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Moment of inertia (I), rotational (tidal) Love number (λðrotÞ), and quadrupole moment (Q) of slowly
rotating massive neutron stars (NSs) with holographic multiquarks (MQs) core are computed in comparison
to pure MQ stars. The chiral effective theory (CET) stiff equation of state (EoS) is used in the crust of the
neutron star. As previously established in earlier work, the dimensionless multipole moments Ī; λ̄ðrotÞ, and Q̄
are found to be independent of the rotation parameters and determined completely by the zeroth-order star
profile. Universal “I-Love-Q” relations found by Yagi and Yunes [Science 341, 365 (2013); Phys. Rev. D
88, 023009 (2013)] are mostly preserved even in the presence of the MQ core. The tidal deformation
parameter λ̄ðtidÞ is also explored in connection with Ī; λ̄ðrotÞ; Q̄, and two kinds of universal I-Love-Q relations
are verified. However, the unique kink in the plots of multipoles with respect to mass and compactness of
the population of neutron stars can reveal the existence of massive NSs with a MQ core.
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I. INTRODUCTION

A considerable number of massive neutron stars (NSs)
with mass around, and above, two solar masses (M⊙) have
been observed [1–15]. They naturally require a nuclear
phase with high density in the core region. Scans of various
equation of states (EoSs) based on the sound speed and
adiabatic index suggests that these massive NSs could have
quark-matter cores [16]. The nonperturbative nature of
strong interaction prevents accurate analysis from the first
principles of quantum chromodynamics (QCD) in such
extreme situations. The lattice gauge theory approach has
uncertainties arising from the fermion sign problem when
considering a high density/chemical potential system. Bag
models assume weakly-interacting free quarks within a
confinement bag, not necessarily valid for nuclear matter at
extreme density presence in the core of massive NS.
A complementary model inspired by the gauge/gravity

duality uses a holographic model of nuclear matter and
perform weakly-coupled calculations in the gravity pic-
ture to obtain the physics of strongly-interacting gauge
theory. The Sakai-Sugimoto (SS) model [17,18] is a
holographic model which shares a number of common
features with QCD. Variations of the SS model allow a

chiral symmetry-broken deconfined phase [19,20] with the
possibility of a multiquark phase [21,22].
Some of the observed massive NSs have a large enough

spin for the deformation of the star to be observationally
significant. In such a situation, multipole moments of the
star become physically important. For a slowly rotating
star, the multipole moments can be calculated using
perturbative methods with respect to the rotation parame-
ters. The moment of inertia, quadrupole moment, and Love
number can be used to explore certain aspects of the EoS of
the nuclear matter inside a NS. Yagi et al. [23,24] found the
“I-Love-Q relations” of the multipole moments as well as
the unique characterstics of these parameters for slowly
rotating hypothetical NSs with various EoSs. The univer-
sality of the I-Love-Q relation can be used to test gravi-
tational theory starting from the general relativity (GR) and
even the existence of extra dimensions [25,26]. It would be
interesting to explore the multipole moments, specifically I,
λ, and Q of the massive NSs with a potential MQ core with
the holographic EoS [27]. It will be shown that the MQ core
generates distinctive multipole moments, I, λ, Q from the
conventional NS with conventional stiff nuclear EoSs in the
chiral effective theory (CET) [28]. This distinction can be
used to distinguish between a massive NS with MQ and a
NS with conventional nuclear core.
This work is organized as follows. Section II describes

the EoS we use for the MQ and the nuclear matter; more
details are given in [29]. Section III presents the spacetime
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metric and stress tensor of the slowly rotating star in GR up
to the second order in the rotation parameters. Section IV
discusses the equations of motion at the zeroth, first, and
second order of the perturbations with respect to the
rotation. Numerical results are presented in Sec. V and
Sec. VI concludes our work.

II. EOS FOR MASSIVE NEUTRON STARS WITH A
HOLOGRAPHIC MULTIQUARK CORE

The interior composition of massive NSs can be studied
via observations and various theoretical models of hadronic
matter in a cold environment. At low density, quarks are
strongly coupled and confined within hadrons. Generally,
the dynamical behavior of hadrons could be quantitatively
described by mesons exchange based on CET as a low-
energy effective theory since their interactions are weak and
short range. Many important parameters in CET can be
calculated by using the perturbative power expansion in
terms of pion mass Mπ and the chiral symmetry-breaking
scale Λχ ∼ 1 GeV [30]. The EoS for the cold nuclear matter
could be obtained by considering two-nucleon and three-
nucleon interactions, for greater accuracy, within the
framework of CET [31]. However, beyond the nuclear
saturation density n0 ≈ 0.16 fm−3, there are uncertainties
associated with a series of polytropic EoS determined from
the extended CET that leads to three possibilities, i.e., the
soft, the intermediate, and the stiff EoS [31].
Holographic models of the SS variations can also be used

to describe cold trapped fermions [32] at low temperatures
as well as cold and dense confined nuclear matter [33–36].
Assuming low temperatures and using instantons to re-
present baryons, the confined SS model allows crystallized
solid and liquid phases of baryonic nuclear matter [33–35].
In the core of massive NSs where the density is

extremely large, the quarks are expected to be effectively
deconfined since they can hardly distinguish one baryon
from the neighboring ones. Dripping quarks from one
baryon become closer to the others, resulting in unclear
boundaries of the original baryonic bound state.
Holographic QCD such as the variations of SS model
suggests [19–21] that these deconfined quarks could form
MQ bound states while chiral symmetry is still broken.
Additionally, holographic MQ stars, which are assumed to
be entirely in a holographic MQ state, were studied in [27]
where the preliminary estimates of the mass of NSs with a
MQ core could be as high as 3 M⊙.
It was found in [29] that the core of massive NSs could

be in the holographic MQ phase, which is more thermo-
dynamically prefered than the stiff CET nuclear matter for a
certain range of the model parameters. In this work, we
extend our analysis to include effects of slow rotation by
considering the massive neutron stars with a MQ core
obeying the EoS from the holographic SS model. The
nuclear crust is assumed to obey stiff EoS from the CET
following [29].

A. Equation of state of the multiquark core

According to the holographic model of multiquark
proposed and studied in [21,27], the EoS of the holographic
multiquark depends on number density n and a relative
number of color charges per multiquark ns. At large n, the
pressure P and density ρ of high-density multiquark (mqh)
are given, in the dimensionless form, by

P ¼ kn7=5;

ρc2 ¼ ρcc2 þ
5

2
Pþ μcðn − ncÞ þ kn7=5c −

7k
2
n2=5c n; ð1Þ

where nc is a critical number density at the transition
between mqh and low-density multiquark (mql) while
Pc ¼ PðncÞ, ρc ¼ ρðncÞ, and μðncÞ ¼ μc are pressure,
density, and mutiquark chemical potential energy at the
transition. For ns ¼ 0∶nc ¼ 0.215443, μc ¼ 0.564374,
whereas for ns ¼ 0.3∶nc ¼ 0.086666, μc ¼ 0.490069,
while k ¼ 10−0.4 for both cases. At smaller n, EoS of
mql are given by

P ¼ an2 þ bn4;

ρc2 ¼ μ0nþ an2 þ b
3
n4; ð2Þ

where the onset chemical potential of the multiquark phase
μ0 ¼ μðn ¼ 0Þ. For ns ¼ 0, a ¼ 1, b ¼ 0, μ0 ¼ 0.17495
while for ns ¼ 0.3, a ¼ 0.375, b ¼ 180.0, μ0 ¼ 0.32767.
In Ref. [29], it has been shown that only MQs with ns ¼
0.3 can interpolate well between the CET EoS at low
densities and perturbative QCD (pQCD) at much higher
energy densities, therefore we only consider ns ¼ 0.3 in
this work.
Note that parameters represented in (1) and (2) are all in

dimensionless form. Conversions of thermodynamical
quantities from dimensionless to conventional physical
units depend only on the energy density scale ϵs expressed
in GeV fm−3, defined in [27,29,37]. The pressure and mass
density scale with ϵs as P; ρ ∼ ϵs. The mass and radius of
the pure multiquark star have the same scalingM;R ∼ ϵ−1=2s

while the compactness M=R is independent of ϵs.

B. Comparison between confined and deconfined
phases in SS model

In this section we make a thermodynamic comparison
between the holographic confined nuclear phase studied in
Ref. [33] and our deconfined MQ phase by using the P − μ
(pressure versus chemical potential) diagram. Following
Ref. [38], we set the onset values of chemical potential per
quark, μq, to 308.55 MeV for both confined and deconfined
phases and compare the plots between pressure (i.e.,
negative grand potential per volume) and μq. The results
are shown in Fig. 1. For the MQ phases, the temperature is
set to T ¼ 0.01 in the unit of Ref. [27] even though it was
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also demonstrated to be insensitive to the change of
temperature in the range T ¼ 0–0.3 in Ref. [27]. For the
confined phase, the pressure and chemical potential are
calculated using Eq. (30) of Ref. [33].
Interestingly, the diagram shows that the confined phase

(labeled by the “KSZ (Kim, Sin, Zahed) model” [33]) is
slightly more preferred thermodynamically than the ns ¼ 0
(colorless baryon) MQ phase but much less preferred than
the ns ¼ 0.3 (colorful) MQ phase. The SS models thus
consistently provide a first-order phase transition between
confined nuclear phase and deconfined MQ phase at large
μ. The fact that the curves between the confined (KSZ) and
deconfined baryon ðns ¼ 0Þ cases are very close together,
demonstrates the distinct consistency of the SS models for
both confined and deconfined backgrounds.
For the holographic crystalline phase approximated by

finite-size instanton configuration studied in Ref. [34], the
pressure can be calculated from the first law of thermo-
dynamics at low temperature (T ≲ 1 MeV ≪ μ),

P ¼ μn − ϵ;

where μ ¼ ∂nϵ ¼ μqNc for energy density ϵ. For dense EoS
of the model Pdense ∼ n5=3 while μ ∼ n2=3 at large n, which
gives Pdense ∼ μ5=2. In comparison, the MQ phases have
P ∼ n7=5 and μ ∼ n2=5 [from the EoS (1) at large density],
which yield P ∼ μ7=2, making the MQ much more thermo-
dynamically preferred than the instanton-crystal phase. The
P − μ diagram of the high-density crystalline phase
(labeled by “KSZcrystal”) in comparison to the MQ phase
is shown in Fig. 2.
On the other hand, in the canonical picture we can

compare the Helmholtz free energy of the different phases
at a fixed number density n. The free energy per volume
Fðn; TÞ is given by the Legendre transform of the grand
potential per volume Ω=V ¼ −Pðμ; TÞ with respect to μ,

Fðn; TÞ ¼ −Pðμ; TÞ þ μn;

which is simply the energy density ϵ at low temperatures.
At large densities, KSZcrystal phase has ϵ ∼ n5=3 [33] larger
than ϵ ∼ n7=5 [from Eq. (1)] of the MQ phase, implying the
lower free energy of the MQ phase. Again, in this canonical
picture, the MQ phase is thus more thermodynamically
preferred than the instanton-crystal phase. This is consis-
tent with the above results in the grand canonical picture
using the P − μ diagram.

C. Equation of state of the nuclear matter crust

As described in detail in [29], the EoS for nuclear matter
in the NS could be divided into three regions. For very
low densities, the EoS of degenerate nucleons can be
found in Table 7 of Ref. [31]. For intermediate densities, it
is approximated by a series of polytropes as shown in
Eq. (18) of Ref. [29]. Then at slightly higher densities
ranging from 75.1 MeV fm−3 to 165.3 MeV fm−3, the EoS
of weakly-interacting nucleons consisting of chiral quarks
described by CET can be found in Eqs. (19) and (20) of
Ref. [29]. For nuclear matter beyond a typical density ρ1 ¼
165.3 MeV fm−3 up to the transition density, EoS could be
obtained from an extension of CET based on the nucleon-
nucleon and three-nucleon interactions using asymmetric
nuclear matter as expressed in Table 5 and 6 of Ref. [31]
and could also be described by a set of polytropes as
expressed in Eq. (21) of Ref. [29]. This results in three
possible extensions; soft, intermediate, and stiff extended
CET EoS.
Furthermore, a phase transition between the multiquark

state and extended CET nuclear matter was studied in [29].
It was found by studying the pressure versus the quark
chemical potential (or P − μ) diagram that there are
possible transitions from the multiquark state to the stiff
extended CET nuclear matter only with sensible energy
density scales ϵs ranging from 26 GeVfm−3–28 GeVfm−3.
Additionally, we found the multiquark state is preferred

FIG. 1. P − μ diagram of confined and deconfined phases in the
SS model.

FIG. 2. P − μ diagram of confined crystalline phase (labeled by
“KSZcrystal”) and deconfined MQ phases in the SS model. The
pressure for dilute case is computed for the instanton size
parameter Zc ¼ 5 [34].
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over stiff extended CET nuclear matter at densities higher
than the transition density.

III. BACKGROUND METRIC AND ENERGY
MOMENTUM TENSOR

A uniformly rotating neutron star can be perturbatively
described by a slow-rotation expansion in an isolated
nonrotating background solution. Such a neutron star
solution can be expressed in Boyer-Lindquist coordinates
as [24]

ds2 ¼ −eν̄0ðrÞ½1þ 2ϵ2H̄2ðrÞP2ðcos θÞ�dt2

þ eλ̄0ðrÞ
�
1þ 2ϵ2S̄2ðrÞP2ðcos θÞ

r − 2m̄ðrÞ
�
dr2

þ r2½1þ 2ϵ2K̄2ðrÞP2ðcos θÞ�
× ðdθ2 þ sin2θ½dϕ − ϵωðr; θÞdt�2Þ þOðϵ3Þ; ð3Þ

where m̄ðrÞ is often related by

eλ̄0ðrÞ ¼
�
1 −

2m̄ðrÞ
r

�
−1
: ð4Þ

This m̄ðrÞ can be interpreted as an accumulated mass
function. At the NS’s surface r ¼ R and m̄ðRÞ ¼ M where
M is a total mass of the star. We thus have

eν̄0ðRÞ ¼ e−λ̄0ðRÞ ¼ 1 −
2M
R

: ð5Þ

The expansion parameter ϵ denotes the order of approxi-
mation. At the first order in ϵ, neutron star’s rotation is
introduced by the angular velocity [39]

ωðr; θÞ ¼ Ω − ω̄1ðrÞ
�
−

1

sin θ
dP1

dθ

�
; ð6Þ

where PlðcosðθÞÞ is the lth-order Legendre polynomial.
The second term on the right-hand side of (6), given by
Ω − ω, is the angular velocity of star content at ðr; θÞ seen
by the free-falling observer. At second order in ϵ, the
deformations of NS are denoted by second-order quantities
H̄2ðrÞ; S̄2ðrÞ, and K̄2ðrÞ.
Here we are studying rotational effect of neutron star

perturbatively. This perturbative approach is simply valid
when the differences between physical quantities in rotat-
ing and nonrotating case are small [40]. If we follow
standard polar coordinates (r, θ), there will be some point
where this perturbation technique is no longer valid. For
instance, the pressure P of nonrotating star vanishes at the
surface (at some value of r ¼ R), since the shape of the star
changes when it rotates, thus the pressure is nonzero in this
case. Therefore, the perturbation scheme based on a ratio
of density (Δρρ ) becomes infinitely large and invalid.

To overcome this issue, Hartle [39] introduced a coordinate
transformation ðr; θÞ → ðr̄;ΘÞ; it is given by

ρ½rðr̄;ΘÞ;Θ� ¼ ρðr̄Þ; Θ ¼ θ: ð7Þ

The radial coordinate r̄ is chosen such that ρ and P are the
same in both rotating and nonrotating configurations. The
radial coordinate r̄ is expanded by

rðr̄;ΘÞ ¼ r̄þ ϵ2ξ2ðr̄ÞP2ðcosΘÞ: ð8Þ

Here and henceforth, any metric coefficients expressed
without “bar” means they are written in r̄ coordinate e.g.,
H2ðr̄Þ≡ H̄2ðrÞ. We also denote derivatives with respect to
r̄ with 0.
A matter content inside uniformly rotating NS will be

modeled by perfect fluid material. The stress-energy
momentum tensor is defined by

Tμν ¼ ðρþ PÞuμuν þ Pgμν; ð9Þ

where four-velocity of the perfect fluid is normalized by
uμuμ ¼ −1. This is given by

uμ ¼ ðu0; 0; 0; ϵΩu0Þ; ð10Þ

where the time component of four-velocity is obtained
from [41]

u0 ¼ ½−ðg00 þ 2ϵΩg03 þ ϵ2Ω2g33Þ�−1=2;

¼ e−ν=2
�
1þ ϵ2

e−ν

2
fðr̄ω̄1 sinθÞ2 − eνð2H2 þ ν0ξ2ÞP2g

�
:

ð11Þ

The EoSs to be used is the holographic MQ EoS in the core
connecting with the stiff CET EoS in the crust of the NS.
The pure MQ star is also considered for comparison.

IV. EQUATION OF MOTION

In this section we will construct differential equations
corresponding to i) an isolated, nonrotating neutron star,
ii) a slowly rotating neutron star to linear order in spin, and
iii) a slowly rotating neutron star to quadratic order in spin.
Then we discuss interior and exterior solutions of these
equations. By matching both solutions at the boundary i.e.,
at the surface of the NS, we obtain useful physical
quantities of the star such as, total mass, radius, moment
of inertia, quadratic moment, and rotational Love number.
This part is a review of the analyses in [39,40] where we

elaborate more on the independence of I; λ; Q̄ to the
rotation parameters, as well as the basic formalism on
which we analyze the rotational properties of the NS with a
MQ core and pure MQ stars.
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A. Einstein equations Oðϵ0Þ
From the metric (3) and stress-energy tensor (9), the (t, t)

and ðr̄; r̄Þ components of the Einstein field equations are
given by

m0 ¼ 4πr̄2ρ; ð12Þ

ν0 ¼ 2

�
4πr̄3Pþm
r̄ðr̄ − 2mÞ

�
: ð13Þ

The Tolman-Oppenheimer-Volkov (TOV) equation can be
obtained from the radial component of conservation of
energy i.e., ∇μTμr̄ ¼ 0,

P0 ¼ −
�
4πr̄3Pþm
r̄ðr̄ − 2mÞ

�
ðρþ PÞ: ð14Þ

With the equation of state given by (1) and (2), Eqs. (12)–
(14) form a system of coupled first-order ordinary differ-
ential equations. These equations can be solved numeri-
cally when appropriate boundary conditions are specified.
Outside the star, ρ ¼ 0, P ¼ 0, these equations admit the
Schwarzschild solution (5) with mass M and r̄ > R.
Extra attention must be taken when considering the

initial condition of νðr̄0Þ ¼ νc. Since our field equations
are shift-invariant in ν, therefore adding some constant
to ν does not change the whole equation of motion.
Consequently, νc at the center must be chosen so that [40]

eνðRÞ ¼ 1 −
2M
R

; ð15Þ

at the star surface. In practice, we set the cutoff radius
r̄min ¼ 10−6 and integrate outward until we reach the star
surface whereas PðRÞ ¼ 0 and mðRÞ ¼ M. The resulting
zeroth-order star profiles are then used to calculate the first-
order perturbation ω̄1. The choice of ν satisfying (15) is
necessary in the correct calculation of the first- and second-
order perturbations.

B. Equation in linear order Oðϵ1Þ
At the linear level, the only nonvanishing component of

Einstein field equation is (t;ϕ). This yields

0 ¼ d2ω1

dr̄2
þ 4

�
1 − πr̄2ðρþ PÞeλ

r̄

�
dω1

dr̄
− 16πðρþ PÞeλω1;

ð16Þ
where ω1ðr̄Þ≡ ω̄1ðrÞ and

e−λðr̄Þ ¼
�
1 −

2mðr̄Þ
r̄

�
: ð17Þ

To solve this equation, one needs to explore asymptotic
behavior of ω1 at the centre of the star and the exterior.

Outside the star, there is no matter i.e., ρ ¼ P ¼ 0 and
mðr̄Þ ¼ M. In this region, (16) becomes exactly solvable
and its solution is given by [24,39]

ωout
1 ¼ Ω

�
1 −

2I
r̄3

�
; ð18Þ

where the moment of inertia is defined by I ≡ S=Ω. Two
constants S and Ω can be interpreted as the spin-angular
momentum and angular velocity of the star, respectively.
The linearity of (16) and the asymptotic relation ω1ðr̄ →
∞Þ ¼ Ω implies that ω1 must scale with Ω. Dividing (16)
by Ω and solve with the scaled boundary condition ω1ðr̄ →
∞Þ=Ω ¼ 1 results in the scaled inner and outer solutions
which are independent ofΩ. Consequently, the outer-scaled
solution ωout

1 =Ωmust also be independent ofΩ, and I given
in (17) is automatically independent of the rotation param-
eters ωout

1 and Ω. Remarkably, I represents intrinsic proper-
ties of star with respect to slow rotation and it depends only
on the zeroth-order star profile.
For interior solution, we perform Taylor expansion on

(16) around the star centre. The function ω1 behaves
regularly as

ωin
1 ¼ ωc þ

8π

5
ðρc þ PcÞωcr̄2 þOðr̄3Þ: ð19Þ

From the zeroth order, complete profiles of m, ρ, and P are
obtained. Then (16) can be numerically integrated starting
from (19) until we reach the surface r̄ ¼ R. With some test
values ofΩ, and ωc, I can be determined from continuity of
ω1 i.e.,

ωin
1 ðRÞ ¼ ωout

1 ðRÞ; d
dr̄

ωin
1 ðRÞ ¼

d
dr̄

ωout
1 ðRÞ: ð20Þ

Alternatively, the moment of inertia can be obtained via
[24,39]

I ¼ 8π

3Ω

Z
R

0

r̄5ðρþ PÞe−ðνþλÞ=2

r̄ − 2mðr̄Þ ω1dr̄; ð21Þ

provided that (15) is satisfied. We have checked that the
moment of inertia calculated via the matching method and
the formula above are in perfect agreement. The numerical
results also confirm the independence of I to rotation
parameters. For demonstration purpose, it is convenient to
define dimensionless moment of inertia

Ī ≡ I
M3

: ð22Þ

C. Equation in quadratic order Oðϵ2Þ
At quadratic order in spin, the equations of motion

involve only H2, K2, S2, and ξ2. In fact, it turns out that
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there are two evolution equations and two constraints.
From energy conservation, θ is the only nonzero compo-
nent ∇μTμθ ¼ 0. This gives

ξ2ðr̄Þ ¼ −
e−νr̄ðr̄ − 2mÞðr̄2ω2

1 þ 3eνH2Þ
3ðmþ 4πPr̄3Þ : ð23Þ

Nonvanishing components of Einstein field equations at
quadratic order are ðθ; θÞ − ðϕ;ϕÞ∶

S2ðr̄Þ ¼ −ðr̄ − 2mÞH2 þ
1

6
e−λ−νr̄4½ðr̄ − 2mÞω02

1

þ16πr̄ðρþ PÞω2
1�; ð24Þ

ðr̄; θÞ∶

K0
2 ¼ −H0

2 þ
�
r̄ð1 − 4πPr̄2Þ − 3m

r̄ðr̄ − 2mÞ
�
H2

þ
�
r̄ð1þ 4πPr̄2Þ −m

r̄ðr̄ − 2mÞ2
�
S2; ð25Þ

ðr̄; r̄Þ∶

H0
2 ¼

�
m − r̄ð1þ 4πPr̄2Þ

ðr̄ − 2mÞ
�
K0

2 þ
�

2

r̄ − 2m

�
K2

þ
�
3 − 4πr̄2ðρþ PÞ

r̄ − 2m

�
H2 þ

�
1þ 8πPr̄2

ðr̄ − 2mÞ2
�
S2

þ r̄3

12
e−νω02

1 þ 4π

3

ðρþ PÞr̄4e−ν
ðr̄ − 2mÞ ω2

1: ð26Þ

Note that we can replace S2 in (25) and (26) with (24). In
the exterior region where λ, ν, and ω1 can be expressed as
(5) and (18), the solutions of evolution equationH0

2; K
0
2 can

be written as [24]

Hout
2 ¼ 1

r̄4

�
1þ 1

C

�
ðIΩÞ2 þ A

�
C −

3

C
þ 1

2 − 4C
þ 5

2

þ 3ð2C − 1Þ
2C2

ln ð1 − 2CÞ
�
; ð27Þ

Kout
2 ¼ −

1

r̄4

�
2þ 1

C

�
ðIΩÞ2 þ 3A

C

�
1þ C −

2C2

3

þ ð1 − 2C2Þ
2C

ln ð1 − 2CÞ
�
; ð28Þ

where C≡M=r̄ and A is integration constant to be
determined later. It is also useful to define the star’s
compactness as CjR ≡ C. For the interior solutions, expand-
ing Eqs. (25)–(26) around r̄ ¼ 0 yields

H2 ¼ Br̄2 þOðr̄4Þ; ð29Þ

K2 ¼ −Br̄2 þOðr̄4Þ; ð30Þ

where B is an arbitrary constant. These constants A and B
will be determined by matching the boundary conditions at
the surface of the star,

Hin
2 ðRÞ ¼ Hout

2 ðRÞ; Kin
2 ðRÞ ¼ Kout

2 ðRÞ: ð31Þ

In principle, one can numerically integrate Eqs. (25)–(26)
starting from the initial conditions inside the star until the
matching conditions above are satisfied. In practice, we
adopt Hartle’s approach [39] for solving this system of
equation. First, we write down interior solution as a sum of
particular solution (Hp

2 ) and the product of an arbitrary
constant (C1) and the homogeneous solution (Hh

2)

Hin
2 ¼ Hp

2 þ C1Hh
2; ð32Þ

Kin
2 ¼ Kp

2 þ C1Kh
2: ð33Þ

For a given value of B, the particular and homogeneous
solutions can be computed numerically. The unknown
constants A and C1, will be then determined from simple
algebraic equations (31). The quadrupole moment can be
calculated from [24,39,41]

QðrotÞ ¼ −
ðIΩÞ2
M

−
8

5
AM3: ð34Þ

The dimensionless spin-induced quadrupole moment can
be defined as

Q̄≡ −
QðrotÞM
ðIΩÞ2 ;

¼ 1þ 8A
5

�
M2

IΩ

�
2

: ð35Þ

In the outer region, since P and ρ are zero, the terms
proportional to ω2

1 in (24), (25), and (26) become zero.
Using (18), the terms involving ω02

1 are thus proportional to
S2. Dividing Eqs. (24)–(26) with S2 throughout, results in
the rescaling of S2, K2, H2, with S2 and the equations of
motion being independent of S. So, we can conclude that all
solutions of S2, K2, and H2 in the outer region must simply
scale with S2, i.e., A ∼ S2 (and the scaled solutions
ðS2; K2; H2Þ=S2 are independent of S). As a consequence,
QðrotÞ given by (34) will scale with S2 and Q̄ is always
independent of S, ω, and Ω. This universality has also been
verified by our numerical results. For a given star profile
with a small but arbitrary Ω, ω, the values of I and Q̄ are
independent of the rotation parameters.
Since now we have isolated the star profiles up to the

second order in spin, we can define the l ¼ 2 rotational
Love number as
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λðrotÞ ≡ −
QðrotÞ

EðrotÞ ;

¼ −
QðrotÞ

Ω2
; ð36Þ

where EðrotÞ is the quadrupolar contribution of the centrifu-
gal potential [24]. In addition, the quantity EðrotÞ can be
expressed as Ω2 in the Newtonian limit [42]. The rotational
Love number measures how much neutron/MQ star
deforms away from spherical shape due to its spin. The
dimensionless rotational Love number is given by

λ̄ðrotÞ ≡ λðrotÞ

M5
: ð37Þ

Thus one can relate the star’s moment of inertial, quadru-
pole moment and rotational Love number as

λ̄ðrotÞ ¼ Ī2Q̄: ð38Þ

From (34), it is obvious that both λðrotÞ and λ̄ðrotÞ are
independent of rotation parameters and determined only by
the zeroth-order star profile.

V. NUMERICAL RESULTS

In this section, we shall display numerical results of
Ī; λ̄ðrotÞ; Q̄ at linear and second order in spin of the NS with
a MQ core and the pure MQ star. The mass-radius diagram
previously obtained in [29] are shown in Fig. 3 for
convenience in understanding the interior structure of the
star. As mentioned above, all quantities are independent of
the rotation parameters in the perturbative regime of spin.
For completeness, the dimensionless tidal deformation
parameter, λ̄ðtidÞ, calculated in Ref. [37] (denoted by Λ)
is also plotted with Ī; λ̄ðrotÞ; Q̄ verifying the universal
I-Love-Q relations involving both λ̄ðrotÞ and λ̄ðtidÞ.

i.) Ī vsM;C in Fig. 4. Near maximum mass; the NS with
MQ core has distinct transition from MQ to CET at the
value of the moment of inertia. This can be physically
expected due to denser mass concentration in smaller
region of the MQ phase resulting in smaller moment of
inertia. Since the MQ EoS in the low-density regime is
quite similar to the stiff CET EoS, the trend of the plots for
lower masses is also similar, however not identical. The
difference can be seen in the Ī vs C plot where at the same
compactness, the pure MQ star has larger Ī than the NS
with MQ core.
ii.) Q̄ vs M;C in Fig. 5. Again the plot Q̄ vs M looks

similar to Ī vs M and λ̄ðrotÞ vs M except for the numerical
values. Transition between the MQ core and CET crust is
distinctive. Differences between the NS with MQ core and
the pure MQ star are manifest in Q̄ vs C plot.
iii.) λ̄ðrotÞ vs M;C in Fig. 6. The relations between the

rotational Love number with mass and compactness are
interestingly similar to the moment of inertia parameter.
Highly dense and compact star results in small λ̄ðrotÞ,
whereas the transition between the MQ core and the
nuclear crust can only be seen in the plot with mass of
the star, and not in the plot with compactness C. Difference
between the NS with MQ core and the pure MQ, however,
is distinctive in the compactness plot shown in Fig. 7.

FIG. 3. M − R diagram of the NS with MQ core and the pure
MQ star. Energy density scale ϵs is in GeV fm−3 unit.

FIG. 4. Upper: Dimensionless moment of inertia parameter Ī vs
mass of the star M. Lower: Ī vs. compactness C.
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iv.) I-Love-Q (rotation) relations in Fig. 8. Remarkable
universality observed in [23,24] of the relationship between
I, λ, Q can be seen from the plots between Ī vs. λ̄ðrotÞ and Q̄
vs. λ̄ðrotÞ. This universal I-Love-Q relation thus can be used
as a test for the validity of GR even though it cannot reveal
the internal structure EoS of the NS unless the dependence
on the mass and compactness are analyzed.
v.) I-Love-Q (tidal) relations in Fig. 9. As elaborated in

details in [37], the dimensionless deformation parameter
λ̄ðtidÞ (denoted by Λ in [37]) can be calculated for theFIG. 5. Upper: Dimensionless quadrupole moment parameter

Q̄ vs M. Lower: Q̄ vs C.

FIG. 6. Upper: Rotational Love number λ̄ðrotÞ vs mass of the star
M. Lower: λ̄ðrotÞ vs compactness C.

FIG. 7. λ̄ðrotÞ vs C around the transition region between the NS
with MQ core and the CET NS.

FIG. 8. Upper: Ī vs λ̄ðrotÞ relation. Lower: Q̄ vs λ̄ðrotÞ relation.
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massive NS with MQ core. Universality is also confirmed
for I; λ̄ðtidÞ; Q relations as well as the “Love-Love” relation
in the bottom of Fig. 9.
vi.) The universal I-Love and Q-Love relations can be

described by a single equation [43]

ln y ¼ aþ b ln xþ cðln xÞ2 þ dðln xÞ3 þ eðln xÞ4: ð39Þ

The I-Love and Q-Love relations can be plotted when the
coefficients ða; b; c; d; eÞ are given. In Eq. (39), variable x
is dimensionless tidal Love number λ̄ðtidÞ. The curve fitting
equation represents I-Love relations when y¼ Ī, a¼
1.496, b ¼ 0.05951, c ¼ 0.02238, d ¼ −6.953 × 10−4

and e ¼ 8.345 × 10−6. The Q-Love relations is obtained
when y ¼ Q̄, a ¼ 0.1940, b ¼ 0.09163, c ¼ 0.04812, d ¼
−4.283 × 10−3 and e ¼ 1.245 × 10−4 (see Table 1 of
Ref. [43] for more details). We compare our I-Love and
Q-Love relations with the fit in Fig. 10. The absolute

fractional difference from the fit, i.e., jĪ−Ī
fitj

Īfit
and jQ̄−Q̄fitj

Q̄fit , are

also shown in bottom half of each plot of Fig. 10. The pure
multiquark star with ϵs ¼ 23.2037 GeV fm−3 deviates less
from the fit with discrepancies 0.24% and 0.63% for I-Love
and Q-Love relations respectively.

VI. CONCLUSIONS AND DISCUSSIONS

The multipole moments I; λðrot;tidÞ; Q generated by slow
rotation of the massive NS with MQ core, CET NS and
pure MQ are calculated using the EoS from the holographic
SS model and stiff CET EoS for the nuclear crust.
Generically in the perturbative regime, the moment of
inertia, rotational Love number and quadrupole moment are

FIG. 9. Upper: Ī vs λ̄ðrotÞ relation. Lower: Q̄ vs λ̄ðrotÞ relation.

FIG. 10. Upper: Ī vs λ̄ðtidÞ relation.Lower: Q̄vs λ̄ðtidÞ relation. The
green dashed curves display the fit in Eq. (39). The deviations
from the fit are shown in the lower parts of each plots. The
maximum deviations in I-Love relations are 0.24%, 4.07%, 4.15%
for ϵs ¼ 23.2037 GeV fm−3 (pure MQ), ϵs ¼ 26 GeV fm−3 and
ϵs ¼ 28 GeV fm−3, respectively (MQ and stiff). The maximum
deviations in Q-Love relations are 0.63%, 3.80%, 3.89% for
ϵs ¼ 23.2037 GeV fm−3 (pure MQ), ϵs ¼ 26 GeV fm−3 and
ϵs ¼ 28 GeV fm−3 respectively (MQ and stiff).
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found to be determined purely by the zeroth-order star
profile and independent of the rotation parameters.
Interestingly, the MQ core does not seem to violate the
universal I-Love-Q relations found by Yagi and Yunes [23].
However, analyses of I; λðrot;tidÞ; Q with respect to the mass
and compactness of the star could reveal the existence
of the MQ core or distinguish the hybrid star from the
pure MQ star from the kink pattern as demonstrated in

Ī; λ̄ðrot;tidÞ; Q̄ vs. M;C plots. Together with the kink in the
MR diagram, the existence of a NS with MQ core could be
validated.
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