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The uniqueness theorem for static, spherically symmetric, asymptotically flat, and higher dimensional
phantom black holes, with nondegenerate event horizon, being the solutions of Einstein phantom-dilaton
Maxwell–anti-Maxwell gravity systems is considered. Conformal positive energy theorem and conformal
transformations authorize the crucial tools for exploiting the boundary conditions and conformal flatness.
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I. INTRODUCTION

Recent astronomical and astrophysical observations
provide sustenance for the fact that our Universe consists
of a significant amount of nonbaryonic “dark matter” and,
the other mysterious ingredient of the Universe mass
causing its acceleration, “dark energy.” Due to the obser-
vations of cosmic microwave background radiation con-
ducted by the Planck satellite and the experiments
measuring the supernovae type 1A distances, it is revealed
that the “dark sector” constitutes, respectively, for dark
energy and dark matter, almost 68% and 27% of its total
mass [1]. The expansion of the Universe can be mimicked
by scalar fields with negative pressure, the so-called
“phantom” fields. The model comprises the case of kinetic
terms of the fields, with the “wrong sign,” in comparison to
the ordinary ones, which gives repulsive coupling to
gravity. One should emphasize that the phantom fields
violating null energy conditions is one of the possibilities
explaining the Universe expansion. In general, the violation
of the strong energy condition constitutes the enough
factor. The future observations have to decide about the
true nature of dark energy.
As was revealed in [2–6], the presence of the additional

scalar field in gravity systems modified the known black
hole solutions in highly nontrivial ways. On the other hand,
in Ref. [7] the problem of static spherically symmetric
black holes in Einstein-Maxwell-dilaton gravity with a
phantom coupling was elaborated. These new classes of
black hole solutions, with single or multiple event horizons,
have also unusual causal structure.
Further, the generalization of the aforementioned studies

was presented [8] and the precise classification of black
hole solutions in the theory in question was given. Among
all black hole spacetimes, an infinite series of regular event

horizons was found. In the studies the geometrically
complete black hole solution was also revealed.
In [9] the static multicenter solutions in phantom

Einstein-Maxwell gravity were paid attention to and the
regular black hole solutions without spatial symmetry for
certain discrete values of dilaton coupling were discovered.
The three-dimensional gravitating sigma model, being the
result of dimensional reduction of phantom Einstein-
Maxwell, phantom Kaluza-Klein, and phantom Einstein-
Maxwell-dilaton-axion theories, was discussed.
Both analytical and numerical studies revealed the

importance of the influence of dark energy-phantom fields
in gravitational collapse [10–15]. The various possible
scenarios are possible when one takes into account dark
sector component coupling to the electrically charged
scalar field. For instance, the gravitational collapse subject
to the presence of dark energy ensues the emergence of
dynamical wormholes and naked singularities [14,15].
As far as the higher-dimensional spacetime is concerned,

static spherical solutions of Einstein and Einstein-Maxwell-
dilaton equations with massless phantom fields for n ≥ 4
dimensional manifolds have been considered in [16–17]. It
was found that they could be classified in three groups, i.e.,
the Fisher, the Ellis-Gibbons, and the Ellis-Bronikov one. It
happens that they constitute seeds for generating asymp-
totically anti–de Sitter solutions [18].
The possible justification of the existence of phantom

fields can be sought in the string theory, where they arise
quite naturally in the studies of the so-called “negative
tension branes,” e.g., the symmetry like SUðN=MÞ can be
realized like two stacks of branes, N ordinary andM of the
negative tensions [19]. Furthermore, in string theories, we
also encounter the so-called ghost condensations, which in
turn can precede to the phantomlike fields [20]. On the
other hand, such kinds of fields may, in principle,
support travers ability of wormhole solutions in four
and higher dimensional theories of gravity [21–32].*rogat@kft.umcs.lublin.pl
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Their classification in four-dimensional wormholes and
higher dimensional cases have been studied recently in
several works [33–37].
Having in mind the interesting features of the phantom

black holes and phantom fields, as well as the recent
astrophysical estimations of the abundance of dark energy
in our Universe, it will be not amiss to ask a question
concerning the uniqueness of such kinds of black hole
solutions.
The motivation of our work is to explore the problem of

black hole classification (uniqueness theorem) for phantom
theories with a Uð1Þ-gauge field, with nontrivial coupling
among them.We shall elaborate the gravity theory provided
by the following action:

S ¼
Z

dnx
ffiffiffiffiffiffi
−g

p ðR − 2η1∇μϕ∇μϕþ η2eλϕFμνFμνÞ; ð1Þ

where R stands for the Ricci scalar of the n-dimensional
manifold, and ∇α denotes the Levi-Civita connection in the
spacetime in question. On the other hand, Fμν represents
the Uð1Þ-gauge field strength tensor, while ϕ is connected
with dilaton one. λ depicts the coupling constant between
gauge and scalar fields. The action in question is a string
theory inspired one and has been widely studied from the
point of view of the possible black hole/wormhole sol-
utions [8,9]. The two parameters η1 and η2 are equal to �1,
respectively. They enable one to study the case of Einstein
dilaton (η1 ¼ 1), phantom (η1 ¼ −1), Maxwell (η2 ¼ −1),
and anti-Maxwell (η2 ¼ 1) systems.

II. CLASSIFICATION-UNIQUENESS THEOREM
FOR PHANTOM BLACK HOLES

In this section we shall provide the uniqueness theorem
for static, spherically symmetric, and asymptotically flat
black objects with nondegenerate event horizons in higher-
dimensional gravity systems described by the action (1).
For the ordinary Einstein-Maxwell-dilaton gravity, being
the low-energy limit of the heterotic string theory, the
uniqueness for asymptotically flat black hole objects
comprises rather complicated mathematical challenges
[38–45], in which the proof of the conformal positive
energy theorem plays a key role [46] and enables adequate
conformal transformations. The conformal transformations
enable one to examine the boundary conditions and the
conformal flatness of the spacetime under inspection.
To commence with let us suppose that the spacetime

under inspection is static in the strict sense, having a
timelike Killing vector field ξα ¼ ð∂=∂tÞα defined at each
point of the manifold in question. The definition of staticity
yields that the timelike Killing vector field is orthogonal to
the (n − 1)-dimensional hypersurface. It implies that the
line element of the considered spacetime is provided by

ds2 ¼ −V2ðxiÞdt2 þ gijdxidxj; ð2Þ

where we set gij for the metric tensor of (n − 1)-
dimensional Riemannian manifold. Moreover, one also
imposes the staticity conditions for the fields appearing in
the considered gravity theory. Thus, for the Maxwell field
and phantom scalar they are written in the forms as follows:

LξFμν ¼ 0; Lξϕ ¼ 0; ð3Þ

where Lξ stands for the Lie derivative with respect to the
Killing vector field ξ.
For the system in question, the dimensionally reduced

equations of motion are given by

ðn−1ÞRij −
1

V
ðgÞ∇i

ðgÞ∇jV

¼ 2η1
ðgÞ∇iϕ

ðgÞ∇jϕ

þ 2η2e2λϕ
�ðgÞ∇iψ

ðgÞ∇iψ

V2
þ gij

ðgÞ∇kψ
ðgÞ∇kψ

ð2 − nÞV2

�
; ð4Þ

ðgÞ∇i
ðgÞ∇iϕþ

ðgÞ∇iVðgÞ∇iϕ

V

þ λη2
η1

e2λϕ
ðgÞ∇kψ

ðgÞ∇kψ

V2
¼ 0; ð5Þ

ðgÞ∇i

�
e2λϕðgÞ∇iψ

V

�
¼ 0; ð6Þ

ðgÞ∇i
ðgÞ∇iV þ 2η2

e2λϕðn − 3ÞðgÞ∇kψ
ðgÞ∇kψ

ðn − 2ÞV ¼ 0; ð7Þ

whereby ðn−1ÞRij and ðgÞ∇i we have denoted the Ricci
scalar curvature and the covariant derivative existing in
(n − 1)-dimensional manifold. ψ describes the electrostatic
potential.
Let us assume further that in asymptotically flat space-

time, for a compact subset K ⊂ ðn−1ÞΣ, which is diffeo-
morphic to Rn−1=Bn−1, where Bn−1 is a closed unit ball
situated at the origin of Rn−1. It implies that one has a
standard coordinate system enabling the expansion as
follows:

gij ¼
�
1þ 2

n − 3

M
rn−3

�
δij þO

�
1

rn−2

�
; ð8Þ

V ¼
�
1 −

M
rn−3

�
þO

�
1

rn−2

�
; ð9Þ

ψ ¼ Q
rn−3

þO
�

1

rn−2

�
; ð10Þ

ϕ ¼ ϕ −
q

ðn − 3Þrn−3 þO
�

1

rn−2

�
; ð11Þ
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where ϕ;M;Q; q are constant. M and q represent the
Arnowitt-Deser-Misner (ADM) masses and charges Q,
defined up to a constant factor, while r2 ¼ xmxm. The
standard notions of asymptotically flat regions are provided
by relations (8)–(11).
The conformal positive energy theorem, derived in

Ref. [46], will constitute the key role in the subsequent
proof of the black hole uniqueness. In order to apply it to the
considerations, we should satisfy its assumptions, i.e., one
has to have two asymptotically flat Riemannian (n − 1)-
dimensional manifolds, ðΣðΦÞ; ðΦÞgijÞ and ðΣðΨÞ; ðΨÞgijÞ,
which metric tensors are connected by the conformal
transformation of the form

ðΨÞgij ¼ Ω2ðΦÞgij; ð12Þ
whereΩ is a conformal factor. It turns out that the masses of
the above manifolds fulfil the relation ðΦÞmþ βðΨÞm ≥ 0,
under the additional requirement imposed on theRicci scalar
tensor ðΦÞRþ βΩ2ðΨÞR ≥ 0, where ðΦÞR and ðΨÞR are the
Ricci scalars, with respect to the adequate metric tensors,
defined on the two manifolds. β is a positive constant. The
inequalities in question are satisfied if (n − 1)-dimensional
manifolds are flat [46]. The conformal positive energy
theoremwas widely used in proofs of the uniqueness of four
and higher-dimensional black objects [41–45], [47–50], as
well as wormhole solutions [36,37].
To proceed to the uniqueness proof, let us define the

(n − 1)-dimensional metric tensor which yields

ðn−1Þg̃ij ¼ V
2

n−3gij: ð13Þ
The conformally rescaled metric tensor (13) implies that the
Ricci curvature tensor has the form as follows:

ðn−1ÞR̃ðg̃Þij ¼
1

V2

�
n − 2

n − 3

�
ðn−1Þ∇̃iV

ðn−1Þ∇̃jV

þ 2η1
ðn−1Þ∇̃iϕ

ðn−1Þ∇̃jϕ

þ 2η2eλϕ
ðn−1Þ∇̃iψ

ðn−1Þ∇̃jψ

V2
: ð14Þ

In the next step, we define the quantities provided by the
relations

Φ�1 ¼
1

2

�
eCϕV � e−Cϕ

V
−
D2e−Cϕψ2

V

�
; ð15Þ

Φ0 ¼
De−Cϕψ

V
; ð16Þ

Ψ�1 ¼
1

2

�
e−Aϕ � eAϕ

V

�
; ð17Þ

where A ¼ C=ðn − 3Þ and the constants C, D, and λ are
bounded with the adequate values of η1 and η2 appearing in

the action (1). For the brevity of notation we depict their
exact values in Table I.
Then, the following symmetric tensors can be con-

structed on the aforementioned manifolds:

ðΦÞR̃ij¼ðn−1Þ∇̃iΦ−1
ðn−1Þ∇̃jΦ−1− ðn−1Þ∇̃iΦ0

ðn−1Þ∇̃jΦ0

− ðn−1Þ∇̃iΦ1
ðn−1Þ∇̃jΦ1;

ðΨÞR̃ij¼ðn−1Þ∇̃iΨ−1
ðn−1Þ∇̃jΨ−1− ðn−1Þ∇̃iΨ1

ðn−1Þ∇̃jΨ1: ð18Þ

Setting the metric in the given form, ηAB ¼
diagð1;−1;−1Þ, enables one to find that ΨAΨA ¼
ΦAΦA ¼ −1, where A ¼ ð0; 1;−1Þ. Next, by virtue of
the relation (18), one obtains

ðn−1Þ∇̃m
ðn−1Þ∇̃mΨB ¼ ðΨÞR̃i

iΨB; ð19Þ
ðn−1Þ∇̃m

ðn−1Þ∇̃mΦB ¼ ðΦÞR̃i
iΦB: ð20Þ

It can be also proved that the Ricci curvature tensor of the
conformally rescaled metric ðn−1Þg̃ij implies

R̃ij ¼
�

ðΦÞR̃ij þ
1

n − 3
ðΨÞR̃ij

�
: ð21Þ

Consequently, in order to meet the requirements of the
conformal positive energy theorem, one defines the con-
formal transformations given by

ðΦÞg�ij ¼ ðΦÞω
2

n−3
� g̃ij; ðΨÞg�ij ¼ ðΨÞω

2
n−3
� g̃ij; ð22Þ

where the conformal factors yield

ðΦÞω� ¼ Φ1 � 1

2
; ðΨÞω� ¼ Ψ1 � 1

2
: ð23Þ

The careful scrutiny of the metric tensors defined
by the relation (22) envisages that we obtain four
(n − 1)-dimensional manifolds denoted, respectively,
as ðΣþðΦÞ; ðΦÞgþijÞ, ðΣ−ðΦÞ; ðΦÞg−ijÞ, ðΣþðΨÞ; ðΨÞgþijÞ, and

ðΣ−ðΨÞ; ðΨÞg−ijÞ.

TABLE I. Values of the constants for ηi; i ¼ 1; 2.

ηi η1 ¼ 1 η1 ¼ −1

η2 ¼ 1 C ¼
ffiffiffiffiffiffi
2η1
n−2

q
ðn − 3Þ C ¼

ffiffiffiffiffiffiffi
−2η1
n−2

q
ðn − 3Þ

D ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2η2ðn − 3Þp

D ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2η2ðn − 3Þp

λ ¼ −
ffiffiffiffiffiffi
2η1
n−2

q
ðn − 3Þ λ ¼ −

ffiffiffiffiffiffiffi
−2η1
n−2

q
ðn − 3Þ

η2 ¼ −1 C ¼
ffiffiffiffiffiffi
2η1
n−2

q
ðn − 3Þ C ¼

ffiffiffiffiffiffiffi
−2η1
n−2

q
ðn − 3Þ

D ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2η2ðn − 3Þp

D ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2η2ðn − 3Þp

λ ¼ −
ffiffiffiffiffiffi
2η1
n−2

q
ðn − 3Þ λ ¼ −

ffiffiffiffiffiffiffi
−2η1
n−2

q
ðn − 3Þ
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Pasting them together [43,44], across the surface V ¼ 0,
one achieves complete regular hypersurfaces ΣðΦÞ ¼
ΣþðΦÞ ∪ Σ−ðΦÞ and ΣðΨÞ ¼ ΣþðΨÞ ∪ Σ−ðΨÞ, and moreover,
ðΦÞg�ij and ðΦÞg�ij metrics are complete.
The asymptotic conditions imposed on gij, electric

potential ψ , and the scalar field, show their explicit
asymptotical behavior.
The resulting manifolds ΣðΦÞ and ΣðΨÞ are geodesically

complete. If ðΣðmÞ; ðmÞgij;ΦA;ΨAÞ, where m ¼ Φ;Ψ, are
asymptotically flat solutions of Eqs. (19) and (20), with
nondegenerate black hole event horizons, then in the next
step one ought to check if the gravitational mass on them is
equal to zero.
In the next step it remains to show that the static

slice is conformally flat. In order to achieve this goal,
we implement the conformal positive energy theorem [46].
Let us define the other conformal transformation
described by

ĝ�ij ¼ ½ððΦÞω�Þ 2
n−3ððΨÞω�Þ2� 1

n−2g̃ij: ð24Þ

On the other hand, the Ricci curvature tensor on the defined
space may be written as

½ððΦÞω�Þ 2
n−3ððΨÞω�Þ2� 1

n−2R̂�

¼
�

ðΦÞω
2

n−3
�

ðΦÞR� þ 1

n − 3
ðΨÞω

2
n−3
�

ðΨÞR�
�

þ 1

n − 3
ð∇̃i ln ðΦÞω� − ∇̃i ln ðΨÞω�Þ2: ð25Þ

Consequently, by the direct calculations it can be verified
that the first term in the brackets in the relation (25) may be
rewritten as follows:

ðΦÞω
2

n−3
�

ðΦÞR� þ 1

n − 3
ðΨÞω

2
n−3
�

ðΨÞR�

¼ jΦ0∇̃iΦ−1 −Φ−1∇̃iΦ0j2
ðΦ1 � 1Þ2

þ 1

n − 3

jΨ1∇̃iΨ−1 −Ψ−1∇̃iΨ1j2
ðΨ1 � 1Þ2 : ð26Þ

The relations (25) and (26) reveal the conclusion that R̂� is
greater or equal to zero. Then, by virtue of the application
of the conformal positive energy theorem, one has that
ðΣðΦÞ; ðΦÞgijÞ, ðΣðΨÞ; ðΨÞgijÞ, and ðΣ̂; ĝijÞ are flat, and these
facts entail that the conformal factors ðΦÞω ¼ ðΨÞω and
Φ1 ¼ Ψ1, as well as Φ0 ¼ constΦ−1 and Ψ0 ¼ constΨ−1.
Finally, one can conclude that the manifold ððn−1ÞΣ; gijÞ

is conformally flat, and the metric tensor ĝij may be
depicted in a conformally flat form. Namely, we define
a function provided by the following:

ĝij ¼ U
4

n−3ðΦÞgij; ð27Þ

where we set U ¼ ððΦÞω�VÞ−1=2. The considered equations
of motion of the studied gravity system reduce now to the
Laplace equation on the three-dimensional Euclidean
manifold. Namely, we have

∇i∇iU ¼ 0; ð28Þ

where ∇ is the connection on a flat manifold. It follows
from the fact that the Ricci scalar for the metric ĝij is equal
to zero. Moreover, one has that the following metric for the
flat base space is valid:

ðΦÞgij ¼ ρ̃2dU2 þ h̃ABdxAdxB; ð29Þ

where ρ̃2 ¼ ∇bU∇bU.
In the next step we shall demonstrate that the confor-

mally transformed event horizon constitutes a geometric
sphere. In order to proceed, let us consider how the event
horizon is embedded into the base space ðΣ̂; ĝijÞ. Namely,
we can define a local coordinate in the neighborhood
M ∈ Σ̂ for the flat base space

ĝijdxidxj ¼ δijdxidxj ¼ ρ2dU2 þ hABdxAdxB: ð30Þ

The manifold in question is totally geodesic, which means
that any of its submanifold geodesic is a geodesic in the
considered manifold. The event horizon is located at some
U ¼ const, and the other important fact is that the embed-
ding of Σ̂ into Euclidean (n − 1) manifold is totally
umbilical [51], which results that each connected compo-
nent of Σ̂ constitutes a geometric sphere of a certain radius.
The studied embedding is also rigid [51], which yields

that one is always able to locate one connected component
of the event horizon H, of a certain radius ρ, at r ¼ r0
surface on Σ̂. Thus, the above mathematical construction
leads us to a boundary value problem for the Laplace
equation on the base space Θ ¼ En−1=Bn−1, with a
Dirichlet boundary condition.
The system in question is characterized by a parameter

which fixes the radius of the inner boundary and authorizes
a black hole of a specific radius ρjH in the gravity theory
described by the action (1). We have also the following
limit condition for U, i.e., it tends to U ∼ 1þOðrn−3Þ,
when r → ∞.
Let us assume further, that we have two solutions being

subject to the same boundary value problem, i.e., U1 and
U2. By means of Green identity and integrating over the
volume Θ, one has that
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�Z
r→∞

−
Z
H

�
ðU1 − U2Þ

∂
∂r ðU1 − U2ÞdS

¼
Z
Θ
j∇ðU1 − U2Þj2dΘ: ð31Þ

The surface integrals on the left-hand side of the above
relation vanish due to the imposed boundary conditions.
This fact provides that the volume integral has to be
identically equal to zero. We conclude that the aforemen-
tioned two solutions of the Laplace equation with the
Dirichlet boundary conditions are identical. It accounts for
the main conclusion of our considerations.
Theorem 1.—Let us assume that U1 and U2 constitute the

two solutions of the Laplace equation on the base space
Θ ¼ En−1=Bn−1, as defined above. They authorize solu-
tions of Einstein phantom-dilaton Maxwell–anti-Maxwell
gravity systems (depending on the special choice of ηi,
where i ¼ 1; 2) of equations of motion, describing static,
spherically symmetric, asymptotically flat, and adequate
black holes with nondegenerate event horizons. The sol-
utions of the equations of motion of the theory under
inspection are subject to the same boundary and regularity

conditions. Then, U1 ¼ U2 in all of the region of the base
space Θ, provided that U1ðpÞ ¼ U2ðpÞ for at least one
point belonging to the aforementioned region.

III. CONCLUSIONS

The recent astrophysical and astronomical observations
reveal that dark energy is a possible ingredient of our
Universe, which implicates that phantom fields and phan-
tom black objects should be subjects of interest and careful
scrutiny. In our paper we have constructed the uniqueness
theorem for Einstein phantom-dilaton Maxwell–anti-
Maxwell gravity systems, depending on the special choice
on ηi, where i ¼ 1; 2, black hole solutions.
We have paid attention to n-dimensional spherically

symmetric, asymptotically flat, and static black holes with
nondegenerate event horizons, being the solutions of the
aforementioned theory. The key role in the proof was
played by the conformal positive energy theorem and
conformal transformations helping us to examine the
boundary conditions and the conformal flatness of the
examined spacetime.
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