ Oð1Þ
(c) 4 < λ < 6 M½amin� → dS M½amin� → M½acr�
(d) λ ¼ 4 M½acr� → dS � � �
(e) 3 < λ < 4 M½acr� → dS � � �
(f) λ ¼ 3 M½acr� → dS � � �
(g) 0 < λ < 3 M½acr� → dS � � �
(h) λ < 0 M½aðSÞcr � → S½aðFÞcr �

S½aðFÞcr � → dS

� � � FIG. 2. The schematic evolution curves of the universe with
negative exponential potential classified in Table III. The nota-
tions are the same as those in Fig. 1.
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dominant era in the early stage, which is inconsistent with
the big-bang nucleosynthesis.

C. Gravitational “constant” in effective Friedmann
equation and Hubble constant

Since we are interested in the accelerating universe,
we discuss the detail of the cosmological evolution for
þ branch.
Using the redshift z, which is defined by 1þ z ¼ a0=a,

the densities of matter and radiation are given by

ρm ¼ 3Ωm;0M2
PLH

2
0ð1þ zÞ3; ρr ¼ 3Ωr;0M2

PLH
2
0ð1þ zÞ4:

We then have

ρ̃m ¼ Ωm;0

ΩΛ;0
ð1þ zÞ3; ρ̃r ¼

Ωr;0

ΩΛ;0
ð1þ zÞ4; ð4:8Þ

where

ΩΛ;0 ≡ V∞

3M2
PLH

2
0

:

Note that the H0 here is based on the ΛCDM model. It is
not the present value of the Hubble parameter in our model.
Inserting Eq. (4.8) into the Friedmann equation (4.6), we

find the Hubble parameter H in terms of the redshift z.
We show the result in Fig. 3.
We rewrite the Friedmann equation (4.6) as follows:

H2 ¼ 8πGFðzÞ
3

ðρm þ ρr þ V∞Þ;

where GFðzÞ is defined by

GFðzÞ ¼
1

16πM2
PL

Dðρ̃m; ρ̃r; λÞS2þðρ̃m; ρ̃r; λÞRþðρ̃m; ρ̃r; λÞ
ð1þ ρ̃m þ ρ̃rÞF2þðρ̃m; ρ̃r; λÞ

:

If GF ¼ GN, it gives the Friedmann equation in general
relativity. Hence we can interpret the effect on the
Friedmann equation by the cuscuton ϕ as modification

of the gravitational “constant”GF, which depends on z. The
asymptotic behavior of GF is given as

GFðzÞ ≈

8>><
>>:

λ2

ðλ−4Þðλ−6ÞGN in RD ðρr ≫ ρm; V∞Þ
λ2

ðλ−3Þðλ−6ÞGN inMD ðρm ≫ ρr; V∞Þ
GN inDED ðV∞ ≫ ρm; ρrÞ

; ð4:9Þ

where DED denotes dark energy dominant stage.
We show some example of time evolution of GF

in Fig. 4.
Since this gravitational “constant” GF depends on time

and it deviates from GN, we have the observational
constraints by the big-bang nucleosynthesis [41] such that

GBBN

GN
¼ 0.99þ0.06

−0.05 : ð4:10Þ

In the present model, GF in the radiation dominant era is
given by Eq. (4.9), which gives the constraint on λ as

λ≳ 208:

We now present the comparison with the ΛCDM model.
In Fig. 5, we present the evolution of the ratio of our
Hubble expansion parameter to that in the ΛCDM model,
H=HΛCDMðzÞ, which is normalized at z ¼ 1100, i.e.,
H=HΛCDMðz ¼ 1100Þ ¼ 1.
This figure shows that for λ > 200, the Hubble expan-

sion rate at z ≤ 1 is about 10% larger than the value of the
ΛCDM model, which tendency might explain the Hubble
tension [42–46]. We shall discuss about it in Sec. VII.

V. CONSTRUCTION OF APPROPRIATE
POTENTIAL

Although the exponential potential may provide the
interesting feature in the Cuscuta-Galileon gravity theory,
it may not explain the observational data precisely.
Hence we shall discuss how to construct an appropriate
potential VðϕÞ in our present model when the better
evolution of the Hubble parameter is known. Once we

FIG. 4. Evolutions of GF in terms of the redshift z. We choose
the same parameter values as those in Fig. 3.

FIG. 3. Evolutions ofH in terms of the redshift z (left figure). We
set λ ¼ 20; 50; 100, ΩΛ;0 ¼ 0.7, Ωm;0 ¼ 0.3, and Ωr;0 ¼ 0.0001.
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can phenomenologically construct an appropriate potential
from observational data, we might be able to find a
fundamental theory behind it.
The basic equations are

HZϵ _ϕ ¼ α3
α2M3

PL

�
ρ − Pþ 2V −

MPL

3α3
V;ϕ

�
; ð5:1Þ

H2Z2 ¼ 1

3M2
PL

ðρþ VÞ: ð5:2Þ

The e-folding number N ≡ lnða=a0Þ measured from the
present time is related to the redshift z as

N ¼ − lnð1þ zÞ:

Since

dV
dN

¼ V;ϕ
dϕ
dN

;

using the above basic equations, we find

d
dN

�
3M2

PLH
2

�
1þ α3

MPL

dϕ
dN

�
2

− ρ

�

¼ dϕ
dN

�
α2M2

PL

α3
H
�
1þ α3

MPL

dϕ
dN

�
ϵ _ϕ − ðρ − PÞ − 2V

�
:

Eliminating V and using the energy conservation

dρ
dN

þ 3ðPþ ρÞ ¼ 0;

we obtain the second-order differential equation for ϕ,
which can be rewritten as

dZ
dN

þQ1ðNÞZ − 3Z2 ¼ Q2ðNÞ; ð5:3Þ

where

Z≡ 1þ α3
MPL

dϕ
dN

ð5:4Þ

Q1 ≡
�
3þ 1

H
dH
dN

þ α2MPLϵ _ϕ

2α3H

�
ð5:5Þ

Q2 ≡ −
1

2M2
PL

�
Pþ ρ

H2
−
α2M3

PLϵ _ϕ

α3H

�
: ð5:6Þ

Since Eq. (5.3) is the Riccati equation for Z, once we can
find a special solution Z�ðNÞ, we obtain a general solution
as follows: Setting Z ¼ Z� þ Y, we find the Bernoulli
equation as

dY
dN

þ ðQ1 − 6Z�ÞÞY ¼ 3Y2;

which can be linearized by setting Y ¼ 1=X as

dX
dN

− ðQ1 − 6Z�ÞX ¼ −3:

First we solve the homogeneous solution XH, which
satisfies

dXH

dN
− ðQ1 − 6Z�ÞXH ¼ 0:

Using this homogenous solution, we obtain general sol-
ution as

XðNÞ ¼ −3XHðNÞ
�Z

dN0 1

XHðN0Þ
�
; ð5:7Þ

where

XHðNÞ ¼ exp

�Z
N
dN0ðQ1ðN0Þ − 6Z�ðN0ÞÞÞ

�
: ð5:8Þ

As a result, we obtain a general solution for Z as

ZðNÞ ¼ Z�ðNÞ þ 1

XðNÞ : ð5:9Þ

Integrating Eq. (5.9), we find the scalar field in terms
of N as

ϕ ¼ ϕ0 þ
MPL

α3

Z
N

0

dN0ZðN0Þ; ð5:10Þ

ϕ0 is the present value of the scalar field.
Solving the inverse problem given by Eq. (5.10), we find

the e-folding N in terms of ϕ, i.e., N ¼ NðϕÞ. As a result,
inserting it in Eq. (5.2), we obtain the potential as

VðϕÞ ¼ −ρðNðϕÞÞ þ 3M2
PLH

2ðNðϕÞÞZðNðϕÞÞ2:

FIG. 5. Comparison with ΛCDM model. The parameters are
chosen as the same as Fig. 3.
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A. Potential for ΛCDM model

Now assuming matter dominant stage (ρ ¼ ρm), we
shall show the potential form for ΛCDM model, which
is given by

H2 ¼ 1

3M2
F
ðρm þ ρvacÞ;

where MF and ρvac are positive constants representing the
modified Planck mass and the vacuum energy density,
respectively.
To perform the integrations, we change the variable N

to ξ, which is defined by

ξ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρm

ρvac

r
:

Since the energy density is given by

ρm ¼ ρm;0e−3N;

we find

dξ ¼ −
3ðξ2 − 1Þ

2ξ
dN: ð5:11Þ

Using Eq. (5.11) and

H ¼
ffiffiffiffiffiffiffiffi
ρvac

pffiffiffi
3

p
MF

ξ;

we also find

Q1 ¼
3

2ξ2
ðξ2 þ 2pξþ 1Þ

Q2 ¼ −
3M2

F

2M2
PL

ξ2 − 1

ξ2
þ 3p

ξ
;

where

p≡ 1

2
ffiffiffi
3

p α2MPLMFϵ _ϕ

α3
ffiffiffiffiffiffiffiffi
ρvac

p :

The differential equation is

dZ
dξ

−
ðξ2 þ 2pξþ 1Þ

ξðξ2 − 1Þ Z þ 2ξ

ξ2 − 1
Z2 −

M2
F

M2
PL

1

ξ
þ 2p
ξ2 − 1

¼ 0;

which is still the Riccati equation.
The equation for the scalar field and the potential are

given by

dϕ
dξ

¼ −
2MPL

3α3

ξ

ξ2 − 1
ðZðξÞ − 1Þ;

V ¼ 3M2
PLH

2Z2 − ρm

¼ V0

�
ξ2Z2ðξÞ − M2

F

M2
PL

ðξ2 − 1Þ
�
;

where

V0 ≡M2
PL

M2
F
ρvac:

In order to find the analytic solution, we have to find a
special solution Z�. It can be obtained by the hyper-
geometric functions. However, since it is quite complicated,
we may solve it numerically.
As for the initial condition, we shall consider the limit of

ξ → 1 (ρm → 0). In this limit, ΛCDMmodel gives de Sitter
expanding universe withH ¼ constant. If the potential V is
finite, Z is also finite. As a result, dϕ=dN must vanish in
this limit. It gives Z → 1 as ξ → 1. In fact, we find the
approximate solution by the power-series expansion near
ξ ¼ 1 as

ZðξÞ ≈ 1þ z1ðξ − 1Þ þ z2ðξ − 1Þ2 þ � � � ;
ϕðξÞ ≈ ϕ1ðξ − 1Þ þ ϕ2ðξ − 1Þ2 þ � � � ;

where

z1 ¼
1 − r2

p − 2
; z2 ¼

ðr2 − 1Þ½p2 − 9pþ 2ðr2 þ 6Þ�
2ðp − 3Þðp − 2Þ2 ;…;

ϕ1 ¼ −
z1
3

MPL

α3
; ϕ2 ¼ −

z1 þ 2z2
12

MPL

α3
; � � � :

Here we define r by

r≡ MF

MPL
:

We then find the potential near ϕ ¼ 0 as

VðϕÞ ¼ V0½1 − 6ðp − 1Þϕþ � � ��:

We can also find the asymptotic solution in the limit of
ξ → ∞ as

ZðξÞ → Z∞ þ cZξ−
ffiffiffiffiffiffiffiffiffi
1þ8r2

p
þ � � � ;

ϕðξÞ → −
2MPL

3α3
ðZ∞ − 1Þ ln ξþ � � � ;

where
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Z∞ ≡ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8r2

p

4
;

and cz is some constant.
Since the potential is given in this limit as

V → V0ðZ2
∞ − r2Þξ2;

we find the asymptotic form of the potential as

V ≈ V0ðZ2
∞ − r2Þ exp

�
−

3α3
ðZ∞ − 1ÞMPL

ϕ

�
;

which is the exponential potential (4.1) with the exponent λ
given by

λ ¼ −
3ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8r2

p
þ 3Þ

2ðr2 − 1Þ :

We show some numerical examples in Figs. 6 and 7.

Here we assume that M2
F

M2
PL
¼ 0.98 or 1.02, because the

“modified Planck” mass MF in the Friedmann equation
should be close to the Planck mass MPL.
Since Z2

∞ − r2 > 0 and Z∞ − 1 < 0 for r < 1, while
Z2
∞ − r2 < 0 and Z∞ − 1 > 0 for r > 1, we understand

the above potential form with the fact that dV=dϕ ¼
−6ðp − 1ÞV0 at ϕ ¼ 0.
We cannot construct numerically any appropriate poten-

tial for the parameter p ≥ 2.

VI. DENSITY PERTURBATIONS AND EFFECTIVE
GRAVITATIONAL CONSTANT

A. Basic equations for density perturbations

According to Refs. [37,47,48] we consider the perturbed
metric on the flat FLRW background as

ds2¼−ð1þ2ΨÞdt2þ2∂iψdxidtþaðtÞ2ð1þ2ΦÞδijdxidxj;
ð6:1Þ

when ψ ¼ 0, it corresponds to the Newtonian gauge. The
energy-momentum tensor with perturbations are defined as

T0
0 ¼ −ðρm þ δρmÞ; T0

i ¼ −ρm∂ivm; Ti
j ¼ 0; ð6:2Þ

where vm is a velocity potential of the perfect fluid. Note
that we are considering only perturbations of nonrelativistic
matter.
Expanding the following action up to second order

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
M2

PLRþ α2M2
PL

ffiffiffiffiffiffiffi
−X

p

þ α3MPL ln

�
−

X
Λ4

�
□ϕ − VðϕÞ þ 3α23X

�
þ SMðgμν;ψMÞ: ð6:3Þ

Varying with respect to Ψ, Φ, ψ , and δϕ, we find a set of
equations in Fourier space as follows

EΨ∶ A1
_Φþ A2

_δϕþ A3

k2

a2
Φþ A4Ψþ A5

k2

a2
ψ þ

�
A6

k2

a2
− μ

�
δϕ − δρm ¼ 0; ð6:4Þ

EΦ∶ B1Φ̈þ B2δ̈ϕþ B3
_Φþ B4

_δϕþ B5
_Ψþ B6

k2

a2
Φþ 3νδϕþ

�
B8

k2

a2
þ B9

�
Ψþ B10

k2

a2
_ψ þ B11

k2

a2
ψ ¼ 0; ð6:5Þ

FIG. 7. Potentials for ΛCDMmodel with M2
F

M2
PL
¼ 1.02. The other

parameters are the same as those in Fig. 6.

FIG. 6. Potentials for ΛCDM model. We set Ωm;0 ¼ 0.3,

ΩΛ;0 ¼ 0.7, and M2
F

M2
PL
¼ 0.98.
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Eψ∶ C1
_Φþ C2

_δϕþ C3Ψþ C4δϕþ ρmvm ¼ 0; ð6:6Þ

Eδϕ∶ D1Φ̈þD2δ̈ϕþD3
_ΦþD4

_δϕþD5
_ΨþD6

k2

a2
_ψ þD8Φþ

�
D9

k2

a2
−M2

�
δϕþ

�
D10

k2

a2
þD11

�
ΨþD12

k2

a2
ψ ¼ 0:

ð6:7Þ

Components of the set of equations are

A1 ¼ 6M2
PLH þ 6MPLα3 _ϕ; A2 ¼ 6α3MPLH þ 6α23 _ϕ; A3 ¼ 2M2

PL;

A4 ¼ −6M2
PLH

2 − 12α3MPLH _ϕ − ρm − 6α23 _ϕ
2; A5 ¼ 2M2

PLH þ 2α3MPL
_ϕ;

A6 ¼ 2α3MPL; μ ¼ V;ϕ;

B1 ¼ 6M2
PL; B2 ¼ 6α3MPL; B3 ¼ 18M2

PLH;

B4 ¼
3α2M2

PLj _ϕj
_ϕ

− 18α23 _ϕ; B5 ¼ −6M2
PLH − 6α3MPL

_ϕ; B6 ¼ 2M2
PL;

B8 ¼ 2M2
PL; B9 ¼ −6M2

PL
_H − 18M2

PLH
2 − 18α3MPLH _ϕ − 6α3MPLϕ̈þ 3ρm;

B10 ¼ 2M2
PL; B11 ¼ 2M2

PLH; ν ¼ −V;ϕ;

C1 ¼ 2M2
PL; C2 ¼ 2α3MPL; C3 ¼ −2M2

PLH − 2α3MPL
_ϕ; C4 ¼ −6α3MPLH þ α2M2

PLj _ϕj
_ϕ

− 6α23 _ϕ;

D1 ¼ 6α3MPL; D2 ¼ 6α23; D3 ¼ 36α3MPLH −
3α2M2

PLj _ϕj
_ϕ

þ 18α23 _ϕ;

D4 ¼ 18α23H; D5 ¼ −6α3MPLH − 6α23 _ϕ; D6 ¼ 2α3MPL;

D8 ¼ 18α3MPL
_H −

9α2M2
PLHj _ϕj
_ϕ

þ 54α3MPLH2 þ 54α23H _ϕþ 18α23ϕ̈ − 3V;ϕ;

D9 ¼ 6α23 þ
8α3MPLH

_ϕ
−
α2M2

PL

j _ϕj ; D10 ¼ 2α3MPL;

D11 ¼ −6α3MPL
_H − 18α3MPLH2 − 18α23H _ϕ − 6α23ϕ̈ − V;ϕ;

D12 ¼ 8α3MPLH −
α2M2

PLj _ϕj
_ϕ

þ 6α23 _ϕ; M2 ¼ V;ϕϕ:

Note that B7 ¼ D7 ¼ 0. Since the matter is conserved,
the perturbed energy-momentum tensor is satisfied

δð∇μT
μ
νÞ ¼ 0. ð6:8Þ

From these perturbation equations, we can also confirm
that this theory has two degrees of freedom. Although the
perturbation equations contain _δϕ and δ̈ϕ as well as δϕ,
we can eliminate those derivative terms by combining the
perturbation equations, and obtain δϕ in terms of the
perturbation variables of matter fluid and metric compo-
nents (δρm; v;Φ;Ψ, and ψ) and those time derivatives.
Hence the perturbation of the scalar field is algebraically

determined by the other perturbation variables. There is no
additional degree of freedom coming from the scalar field.
Choosing the Newtonian gauge, the components ν ¼ 0

and ν ¼ i lead to

_δρm þ 3Hδρm þ k2

a2
ρmvm þ 3ρm _Φ ¼ 0; ð6:9Þ

_vm ¼ Ψ; ð6:10Þ

respectively. The useful combination is

3ð _Eψ þ 3HEψÞ − EΦ ¼ 0; ð6:11Þ

CUSCUTA-GALILEON COSMOLOGY: DYNAMICS, … PHYS. REV. D 105, 104022 (2022)

104022-13



with the basic equations of the flat FLRW background and
Eq. (6.10), the above relation becomes

B6Φþ B8Ψ ¼ 0: ð6:12Þ

We are interested in the subhorizon regime, k2=a2 ≫ H2,
and using the quasistatic approximation, i.e., the dominant
contributions terms are k2=a2, δρm, and M2. We also
neglect the oscillating term of δϕ and assume that the
variations on gravitational potentials are small. Thereby, the
EΨ and the Eδϕ become

A3

k2

a2
Φþ A6

k2

a2
δϕ − δρm ≃ 0; ð6:13Þ

�
D9

k2

a2
−M2

�
δϕþD10

k2

a2
Ψ ≃ 0: ð6:14Þ

Solving Eqs. (6.12)–(6.14) we find

k2

a2
Ψ ≃ −

ðB6D9
k2

a2 − B6M2Þδρm
ðA2

6B6 þ B2
8D9Þ k2

a2 − B2
8M

2
; ð6:15Þ

Φ ¼ −Ψ: ð6:16Þ

Under the above approximations, taking time derivative
on Eq. (6.9) and using Eq. (6.10) and the conservation of
matter density equation, equation of motion of the density
contrast is given by

δ̈m þ 2H _δm þ k2

a2
Ψ ¼ 0; ð6:17Þ

where the density contrast is defined as δm ¼ δρm=ρm.
Substituting Eq. (6.15) into above equation we find

δ̈m þ 2H _δm − 4πGeffρmδm ≃ 0; ð6:18Þ

where the effective gravitational constant is

Geff ¼
2M2

PLðB6D9
k2

a2 − B6M2Þ
ðA2

6B6 þ B2
8D9Þ k2

a2 − B2
8M

2
GN

¼
�
6α23 þ 8α3MPLH

_ϕ
− α2M2

PL

j _ϕj −M2 a2

k2

	
�
8α23 þ 8α3MPLH

_ϕ
− α2M2

PL

j _ϕj −M2 a2

k2

	GN:

Here we set GN ≡ 1
8πM2

PL
.

In the subhorizon limit the term M2a2=k2 is very small
compared to other terms, then we can neglect this term.
Using the new Hubble parameter and Eq. (3.8) the effective
gravitational constant becomes

Geff¼
�
1−

2 α3
MPL

dϕ
dNðρmþ2V−MPL

3α3
V;ϕÞ

ð1þ α3
MPL

dϕ
dNÞ½8ðρmþ2V−MPL

3α3
V;ϕÞ−α2

2

α2
3

M4
PL�



GN;

ð6:19Þ

where we neglect contributions from radiation.
The gravitational slip parameter is defined as

η≡ −
Φ
Ψ
; ð6:20Þ

which is always equal to one in this model.

B. Effective gravitational constant
and observational constraints

Since the effective gravitational “constant” is time-
dependent, we have to take into account the observational
constraints. The lunar-laser ranging experiment [49,50]
gives the constraint such that

_G
G

¼ ð−5.0� 9.6Þ × 10−15 yr−1; ð6:21Þ

G̈
G

¼ð1.6� 2.0Þ × 10−16 yr−2: ð6:22Þ

If the gravitational constant evolves due to the cosmic
expansion, we expect that _GN=GN∼OðH0Þ∼7×10−11 yr−1

and G̈N=GN ∼OðH2
0Þ ∼ 5 × 10−21 yr−1. As a result, the

condition (6.21) will give a strong constraint, but the
constraint (6.22) may be much weaker.

1. Exponential potential with λ > 6

Assuming the exponential potential with λ > 6 discussed
in Sec. IV B 1, we show the behavior of GeffðzÞ. We
consider only þ branch solution with ϵV ¼ 1. We then
find the effective gravitational “constant” is given by

Geff

GN
¼ 1 −

2ðZþ − 1ÞHþϵ _ϕ

8HþZþϵ _ϕ −
α2
α3
MPL

;

where

Zþ ¼ Fþ
Sþ

ffiffiffiffi
D

p

H2þ ¼ V∞

6M2
PL

DS2þRþ
F2þ

:

In Fig. 8, we depict the evolution of Geff=GN. Taking the
time derivative ofGeff , we show the behavior of _Geff=GN in
terms of the redshift z in Fig. 9.
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In order to satisfy the constraint (6.21), we find λ ≥ 145,
which corresponds to

0 >
_Geff

GN

����
0

≥ −1.458 × 10−14 yr−1;

where _Geff=GNj0 is the present value. Hence the constraint
obtained from the big-bang nucleosynthesis (λ ≥ 208)
gives the sufficient condition.
The constraint (6.22) on G̈=G is always satisfied for any

values of λ as we expected.

2. The potential for ΛCDM background universe

If the potential is given by one discussed in Sec. VA,
we recover ΛCDM model for the background dynamics.
However the effective gravitational constant is no longer
constant. It depends on time as

Geff

GN
¼ 1 −

2ðZ − 1ÞHϵ _ϕ

8HZϵ _ϕ −
α2
α3
MPL

:

We show the evolution ofGeff in terms of the redshift z in
Fig. 10. We consider only the cases of p ≤ 1.33 because
Geff will diverges at some value of z when p≳ 1.34.
We can also discuss the time evolution of _Geff , which

plots are given in Fig. 11.
These figures show that when we decrease the value of p,

the present value of _Geff becomes smaller. From the
observational constraint (6.21), we find

p ≤
�−2.4 for M2

F=M
2
PL ¼ 0.98

−6.0 for M2
F=M

2
PL ¼ 1.02:

ð6:23Þ

The constraint (6.22) is automatically satisfied for any
values of p.

FIG. 8. Evolutions of Geff=GN for the cases of λ ¼ 100, 200,
500 and 1000 in terms of the redshift z. We choose the same
parameter values as those in Fig. 3.

FIG. 9. Evolutions of _Geff in terms of the redshift z. We choose
the same parameter values as those in Fig. 8. The constraint from
lunar-laser ranging experiment, Eq. (6.21), is given by the green
line segment at z ¼ 0.

FIG. 10. Evolutions of Geff for the cases of p ¼ 1.33; 1 − 1;−5
and −10 in terms of the redshift z. The top and bottom figures

correspond to M2
F

M2
PL
¼ 0.98 and M2

F
M2

PL
¼ 1.02, respectively.
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The above constraints (6.23) correspond to

α2
α3

> 8.4
ffiffiffiffiffiffiffiffiffi
ρvac
M4

PL

r

for M2
F=M

2
PL ¼ 0.98, and

α2
α3

> 20.6
ffiffiffiffiffiffiffiffiffi
ρvac
M4

PL

r

for M2
F=M

2
PL ¼ 1.02.

VII. DISCUSSION AND REMARKS

We discuss a Cuscuta-Galileon gravity theory, which is
one simple extension of a cuscuton gravity theory and still
preserves two degrees of freedom. We apply it to cosmo-
logical model and present the effective Friedmann equation
assuming the flat FLRW metric. Although there exists no
additional degrees of freedom, introduction of a potential of
a scalar field changes the dynamics. The scalar field is
completely determined by matter fields.
Giving an exponential potential as an example, we

discuss the evolution of the Hubble expansion parameter.
Since the gravitational constant GF in the effective
Friedmann equation becomes time-dependent. we restrict
the parameters in our models with the constraint by the big-
bang nucleosynthesis.
We also present how to construct a potential once

we know the evolution of the Hubble parameter. As an
example, we present the potential form to obtain the
ΛCDM cosmology for the background evolution.
We then analyze the density perturbations, which equa-

tion is characterized only by a change of the gravitational
constant Geff . Note that Geff in the above ΛCDM model is
also time-dependent. Hence it is not exactly the same as the
ΛCDM cosmology in GR. We then restrict the parameters
in our models using the observational constraints by the
lunar-laser-ranging experiment.
In the case of exponential potential, there appears the

time-dependence of the gravitational constant in the effec-
tive Friedmann equation, which may give a chance to
explain the Hubble tension problem [42–46].
As shown in Fig. 5, the Hubble expansion rate at z ≤ 1 is

about 10% larger than the value of the ΛCDM model. We
then plot the present value of the Hubble expansion rate in
terms of λ in Fig. 12. For the reference, we also show the

FIG. 12. The present value of the Hubble expansion rate in
terms of λ. The dashed green line, black solid line, dashed blue
line, and dot-dashed red line correspond toΩm;0 ¼ 0.32, 0.3, 0.28
and 0.26, respectively. Two observational data by R19 [44] and
by R21 [45] are given by the red shaded and blue shaded regions,
respectively.

FIG. 11. Evolutions of _Geff for the cases of p ¼ −1;−5 and
−10 in terms of the redshift z. The constraint from lunar-laser
ranging experiment, Eq. (6.21), is given by the green line segment

at z ¼ 0. The top and bottom figures correspond to M2
F

M2
PL
¼ 0.98

and M2
F

M2
PL
¼ 1.02, respectively.
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observational data R19 of the Hubble expansion rate near
z ¼ 0, which is obtained from observations of 70 long-
period Cepheids in the Large Magellanic Cloud [44].
This figure shows that our model with Ωm;0 ¼ 0.3 is
consistent with the observational data R19 if λ > 117,
which should be satisfied from the constraint by nucleo-
synthesis (λ > 208). If we take the observational data R21,
which is determined from observations of 75 Milky Way
Cepheids [45], it strays from the allowed range. However
the result depends on the density parameter Ωm;0. If
Ωm;0 ≲ 0.28, our model with large λ is still consistent with
R21 as well as R19.
Our model will be improved when we add a negative

vacuum energy ρvac as well as matter and radiation
densities, ρm and ρr. The effective Friedmann equation
is given in Appendix D. Assuming Ωm;0 ¼ 0.3, we plot the
present value of the Hubble expansion rate in terms of λ in
Fig. 13. The case with ρvac ¼ −0.05V∞ fits well both for

R19 and R21, where V∞ ¼ 3α2
2

ðλ−6Þ2α2
3

M4
PL. Such a small

negative vacuum energy might be obtained in the context of
string theory [51].
When we take the limit of λ → ∞ and α3 → 0 with

keeping V∞ finite, we obtain the same results as those in
the original cuscuton theory with an exponential potential,
which Friedmann equation is given by Eq. (B7). Since our
model could be successful to explain the history of our
universe when λ is large, the original cuscuton theory with
an exponential potential may also have the possibility to
solve the Hubble tension problem. In fact, the present
Hubble constant becomes H0 ¼ 74.65 km=s=Mpc when
we normalize the Hubble parameter at z ¼ 1100 by use
of the CMB data based on the ΛCDM universe model.
This is quite close to the value in our model with large λ.
One difference is that two “gravitational constants,” GF

and Geff , are exactly the same as GN in the original
cuscuton theory.
In the case of the potential for the ΛCDM universe

discussed in Sec. VA, we also find the cosmological model
in the cuscuton theory as the limiting case of our Cuscuta-
Galileon theory. In fact, if we take the limit of p → −∞ as
well as α3 → 0 keeping pα3 finite, the constructed potential
in Sec. VA becomes a quadratic function of the scalar field
ϕ (see Appendix B 1).
The above two examples suggest that our cosmological

model includes that in the original cuscuton theory as
the limiting case. The difference is Geff , which is time-
dependent in our model, while that in the original cuscuton
theory is constant (GN).
Although we may explain the present large Hubble

constant by the observation of nearby SNe Ia as well as
small value obtained from CMB data assuming ΛCDM
model, we may have to analyze our model more carefully
from the observational view points. Even if it turns out that
the present model with the exponential potential is not
consistent with observational data, we still have many
possibilities. We may find a better model by tuning the
potential as shown in the construction method (Sec. V). We
can also extend our Cuscuta-Galileon gravity theory
[32,33] because our model is the simplest one. We may
obtain a better theory for observations. We shall leave these
analyses as future works.
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APPENDIX A: RESCALING OF SCALAR FIELD

In the present Cuscuta-Galileon model defined by the
action (2.1), without loss of generality, unless α3 ¼ 0, we
can always set α3 ¼ 1 by rescaling the scalar field ϕ as
ϕ̃ ¼ α3ϕ. In fact, defining

X̃ ≡ gμν∂μϕ̃∂μϕ̃ ¼ α23X;

we find that the above action S is given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
M2

PLRþ α2
α3

M2
PL

ffiffiffiffiffiffiffi
−X̃

p

þ ln

�
−

X̃
α23Λ4

�
□ϕ̃ − Vðϕ̃=α3Þ þ 3X̃

�
þ SMðgμν;ψMÞ;

FIG. 13. The present value of the Hubble expansion rate in
terms of λ when we add a vacuum energy ρvac. We assume
Ωm;0 ¼ 0.3. The black line, green line, and purple line correspond
to ρ̃vac ¼ 0;−0.05 and −0.1, respectively, where ρ̃vac ¼ ρvac=V∞.
Two observational data by R19 [44] and by R21 [45] are given by
the red shaded and blue shaded regions, respectively.
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Introducing the scaled parameters as

α̃2 ¼
α2
α3

; Λ̃4 ¼ α23Λ4;

and redefining the potential as

Ṽðϕ̃Þ ¼ Vðϕ̃=α3Þ;

we find

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
M2

PLRþ α̃2M2
PL

ffiffiffiffiffiffiffi
−X̃

p
þ ln

�
−

X̃

Λ̃4

�
□ϕ̃

− Ṽðϕ̃Þ þ 3X̃

�
þ SMðgμν;ψMÞ; ðA1Þ

which is the action (2.1) with α3 ¼ 1.

APPENDIX B: ORIGINAL CUSCUTON
GRAVITY (α3 = 0)

Here we reanalyze cosmological dynamics in the original
cuscuton gravity with a potential (α3 ¼ 0). The basic
equations are given by

Hsgnð _ϕÞ ¼ −
1

3α2M2
PL

V;ϕ; ðB1Þ

H2 ¼ 1

3M2
PL

ðρþ VÞ; ðB2Þ

where ρ ¼ ρm þ ρr.
We then discuss two potentials, the quadratic potential

and the exponential potential as analyzed in [30,31].

1. Quadratic potential

We first assume the potential is given by

V ¼ V0 þ
1

2
m2ϕ2:

In this case, since V;ϕ ¼ m2ϕ, we have a constraint such
that

1

3M2
PL

�
ρþ V0 þ

1

m2
ϕ2

�
¼ 1

9α22M
4
PL

m4ϕ2ð¼ H2Þ;

which gives

ϕ2 ¼ 6α22M
2
PLðρþ V0Þ

m2ð2m2 − 3α22M
2
PLÞ

:

Using this relation, we find the Friedmann equation as

H2 ¼ 1

3M2
F
ðρþ V0Þ; ðB3Þ

where

M2
F ≡

�
1 −

3α22M
2
PL

2m2

�
M2

PL: ðB4Þ

Equation (B3) describes the ΛCDM model with new
gravitational constant

GF ≡ GN�
1 − 3α2

2
M2

PL
2m2

	 ð> GNÞ: ðB5Þ

Since the gravitational constant in the Friedmann equation
must be close to the Newtonian gravitational constant GN,
we have a constraint

m2 ≫
3α22
2

M2
PL:

2. Exponential potential

Next we consider the exponential potential

V ¼ ϵVM4
PL expðλϕ=MPLÞ:

The constraint equation (3.10) with α3 ¼ 0 is

1

3
½ρþ ϵVM4

PL exp ðλϕ=MPLÞ�

¼ 1

9α22M
2
PL

V2
;ϕ ¼ λ2M4

PL

9α22
exp ð2λϕ=MPLÞ:

By setting χ ≡ exp ðλϕ=MPLÞ, we find the quadratic
equation for χ as

χ2 −
3ϵVα

2
2

λ2
χ −

3α22
λ2M4

PL
ρ ¼ 0: ðB6Þ

In order to have real positive roots for this equation, we find
the condition such that

�
3ϵVα

2
2

λ2

�
2

þ 12α22
λ2M4

PL
ρ ≥ 0;

which is always satisfied because ρ ≥ 0.
The solution for Eq. (B6) is

χ ¼ χþðρÞ≡ 3α22
2λ2

 
ϵV þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4λ2

3α22M
4
PL

ρ

s !
:

Only a þ branch of solutions is possible because χ should
be positive. Note that ϵV ¼ �1.
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We then find the scalar field ϕ in terms of ρ as

ϕ ¼ ϕþ ≡MPL

λ
ln

"
3α22
2λ2

 
ϵV þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4λ2

3α22M
4
PL

ρ

s !#
:

As a result, the Friedmann equation (B2) is given by

H2þ ¼ 1

3M2
PL

"
ρþ 3α22M

4
PL

2λ2

 
1þ ϵV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4λ2

3α22M
4
PL

ρ

s !#
:

ðB7Þ

In the early stage (ρ → ∞), the universe starts from the
radiation dominant stage and follows by the matter dom-
inant stage both for ϵV ¼ �1.
For the late stage, we discuss the cosmic evolution for

two cases (ϵV ¼ �1) separately.

a. ϵV = + 1 (positive potential)

In the limit of ρ → 0, we obtain

3M2
PLH

2þ ¼ 3α22
λ2

M4
PL ≡ ρDEð> 0Þ;

which gives de Sitter expansion with the Hubble expansion
rate HDE ¼ jα2jMPL=jλj. For the present acceleration, we
have to impose the condition such that

jα2j
jλj ∼Oð10−60Þ ≪ 1: ðB8Þ

b. ϵV = − 1 (negative potential)

In this case, in the limit of ρ → 0, we find the Friedmann
equation as

3M2
PLH

2þ ¼ λ2ρ2

3α22M
4
PL

; and ρ ∼ ρm;

which gives

aðtÞ ∝ t
1
3:

This is the expansion law for the stiff matter (P ¼ ρ) in GR.
Consequently, only the case of ϵV ¼ þ1 (positive

exponential potential) provides the big-bang universe
followed by an accelerating expansion.

3. Construction of appropriate potential

Wemay construct an appropriate potential once we know
the expansion of the universe from observation. Here we
provide how to construct the potential giving the Hubble
expansion parameter H in terms of the redshift z.

From basic equations we find

V2
;ϕ ¼ 9α2M4

PLH
2; ðB9Þ

V ¼ 3M2
PLH

2 − ρ: ðB10Þ

We rewrite Eq. (B9) in terms of z as

�
dϕ
dz

�
2

¼
�
dV=dz
V;ϕ

�
2

¼ 1

9α22M
4
PLH

2

�
dV
dz

�
2

:

From Eq. (B10), we obtain

dV
dz

¼ 6M2
PLH

dH
dz

−
dρ
dz

;

then

dϕ
dz

¼ � 1

3jα2jM2
PLHðzÞ

dV
dz

¼ � 1

jα2j
�
2
dH
dz

−
1

3M2
PLH

dρ
dz

�
:

Integrating this equation, we find ϕ ¼ ϕðzÞ. Solving
z ¼ zðϕÞ as the inverse problem, and inserting it into
Eq. (B10), we find the potential VðϕÞ.
In order to show it more explicitly, in what follows, we

assume ρ ¼ ρm. Since

dρm
dz

¼ 3

1þ z
ρm;

we find

dϕ
dz

¼ � 1

jα2j
�
2
dH
dz

−
ρm

M2
PLð1þ zÞH

�
:

Using ρm ¼ 3Ωm;0M2
PLH

2
0ð1þ zÞ3, we obtain

ϕ¼ ϕ0 �
1

jα2j
�
2ðHðzÞ−H0Þ− 3Ωm;0H2

0

Z
z

0

dz
ð1þ zÞ2
HðzÞ

�
:

Once we know HðzÞ, we can integrate this equation, which
gives the relation between ϕ and z. Solving the inverse
problem, we find the appropriate potential VðϕÞ.
We can easily check it by assuming ΛCDM model

H2 ¼ 1

3M2
F
ðρm þ V0Þ:

Since ρm ¼ 3Ωm;0M2
FH

2
0ð1þ zÞ3,

H2 ¼ V0

3M2
F

�
1þ 3Ωm;0M2

FH
2
0

V0

ð1þ zÞ3
�
:
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We then find the solution as

ϕðzÞ ¼ ϕ0 �
2

jα2j
�
1 −

M2
F

M2
PL

�
ðHðzÞ −H0Þ:

The potential is then given as

V ¼ 3M2
PLH

2 − ρm ¼ 3M2
PLH

2 − ð3M2
FH

2 − V0Þ
¼ 3ðM2

PL −M2
FÞH2 þ V0

¼ 3ðM2
PL −M2

FÞ
�
H0 �

jα2j
2ð1 − M2

F
M2

PL
Þ
ðϕ − ϕ0Þ

�
2

þ V0

¼ 3α22M
4
PL

4ðM2
PL −M2

FÞ
ðϕ − ϕ�Þ2 þ V0; ðB11Þ

where

ϕ� ≡ ϕ0 ∓
2H0ð1 − M2

F
M2

PL
Þ

jα2j
:

This is just a quadratic potential of ϕ with

m2 ≡ 3α22M
4
PL

2ðM2
PL −M2

FÞ
;

which is consistent with Eq. (B4).

APPENDIX C: EXPONENTIAL POTENTIAL
WITH λ ≤ 6

In Sec. IV B 2, we give only the summary of the cosmic
evolution for the exponential potential (4.1) with λ ≤ 6. In
this Appendix, we shall give the details of calculation. The
cosmic evolution can be easily understood by analyzing
the behaviors of the functions D, S�, R� and F� in the
effective Friedmann equation (4.6).

1. 0 < λ < 3

In this case, we find Sþ ¼ 0 at a ¼ acr for þ branch,
while S− < 0 for − branch. As a result we find the
following cosmic evolution: For þ branch, since Sþ < 0
for a < acr while Sþ > 0 for a > acr, we find for the
negative potential (ϵV ¼ −1),

a−þðtÞ ∝
8<
:

t
1
2 → t

2
3 in the early stage

ðRDÞ ðMDÞ
acr as t → ∞

;

and for the positive potential (ϵV ¼ 1),

aþþðtÞ ∝
�
acr as t → −∞
exp½H∞t� as t → ∞

:

For − branch, the potential must be negative (ϵV ¼ −1).
We then find

a−−ðtÞ ∝

8>><
>>:

t
1
2 → t

2
3 in the early stage

ðRDÞ ðMDÞ
t
1
3 as t → ∞

:

Here we have used the notation for the scale factor such
that aϵV ;branch.

2. λ < 0

In this case, for þ branch, we find two vanishing points

such that Fþ ¼ 0 at a ¼ aðFÞcr and Sþ ¼ 0 at a ¼ aðSÞcr ,

where aðFÞcr > aðSÞcr . When Fþ vanishes, we find the

Friedmann equation near aðFÞcr as

H2 ∝ ða − aðFÞcr Þ−2;
which gives

aðtÞ − aðFÞcr ∝ ðt − tðFÞcr Þ1=2;

where tðFÞcr is a positive constant. We find a singularity at

tðFÞcr although the scale factor aðFÞcr is finite.
As a result we find three histories of the universe

(a−þðtÞ; að1ÞþþðtÞ, and að2ÞþþðtÞ) as

a−þðtÞ ∝

8>><
>>:

t
1
2 ðor t12 → t

2
3Þ as t → 0

ðRDÞ ðor RD → MDÞ
aðSÞcr as t → ∞

;

að1ÞþþðtÞ ∝
(
aðSÞcr as t → −∞

aðFÞcr as t → tðFÞcr

;

and

að2ÞþþðtÞ ∝
�
aðFÞcr as t → tðFÞcr

exp½H∞t� as t → ∞
:

For − branch, no terms vanish nor become negative,
and S<0. As a result, for the negative potential (ϵV ¼ −1),
we find

a−−ðtÞ ∝

8>><
>>:

t
1
2 → t

2
3 in the early stage

ðRDÞ ðMDÞ
t
1
3 as t → ∞

:
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3. 3 < λ < 4

From the condition ofD ≥ 0, we find the lower bound on
the scale factor as

a ≥ amin:

Forþ branch, we also find acrð> aminÞ from Sþ ¼ 0, while
for − branch, no additional vanishing point appears.
Near a ¼ amin, we find the Friedmann equation as

H2 ∝ ða − aminÞ;

which gives

aðtÞ − amin ∝ ðt − tminÞ2:

We then find the following cosmic evolution: For þ
branch, we have two histories (a−þðtÞ and aþþðtÞ) as

a−þðtÞ ∝
�
amin as t → tmin

acr as t → ∞
;

aþþðtÞ ∝
�
acr as t → −∞
exp½H∞t� as t → ∞

;

while for − branch,

a−−ðtÞ ∝
�
amin as t → tmin

t
1
3 as t → ∞

:

4. 4 < λ < 6

In this case, we also find the lower bound on the scale
factor from the condition of D ≥ 0 as

a ≥ amin:

For − branch, we also find acrð> aminÞ if λ ≥ 5 from
S− ¼ 0, while the vanishing point Sþ ¼ 0 becomes larger
than amin, which means S− is always negative for a ≤ amin

if λ ≤ 9
2
. In the case of 9

2
< λ < 5, the behavior depends

on the parameters. For þ branch, no additional vanishing
point appears.
We then find the following cosmic evolution: For þ

branch,

aþþðtÞ ∝
�
amin as t → tmin

exp½H∞t� as t → ∞
:

While for − branch, we have two histories (aþ−ðtÞ and
a−−ðtÞ) as

aþ−ðtÞ ∝
�
amin as t → tmin

acr as t → ∞
;

a−−ðtÞ ∝
�
acr as t → −∞

t
1
3 as t → ∞

:

In this case, however, we have a constraint such that
2ρm þ ρr ≤ V∞ from D ≥ 0. If V∞ is the present vacuum
energy, this constraint cannot explain the big bang universe.

5. Exponential potential with λ= 6

In this case, Eq. (4.2) is a linear equation for V. Since

V ≡ ϵVM4
PLe

6α3M−1
PLϕ;

we obtain the scalar field ϕ as

ϕ ¼ MPL

6α3
ln

"
−ðρm þ ρrÞ þ 3

a2
2

ðρm þ 2
3
ρrÞ2

ϵVM4
PL

#
; ðC1Þ

which gives

Z ¼ 1þ α3
MPL

dϕ
dN

¼ 1 −
α3
MPL

�
3ρm

dϕ
dρm

þ 4ρr
dϕ
dρr

�

¼
ðρm þ 2

3
ρrÞð3þ 4

a2
2

ρrÞ
6
h
ðρm þ ρrÞ − 3

a2
2

ðρm þ 2
3
ρrÞ2

i :

Here we define

a2 ≡ α2
α3

M2
PL:

We then find the Friedmann equation as

M2
PLH

2 ¼ Z−2 ðρm þ ρr þ VðϕÞÞ
3

¼
4
h
ðρm þ ρrÞ − 3

a2
2

ðρm þ 2
3
ρrÞ2

i
2

a22
h
1þ 4

3a2
2

ρr
i
2

: ðC2Þ

If α2
α3
≳Oð1Þ, ρm; ρr ≪ a22 because ρm; ρr ≪ M4

PL. In this
case ϵV must be −1 from Eq. (C1), and we find

M2
PLH

2 ¼ 4ðρm þ ρrÞ2
a22

; ðC3Þ

which gives
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aðtÞ ∼
�
t
1
4 RD

t
1
3 MD

:

The former expansion law is obtained by the equation of
state P ¼ 5

3
ρ in GR, which is quite strange matter, while the

latter one corresponds to the equation of state of stiff matter.
On the other hand, if α2

α3
≪ 1 such that ρm; ρr ≫ a22,

we find

M2
PLH

2 ≈
81

4a22

ðρm þ 2
3
ρrÞ4

ρ2r
;

which gives

aðtÞ ∼
�
t
1
4 radiation dominant

t
1
2 matter dominant

:

The exists an intermediate parameter region such that
ρm; ρr ∼ a22 ≪ M4

PL. In this case, the Hubble expansion rate
H vanishes at some scale factor acr where acr is given by

ρmðacrÞ þ ρrðacrÞ ¼
3

a22

�
ρmðacrÞ þ

2

3
ρrðacrÞ

�
2

:

In this case, the universe expands as follows: If ϵV ¼ −1,
we find a ≥ acr, and

aðtÞ ∼
�
acr t → −∞

t
1
3 t → ∞

;

while when ϵV ¼ 1, we find a ≤ acr and

aðtÞ ∼
�
t
1
4 t → 0

acr t → ∞
:

APPENDIX D: A NEGATIVE VACUUM ENERGY

As one of matter fluid in Eq. (3.4), we may add a vacuum energy ρvac. Here we shall discuss such a case.
The effective Friedmann equation, when λ ≠ 6, is now:

H2 ¼ 1

3M2
PL

V∞Dðρ̃m; ρ̃r; ρ̃vac; λÞS2�ðρ̃m; ρ̃r; ρ̃vac; λÞR�ðρ̃m; ρ̃r; ρ̃vac; λÞ
2F2

�ðρ̃m; ρ̃r; ρ̃vac; λÞ
; ðD1Þ

where

Dðρ̃m; ρ̃r; ρ̃vac; λÞ≡ 1þ 4

λ − 6
½ðλ − 3Þρ̃m þ ðλ − 4Þρ̃r þ λρ̃vac�; ðD2Þ

S�ðρ̃m; ρ̃r; ρ̃vac; λÞ≡ 1þ 2

λ − 6
ð3ρ̃m þ 2ρ̃r þ 6ρ̃vacÞ �

ffiffiffiffi
D

p
; ðD3Þ

R�ðρ̃m; ρ̃r; ρ̃vac; λÞ≡ 1þ 2

λ − 6
½ðλ − 3Þρ̃m þ ðλ − 4Þρ̃r þ λρ̃vac� �

ffiffiffiffi
D

p
; ðD4Þ

F�ðρ̃m; ρ̃r; ρ̃vac; λÞ≡
�
1þ 2

λðλ − 6Þ ½3ðλ − 3Þρ̃m þ 2ðλ − 4Þρ̃r þ 6λρ̃vac�

 ffiffiffiffi

D
p

�
�
1þ 2

λðλ − 6Þ ½ðλ − 3Þð2λ − 3Þρ̃m þ 2ðλ − 2Þðλ − 4Þρ̃r þ 2λ2ρ̃vac�


: ðD5Þ

Here we define

V∞ ≡ 3α22
ðλ − 6Þ2α23

M4
PL;

and introduce the variables normalized by V∞ as

ρ̃m ¼ ρm
V∞

; ρ̃r ¼
ρr
V∞

; ρ̃vac ¼
ρvac
V∞

:

In order to find an accelerating universe in the limit of
ρm; ρr → 0, we find

ρ̃vac > −
λ − 6

4λ
for λ > 6 or λ < 0

< −
λ − 6

4λ
for 0 < λ < 6:

The observed dark energy density is given by

ρDE ≡ 3M2
PLH

2
∞

¼ V∞

2

�
1þ 2λ

λ − 6
ρ̃vac þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4λ

λ − 6
ρ̃vac

r �
;
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where

H∞ ≡Hða → ∞Þ:

As discussed in the text, λ > 6 may provide a consistent
cosmological history, that is, starting from radiation era, the
universe evolves into matter dominant stage, and eventually
transits to dark energy dominant phase. In that case, we find

1

4
V∞ ≤ ρDE ≤ V∞;

for

−
λ − 6

4λ
V∞ ≤ ρvac ≤ 0:

A negative vacuum energy reduces dark energy density
maximally to one quarter of the case without a negative
vacuum energy. Such a small negative cosmological con-
stant might be obtained in the context of string theory [51].

APPENDIX E: PECULIARITY
OF VACUUM CASE

If we consider there exist no matter fluid, we find some
peculiarity. In the case of the vacuum state, we have the
constraint

1

3
VðϕÞ ¼ α23

α22M
4
PL

�
2VðϕÞ −MPL

3α3
V;ϕ

�
2

: ðE1Þ

Once we specify the potential form, this constraint fixes the
value of the scalar field ϕ ¼ ϕvac ¼ constant. Since the
scalar field must be time-dependent such that X > 0, such a
solution is not allowed. There is no vacuum solution in the
cuscuton gravity theory.1

However there is one exceptional case, i.e., if the
potential V satisfies the constraint (E1) for any value of
ϕ, it does not fix the value of ϕ. Instead we find a very
peculiar behavior of the cosmic evolution or dynamics of
the scalar field as shown below.

1. Ordinary cuscuton theory (α3 = 0)

In this case, the constraint (E1) is now

V ¼ 1

3α22M
2
PL

ðV;ϕÞ2;

which gives

dV
dϕ

¼ �
ffiffiffi
3

p
jα2jMPLV1=2:

Solving this differential equation, we find the potential
form as

V ¼ 3

4
α22M

2
PLðϕ − ϕ0Þ2: ðE2Þ

This looks very similar to the potential for ΛCDM model
given by Eq. (B11). But in this case, MF ¼ 0 and V0 ¼ 0.
The evolution of the scalar field is given by

ϕ ¼ ϕ0 �
2

jα2j
ðH −H0Þ; ðE3Þ

and the Friedman equation is

H2 ¼ 1

3M2
PL

VðϕÞ: ðE4Þ

Since these two equations are not independent when the
potential is given by Eq. (E2), we cannot fix the scalar field
ϕ or the Hubble parameter H. When H is given by some
function of the e-folding number N, the scalar field evolves
as Eq. (E3), while if we assume the evolution of ϕ, we find
the cosmic evolution H by Eq. (E4). The theory cannot
determine the evolution of the universe.
What is the origin of this ambiguity or freedom? It may

be related to a choice of the time slicing. When we have
matter fluid in the FLRW spacetime, we have a natural
choice of time coordinate, by which the energy density
becomes homogeneous. However, if we do not have such a
reference object, we may have a freedom to choose time
coordinate, which corresponds to the above ambiguity.

2. Cuscuta-Galileon theory (α3 ≠ 0)

We also find the similar problem for the Cuscuta-
Galileon theory. If the constraint (E1) is satisfied for any
value of ϕ, it gives the differential equation for VðϕÞ in
terms of ϕ, i.e.,

dV
dϕ

¼ 6α3M−1
PLV �

ffiffiffi
3

p
α2MPLV1=2: ðE5Þ

This can be easily integrated as

VðϕÞ ¼ V0

�
1 −

Cffiffiffi
3

p
α2

exp

�
3α3
MPL

ϕ

��
2

;

where

V0 ≡ α22M
4
PL

12α23
; ðE6Þ

1It is not the case if the 3-space has a curvature. In fact, we find
de Sitter solution or Minkowski spacetime for the open or closed
FLRW metric ansatz. ϕ becomes time-dependent.
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andC is a positive integration constant. We shall rewrite the
potential as

V ¼ V0

�
1 − exp

�
3α3
MPL

ðϕ − ϕ0Þ
��

2

: ðE7Þ

This is quite similar to the potential appeared in the
Starobinsky inflation model [52] or the Higgs inflation
model [53–56] after conformal transformation [57–59],
although the present scalar field is not dynamical. The
potential approaches a positive constant as ϕ → −∞, and
vanishes at ϕ ¼ ϕ0, and then it increases and diverges
as ϕ → ∞.
In this case, we also find one independent equation for

two unknown variables ϕ and H, which is

ϵ _ϕH ¼ α2MPL

6α3

ð1 − exp ½ 3α3MPL
ðϕ − ϕ0Þ�Þ

ð1þ α3
MPL

dϕ
dNÞ

:

For given arbitrary function of ϕðNÞ, we find the evolution
of the universe given by this Hubble parameter H, or
vice versa.

3. Case with matter field

In the case of the original cuscuton gravity, if the
potential V is given by Eq. (E2), we cannot introduce
matter fluid. The basic equations force matter density to 0.
On the other hand, for the Cuscuta-Galileon gravity, the

situation changes. We can add matter fluid in the Cuscuta-
Galileon theory with the potential (E7). We shall discuss its
cosmic evolution.
If we assume the potential V is given by Eq. (E7), the

constraint (3.10) becomes

ρ

3
¼ ðρ − PÞ

a22

�
ðρ − PÞ þ 2

�
2V −

MPL

3α3
V;ϕ

��
:

In this case, there are two branches: One is vacuum
(ρ ¼ P ¼ 0), and the other gives

V ¼ V0

½ρ − 1
4V0

ðρ − PÞ2�2
ðρ − PÞ2 : ðE8Þ

Here we use the condition (E5) and the definition (E6), i.e.,

2V −
MPL

3α3
V;ϕ ¼ �2

ffiffiffiffiffiffiffiffiffi
V0V

p
;

to eliminate V;ϕ.
Assuming ρ ¼ ρm, we find

V
V0

¼
�
1 −

ρm
4V0

�
2

:

Since the potential V is given by the scalar field ϕ as
Eq. (E7), this equation determines the behavior of ϕ in
terms of ρm, i.e.,

exp

�
3α3
MPL

ðϕ − ϕ0Þ
�
¼ 1 ∓

�
1 −

ρm
4V0

�

¼
� ρm

4V0

2 − ρm
4V0

: ðE9Þ

We find two solution for ϕ as

ϕ ¼ ϕ∓ ≡
8<
:

ϕ0 þ MPL
3α3

ln ρm
4V0

ϕ0 þ MPL
3α3

ln
�
2 − ρm

4V0

	 : ðE10Þ

The Friedmann equation is now

H̄2 ¼ H2Z2 ¼ 1

3M2
PL

ðρm þ VÞ

¼ 1

3M2
PL

�
ρm þ V0

�
1 −

ρm
4V0

�
2
�

¼ V0

3M2
PL

�
1þ ρm

4V0

�
2

; ðE11Þ

where

Z ¼ 1þ α3
MPL

dϕ
dN

:

Since ρm ∝ e−3N , we find

Zðϕ−Þ ¼ 1þ α3
MPL

d
dN

�
MPL

3α3
ln

ρm
4V0

�
¼ 0;

which is an irrelevant solution. For ϕþ, we find

ZðϕþÞ ¼ 1þ α3
MPL

d
dN

�
MPL

3α3
ln

�
2 −

ρm
4V0

��

¼ 1

1 − ρm
8V0

:

We obtain the Friedmann equation (E11) as

H ¼ Hvac

�
1 −

ρm
8V0

��
1þ ρm

4V0

�
;

where

Hvac ≡
ffiffiffiffiffiffi
V0

3

r
1

MPL
¼ jα2j

6α3
MPL: ðE12Þ

Note that ρm ≤ 8V0, which strongly restricts matter density.
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Introducing

η≡ ρm
8V0

;

which is proportional to e−3N , we find

H ¼ dN
dt

¼ −
1

3

d ln η
dt

:

The Friedmann equation is now

−
1

3

d ln η
dt

¼ Hvacð1 − ηÞð1þ 2ηÞ:

We can easily integrate this equation as

ln
η

ð1 − ηÞ1=3ð1þ 2ηÞ2=3 ¼ −3Hvacðt − t�Þ;

or

η

ð1 − ηÞ1=3ð1þ 2ηÞ2=3 ¼ exp ½−3Hvacðt − t�Þ�; ðE13Þ

where t� is an integration constant. This solution gives the
time evolution of matter density as

ρm ¼ 8V0ηðtÞ;

and the behavior of the scale factor as

a ¼ a0

�
η

η0

�
− 1

3

:

In order to find the explicit form, we have to solve the
cubic equation (E13) for η.
We consider some limiting cases as follows:
(1) η → 0

This limit corresponds to ρm → 0 or a → ∞. We
find from Eq. (E13)

1

η
∝ exp½3Hvact�;

and

a ∝ exp½Hvact�:

The scalar field approaches some constant as

ϕ → ϕ0 þ
MPL

3α3
ln 2:

The potential value approaches as

V → V0:

We find de Sitter accelerating universe.
(2) η → 1

In this limit, which corresponds to ρm → 8V0 and
a → constant, we find

η → 1 −
1

9
exp½9Hvacðt − t�Þ�

as

t → −∞:

The scalar field behaves as

ϕ → −∞:

(3) Whole history We then find the evolution of the
universe as follows:

aðtÞ ∝
�
constant as t → −∞
expðHvactÞ as t → ∞

; ðE14Þ

ϕ ∝
�−∞ as t → −∞
ϕ0 þ MPL

3α3
ln 2 as t → ∞

; ðE15Þ

V ¼
�
V0 as t → −∞
V0 as t → ∞

: ðE16Þ

There is no matter/radiation dominant stage. This can be
easily understood from the fact that

ρm ≤ 8V0:
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