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Cuscuta-Galileon cosmology:
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We discuss cosmology based on a Cuscuta-Galileon gravity theory, which preserves just two degrees of
freedom. Although there exist no additional degrees of freedom, introduction of a potential of a scalar field
changes the dynamics. The scalar field is completely determined by matter fields. Giving an exponential
potential as an example, we discuss the cosmological dynamics. The gravitational “constant” Gy appeared
in the effective Friedmann equation becomes time dependent. We also present how to construct a potential
when we know the evolution of the Hubble parameter. When we assume the ACDM cosmology for the
background evolution, we find the potential form. We then analyze the density perturbations, which
equation is characterized only by a change of the gravitational “constant” G, which also becomes time
dependent. From the observational constraints such as the constraint from the big-bang nucleosynthesis and
the constraint on time-variation of gravitational constant, we restrict the parameters in our models. The time
dependence of the gravitational constant in the effective Friedmann equation, we may have a chance to

explain the Hubble tension problem.
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I. INTRODUCTION

In order to explain the accelerated expansion of the
Universe [1,2] we require a mysterious energy, so-called
dark energy. The dark energy candidates are a cosmological
constant [3], a scalar field [4,5], a vector field [6,7], a
massive tensor field [8—10], or even modification on the
general relativity [11]. However, until now, these candi-
dates or deviations from general relativity (GR) have not
been detected in the solar system scale [12].

To address the above problem, many modified gravity
theories with various types of screening mechanisms, such
as chameleon screening [13,14], symmetron screening
[15], and Vainshtein screening [16,17], have been pro-
posed. These mechanisms use an effective potential to vary
a mass of a scalar field [13,14] or coupling between
a matter field and a scalar field [15,18], also nonlinear
form of equation of motion of the scalar field leads to
suppression on a fifth force [16,17,19-23].

Another solution to the previous problem is constructing
new gravitational theories which propagate only two
degrees of freedom as GR. Recently, two types of theories
have been developed: One is called minimally modified
gravity [24-29] whose gravitational Hamiltonian is con-
strained to provide only two degrees of freedom. The other
one is called cuscuton gravity theory [30,31] or its extended
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version [32,33]. The extended cuscuton theory is gener-
alization of the original cuscuton theory in the context of
the beyond Horndeski theories [34], in which the second-
order time derivatives of a scalar field in the equation of
motion disappears, thus the scalar field is a nondynamical
field. Both theories have some relation as shown in
the Ref. [27].

In this work we consider the modified gravity with two
degrees of freedom in the extended cuscuton framework.
To find cosmological solutions we have to define explicit
form of theory, one example has been given in the Ref. [33].
We are interested in the explicit form inspired from the
Cuscuta-Galileon gravity [35] which is a Galileon gener-
alization of the original cuscuton gravity. Its cosmological
dynamics of the model has been studied in Ref. [36] where
the Cuscuta-Galileon provides the sequence of the thermal
history of the Universe successfully; however, the model
actually has three degrees of freedom. Therefore, it is
interesting to investigate cosmological solutions of the
Cuscuta-Galileon gravity which has only two degrees of
freedom whether the model still provides the thermal
history of Universe correctly or not.

The paper is organized as follows. In Sec. II, we will give
our Cuscuta-Galileon gravity theory and show that it has
two dynamical degrees of freedom. In Sec. III, we apply it
to cosmological model and present the effective Friedmann
equation assuming the flat Friedmann-Lemaitre-Robertson-
Walker (FLRW) metric. In order to study the cosmological
dynamics, in Sec. IV, we analyze the cosmological
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evolution assuming the exponential potential. We then
discuss the evolution of the Hubble expansion parameter
and the effective gravitational constant in the Friedmann
equation. The evolution of the Hubble parameter shows the
tendency to fill the gap appearing in the Hubble tension
problem. In Sec. V, we also present how to construct the
potential when we know the evolution of the Hubble
parameter and apply it to obtain the ACDM model.

In Sec. VI, we analyze the density perturbations. We find
the gravitational constant in the evolution equation of the
density contrast is modified and becomes time-dependent.
We then give the constraints on the parameters in the
theories from observation. The discussion and remarks
follow in Sec. VIL

We also present the rescaling property in this model in
Appendix A, the overview of the original cuscuton gravity
theory with the construction of a potential when we know
the evolution of the Hubble parameter in Appendix B,
the detailed analysis of the cosmological dynamics for the
exponential potential in Appendix C, the analysis for the
case with a vacuum energy in Appendix D, and some
peculiarity in the vacuum case in Appendix E.

II. CUSCUTA-GALILEON THEORY

We discuss the Cuscuta-Galileon gravity, in which the
minimum contribution of a Galileon-type scalar field is
|

1
a2M%Lﬁ [ch ~ox
M} G, =

O
+ asMpy, [—23ﬂ¢8y¢ 745

Assuming the conservation of energy-momentum of matter
field, i.e., V”TW =0, and using the Bianchi identity
V¥G,, =0, we recover the first equation for ¢ from the
second Einstein equations. Hence only the Einstein equa-
tions are independent in the present model. We do not
have additional degrees of freedom in addition to the
Einstein equations, The scalar field ¢ does not carry
new degree of freedom just as the original cuscuton. We
will prove it below.

Note that this model is completely different from the
original one (a3 = 0). Because as we show in Appendix A,
we can always set a3 = 1 without loss of generality, which
means that the perturbation approach for the original theory
does not provide an appropriate approximation even for the
case of |az| < 1. However we shall keep a5 in the text in
order to see the coupling dependence. Since the results for
a3 < 0 can be obtained by the change of the sign of ¢, we
assume a3 > 0 in this paper.

1
T;u/ - g;wV + aZMl%L ﬁ [_gﬂl/X + 8ﬂ¢ab¢]

included in the cuscuton gravity theory. The action is
given by

/ d*x\/=g { M3 R+ a;M3; vV —X

X
+ a3MPL ll'l <— F) D¢ - V(¢> + 3(1%X

+SM(g}ll/7l//M)’ (21)

where X is defined as
X = g””aﬂqbabgb,

and @, and a3 are dimensionless coupling constants,
respectively, while A is a cutoff-scale constant with mass
dimension. This model is one of a special case of the
extended cuscuton gravity theory [32]; however, it is
not the same as their application to dark energy [33].
The original cuscuton model is obtained by setting a, =
u*/M3% and a3 =0. This action has also found by
covariantization of the minimally modified gravity [27].

Taking the variation of the above action with respect to
the scalar field ¢ and the metric g,,, we find the following
basic equations:

(D¢)

+ O(In(-X)) | —6a30p -V , =0,

2 1
+ }8(”X8U)¢ — gﬂy} (VX . v¢):| + 3()(%(QWX - 2(9”(9,/45).

|
A. Degrees of freedom

According to the method in Refs. [37-39] we use the
3 + 1 decomposition metric and choose the unitary gauge:

ds? =—N*di* + h;;(dx' + N'dt)(dx/ + N'dr), ¢=e(1),

the action (2.1) can be written in the Arnowitt-Deser-
Misner (ADM) form as

S = /dtd3xN\/.{ M3 (R + KVK;; — K?)

M3 3

203Mpy ¢
N <_ a A;DL|¢|+C1>K}
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Note that in this section we will not consider contribution
from the matter Lagrangian. 3R is the three-dimensional
Ricci scalar, K;; is the extrinsic curvature, K is the trace of
K;;, and C; is an integration constant.

Following calculations in Ref. [40] since the scalar field
is a function of time, the fundamental variables are only N,
Ni, and h/ which are the lapse function, the shift vector,
and the three-dimensional metric, respectively. Their con-
jugate momenta are

oL oL
TN = == O, T, = — = U,
8N ON'
.. 20(3MPL|¢§\ ..
1] — — o el 17
ah” \/_( N +C |h

1 I
-~ 5M%,L\/E(Khu — K¥).

Thus the primary constraints are zy and z;. Using the
Legendre transformation, the Hamiltonian is given by

H:/d3x(H+NiHi+/1N7rN +/1iﬂ'i), (22)
where
H=NVh 2N Ly g
M%,L h 2n) 2P
_ azMPL|¢|_
(=4 vig)

n 203 Mpy ||
RYRV/A <_ Nt Cl)
3 ( 2 _4(13MPLC1|4.5|>}

amz \! N
H; = =2hyD;x",

and Ay and A’ are Lagrange multipliers.
The secondary constraints are given by

) 8H OH
O=iv=-on~"an=C
OH
O =; = 8N‘ ~ Hi'

The ~ means equality when the constraints are imposed.
However the momentum constraint is not a first-class
constraint because one of the Poisson brackets with other
constraints does not vanish. Therefore we introduce

Hl‘ = Hi + ﬂNB,-N.

On the constraint surface we find H; = H;(~0) because
of 7y = 0. Then we can consider H; as the momentum

constraint. The Poisson brackets of constraints are (see
definition of the Poisson bracket in Refs. [36,40])

{mi(x), 2y(¥')} =0,
{”i(x)’ﬂj(x/)} =0,
{mi(x),C(x")} =0,

(FLF). 7nlo]) = / Pyayf 000,

GATuRe }»/fﬂM¢w

ra(). €00} = o),

where we have used the smeared constraint forms which are
defined as

%Ms/mﬁwmm>
mmE/fwmmw
aﬂz/fwmaw

Since ‘H in the Hamiltonian (2.2) is a linear function of
the lapse function, i.e., 9*H/ON? = 0, the last Poisson
bracket is equal to zero. Consequently, all of constraints are
the first-class constraints.

We have 10 variables which is equal to 20 dimensions in
phase space with 8 first-class of constraints. Thus degrees
of freedom of the theory can be calculated by

d.o.f. = —(variables x 2 — 1st class x 2 — 2nd class)

(10x2-8x2-0)

N NI>—‘N|>—‘

As a result, the theory has 2 degrees of freedom.

III. DYNAMICS OF FLRW SPACETIME

We consider the flat Friedmann-Lemaitre-Robertson-
Walker (FLRW) metric and choose the unitary gauge as

¢ =¢(1).

Substituting the metric into the above action, and then
varying with respect to ¢, N, and a, after setting N = 1
we find

ds* = —N(1)2dt* + a(t)*dx?,

6a3MpL(3H2 + H) —
+6a3(3H¢ + $) =0,

V4= 3a;My Heg

(3.1)
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3M% H? — p — V(§) + 6asMp Hp + 3034 =0,  (3.2)
3M} H? +2M3 H + P - V(¢) + 0‘2M123L|¢.5|
+ a3 (2MpLdp — 3asd?) =0, (3.3)

where ¢ = sgn(¢), and p and P are total matter density
and pressure, respectively. Since ¢ changes the value

discretely, we should assume that ¢ # 0 and it does not
change the sign during the evolution of the universe.
We may have two branch solutions. The solution with
¢ = constant is incompatible with the timelike ansatz.
However we can discuss the limiting case as ¢ — 0, which
will give two different solutions unless H vanishes.

We may assume that matter components consist of
perfect fluids such as matter and radiation, that is,

p=>r

where w; describes the equation of state of ith matter
component. The matter (p,,, P,,) and radiation (p,, P,) are
given by w,, =0 and w, = %, respectively.

As we show in Sec. 11, the first equation for the scalar field
¢ is derived from the Einstein equations. In what follows,
we rewrite the above basic equations to solve them.

Introducing new Hubble parameter by

P=)"P, with Pi=wp; (34)

i

H=H+ a;My] ¢,

we rewrite the above three equations of motion as

6H? + 2H — 6a, My H § - —V
+ as My H ¢+ || 3 Mpp
) - N
_;3MPLH€(/; —O, (35)
M = p+ V(). (3.6)

3H2 + 2H — 6a; Myl H p +ao|d| + Mz2(P = V(¢p)) = 0.

(3.7)
From Egs. (3.5) and (3.7), we find
= (o) v, P My e
T 3ME 9 Mpy " 3ay T
With Eq. (3.6), we obtain the following equation
_ M
Hej=—"2|p—P+2V($) -2V, |.  (38)
3(13

aMpy,

or

2
0 = a3

= 26
ayMpy,

M r. (3.9)

From Egs. (3.6) and (3.9), we obtain one constraint
equation

2

(p+V(g) =52

= s
My,

MPL 2
—P+2V -—V
[ﬂ +2V(9) 3as ,4)}

(3.10)

W =

This constraint equation gives the relation between the
scalar field ¢ and matter and radiation, once we assume the
potential V(¢). The scalar field ¢ is no longer dynamical,
but it is fixed by matter fluid (p, P).

For the perfect fluids, we find the time evolution of their
densities as

pi o a3, Pi=wip;,
from the energy conservation equation. Hence p and P are
given by some known function of the e-folding number
N =1n(a/ay) as p(N) and P(N), where q is the present
value of the scale factor.

Solving the constraint equation (3.10) for the scalar field
¢ in terms of the e-folding number N, we find

¢ = p(N).
Since
_ az
H:H+—¢:HZ(N),
Mpy,
where
az d¢p
ZIN=1+———,
V) =1+31-0N8

we obtain the effective Friedmann equation from
Eq. (3.6) as

1

H = —— —
3Mp Z2(N)

p(N) +V(@(N))].  (3.11)

This equation gives the solution of the scale factor,
a=a(t). The prefactor Z=> modifies the Friedmann
equation from the general relativistic one. Note that there
is no kinetic term of a scalar field.

IV. EXPONENTIAL POTENTIAL

In order to analyze the cosmological evolution, we have
to give a concrete form of the potential V(¢). Here we shall
assume an exponential potential,
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V = eyMjy exp (da;Mp. ). (4.1)
where 1 is a coupling constant. Without loss of generality,
we can normalize the coefficient of the potential as
ey = =1 because of rescaling of a scalar field ¢.
Assuming there exist matter and radiation as matter
components, the constraint equation (3.10) is

a? 2 A 2
V)= 5> - 2-2)v|,
(pm+p-+V) ML [pm+3pr+< 3> ]

(USRI

which is rewritten as

A2 A 2 aBM}
2-2) v24|2(2-2 “p ) -2
(=) v pa-5) () -5

2 2 AM
+ (pm +—pr> — 32 (Pntp) =0,

3 (4.2)

This must have a real solution for V. If 1 = 6, we always
have a simple solution

303 2 \?
V= Pm +_pr _(pm +pr)

2 g4
a;Mp, 3

For the case of 4 # 6, we have a quadratic equation.
Before solving it, we shall take the limit of a — oo (or
equivalently p,,,p, — 0). Eq. (4.2) gives

V(V-Vg) =0,
where
3a3
Vo = 2 4 4.3
0 (ﬂ _ 6)26(% PL ( )
TABLE I. The existence range of p,, and p, for the solution of

Eq. (4.4) for V.ForA>6orl<3(\#0), we find the full range
of the densities. In the case of 4 < 1 < 6, there exists some upper
bound on densities (or lower bound for a scale factor). For the
case of 3 < 1 < 4, depending on the parameters, there are two
possibilities (see the detail in the text and Appendix).

Exponent Existence range
(a) A>06 0 < P> pr < o
(b) A=6 0 < P> pr <
(c) 4<1<6 (A=3)pu+ (A—4)p, <1(6-12)
(@ a=4 P <1
(e) 3<i<4 (A=3)pu < (4=2)p, +5(6-12)
® A=3 0 < Py Pr < 0
(€9) 0<4<3 0 < P> pr <
(h) A<0 0<py, pr < o0

We then normalize the variables and parameters by V,
which are described by those with a tilde. The quadratic
equation for V is now

V2 |——(3p,, + 2 1|V
=g 3P +27,) +
1
——(3p, +2p.)% = (p,, +p,) =0, 4.4
+(l_6)2(pm+ Pr)” = (Pm + Pr) (4.4)
where
4 . Pm - _ Pr
VE ) mE N d rE .
Ve Ty TP Ty

In order to have a real solution for V, the following
condition should be satisfied:

D=1+ 2 (=3, + (1= 4)p] 20.
This condition gives the constraint on p,, and p,. We can
classify the possible cases by the exponent A of the
potential. We summarize the classification in Table I, in
which we show the range of p,, and p, for existence of a
real solution V.

For A > 6 or A <3 (1 # 0), we find the full range of the
densities. In the case of 4 < 4 < 6, there exists some upper
bound on densities (or lower bound for a scale factor). For
the case of 3 < 4 < 4, depending on the parameters, there
are two possibilities: Either the full range of the densities is
possible or two separated finite ranges of the scale factor
are possible, i.e., a < a; or a, <a (a, < a;). The latter
case happens either when 4 is close to 4 or matter density is
large enough.

The solution ¢ is given by

[

:MPL 3a% ¥, :| (4 5)

1 Vv
Aoy n [ev(/l -6

where

Ve =) = [1 bGPt ﬁ].

We call them = branches, respectively. In order to exist the
real solution, we have the constraint such that

€V‘7i(/~)mvﬁr;l) > 07

which means that the potential is positive definite (e, = 1)
for the case of V. (p,,.p,;A) > 0, otherwise it is negative
definite (¢, = —1). €} is determined from Eq. (4.5). For
example, for 1> 6, ¢, decreases as a increases (or
densities decrease), which gives ¢, = —1.

In order to derive the effective Friedmann equa-
tion (3.11), we have to evaluate the prefactor Z=2. Using
the relation

104022-5
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a dp. 1dInVy
Mp dlna 1 dlna

~1[omV, dp, OV, dp,

_E[ p,, dlna  Op, dlna]

_ 1 |:3,5ma‘7i Pr aVi:|
ATV, 0p, V. op, |

- 2
S:t(:bmubr;l) = 2V:t =1 +m(3/~)m +2ﬁr> + \/5’

A(A—6)

we find

as d¢j: o F:t([)mu[)r;/l)

Zy=1+ =
* My dlna S, (p,,.p,;A)VD

’

where

Pulpmpid) = [14 52 (0= 30+ 20=49) VD £ |12 (1= 3)(2A= 30+ 20- D)= )7, .

Since

Ve L.
7Ri(pm’pr;/1)’

Pm +pr+v(¢i) =Pm +pr+vi = )

where

. 2 . .
Ri(pm’pr;j’) =1+ m ((l - 3)pm + (/l - 4)pr) + \/l_)’
we obtain the effective Friedmann equation as

1 VooD(/N)mn[)r;A)Si(ﬁm’ﬁr;ﬂ)R:t(,bmﬂﬁr;/1)

H? =
3M123L ZFi(ﬁm,ﬁ,;/l)

(4.6)

A. Two limiting stages

We first consider two limiting stages (a — oo and
a — 0), assuming their existence. Those correspond to
Pm>Pr — 0 and p,,, p, — oo, respectively.

1.a— o (py. pr = 0)

In this limit, the potentials for two branch solutions are
approximated as

- - 1

-3)p —45 12
V() =V m =G+ ) + %f 6()4 95

We find ey, = +1 for + branch (V. > 0), while ¢, = —1
for — branch (V_ < 0).
For the + branch solution V ., we find
\%

M3, H? zT‘x’,

A(A=6)

[
which gives the de-Sitter type accelerating universe as

a(t) < exp [Hyt], (4.7)

where

v |, |
H o =Mz/ =2=———
o LV 3 7 (A-6)as

MPL.

In order to explain the present acceleration of the universe
in this model, we have a strong constraint on the coupling
constant as

||

2 L 0(107%0 1.
(=), ~ OO <

The scalar field approaches as

b - o MPL1|: 3“% ]

s | (A-6)%a2
For the other branch solution ¢_, we find

2 1

2 2 2
MPLH = mvoopmocgv

1
@(pm +pr+V—) ~

because p,, > p, as a — oo. It gives the asymptotic
behavior as

a(t) « '3,
which is the expansion law for the stiff matter (P = p) in
general relativity (GR), although matter density dominates

the universe. The scalar field approaches as

¢ —> —c0.

104022-6
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2' a—>0 (pm,p,.—>00)

The asymptotic behaviors of the two branch solutions
(V4) and the Friedmann equation become the same
forms as

- 1
Vir——03p,+2p,),
%7 (3Pm +27,)
and
s 2 (3p, 20, (A=3)p, + (A—4)p,]
Mg H ;
34=6)  [B(A-3)p,+2(A-4)p,]
If A #3, 4,
M2 H2 ~ mpm for Pm > Pr (MD)
pLil™ ™ P ,
mpr for p,, < p, (RD)

where MD and RD denote matter dominant stage and
radiation dominant stage, respectively.
This gives

i for p,, > p, (MD)
a(t) < ,
r for p,, < p,(RD)

which is the same as the evolution history in the standard
big-bang model. However the effective gravitational con-
stant in the Friedmann equation Gg is different from
the Newtonian gravitational constant Gy = (87M3 )~".
Note that the scalar field approaches in this limit as

¢:l:_)°ov

for both branches.
Gr. shows a gap between the values at radiation dominant
stage and at the matter dominant stage. In fact, we find

G m Gy for p,, > p, (MD)
F =

WGN for Pm K Pr (RD)

One may wonder what happens if 3 <1 <6, when
Gr < 0. As we show in Appendix C, in such a case, there
is no limit of @ — 0. The scale factor a is bounded from
below, that is a > ay,;,(> 0).

In the cases of A=3 and A=4, we find strange
behaviors in the Friedmann equation as follows: For 4 = 3,

9pm
M2 Z% for p,, > p, (MD) ’
pr for p, <p,(RD)

for which the expansion law becomes

for p,, > p, (MD)

a(t)oc{t

n for p,, < p,(RD)

On the other hand, for A = 4, there exists no solution in
this limit.

B. Whole history

In the two liming stages, we may find an appropriate
evolution of the universe, i.e., radiation/matter dominance
in the early stage (a — 0), and de Sitter expansion for
+ branch in the early stage (a — o). However the above
two limiting stages can be disconnected if there exists some
finite scale factor at which the Hubble parameter H
vanishes or diverges, or H> becomes negative. It may
happen when one of the following conditions is satisfied

In fact H vanishes when S, (p,,,p,;4) =0, while it
diverges when F_.(p,,, p,;4) = 0. In those cases, the above
two limits are disconnected at that point. On the other hand,
when D(p,,,p,;A) <0 or Ri(p,,,p,;4) <0, no solution
exists in such a range of densities p,,, p, (or a scale
factor a).

In what follows, we just discuss one simple case (4 > 6).
For the other cases, we show them in Appendix C.

1. Exponential potential with 4 > 6

In this case, we find D > 0, which guarantees the
solution exists for full range of densities, i.e., 0 < p,,,
p, < oo. For the ¢p_ branch, there exists one point where H
vanishes, that is, it happens when

(3pm + zﬁr)z = (j' - 6)2(ﬁm +ﬁr)

which is obtained from the condition (ii). We find the
corresponding scale factor a., as

_(A=6)p
prlag) ==V

_(A=6)p
pm(acr) - 9 Voo

if it happens in RD
if it happens in MD.

Since we find
H? « (a —ag)?,

near a = a., the universe approaches a. exponentially
with respect time as

104022-7
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a(t) ® ay F a,exp(F K,t) ast— too,

where a, and K, are positive constants. As a result, we have
two histories of the universe (a;(7) and a,(1)) as

r in t—=0
a(t) x ¢ (RD) ,
Aoy as [ — o
or
r - £ in the early stage
(1) (RD) (MD) )
Aer as - ©

and

a, ast—> —o0

s«

&} as t — oo

For the + branch, both denominator and numerator in the
right hand side of the Friedmann equation (4.6) do not
vanish for any values of p,,, p,. Hence the above two limits
are connected. We find radiation dominant era and matter
dominant era in the early stage of the universe, which is
followed by de Sitter accelerating expansion.

r - I8 inthe early stage
a(t) x ¢ (RD) (MD)
exp(H 1) as )
TABLE 1II. The classification of cosmic evolution of the

universe with the positive exponential potential (ey = 1).
RD/MD denotes the Friedmann universe of radiation dominant
stage, possibly followed by matter dominant stage. dS means de
Sitter accelerating universe, while P[p] gives the power-law
expanding universe with the power-exponent p (a o 7). Mld]
shows Minkowski spacetime with the scale factor a, while S[a]
means a singularity at finite scale factor a.

Exponent + branch — branch
() 1> 6 RD/MD — dS RD/MD — Ma,]
(b) 1=6 P[1/4] - M|a,] when a,/az < O(1)
) 4<i1<6 Mlapi,] = dS M{amin] = Mlag]
(d) A=4 Mla] — dS e
€ 3<i<d Mla,] — dS
) 1=3 Mla,] — dS
(2) 0<1<3 [u]—>dS
0 A<0 M) - slalf)
S[a§r>] — dS

TABLE III. The classification of cosmic evolution of the
universe with the negative exponential potential (e, = —1).
The notations are the same as those in Table II.

Exponent +branch —branch
(@) 1>6 M[acr} - P[1/3H
(b) A=06 P[1/4] —>P[1/3] when a,/a; 2 O(1)

M[acr] - P[1/3] when a,/a; < O(1)

© 4<i<6 Mla,] — P[1/3]

(d) A=4 M[amin] - M[acr] M[ mm} - P[l/:ﬂ
(e) 3<i<4 M[amin] - M[acr] M[amin} - P[l/S}
(f) A=3 RD/MD — Mla,] RD/MD — P[1/3]
(@ O0<i<3 RD/MD- Mg, RD/MD - P[1/3]
)  A<0  Rp/MD—M[a¥] RD/MD - P[1/3]

2. Summary of exponential potential

Here we summarize the results on the cosmic evolution
in Tables II, IIT and Figs. 1, 2. The details for the case of
A < 6 are given in Appendix C.

As we show in the tables and schematic figures, the
acceleration of the universe is obtained only for the +
branch solutions with a positive definite potential (e, = 1).
For the case with 4 < 6, we may not have radiation/matter

..

FIG. 1. The schematic evolution curves of the universe with
positive exponential potential. (a), (b), - - -, (h) correspond to the
classification in Table II and the suffixes + denote the branches.

FIG. 2. The schematic evolution curves of the universe with
negative exponential potential classified in Table III. The nota-
tions are the same as those in Fig. 1.

104022-8



CUSCUTA-GALILEON COSMOLOGY: DYNAMICS, ...

PHYS. REV. D 105, 104022 (2022)

dominant era in the early stage, which is inconsistent with
the big-bang nucleosynthesis.

C. Gravitational ‘“constant” in effective Friedmann
equation and Hubble constant

Since we are interested in the accelerating universe,
we discuss the detail of the cosmological evolution for
+ branch.

Using the redshift z, which is defined by 1 + z = ay/a,
the densities of matter and radiation are given by

m — 3Q"10M12>LH(2)(1 + Z)S’ Pr= 3Qr,OM12>LH%(1 + Z)4'

We then have

Q.. Q.0
Pm = 1+z pr= l+z 4.8
o1, Gt @)
where
Vv
QA,O = 700
M3 3

Note that the H here is based on the ACDM model. It is
not the present value of the Hubble parameter in our model.
Inserting Eq. (4.8) into the Friedmann equation (4.6), we
find the Hubble parameter H in terms of the redshift z.
We show the result in Fig. 3.
We rewrite the Friedmann equation (4.6) as follows:

H2 871'GF (Z)

( nl +Ior + V )
where Gg(z) is defined by

U DB s 2)S% (s Prs AR (Pons Pri )
162Me, (14 P+ 5 Fo(Ps Pri )

Ge(z) =

If Gg = Gy, it gives the Friedmann equation in general
relativity. Hence we can interpret the effect on the
Friedmann equation by the cuscuton ¢ as modification

H
Hy

— A=20

2 4 6 8 z 10

FIG. 3. Evolutions of H in terms of the redshift z (left figure). We
set A = 20,50,100, Qyo = 0.7, Q,, o = 0.3, and Q, = 0.0001.

0.10 1 10 100

2 1000

FIG. 4. Evolutions of Gg in terms of the redshift z. We choose
the same parameter values as those in Fig. 3.

of the gravitational “constant” Gg, which depends on z. The
asymptotic behavior of G is given as

E )GN inRD (pr > P Voo)
Grl(2) ¥ s

6) Gn inMD (pm > P, voo) ’ (49)

-3)(
GN inDED (Vg > p,.,p,)

where DED denotes dark energy dominant stage.

We show some example of time evolution of G
in Fig. 4.

Since this gravitational “constant” Gg depends on time
and it deviates from Gy, we have the observational
constraints by the big-bang nucleosynthesis [41] such that

Ggpn
Ge =% 9970 0%

(4.10)

In the present model, G in the radiation dominant era is
given by Eq. (4.9), which gives the constraint on A as

A2 208.

We now present the comparison with the ACDM model.
In Fig. 5, we present the evolution of the ratio of our
Hubble expansion parameter to that in the ACDM model,
H/Hacpm(z), which is normalized at z = 1100, i.e.,
H/HACDM(Z == 1100) = 1.

This figure shows that for 4 > 200, the Hubble expan-
sion rate at z < 1 is about 10% larger than the value of the
ACDM model, which tendency might explain the Hubble
tension [42—-46]. We shall discuss about it in Sec. VII.

V. CONSTRUCTION OF APPROPRIATE
POTENTIAL

Although the exponential potential may provide the
interesting feature in the Cuscuta-Galileon gravity theory,
it may not explain the observational data precisely.
Hence we shall discuss how to construct an appropriate
potential V(¢) in our present model when the better
evolution of the Hubble parameter is known. Once we
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H
Hacom —A=20
110 A=50
L — A=100
1.05 — A =1000

21000

0.95

FIG. 5. Comparison with ACDM model. The parameters are
chosen as the same as Fig. 3.

can phenomenologically construct an appropriate potential
from observational data, we might be able to find a
fundamental theory behind it.

The basic equations are

(X3 MPL
HZe¢, = ——— —-P+2V——=V, ], 5.1
“ My <,0 * 3a3 '¢> G-
H?7? = (p+V). (5.2)

3IM3,

The e-folding number N = In(a/a,) measured from the
present time is related to the redshift z as

N =—In(1+2).
Since
v, dp
dN ~ aN’

using the above basic equations, we find

d a5 dp\?

2 olamr g2l B2

aN [3 FL < M dN) ”}
2

_dg |:a2MPLH<1 az d¢

- BN e _(p—P)=2V|.
dN Qas MPLdN)€¢ (,0 ) v

Eliminating V and using the energy conservation

dp
£ 3P =0,
N (P+p)

we obtain the second-order differential equation for ¢,
which can be rewritten as

dz

ZAQNZ-3Z = 0N, (53)

where

(04} d¢
Z=1+—— 5.4
Mpp dN ( )
. 1 dH ®Mpe
1 (P+p Mg,
Or=—=s (L -20)  (56)
2Mp \ H aH

Since Eq. (5.3) is the Riccati equation for Z, once we can
find a special solution Z,(N), we obtain a general solution
as follows: Setting Z =Z, 4+ Y, we find the Bernoulli
equation as

dy ,
oy T (Q=6Z.)Y =372,

which can be linearized by setting ¥ = 1/X as

dX
N (0 —6Z,)X = -3.

First we solve the homogeneous solution X, which
satisfies

Using this homogenous solution, we obtain general sol-
ution as

X(N) = —=3X(N) { / dN’XHEN,)} (5.7)

where

xul¥) =exp | [" av@i v sz )] 53

As a result, we obtain a general solution for Z as

Z(N)=Z.(N) +;

T (5.9)

Integrating Eq. (5.9), we find the scalar field in terms
of N as

M N
b =do+—= [ dN'Z(N'), (5.10)
as Jo

¢y is the present value of the scalar field.

Solving the inverse problem given by Eq. (5.10), we find
the e-folding N in terms of ¢, i.e., N = N(¢). As a result,
inserting it in Eq. (5.2), we obtain the potential as

V(¢) = —p(N($)) + 3Mp H*(N($))Z(N(¢))*.
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A. Potential for ACDM model

Now assuming matter dominant stage (p = p,,), we
shall show the potential form for ACDM model, which
is given by

2= (P + Puac)»
3 M% (pm pvac)
where My and p,,. are positive constants representing the
modified Planck mass and the vacuum energy density,
respectively.
To perform the integrations, we change the variable N
to &, which is defined by

Pm

1+ .
Pvac

¢

Since the energy density is given by

Pm :pm.Oe_3N7
we find
32 -1)
dé = ———=dN. 5.11
E=-2g (5.11)
Using Eq. (5.11) and
H: \/pvac 57
V3My
we also find
01 = (& +2pE+ 1)
1 — 252 4
3M12: £-1 3p
Q2 = - 2 2 PR
My, ¢ ¢
where
1 ooMp Mge
p_z\/g a3\/pvac
The differential equation is
dZ (& +2pé+1 2 Mi1l 2
Z_(@+2ixl), 2, MELL 2
dé §&-1) &-1 Mg & & -1

which is still the Riccati equation.
The equation for the scalar field and the potential are
given by

dp  2Mp &

= Z(&)—-1),
V =3My H*Z* - p,,

MZ

=Vo|E22(&) -3 5= (& - 1),
PL

where
M2

VO = Fplzfpvac-

In order to find the analytic solution, we have to find a
special solution Z,. It can be obtained by the hyper-
geometric functions. However, since it is quite complicated,
we may solve it numerically.

As for the initial condition, we shall consider the limit of
& — 1(p,, = 0). In this limit, ACDM model gives de Sitter
expanding universe with H = constant. If the potential V is
finite, Z is also finite. As a result, d¢p/dN must vanish in
this limit. It gives Z — 1 as £ — 1. In fact, we find the
approximate solution by the power-series expansion near
E=1as

ZErRI+7(E=1) + (=1 + -,
¢(§)“¢1(5—1)+¢2(§—1)2+--',

where
1-7 (r? = 1)[p*> = 9p +2(r* + 6)]
Zl = A Z2: LICERE]
p-2 2(p=3)(p-2)
¢1:_QMPL7 ¢2:_Zl+2Z2MPL’_'_.
3 as 12 as
Here we define r by
M
r=——.
Mpy,

We then find the potential near ¢p = 0 as

V($) = Vo[l —6(p—1)gp+---].

We can also find the asymptotic solution in the limit of
& — o0 as

Z(E) > Zy + czEY 1482 4 L

2
#E) =~ 5 (2= InE -

where
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=0.98

M,g

—p=-10
p=-1
—p=1
—p=15
— p=1.8

as

0.04 mpr,

0.05

FIG. 6. Potentials for ACDM model. We set Q, = 0.3,
Qo = 0.7, and - = 0.98.
PL

1++V1+8r2

Z ,
© 4

and c, is some constant.
Since the potential is given in this limit as

7 -2,

we find the asymptotic form of the potential as

V—>V0(

303
(Zoo - 1>MPL¢:|’

which is the exponential potential (4.1) with the exponent A
given by

V~Vo(Z% - r?)exp {—

3(V1+8r? +3)

SR TRy

We show some numerical examples in Figs. 6 and 7.
Here we assume that M_2_ 0.98 or 1.02, because the

“modified Planck” mass My in the Friedmann equation
should be close to the Planck mass Mp .

Since Z2, —r> >0 and Z, —1 <0 for r < 1, while
72 —r* <0 and Z, —1>0 for r > 1, we understand
the above potential form with the fact that dV/d¢ =

We cannot construct numerically any appropriate poten-

tial for the parameter p > 2.
|

Ey: A <I>+A25¢+A3

2

E(D: BI(I)+Bz§¢+Bg‘b+B45¢+Bsqj+B6gq>+3l/5¢+

k> k? k
CI)+A4lP+A5 21//+(A6—

FIG. 7.

Potentials for ACDM model with -2 7

parameters are the same as those in Fig. 6.

—F = 1.02. The other

PL

VI. DENSITY PERTURBATIONS AND EFFECTIVE
GRAVITATIONAL CONSTANT

A. Basic equations for density perturbations

According to Refs. [37,47,48] we consider the perturbed
metric on the flat FLRW background as

ds® =—(1+2%)dr* +20,ydx'dt + a(t)* (1 +20)5;dx dx/,
(6.1)

when y = 0, it corresponds to the Newtonian gauge. The
energy-momentum tensor with perturbations are defined as

)= —(pu+3pn).  T0=—pudivn. T5=0. (62)
where v,, is a velocity potential of the perfect fluid. Note
that we are considering only perturbations of nonrelativistic
matter.

Expanding the following action up to second order

/ d*x\/=g { M3 R + ;M3 vV —-X

X
+ a3MPL ll'l <— P) D¢ - V(¢) + 3G§X

Varying with respect to ¥, @, y, and 6¢, we find a set of
equations in Fourier space as follows

2

>6¢ = pm =0, (6.4)

k? k? K2
<88?+B9>‘P+BIO;W+BII V= 0, (6.5)
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E,: C\® + Cy6¢ + C3¥ + Cyb¢p + ppyvy = 0,

2

(6.6)

. . . . . K2 K2 k2 k>
E(\;(/): D1¢)+D26¢+D3¢+D45¢+D5T+D6?W+D8¢+ <Dg;—M2>5¢+ <D10;+D11>T+D12;y/—0

Components of the set of equations are

Al = 6M12;,LH + 6MPL(Z3¢;,
Ay = —6M3, H? — 12a5Mp Hp — p,,, — 625¢°,

Ay = 6a;Mp H + 6224,
As = 2M% H + 203 Mp .

(6.7)

A3 = 2M12)L’

Ag = 203Mpy, u="Vy,
Bl = 6M%’L’ Bz = 6a3MPL7 B3 = 18M123LH,
3a M2 |d ) .
= L"LW' —18a3¢p,  Bs=—6Mz H—6asMp p,  Bs=2M3,

By =2M3% ., By =—6M3 H — 18M3 H* — 18asMp Hp — 6a5Mp. b + 3p,..
BIO = 2M%L’ Bll = 2M%LH’ UV = —V’(p,
C, = 2M> C, = 2asM Cs = —2M3, H — 2a;Mp, ¢ _ oMy el

1= PL> 2 = 4£03MpL, 3 = —2Mp H — 2a3MpL ¢, Cy = —6asMp H + ——— — 6053¢,

3 M :

Dl = 6a3MpL, D2 = 6a§, D3 = 36a3MpLH % L|¢| + 18a§gb,
Dy = 183H Ds = —6a3Mp H — 603,  Dg = 2a3Mp,

. 9a,M3 H|¢
Dy = 18asMy F — 222MoLH 1]

8a3MPLH a2M12>L

+ 54a;Mp H? + 5405 Hep + 1803 — 3V,

D9 = 60% + - - < s DlO = 2a3MpL,
¢ 4]
Dy, = —6a;Mp H — 18asMp H* — 18a3H¢ — 623 — V 4,
oM
Dy =8asMp H — 27PL‘¢|+ 6c2¢). M> =V 4.

Note that B; = Dy = 0. Since the matter is conserved,
the perturbed energy-momentum tensor is satisfied

5(V,Th) = 0. (6.8)

From these perturbation equations, we can also confirm
that this theory has two degrees of freedom. Although the
perturbation equations contain 5(}5 and 8¢ as well as 6¢,
we can eliminate those derivative terms by combining the
perturbation equations, and obtain d¢ in terms of the
perturbation variables of matter fluid and metric compo-
nents (dp,,, v, ®, ¥, and y) and those time derivatives.
Hence the perturbation of the scalar field is algebraically

determined by the other perturbation variables. There is no
additional degree of freedom coming from the scalar field.

Choosing the Newtonian gauge, the components v = 0
and v =i lead to

Spm + 3HSp,, + ]; Pl +3pn® =0,  (6.9)
v, =¥, (6.10)

respectively. The useful combination is
3(E, +3HE,) — E¢ =0, (6.11)
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with the basic equations of the flat FLRW background and
Eq. (6.10), the above relation becomes

Bg® + Bg¥ = 0. (6.12)
We are interested in the subhorizon regime, k*/a’ > H?,
and using the quasistatic approximation, i.e., the dominant
contributions terms are k?/a’, &p,,, and M?. We also
neglect the oscillating term of 6¢p and assume that the

variations on gravitational potentials are small. Thereby, the
Ey and the Ej; become

k> k>
k? ’ k?
Solving Egs. (6.12)—(6.14) we find
% BsDo X — BsM?)5p,,
S (2 6 9a22 skz ),02 - (6.15)
a (AgBs + BgDy) \» — BsM
=9 (6.16)

Under the above approximations, taking time derivative
on Eq. (6.9) and using Eq. (6.10) and the conservation of
matter density equation, equation of motion of the density
contrast is given by

. .k
S+ 2HB, + ¥ =0, (6.17)
a

where the density contrast is defined as &,, = 6p,,/pPm-
Substituting Eq. (6.15) into above equation we find

5, 4 2HS,, — 4nGyep,, S,y = 0, (6.18)

where the effective gravitational constant is

2M3; (BgDy ﬁ—i — BeM?)
(A2Bg + BDy) & — BIM?

Mo H aM? 2
(60!%—1—8“3 Ip H _ PL_MZZ_Z)

Geir = N

_ ¢ ¢l .
SasMp H oM 2 &2 ’
8a2—|— e TR pAp2 a
( 3 ¢ Il K
=_1_
Here we set Gy = Seh,

In the subhorizon limit the term M?a?/k?* is very small
compared to other terms, then we can neglect this term.
Using the new Hubble parameter and Eq. (3.8) the effective
gravitational constant becomes

o _{1 2l (P +2V -5V ) }G
eft — - 2 N>
(145290 8o +2V =42V )~ M|
(6.19)
where we neglect contributions from radiation.
The gravitational slip parameter is defined as
0]
==y (6.20)

which is always equal to one in this model.

B. Effective gravitational constant
and observational constraints

Since the effective gravitational “constant” is time-
dependent, we have to take into account the observational
constraints. The lunar-laser ranging experiment [49,50]
gives the constraint such that

G_ -5.049.6) x 10715 yr7!, 6.21
G

G —16 2

o =(16420)x 1071 yr. (6.22)

If the gravitational constant evolves due to the cosmic
expansion, we expect that Gy /Gy~ O(Hy) ~7x 1071 yr~!
and Gy/Gn~O(H}) ~5x 1072 yr~!. As a result, the
condition (6.21) will give a strong constraint, but the
constraint (6.22) may be much weaker.

1. Exponential potential with A > 6

Assuming the exponential potential with 4 > 6 discussed
in Sec. IVB 1, we show the behavior of Ggy(z). We
consider only + branch solution with ¢, = 1. We then
find the effective gravitational “constant” is given by

Getr _ 2(Z+—])H+€(j)
GN 8H+Z+€¢_Z_§MPL’
where
F
Z, =—-=
T s.VD

, V. DSR,

ey B

In Fig. 8, we depict the evolution of G/ Gy. Taking the

time derivative of G, we show the behavior of Gcff /Gy in
terms of the redshift z in Fig. 9.
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Geff(z)
Gn
1.0025 — A=100
1.0020 - A =200
— A =500
1.0015 — A= 1000
1.0010
1.0005
-1 0 1 2 3 4 z 5

FIG. 8. Evolutions of G./Gy for the cases of 1 = 100, 200,
500 and 1000 in terms of the redshift z. We choose the same
parameter values as those in Fig. 3.

Gt (2)
Gn

2.x10°14

—4.x10714

—6.x 10714

-8.x10714

-1.x10°18

FIG. 9. Evolutions of G, in terms of the redshift z. We choose
the same parameter values as those in Fig. 8. The constraint from
lunar-laser ranging experiment, Eq. (6.21), is given by the green
line segment at z = 0.

In order to satisfy the constraint (6.21), we find 4 > 145,
which corresponds to

Geff

N 1o

0>

> —1.458 x 1074 yr!,

where GCH /Gn|o is the present value. Hence the constraint
obtained from the big-bang nucleosynthesis (1 > 208)
gives the sufficient condition.

The constraint (6.22) on G/G is always satisfied for any
values of 1 as we expected.

2. The potential for ACDM background universe

If the potential is given by one discussed in Sec. VA,
we recover ACDM model for the background dynamics.
However the effective gravitational constant is no longer
constant. It depends on time as

G . 2(Z-1)He,
GN 8HZ€(/')—Z—§MPL.

Gef(2)
Gn

1

1.006

1.005

1.004

1.003

1.002,

1.001

0.998

0.997

0.996

— p=-
—p=1
— p=1.33

0.995

0.994

M2
M3,

=1.02

0.993

FIG. 10. Evolutions of G for the cases of p = 1.33,1 —1,-5
and —10 in terms of the redshift z. The top and bottom figures

M2 M2
M{ =0.98 and —F =

correspond to T =

1.02, respectively.

We show the evolution of G, in terms of the redshift z in
Fig. 10. We consider only the cases of p < 1.33 because
G will diverges at some value of z when p = 1.34.

We can also discuss the time evolution of Geff, which
plots are given in Fig. 11.

These figures show that when we decrease the value of p,
the present value of Geff becomes smaller. From the
observational constraint (6.21), we find

—24 for M2/M% =098
ps{ or M/ M. (6.23)

—6.0 for M2/M3 =1.02.

The constraint (6.22) is automatically satisfied for any
values of p.
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5.x10714 — p=-10
Gcff(z) p:—5

Gn
—_— p:_1

-1.8x107

FIG. 11. Evolutions of Geff for the cases of p = —1,-5 and

—10 in terms of the redshift z. The constraint from lunar-laser

ranging experiment, Eq. (6.21), is given by the green line segment
2

at z = 0. The top and bottom figures correspond to AA;—ZF =0.98
PL

"

2
MPL

and

= 1.02, respectively.

The above constraints (6.23) correspond to

o gy [P

as PL
for MZ/M3, = 0.98, and

@ 0, [P

a3 PL

for M2/ M3, = 1.02.

VII. DISCUSSION AND REMARKS

We discuss a Cuscuta-Galileon gravity theory, which is
one simple extension of a cuscuton gravity theory and still
preserves two degrees of freedom. We apply it to cosmo-
logical model and present the effective Friedmann equation
assuming the flat FLRW metric. Although there exists no
additional degrees of freedom, introduction of a potential of
a scalar field changes the dynamics. The scalar field is
completely determined by matter fields.

Giving an exponential potential as an example, we
discuss the evolution of the Hubble expansion parameter.
Since the gravitational constant G in the effective
Friedmann equation becomes time-dependent. we restrict
the parameters in our models with the constraint by the big-
bang nucleosynthesis.

We also present how to construct a potential once
we know the evolution of the Hubble parameter. As an
example, we present the potential form to obtain the
ACDM cosmology for the background evolution.

We then analyze the density perturbations, which equa-
tion is characterized only by a change of the gravitational
constant G.;. Note that G in the above ACDM model is
also time-dependent. Hence it is not exactly the same as the
ACDM cosmology in GR. We then restrict the parameters
in our models using the observational constraints by the
lunar-laser-ranging experiment.

In the case of exponential potential, there appears the
time-dependence of the gravitational constant in the effec-
tive Friedmann equation, which may give a chance to
explain the Hubble tension problem [42—46].

As shown in Fig. 5, the Hubble expansion rate at z < 1 is
about 10% larger than the value of the ACDM model. We
then plot the present value of the Hubble expansion rate in
terms of A in Fig. 12. For the reference, we also show the

Om0=0.26
Om0=0.28

Omo0=0.3
Om0=0.32

R21

0 100 200 300 400 500 )\

FIG. 12. The present value of the Hubble expansion rate in
terms of A. The dashed green line, black solid line, dashed blue
line, and dot-dashed red line correspond to €, o = 0.32,0.3,0.28
and 0.26, respectively. Two observational data by R19 [44] and
by R21 [45] are given by the red shaded and blue shaded regions,
respectively.
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observational data R19 of the Hubble expansion rate near
z =0, which is obtained from observations of 70 long-
period Cepheids in the Large Magellanic Cloud [44].
This figure shows that our model with Q=03 is
consistent with the observational data R19 if 1> 117,
which should be satisfied from the constraint by nucleo-
synthesis (4 > 208). If we take the observational data R21,
which is determined from observations of 75 Milky Way
Cepheids [45], it strays from the allowed range. However
the result depends on the density parameter €. If
Q.0 < 0.28, our model with large 4 is still consistent with
R21 as well as R19.

Our model will be improved when we add a negative
vacuum energy p,,. as well as matter and radiation
densities, p,, and p,. The effective Friedmann equation
is given in Appendix D. Assuming Qo = 0.3, we plot the
present value of the Hubble expansion rate in terms of A in
Fig. 13. The case with p,,. = 0 OSV fits well both for

R19 and R21, where V == )2 2M

negative vacuum energy might be obtamed in the context of
string theory [51].

When we take the limit of 1 — oo and a3 — 0 with
keeping V, finite, we obtain the same results as those in
the original cuscuton theory with an exponential potential,
which Friedmann equation is given by Eq. (B7). Since our
model could be successful to explain the history of our
universe when 4 is large, the original cuscuton theory with
an exponential potential may also have the possibility to
solve the Hubble tension problem. In fact, the present
Hubble constant becomes Hy = 74.65 km/s/Mpc when
we normalize the Hubble parameter at z = 1100 by use
of the CMB data based on the ACDM universe model.
This is quite close to the value in our model with large A.
One difference is that two “gravitational constants,” Gg

. Such a small

— Bic=0
— Puac=-0.05
— Pae =01

FIG. 13. The present value of the Hubble expansion rate in
terms of 4 when we add a vacuum energy p,,.. We assume
Q0 = 0.3. The black line, green line, and purple line correspond
t0 Pyac = 0,—0.05 and —0.1, respectively, where Py = Pyac/Veo-
Two observational data by R19 [44] and by R21 [45] are given by
the red shaded and blue shaded regions, respectively.

and Gy, are exactly the same as Gy in the original
cuscuton theory.

In the case of the potential for the ACDM universe
discussed in Sec. VA, we also find the cosmological model
in the cuscuton theory as the limiting case of our Cuscuta-
Galileon theory. In fact, if we take the limit of p - —o0 as
well as a3 — 0 keeping pa; finite, the constructed potential
in Sec. VA becomes a quadratic function of the scalar field
¢ (see Appendix B 1).

The above two examples suggest that our cosmological
model includes that in the original cuscuton theory as
the limiting case. The difference is G, which is time-
dependent in our model, while that in the original cuscuton
theory is constant (Gy).

Although we may explain the present large Hubble
constant by the observation of nearby SNe Ia as well as
small value obtained from CMB data assuming ACDM
model, we may have to analyze our model more carefully
from the observational view points. Even if it turns out that
the present model with the exponential potential is not
consistent with observational data, we still have many
possibilities. We may find a better model by tuning the
potential as shown in the construction method (Sec. V). We
can also extend our Cuscuta-Galileon gravity theory
[32,33] because our model is the simplest one. We may
obtain a better theory for observations. We shall leave these
analyses as future works.
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APPENDIX A: RESCALING OF SCALAR FIELD

In the present Cuscuta-Galileon model defined by the
action (2.1), without loss of generality, unless az = 0, we
can always set a3 = 1 by rescaling the scalar field ¢ as
¢ = az¢p. In fact, defining

gﬂya ¢3 ¢ = 0‘3
we find that the above action § is given by
/ d4x1/_{ M%,LR+ MI%L\/ -X

+ ln< 5\4) D¢ V(¢/a3) + 3X + SM(g/w’ l//M)
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Introducing the scaled parameters as

o [25)
)y = —,

A = a3A4
as

and redefining the potential as

V($) = V(g/a3).

we find
S= [ & ,/_IMZR a, M3V =X +1 X ¢
= V=915 ML +aMpV—X+In X &

—ﬁ«&>+3i]+syahwwa (A1)

which is the action (2.1) with a3 = 1.

APPENDIX B: ORIGINAL CUSCUTON
GRAVITY (a3 =0)

Here we reanalyze cosmological dynamics in the original
cuscuton gravity with a potential (a3 = 0). The basic
equations are given by

1

Hsgn(§) = =V 4,

Bl
3(12M%L ( )

1
H2 = ——(p+V),

(B2)
3IM3

where p = p,, + p,.
We then discuss two potentials, the quadratic potential
and the exponential potential as analyzed in [30,31].

1. Quadratic potential

We first assume the potential is given by
Ly
V=V,+ Fm ¢

In this case, since V 4 = m?¢, we have a constraint such
that

1 2\ 4 2

which gives

63 M3 (p + Vi)
(2m - 30(%M%L) '

9 =

Using this relation, we find the Friedmann equation as

1
H = (p 4 Vo)

B3
3ME (B3)

where

35 M3
M} = (1 - ();msz)M%L- (B4)

Equation (B3) describes the ACDM model with new
gravitational constant

Gy
GF = 3 (1% M IZL
(1-*5%)

Since the gravitational constant in the Friedmann equation
must be close to the Newtonian gravitational constant Gy,
we have a constraint

(> Gn). (B5)

2. Exponential potential

Next we consider the exponential potential
V = eyMpy exp(Ap/Mpy).
The constraint equation (3.10) with a3 = 0 is

1
3 [p + ey M exp (’1¢/MPL>]

— 1 2 12
ToBME, YT 9a2

exp (24¢/ Mpp).

By setting y =exp (l¢/Mp.), we find the quadratic

equation for y as

5 36‘/(1%)( 303
2 M3

p=0. (B6)

In order to have real positive roots for this equation, we find
the condition such that

3€Va%> 2 1203
+ p =0,
< 2 My

which is always satisfied because p > 0.
The solution for Eq. (B6) is

sad ([, an
=—|e¢ —— |
22\ 323"

Only a + branch of solutions is possible because y should
be positive. Note that e, = £1.

X =x+(p)
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We then find the scalar field ¢ in terms of p as

MPL 3(1% 4'/12
— ¢, =Py |22 R )
$=¢.=—"In lzzz v 3 P

As a result, the Friedmann equation (B2) is given by

1+ 1+ 4t
€ —_— .
"\ ey

(B7)

1 33 Mj,
H — 2Mpr
T aME, l" Top

In the early stage (p — o), the universe starts from the
radiation dominant stage and follows by the matter dom-
inant stage both for e, = £1.

For the late stage, we discuss the cosmic evolution for
two cases (ey = *+1) separately.

a. ey = +1 (positive potential)

In the limit of p — 0, we obtain

3a3
2 g2 _ 2% 4
3Mp HY = /1—2MPL = ppE(> 0),
which gives de Sitter expansion with the Hubble expansion
rate Hpg = || Mpy /|A|. For the present acceleration, we
have to impose the condition such that

oo | 0(107%%) < 1.

7l (B8)

b. ey = —1 (negative potential)

In this case, in the limit of p — 0, we find the Friedmann
equation as

5 5 AZpZ
3Mp HY = @My and  p~p,,
which gives
a(f) « .

This is the expansion law for the stiff matter (P = p) in GR.

Consequently, only the case of ey = +1 (positive
exponential potential) provides the big-bang universe
followed by an accelerating expansion.

3. Construction of appropriate potential

We may construct an appropriate potential once we know
the expansion of the universe from observation. Here we
provide how to construct the potential giving the Hubble
expansion parameter H in terms of the redshift z.

From basic equations we find
V?(p = 9a, My H?,
V =3M3 H* —p.
We rewrite Eq. (B9) in terms of z as
dp\?> (dV/dz\? _ 1 dVv\?
dz) \ Vs ) 9aMEH*\dz) "

From Eq. (B10), we obtain

WV e g
dz " dz  d7’
then
dp 1 av

dz ~ 3| My H() dz

1 dH 1 d
=t (255 ),
lon| \ dz  3Mp Hdz

Integrating this equation, we find ¢ = ¢(z). Solving
z=127(¢p) as the inverse problem, and inserting it into
Eq. (B10), we find the potential V(¢).

In order to show it more explicitly, in what follows, we
assume p = p,,. Since

dp, 3
dz  1+z

Pms

we find

d¢ 1 dH Pm
=t (2]
dz |as dz Mp (1 +2)H

Using p,, = 3Q,,0M3 H3(1 + z)*, we obtain

1
|, |

¢ =do+

(l-i-Z)Z}

|:2(H(Z) - HO) - 3Qm,0H% /0Z dz H(Z)

Once we know H(z), we can integrate this equation, which
gives the relation between ¢ and z. Solving the inverse
problem, we find the appropriate potential V().

We can easily check it by assuming ACDM model

1
H? = W(pm + V).
F

Since p,, = 3Q,, 0MEH3(1 + z),

Vo (
H? = 1+
3M3

3Q,, (M2H?
LOMHE 0(1+Z)3>-
Vo

104022-19



KEI-ICHI MAEDA and SIRACHAK PANPANICH

PHYS. REV. D 105, 104022 (2022)

We then find the solution as

46 = o2 2 (1205 (162 - )

|z | M 12>L
The potential is then given as

V =3M3 H? — p,, = 3M3 H* — BM:H? — V)
=3(M} — MA)H? +V,

| 2
= 3(Mp, — Mz) |Hy £ Z‘Mz (@—do)| +Vo
2(1 — &
S(Z%MéL 2
=————=(¢p— ¢, Vo, B11
where
MZ
2H,(1 _M%,FL)

This is just a quadratic potential of ¢ with

30‘%M§L
2(Mpy, - M)’

m2E

which is consistent with Eq. (B4).

APPENDIX C: EXPONENTIAL POTENTIAL
WITH A <6

In Sec. IV B 2, we give only the summary of the cosmic
evolution for the exponential potential (4.1) with 4 < 6. In
this Appendix, we shall give the details of calculation. The
cosmic evolution can be easily understood by analyzing
the behaviors of the functions D, S, Ry and F, in the
effective Friedmann equation (4.6).

1.0<A<3

In this case, we find S, =0 at a = a, for + branch,
while S_ <0 for — branch. As a result we find the
following cosmic evolution: For + branch, since S, <0
for a < a, while §, >0 for a > a., we find for the
negative potential (e, = —1),

1 2
n - g

(RD)

in the early stage
(MD) s

Ao as

a_ (1) «

t—>

and for the positive potential (e, = 1),

ey as t —> —o0

o)«

exp[Hyt] ast— oo

For — branch, the potential must be negative (e, = —1).
We then find
1 2
r — B
(RD) (MD)

1
18] as

in the early stage
a__(t) «

t—> oo

Here we have used the notation for the scale factor such
that Qe branch-

2.4<0

In this case, for 4 branch, we find two vanishing points

such that F, =0 at a = ag) and S, =0 at a = at¥,

(F) (S)

where ay’ > ag’. When F, vanishes, we find the

(F)

Friedmann equation near ag’ as
F)\—2
H?* « (a—a$)7,
which gives

a(t) —al) « (1= )"

where tﬁf)
(F)

[CI’

is a positive constant. We find a singularity at
(F)

although the scale factor ag’ is finite.
As a result we find three histories of the universe

(a_(1).a\. (1), and (1)) as

© (or 2 — £3) as t—0
a_,(t) x ¢ (RD) (or RD — MD) ,
aﬁf) as [ —> o
(1) (l‘) ac(:f) ast — —o©
apil\l) & )
alf as 1 — 1)
and
(2) ag) as t — t((;f)
aiy (1) « .
exp[Hyt] ast— oo
For — branch, no terms vanish nor become negative,
and S_0. As a result, for the negative potential (¢, = —1),
we find
r — B in the early stage
a__(t) « ¢ (RD) (MD)
&) as r—> o
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3.3<1A<4

From the condition of D > 0, we find the lower bound on
the scale factor as

a 2 Apin-

For + branch, we also find a., (> an;,) from S, = 0, while
for — branch, no additional vanishing point appears.
Near a = a,;,, we find the Friedmann equation as

H? (a - amin)?
which gives

a(t) — Ampin X (t - tmin)z'
We then find the following cosmic evolution: For +
branch, we have two histories (a__ (¢) and a,(¢)) as

as t — tmin

a .
a_+(t) - { min ,

Ay as t — oo

[ as t —> —o0

o)«

exp[Hyt] ast— oo

while for — branch,

4.4<1<6

In this case, we also find the lower bound on the scale
factor from the condition of D > 0 as

a 2 Ay

For — branch, we also find a. (> ay,) if 4>35 from
S_ =0, while the vanishing point S, = 0 becomes larger
than a,,;,, which means S_ is always negative for a < a;,
if 1<3. In the case of 3 <A <5, the behavior depends
on the parameters. For 4 branch, no additional vanishing
point appears.

We then find the following cosmic evolution: For +
branch,

as t = tnin

a .
a; (1) o { o

exp[Hot] ast— oo

While for — branch, we have two histories (a,_(#) and
a__(1)) as

as I = Iyin

ot o { O

b
Aoy as t —> oo

(e {aa

as t — —oo
1
3 as t — o
In this case, however, we have a constraint such that

2pm +p, <V from D > 0. If V is the present vacuum
energy, this constraint cannot explain the big bang universe.

5. Exponential potential with A1=6

In this case, Eq. (4.2) is a linear equation for V. Since
V = ey My eoMaid,

we obtain the scalar field ¢ as

¢ =

4
eyMpy,

MPL In _(pm +pr) + a% (pm + %pr)2
6“3

], (C1)

which gives

as dd)
Z=14+2°2
My dN
d d
:1_£<3pm_¢+4pr ¢)
MPL dpm dpr

(Pm +3P1) (3 + 32pr)

6[(ﬂm +pr) —a%(pm + %pr)2i| .

Here we define

ar )
a =M.
a3 PL

We then find the Friedmann equation as

(P +pr + V()
3

2
4 |:<pm + pr) - a% (pm + %pr)z}

2
a; [1 +;‘7§pr}

My H> =772

(€2)

22 O(1), pu, pr < @3 because p,,, p, < My In this
case ey must be —1 from Eq. (C1), and we find

4(p, + p,)?

2 ’

M%LHZ =
a;

(C3)

which gives
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1
t# RD
a(t) ~ { | .
5 MD

The former expansion law is obtained by the equation of
state P = % p in GR, which is quite strange matter, while the
latter one corresponds to the equation of state of stiff matter.

On the other hand, if Z—j <1 such that p,,p, > a3,

we find

81 (pw +30,)*
2 9’

My H? ~
T T4a 2

which gives

radiation dominant

1
1+
a(r) ~{ .
12

matter dominant

The exists an intermediate parameter region such that
Pms Pr ~ a5 << My, . In this case, the Hubble expansion rate
H vanishes at some scale factor a, where a, is given by

pm(acr) + pr(acr>

3 2 2
= (l_% (pm(acr) + gpr(acr)) .

In this case, the universe expands as follows: If ey, = —1,
we find a > a,,, and

a, [ —> —
a(t) ~ { | ;
I8 t—> o
while when e, = 1, we find a < a., and

1
A
a(t) ~ { )

aCr

t—0

t— oo

APPENDIX D: A NEGATIVE VACUUM ENERGY

As one of matter fluid in Eq. (3.4), we may add a vacuum energy p,,.. Here we shall discuss such a case.

The effective Friedmann equation, when 4 # 6, is now:

1 VooD(f)mvﬁw,bvac;A)Szi(ﬁmvf)rvﬁvac;/DRj:(ﬁmvﬁr?[)vac;/D

H? = R , (D1)
3M12>L 2Fi(pm’pr’pvac;ﬂ)
where
L 4
D(pm’prv pvac;/l) =1+ m A 3)pm (’1 4)pr + j'pvac] (Dz)
. 2

Sj:(pm?prvpvac;/w =1 +/1—(3pm +2pr+6dec) :I:\/_ (D3)

L. 2 o
Ri (pmvpr’ pvac;/l) =1+ n [(’1 3)pm + (’1 4)pr + j'pvac] D, (D4)

L 2 - - -
Follmepoi®) = {14 7 s 0= 3 + 20440, + 63l [V
2

+ {1 + G =6) [(A=3)(24=3)p, +2(A—2)(A—-4)p, + ZAzﬁvac}}- (D5)

Here we define

303

Yo =1=6)a

4
MPL’

and introduce the variables normalized by V as

ﬁ :pm ﬁ :pr ~
m Voo’ r Voo?

In order to find an accelerating universe in the limit of
P> Pr — 0, we find

|
1—

Pvac = — 4)
A—

42

forAi>6 or A<0

for 0 < 4 <6.
The observed dark energy density is given by
poE = 3M 12>LH ®

_V_°° 1+£“ + ]+i“‘
- D) /1_6pvac /1_6pvac )
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where
H,=H(a > »).
As discussed in the text, 4 > 6 may provide a consistent
cosmological history, that is, starting from radiation era, the

universe evolves into matter dominant stage, and eventually
transits to dark energy dominant phase. In that case, we find

Voo < ppE < Voov

Bl

for

A—=6
- < Pyac < 0.
4 Voo—dec—O

A negative vacuum energy reduces dark energy density
maximally to one quarter of the case without a negative
vacuum energy. Such a small negative cosmological con-
stant might be obtained in the context of string theory [51].

APPENDIX E: PECULIARITY
OF VACUUM CASE

If we consider there exist no matter fluid, we find some
peculiarity. In the case of the vacuum state, we have the
constraint

2

.

= a4
a;Mp,

vig)

M 2
3 FL ] (E1)

Once we specify the potential form, this constraint fixes the
value of the scalar field ¢ = ¢,,. = constant. Since the
scalar field must be time-dependent such that X > 0, such a
solution is not allowed. There is no vacuum solution in the
cuscuton gravity theory.1

However there is one exceptional case, i.e., if the
potential V satisfies the constraint (E1) for any value of
¢, it does not fix the value of ¢. Instead we find a very
peculiar behavior of the cosmic evolution or dynamics of
the scalar field as shown below.

1. Ordinary cuscuton theory (a3 =0)

In this case, the constraint (E1) is now

1
- 3a3M3,

(V)
which gives

"t is not the case if the 3-space has a curvature. In fact, we find
de Sitter solution or Minkowski spacetime for the open or closed
FLRW metric ansatz. ¢ becomes time-dependent.

av
% = i\/glaleval/z.

Solving this differential equation, we find the potential
form as

3 M (f — o) (E2)

V:
4

This looks very similar to the potential for ACDM model
given by Eq. (B11). But in this case, Mg = 0 and V; = 0.
The evolution of the scalar field is given by

2
¢ = o =—(H — Hy), (E3)
||
and the Friedman equation is
o=y (E4)
3M3

Since these two equations are not independent when the
potential is given by Eq. (E2), we cannot fix the scalar field
¢ or the Hubble parameter H. When H is given by some
function of the e-folding number N, the scalar field evolves
as Eq. (E3), while if we assume the evolution of ¢, we find
the cosmic evolution H by Eq. (E4). The theory cannot
determine the evolution of the universe.

What is the origin of this ambiguity or freedom? It may
be related to a choice of the time slicing. When we have
matter fluid in the FLRW spacetime, we have a natural
choice of time coordinate, by which the energy density
becomes homogeneous. However, if we do not have such a
reference object, we may have a freedom to choose time
coordinate, which corresponds to the above ambiguity.

2. Cuscuta-Galileon theory (a3 # 0)

We also find the similar problem for the Cuscuta-
Galileon theory. If the constraint (E1) is satisfied for any
value of ¢, it gives the differential equation for V(¢) in
terms of ¢, i.e.,

dv
i 6o M5l V + /3oy Mp V'/2, (E5)
This can be easily integrated as
C 3ag 2
V(g) =Vy|l ———exp | — ,
)
where
2M4
VO — aMpy, , (E6)
1203
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and C is a positive integration constant. We shall rewrite the
potential as

\/:V%l—mp<%§x¢—¢@)r. (ET)

This is quite similar to the potential appeared in the
Starobinsky inflation model [52] or the Higgs inflation
model [53-56] after conformal transformation [57-59],
although the present scalar field is not dynamical. The
potential approaches a positive constant as ¢p — —oo, and
vanishes at ¢ = ¢y, and then it increases and diverges
as ¢ — oo.

In this case, we also find one independent equation for
two unknown variables ¢ and H, which is

B aszL (1 —exp []:\idipi (¢ - ¢0)])
€4§H = o dp
6(13 (1 +M_§LW)

For given arbitrary function of ¢(N), we find the evolution
of the universe given by this Hubble parameter H, or
vice versa.

3. Case with matter field

In the case of the original cuscuton gravity, if the
potential V is given by Eq. (E2), we cannot introduce
matter fluid. The basic equations force matter density to 0.

On the other hand, for the Cuscuta-Galileon gravity, the
situation changes. We can add matter fluid in the Cuscuta-
Galileon theory with the potential (E7). We shall discuss its
cosmic evolution.

If we assume the potential V is given by Eq. (E7), the
constraint (3.10) becomes

)

In this case, there are two branches: One is vacuum
(p = P =0), and the other gives

lp =2 (p =PI
(p—P)?

V=V, (E8)

Here we use the condition (E5) and the definition (E6), i.e.,
Mpy, _
2V — EPN V=224 V,V,
3

to eliminate V ;.
Assuming p = p,,, we find

V_({_Pn)
Vo 4v,)

Since the potential V is given by the scalar field ¢ as
Eq. (E7), this equation determines the behavior of ¢ in
terms of p,,, i.e.,

3a3 - _Pm
exp |:M—PL (47—450)} =17F (1 4V0>
Pm_
1,
_{2_&; (E9)

4V,

We find two solution for ¢ as

Mp 110 P
¢o + 3a3 In 1,

45:¢:|:E .
¢0+A;T‘?ln<2—f7mo)

(E10)

The Friedmann equation is now

H> = H?Z% = (om +V)
3mME "

o) |
=75 |Pm 0 T
3IM3, 4V,

~ Vo (14 pm)
vz \ T avy)

(E11)

where

3N

Since p,, < e", we find

d (M
Z(p_) =1 +£7 MeL P ) 0.
MPLdN 3&3 4V0

which is an irrelevant solution. For ¢, we find

Z(¢+) =1 +ﬁi @ln 2_'0_’”
MPLdN 3&3 4V0

We obtain the Friedmann equation (E11) as

Pm Pm
H=Hy(1-2m)(14+Lm
(15 (14 45)

where

. ]

Hvac = A PL-

= El12
3 MPL 6(13 ( )

Note that p,, < 8V, which strongly restricts matter density.
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Introducing
p=Lm
=8V,
which is proportional to eV, we find
_dN  ldlnpg
Cdt 3 dr

The Friedmann equation is now

1dng
- —H,..(1=n)(1+2n).
3 dr vac(L =) (1 + 27)

We can easily integrate this equation as

n

In —
(1=n)'3(1 4 29)%3

_3Hvac(t - t*)7

or

n

(1 —7])1/3(1 +211)2/3 (E13)

= exXp [_3Hvac(t - t*)]’

where ¢, is an integration constant. This solution gives the
time evolution of matter density as

Pm = SVO’/I(t)’

and the behavior of the scale factor as

()
a=dapg| — .
Mo

In order to find the explicit form, we have to solve the
cubic equation (E13) for #.
We consider some limiting cases as follows:
(1 n—-0
This limit corresponds to p,, — 0 or a — co. We
find from Eq. (E13)

1
— o exp[3H ],
n

and

a  exp[H yuet].

The scalar field approaches some constant as
M
b — do+—=In2.
3&3

The potential value approaches as
V> Vo.
We find de Sitter accelerating universe.
2 n—=1

In this limit, which corresponds to p,, — 8V and
a — constant, we find

1= 1= g exp[9H et = 1.)]
as
t —> —o00.
The scalar field behaves as
¢ - —c0.

(3) Whole history We then find the evolution of the
universe as follows:

constant as t — —oo
a(t) « { , (E14)
exp(Hyat) ast— oo
—00 as t — —oo 1
¢0<{¢0+1§4(—21n2 asf—> oo (E13)
Vo ast— —o0
V= (E16)
Vo ast— o

There is no matter/radiation dominant stage. This can be
easily understood from the fact that
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