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Partly motivated by the arrow of time problem in cosmology and the Weyl curvature hypothesis
formulated by Roger Penrose, previous works in the literature have proposed—among other possibilities—
the square of the Weyl curvature as being the underlying entropy density function of black hole entropy, but
the proposal suffers from a few drawbacks. In this work, we propose a new entropy density function also
based solely on the Weyl curvature, but adopting some other combinations of curvature invariants. As an
improvement we find that our method works for all static black hole solutions in four- and five-dimensional
general relativity regardless of whether they are empty space solutions or not. It should also be possible to
generalize our method to higher dimensions. This allows us to discuss the physical interpretation of black
hole entropy, which remains somewhat mysterious. Extending to modified theories of gravity, our work
also suggests that gravitational entropy in some theories is a manifestation of different physical effects since
we need to choose different combinations of curvature quantities.
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I. INTRODUCTION: THE ARROW OF TIME
AND GRAVITATIONAL ENTROPY

Time flows from the past to the future, the distinction
between the two is that the future has higher entropy. The
arrow of time is reflected by the second law of thermo-
dynamics, which is understood in terms of Boltzmann’s
entropy formula S ¼ kB lnΩ, where kB is the Boltzmann
constant and Ω is the number of available microstates of a
given system.1 Simply put, the statistical mechanics explan-
ation is that there are more ways for the system to be in
what we call a “high” entropy state. For example, gas
molecules released in the center of a box tend to fill the box.
Physics does not prevent the molecules from coming
together by chance and regather at the center—it just does
not happen in practice because such an event has an
extremely low probability. However, probability argument
alone has no distinction towards the past or the future, and
since physical laws are fundamentally time symmetric, the
arrow of time can only be explained by the initial
conditions. To quote Feynman [1], “for some reason, the
universe at one time had a very low entropy for its energy
content, and since then the entropy has increased...”.

Therefore, ultimately this is a problem of cosmology;
why was the entropy so low at the big bang? (See, however,
[2].) This problem has received a lot of attention in the
literature (see, for example, [3–18]).
Therefore, we must first understand what it means for

entropy to be low in the very early Universe. The
observations of the cosmic microwave background
(CMB) indicates that at the time of recombination, matter
and radiation (together referred to as the “matter sector”)
had reached thermal equilibrium, as shown by the
Planckian black body spectrum. However, the Universe
as a whole was not in thermal equilibrium, otherwise it
would stay more or less unchanged and no interesting
structures could ever emerge, except due to occasional
fluctuations [15]. The low-entropy reservoir was in the
gravity sector; the gravitational degrees of freedom were
not thermalized. To understand this we recall that a
uniformly distributed hot gas in a box is in what we
ordinarily would refer to as a high-entropy state, in the
absence of gravity. When gravity is present, the natural
tendency is for matter to clump due to their mutual
attraction. Thus an extremely uniformly distributed hot
gas in the very early Universe (with the density perturbation
being a mere δρ=ρ ∼ 10−5) was of low-gravitational
entropy, which has since increased via gravitational col-
lapse. To understand the initial low entropy of the Universe
thus amounts to understanding why the gravitational
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entropy was so low at the big bang.2 This is a difficult task
because the notion of “gravitational entropy”—a term that
we have been using with impunity thus far—is far from
being well understood [20].
In fact, one should distinguish between entropy caused

by gravity acting on matter, and entropy of gravity—
hereinafter by gravitational entropy we mean the latter.
Wallace has argued that gravitational entropy is irrelevant
in most contexts except in black hole physics, and that it is
enough to consider the dynamics caused by gravitational
interactions [21]. In any case, let us consider gravitational
collapse and formation of a black hole thereafter. As we
explained above, this process conforms to the second law of
thermodynamics. In fact, black hole formation leads to an
enormous increase in entropy. Black holes possess a lot
more entropy compared to a typical matter configuration of
the same size and energy. Bekenstein-Hawking entropy
scales as S ∼ A, whereas for typical matter configurations,
S ∼ A3=4 [22–24]. Consequently, during the gravitational
collapse of a star, the entropy increases by a factor of
1020ðM=M⊙Þ1=2, where M⊙ denotes a solar mass [23].
Once a black hole is formed, provided there is no electrical
charge, then it becomes a vacuum solution and thus black
hole entropy is purely gravitational. Thus, gravitational
entropy makes sense at least in the case of black holes.
Therefore, to properly take into account the evolution of
entropy budget in the Universe, we still need to understand
entropy of gravitational fields. Of course, even if we are not
concerned with the arrow of time or cosmology in general,
the problem is itself interesting in black hole physics; what
is the physical interpretation of the Bekenstein-Hawking
entropy? What does it actually measure?3

This question can be asked at two levels; at a semi-
classical level and a quantum gravitational level. An
example of the latter is the approach of Strominger and
Vafa [28], which demonstrated with a very specific exam-
ple in string theory that a collection of branes turns into an
extremal black hole when a relevant coupling becomes
strong, and reproduces the Bekenstein-Hawking entropy.
Nevertheless, since the Bekenstein-Hawking entropy is a
quantity that is already defined in semiclassical setting, it
might be possible—and even desirable—to seek a descrip-
tion of the underlying physics at this level by appealing to
geometric quantities such as curvatures, regardless of the

nature of the more fundamental description. Perhaps by
doing so we may glimpse some hints of the microstates.
Penrose introduced the Weyl curvature hypothesis4

which states that the initial big bang singularity should
have zero Weyl curvature, whereas singularities in black
holes resulted from gravitational collapse and any putative
big crunch singularity would have large Weyl curvature
[7,8]. Since the Weyl curvature quantifies tidal deforma-
tions, this is just the statement that we expect black hole and
big crunch singularities to exhibit very messy and chaotic
curvature behavior, perhaps like those in the Belinski-
Khalatnikov-Lifshitz description [30,31]. In contrast, Weyl
curvature was zero at the big bang, which means that it was
much more “orderly” in some sense, corresponding to a
low entropy state. It turned out that Penrose never meant for
the Weyl tensor to be a measure of gravitational entropy in
general [32]. Nevertheless, motivated by the Weyl curva-
ture hypothesis, various proposals for such a measure based
on the Weyl curvature have indeed been explored in the
literature, see, e.g., [33,34]. The simplest of which, in five
dimensions, is to use the squaredWeyl tensor as the entropy
density function

Sgrav ¼
Z

CabcdCabcddV4; ð1Þ

where dV4 ¼
ffiffiffi
h

p
d4x is the hypersurface volume element.

In fact, this procedure reproduces correctly the Bekenstein-
Hawking entropy

Sgrav ¼
A
4
¼ π2r3H; ð2Þ

for five-dimensional Schwarzschild black hole and
Schwarzschild-anti–de Sitter black hole up to a constant
prefactor [35]. The five-dimensional restriction is due to the
physical dimension of CabcdCabcd; in other dimensions in
order to reproduce the correct dimension for entropy, one
has to take some power ðCabcdCabcdÞk, but k would depend
on spacetime dimensions, which seems rather ad hoc and
thus not desirable. In addition, in this proposal it is
necessary to remove a region close to the singularity
r ¼ 0, which otherwise would result in a divergent integral.
Unfortunately, even if we omit these technical issues, the

proposal (1) cannot reproduce the gravitational entropy of
five-dimensional Gauss-Bonnet black holes [36], and even
that of five-dimensional Reissner-Nordström black holes
[35]. Although it is possible that proposal (1) only works in
Einstein’s gravity in a pure vacuum, it is certainly desirable
to have a better proposal that can work in more general
settings. This is our aim. In the following we propose to use

2One proposal is to weaken gravity in the early Universe by
varying the gravitational constant G, so that the uniformly
distributed matter did indeed correspond to a “more typical”
high entropy state [19].

3It is in some sense a measure of our ignorance. As Bekenstein
put it [25], black hole entropy is “the measure of the inacces-
sibility [original emphasis] of information (to an exterior
observer) as to which particular internal configuration of the
black hole is actually realized in a given case.” See also the recent
analysis of the historical development [26]. However, see also the
objections raised in [27].

4Implementing the Weyl curvature hypothesis in a cosmologi-
cal setting is not a trivial task, and some of its explicit realizations
delivered inconsistent results for physically plausible cosmolo-
gies [29].
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the Cartan curvature invariants and the Newman-Penrose
scalars to construct a gravitational entropy function. The
constructive procedure for our result works in the following
way. Considering theories governed by the Lagrangian

L ¼ R
2
−
1

2
gab∇aΦ∇bΦ − VðΦÞ; ð3Þ

where Φ is a scalar field and R the Ricci scalar, from
Eq. (96) in Ref. [37] we can write the entropy as a surface
integral over a section of the horizon,

S ¼ 1

4

I
d2V: ð4Þ

This idea was pioneered by Wald who claimed that black
hole entropy is a Noether charge [38], and subsequently
reapplied by other authors using the so-called Hamiltonian
method and the first law of thermodynamics (which holds
on the horizon) [39–41]. We remark that this is a surface
integral over the angle variables while the radial coordinate
is fixed. This expression is meaningful on a horizon only5

because if computed on some other arbitrary location ra it
delivers πr2a which is an irrelevant constant (with respect to
the black hole parameters as mass, electric charge, cos-
mological constant, etc.) playing no role in the thermody-
namical description of the black hole since entropy is a
function of state. Let us now try to apply Gauss theorem to
this result. We introduce the inward and outward null
normals to the horizon lμ and nμ satisfying the Newman-
Penrose normalization lμnμ ¼ −1 [42]. Thus the entropy in
(4) is

S ¼ −
1

4

I
χμðlμ þ nμÞd2V; ð5Þ

where χμ is an appropriate current to be found. An easy
computation reveals that, up to a proportionality constant α,
the vector we need is χμ ¼ lμ þ nμ. Then, by Gauss
theorem we have

S ¼ α

Z
divðlþ nÞdV: ð6Þ

In the Newman-Penrose formalism, the divergence of lμ is
denoted ρ and the divergence of nμ is denoted μ [42], which
for static black holes are equal to each other. According to
Gauss theorem, only what is inside the boundary is
relevant, and therefore the integral in the radial direction
should be taken up to the location of the horizon since (4)
was computed there [but adding “constant” contributions of
the type πr2a (as in [35]) would anyway not affect the

thermodynamical description]. This is reminiscent of the
applicability of the first law of thermodynamics on the
horizon, and it is consistent both with the Clifton-Ellis-
Tavakol method [33], the Bekenstein interpretation that his
entropy is a measure of the amount of information hidden
by the horizon, and even with the interpretation of black
hole entropy as a quantification of the level of entanglement
of the degrees of freedom on the two sides of the horizon,
since only the boundary between the two subsystems
contributes [43,44].
Our paper is intended to check explicitly proposal (6) in

a number of specific configurations, and to point out that
thanks to the Bianchi identity it can be used to reconcile the
Hawking-Bekenstein entropy formula with the Weyl cur-
vature hypothesis. Actually, due to some algebraic degen-
eracy of the Weyl tensor in spherically symmetric black
hole solutions we will identify various possibilities of
choosing the normalization constant. We start with static
black holes and show that it works in four and five
dimensions for all static spherically-symmetric black hole
solutions (not restricted to vacuum). This can be general-
ized to higher dimensions. Extensions to modified theories
of gravity, as well as applications to dynamical black holes
and cosmology are discussed next. Finally, we will con-
clude with some discussions. In particular, we will also
mention the rotating case, with the Kerr solution as a
specific example, of which entropy we computed but with
some subtle difficulties.

II. CASE I: STATIC SPHERICALLY
SYMMETRIC BLACK HOLES

A. Four-dimensional black holes

Choosing a system of Schwarzschild-like coordinates,
the metric of a static spherically symmetric black hole takes
the familiar form

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dθ2 þ r2 sin2 θdϕ2: ð7Þ

In general relativity, explicit solutions admitting these
symmetries have been found both in empty spacetime
and in matter-filled regions, with a wide class of asymptotic
behaviors. Being more specific, the Schwarzschild solution
represents a case of vacuum and asymptotically flat
spacetime, the Reissner-Nordström black hole is asymp-
totically flat but supported by an electric field generated by
the black hole charge, the Schwarzschild-(anti–) de Sitter
black hole arises for a vanishing stress-energy tensor
but it is not asymptotically flat due to the effect of a
cosmological constant term, and finally the Reissner-
Nordström–(anti–)de Sitter spacetime is neither asymptoti-
cally flat nor vacuum. In this latter case, the metric function
is given by

5Indeed the location of the horizon depends on the black hole
parameters which govern the thermodynamical evolution of the
black hole.
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fðrÞ ¼ 1 −
2M
r

þQ2

r2
−
Λ
3
r2; ð8Þ

where M and Q are respectively the black hole mass and
electric charge, and Λ the cosmological constant, and the
previously mentioned cases can be reobtained by setting
one or two of these parameters to zero. These spacetimes
admit one or two horizons located at rH for which fðrHÞ ¼
0 depending on the interplay between the values of the
various parameters.
For the spacetime (7) we can compute the Newman-

Penrose scalar [42] Ψ2 and the following components
of the first order frame derivative of the Weyl tensor W ¼
Cabcd as6

Ψ2 ¼
r2f00 − 2rf0 þ 2f − 2

12r2
;

DW ¼
ffiffiffiffiffiffi
2f

p ðr2f00 − 2rf0 þ 2f − 2Þ
8r3

; ð9Þ

where a prime denotes a derivative with respect to the radial
coordinate r, and D≡ na∇a is the namesake Newman-
Penrose directional derivative. These results have been
found adopting the null coframe

la ¼
1ffiffiffi
2

p
� ffiffiffiffiffiffiffiffiffi

fðrÞ
p

dt −
drffiffiffiffiffiffiffiffiffi
fðrÞp �

;

na ¼
1ffiffiffi
2

p
� ffiffiffiffiffiffiffiffiffi

fðrÞ
p

dtþ drffiffiffiffiffiffiffiffiffi
fðrÞp �

;

ma ¼
rdθ þ ir sin θdϕffiffiffi

2
p ; ð10Þ

where i2 ¼ −1, which allows us to cast the spacetime
metric (7) as

ds2 ¼ −2lðanbÞ þ 2mðam̄bÞ; ð11Þ

with an overbar denoting a complex conjugation, and the
parentheses standing for symmetrization. The null coframe
is characterized by the relations lala ¼ nana ¼ mama ¼
m̄am̄a ¼ 0 and −lana ¼ 1 ¼ mam̄a. This is the “canonical

frame” for the metric (7) [46] making the quantity DW a
Cartan curvature invariant with the property of being
foliation independent [47].
Unlike the aforementioned proposal (1) which requires

taming the divergence at the pole r ¼ 0 by an arbitrary
cutoff, by considering (9) we can do away with the need for
regularization and simply define gravitational entropy by

Sgrav ≔
1

3
ffiffiffi
2

p
Z

rH

0

Z
Ω

����DW
Ψ2

���� r2 sin θffiffiffiffiffiffiffiffiffi
fðrÞp drdθdϕ ¼ πr2H ¼ A

4
;

ð12Þ

in agreement with the entropy-area law, or in other words
with the holographic principle [48,49]. The proportionality
constant 1=ð3 ffiffiffi

2
p Þ will be discussed in Sec. II B. The

integration over r is somewhat mysterious as r is a temporal
coordinate inside the black hole. For the Schwarzschild and
Schwarzschid–(anti–)de Sitter cases, one might be tempted
to explain this by arguing that entropy has to do with time
evolution, and so it is natural to integrate over a timelike
coordinate. In fact, Edery and Constantineau have proposed
identifying gravitational entropy with the nonstationary
nature of black hole interior [50] for essentially the same
reason. However, if this proposal is correct, then extremal
black holes would have zero entropy, which goes against
the current consensus (especially in the string theory and
holography community) that extremal black holes should
also have entropy A=4 (however, this is not a settled debate,
see [51,52]). Furthermore, our approach of integrating over
r ∈ ð0; rHÞ correctly reproduces the Bekenstein-Hawking
entropy of a Reissner-Nordström black hole regardless of
whether ∂=∂r is timelike or spacelike in the interval. Thus,
it would seem that gravitational entropy defined in this way
is not directly related to stationarity of the interior region.
The following point should be noted: although the inte-
gration up to any arbitrary r of our entropy density delivers
a geometrical result which is an area, this quantity bears
the physical meaning of an entropy only if computed at the
horizon. We can elucidate this fact by considering the
simplest case of a Schwarzschild black hole for which
rH ¼ 2M; a variation of the black hole entropy δSgrav
would require a variation of the black hole size δrH
which ultimately would require an evolution δM of the
black hole inside the parameter phase space. On the
other hand a variation of a generic r does not imply a
change in the physical properties of the black hole; thus our
integral, if computed in some exterior regions, does not
deliver an entropy consistent with Hawking-Bekenstein
interpretation.
Taking into account that according to the geodesic

deviation equation the strength of tidal forces is related
to the derivative of the Weyl tensor (see, e.g., [53,54] for
some recent investigations along this line in the Reissner-
Nordström and Kiselev spacetimes), we can see that the

6For Petrov type D spacetimes, which include the Kerr-
Newman family, Ψ2 ¼ Cabcdnambm̄cld is the only nonzero Weyl
scalar [45]. Since each frame component of the Weyl tensor and
its derivative are Cartan scalar with physical significance, we
prefer to omit the tensorial indices in our notation for simplicity.
Furthermore, taking into account the algebraic degeneracy of the
Weyl tensor in the spacetimes we are investigating in this paper,
which implies that some frame components of the Weyl tensor
only differ from each other by a multiplicative constant, we adopt
W as a unified notation which can either stand for Ψ2, the frame
component ϕ̂ r̂ θ̂ t̂, or ϕ̂ θ̂ θ̂ ϕ̂, etc., (and the same for DW). The
reason is that we will derive our results up to a multiplicative
constant anyway.
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density of gravitational entropy is directly connected to the
strength of tidal forces which are indeed necessary for the
existence of a compact object to which an entropy is
assigned like the black hole. It is worth noting that tidal
forces have been claimed to be a form of gravitational
waves [55], although the former depend only on the electric
part of the Weyl curvature while the latter also requires
some gravitomagnetic effects.
Furthermore, adopting the same language of Clifton-

Ellis-Tavakol [33] by writing

Sgrav ¼
Z
V

ρgrav
Tgrav

dV; ð13Þ

we can interpret the Cartan invariants DW andW ¼ jΨ2j to
be the energy density and temperature of the gravitational
field, respectively. It should be appreciated that our pro-
cedure is not sensitive to the matter content of the spacetime,
its asymptotic flatness properties, or to the fact that fðrÞ
should be found by integrating the Einstein equations for
having a physically relevant spacetime; all we require is the
existence of a horizon. We also note that the vanishing of the
Cartan invariant DW on the horizon, which made it an
appropriate quantity for taming the teleological nature of
black hole spacetimes [56], is cured by the same property of
the function 1=

ffiffiffiffiffiffiffiffiffi
fðrÞp

entering the hyperspace volume
element dV3 ¼ ðr2 sin θ= ffiffiffiffiffiffiffiffiffi

fðrÞp Þdrdθdϕ.
In the cosmological contexts investigated in [57], in

order to deal with the so-called isotropic singularity, a
rescaling of the Weyl curvature in the gravitational entropy
proposal was introduced,

CabcdCabcd ⟼
CabcdCabcd

RabRab : ð14Þ

Remarkably, our recipe essentially involves only the Weyl
curvature, making it more preferable as a measure of the
gravitational entropy density because the matter content of
the spacetime does not directly affect it.
Our result can be extended beyond the metric assumption

of (7). In fact, let us now consider the metric of a static
spherically symmetric but deformed black hole [58,59]

ds2 ¼ −fðrÞ½1þ hðrÞ�dt2 þ ½1þ hðrÞ�dr2
fðrÞ þ r2dΩ2; ð15Þ

where in the most general case the deformation function is
written as

hðrÞ ¼
X∞
k¼0

ϵk

�
M
r

�
k
; ð16Þ

with ϵk being the deformation parameters. The Cauchy,
Killing, and apparent horizon(s) [37] coincide and can still be
found by solving fðrHÞ ¼ 0. This framework allows one to
study post-Newtonian effects in astrophysical phenomena
[60–63]. Replacing la and na in the null coframe (41) with

la ¼
1ffiffiffi
2

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðrÞ½1þ hðrÞ�
p

dt −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ hðrÞ
fðrÞ

s
dr

�
;

na ¼
1ffiffiffi
2

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðrÞ½1þ hðrÞ�
p

dtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ hðrÞ
fðrÞ

s
dr

�
; ð17Þ

without modifying ma and m̄a (since the angular part of the
metric remains unchanged), we get for the Weyl curvature
and its frame derivative,

Ψ2 ¼
r2ð1þ hÞ2f00 þ r2fð1þ hÞh00 þ rð1þ hÞðrh0 − 2h − 2Þf0 − fðh0Þ2r2 þ 2ð1þ hÞ2ðf − 1 − hÞ

12ð1þ hÞ3r2 ; ð18Þ

DW ¼ ½r2ð1þ hÞ2f00 þ r2fð1þ hÞh00 þ rð1þ hÞðrh0 − 2h − 2Þf0 − ðh0Þ2fr2 þ 2ð1þ hÞ2ðf − 1 − hÞ� ffiffiffiffiffiffi
2f

p
8ð1þ hÞ7=2r3 ; ð19Þ

which allows us to reproduce the result in (12) simply by
noticing that now we should modify the volume element as

dV3 ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þhðrÞ
fðrÞ

q
r2 sin θdrdθdϕ for taking into account the

black hole deformations.
We would like to mention that if we consider a metric

tensor obeying the symmetry [64]

ds2 ¼ −AðrÞdt2 þ dr2

BðrÞ þ r2ðdθ2 þ sin2dϕ2Þ;

AðrÞ ≠ BðrÞ; ð20Þ

and work in the coframe

la ¼
1ffiffiffi
2

p
� ffiffiffiffiffiffiffiffiffi

AðrÞ
p

dt −
1ffiffiffiffiffiffiffiffiffi
BðrÞp dr

�
;

na ¼
1ffiffiffi
2

p
� ffiffiffiffiffiffiffiffiffi

AðrÞ
p

dtþ 1ffiffiffiffiffiffiffiffiffi
BðrÞp dr

�
; ð21Þ

we can compute
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Ψ2 ¼
ð2AA00Bþ AB0A0 − ðA0Þ2BÞr2 − 2AðAB0 þ A0BÞrþ 4A2ðB − 1Þ

24ðrAÞ2 : ð22Þ

Therefore, a postulated entropy density of the form DΨ2

Ψ2
≡ffiffiffiffiffiffiffi

BðrÞ
p ∂rΨ2ffiffi

2
p

Ψ2

is not consistent with the area law. Indeed several

non-black hole solutions of the Einstein equations which
are interpreted as fluid or gaseous sphere in equilibrium
(the interior Schwarzschild solution being the prototype),
for which the Hawking-Bekenstein law does not hold,
come in the form of (20) [65], Sec. 16.1. This failure is
consistent with the known results in the literature allowing
us to argue that our proposal of entropy density is general
enough to cover the relevant cases but not too general. In
other words, this example shows that our proposal neither
constitutes a trivial numerical coincidence nor a general
property of the Weyl tensor; instead it suggests a con-
nection between the physical interpretation of the quantity
DW=Ψ2 as an entropy density.
As an explicit example, the Tolman metric IV comes

with7

AðrÞ ¼ Y2

�
1þ r2

X2

�
; BðrÞ ¼ ð1 − r2

R2Þð1þ r2

X2Þ
1þ 2r2

X2

; ð23Þ

with X, Y, and R being some constants. It describes a
sphere of compressible fluid in hydrostatic equilibrium
supported by a pressure vanishing at the boundary of the
configuration [66]. Specifying (22) we obtain

Ψ2 ¼ −
ðX2 þ 2R2Þr2
3R2ðX2 þ 2r2Þ2 ; ð24Þ

and

Z
R

0

���� 2ðX2 − 2r2Þ
rðX2 þ 2r2Þ

����r2dr ¼ ½r2 − X2 lnðX2 þ 2r2Þ�jR0

¼ R2 − X2 ln

�
1þ 2

�
R
X

�
2
�

< R2:

ð25Þ

Thus, our method shows that the entropy within this stellar
configuration is smaller than what it would be for a black
hole. This is consistent with the increase of entropy during
black hole formation phase [23].
Now, let us remark on the stationary but not static case,

with the Kerr solution as an example. The Kerr black hole is
axially symmetric but not spherically symmetric. We can

apply the Newman-Janis trick [67,68] by introducing the
complex coordinate r0 ≔ r − ia cos θ and its complex
conjugate r̄0, where a is the rotation parameter. Then we
can deal with the resulting line element

ds2 ¼ −
�
1 −M

�
1

r0
þ 1

r̄0

��
dt2 þ r0r̄0dr02

r0r̄0 −Mðr0 þ r̄0Þ
þ r0r̄0ðdθ2 þ sin2θdϕ2Þ: ð26Þ

Hence, mutatis mutandis we have Ψ2 ¼ − M
r03 and

DΨ2

Ψ2
is the

appropriate entropy density for obtaining Sgrav ¼ πr0Hr̄
0
H ¼

πðr2H þ a2cos2θaÞ. Unfortunately, this result depends on
the angle θ, and only recovers the correct result for the
entropy S ¼ πðr2H þ a2Þ if θa ¼ 0 or θa ¼ π, i.e., along the
axis of rotation. The problem may be due to mathematical
subtleties in the procedures that require further investiga-
tion. For example, if tackled by adopting Boyer-Lindquist
coordinates, the integrals over r and θ do not factor and
they are obstructed by the black hole singularity which is
related by a condition which involves both of these
coordinates (e.g., when we integrate over r how do we
take care of the singularity at θ ¼ π=2, if we need to
integrate over the angle later on?). We will leave this issue
for future investigations.

B. Five-dimensional black holes

Now we will consider the case of the five-dimensional
counterpart of (7) by writing

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ
þ r2ðdθ2 þ sin2 θdϕ2 þ sin2 θ sin2 ϕdω2Þ; ð27Þ

where we can consider8

fðrÞ ¼ 1 −
2M
r2

þQ2

r4
−
Λr2

6
; ð28Þ

for an explicit solution which, for the Λ < 0 case, is
of interest in string theory and for applications of the
AdS=CFT correspondence [69]. By following Eqs. (4.1.2)–
(4.1.3) in Ref. [56] we introduce the following canonical
frame

7If we consider the interior Schwarzschild solution for which

AðrÞ ¼ ðX − Y
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2

R2

q
Þ2 and BðrÞ ¼ 1 − r2

R2 we would get the
trivial result Ψ2 ¼ 0.

8For convenience, here M and Q are the normalized mass and
charge, which are proportional to the Arnowitt-Deser-Misner
one, so we can avoid writing some factors of π, and so on.
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la ¼
1ffiffiffi
2

p
�

drffiffiffiffiffiffiffiffiffi
fðrÞp −

ffiffiffiffiffiffiffiffiffi
fðrÞ

p
dt

�
;

na ¼
1ffiffiffi
2

p
�

drffiffiffiffiffiffiffiffiffi
fðrÞp þ

ffiffiffiffiffiffiffiffiffi
fðrÞ

p
dt

�
; ma1 ¼ rdθ;

ma2 ¼ r sin θdϕ; ma3 ¼ r sin θ sinϕdω; ð29Þ

in terms of which the metric (27) reads ds2 ¼ −2lðanbÞþ
Σ3
i¼1miðambÞi, and we get

W ¼ α
r2f00 − 2rf0 þ 2f − 2

r2
;

DW ¼ β

ffiffiffiffiffiffi
2f

p ðr2f00 − 2rf0 þ 2f − 2Þ
r3

: ð30Þ

Note that there is a subtle difference here compared to the
previous cases: in five-dimensions we cannot construct a null
coframe, and so we do not have the Newman-Penrose Ψ2.
However, we can still explicitly fix a frame and compute the
Weyl curvature W and its frame derivative DW.
We can choose either α ¼ 1=4; 1=12, or β ¼ 1=6; 1=12.

This is because some of the frame components of the Weyl
tensor and of its first derivative are algebraically dependent
upon each other. By the theorems due to Cartan these are
scalars (because they have been computed in the frame
constructed in [56]) and thus they are well-defined inte-
grands. This means that we have some freedom in tuning
the constant appearing in front of the integral (if it has some
relevant physical meaning) depending on which choices we
make. Thus, by recalling that in five dimensions the volume
element is dV4 ¼ r3 sin2 θ sinϕdrdθdϕdω=

ffiffiffiffiffiffiffiffiffi
fðrÞp

, we can
obtain the higher-dimensional entropy-area law again as

Sgrav ¼ γ

Z
rH

0

Z
Ω

����DW
W

����dV4 ¼
π2

2
r3H ¼ A

4
; ð31Þ

where we report in Table I the values that γ should take
according to the choices we make for the values of α and β.
We would like to mention that in four-dimensions we also
have a second possibility if we choose to work with W ¼
2Ψ2 rather than with W ¼ Ψ2 which will affect the
proportionality constant in (12) by a factor of 2.

Similar to the proposal in [35], the proportionality
constant γ can only be fixed a posteriori if we want to
get the 1=4 factor in the area law. In other words, our
proposal can only obtain the Bekenstein-Hawking entropy
up to a constant prefactor. However, it should be empha-
sized that unlike in the analysis in [35] we are not restricted
to the zero-charge configuration. In addition, our proposal
should work in higher dimensions, mutatis mutandis.

C. Extensions beyond general relativity

Our method of constructing an appropriate entropy
density for the Bekenstein area law for static black holes
in four and five spacetime dimensions does not need to
assume any specific choice for the function fðrÞ entering
the metric tensors (7) and (27); the solution does not need
to be vacuum,9 and furthermore, it does not need to be a
solution of the Einstein’s field equations. Therefore, an
area law is reproduced also for black holes arising in
modified gravity theories because our method is purely
geometrical. However, this may not correspond to an
entropy formula because modifications of the underlying
gravitational theory affects the Bekenstein law in non-
trivial ways (so that in general it is no longer 1=4 times the
horizon area). To put it differently, black hole entropy is a
dynamical quantity (which depends on the field equa-
tions), unlike its temperature which is kinematical [73–
75]. Two examples of modified gravity in which black
hole entropy takes a different form (S ≠ A=4) are fðRÞ
gravity [76–80] and the Einstein–Gauss-Bonnet gravity
[81–83].
For example, in the Einstein–Gauss-Bonnet case the

five-dimensional black hole has metric function

fðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ r2

4δ

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 128πδM

3Σkr4
þ 4δΛ

3

s �vuut ; ð33Þ

where Σk is the unit volume of the manifold with a constant
sectional curvature k ∈ f−1; 0; 1g (with the former two
choices being admissible only if Λ < 0), and δ denotes the
Gauss-Bonnet coupling parameter. The black hole entropy
is given by

Sgrav ¼
π2r3H
2

�
1þ 12δk

r2H

�
: ð34ÞTABLE I. The value that the proportionality constant γ ¼ 3

ffiffi
2

p
α

8β
should take in the entropy formula (31) depending on the values
of α and β we consider in (30).

α β γ

1
4

1
6

9
ffiffi
2

p
16

1
4

1
12

9
ffiffi
2

p
8

1
12

1
6

3
ffiffi
2

p
16

1
12

1
12

3
ffiffi
2

p
8

9For example, it can also be applied to regular black holes,
such as the generalized Bardeen solution in the presence of
nonlinear electrodynamics [70–72], whose metric function in
four dimensions is given by

fðrÞ ¼ 1 −
2Mr2

ðr2 þQ2Þ3=2 þ
Q2r2

ðr2 þQ2Þ2 : ð32Þ
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Therefore, our method can be applied directly in the
particular case k ¼ 0, but otherwise some curvature cor-
rections would be required to obtain the second term. Thus
far we have not found a good way to achieve this without
resorting to some very nontrivial manipulations that do not
seem to be as natural. Regardless of whether a better
prescription can be found, it is clear that whenever the area
law is modified, our method no longer works straightfor-
wardly. This is exactly because our prescription is purely
geometrical and does not rely on the field equations. This
might hint at a deeper nature of gravitational entropy; since
we need to pick different combinations of the curvature
objects to account for the correction term to the Bekenstein
area law, it is possible that gravitational entropy in different
theories of gravity is actually a manifestation of different
physical effects (e.g., the Weyl curvature is related to tidal
forces). See Sec. IV for more discussions.
On the other hand, by studying the first law of thermo-

dynamics and using the fact that temperature is the
conjugate variable of the entropy, it was argued that the
Bekenstein area law still holds in Weyl gravity [84] and
massive gravity [85]. Thus, our result for the entropy
density would hold for the class of black holes that account
for modified Newtonian dynamics effects via a linear term
in the redshift function

fðrÞ ¼ 1 −
2M
r

þ εr −
Λr2

3
; ð35Þ

which arises in general relativity (e.g., the Kiselev sol-
ution), conformal gravity and massive gravity [86,87].

III. DYNAMICAL BLACK HOLES AND
COSMOLOGICAL APPLICATIONS

A. General case

Next, we shall explore dynamical spacetimes. First, let us
consider a spacetime which can be adopted as a math-
ematical model for describing either the collapse of cosmic
material leading to the formation of a black hole or an
inhomogeneous expanding universe. The line element of a
dynamical spherically-symmetric spacetime is given by
[65], p.251

ds2 ¼ −e2νðt;rÞdt2 þ e2λðt;rÞdr2

þ X2ðt; rÞðdθ2 þ sin2 θdϕ2Þ; ð36Þ

where the functions νðt; rÞ, λðt; rÞ, and Xðt; rÞ should be
found as solutions of the field equations once the matter
content of the spacetime is given. By noticing that for static
spherically symmetric spacetimes, such as the ones inves-
tigated in Sec. II A, we have μ ¼ ρ ∝ DΨ2=Ψ2 for the
Newman-Penrose spin coefficients, we can construct an
appropriate entropy density formula for the spacetime (36)
as follows. We introduce the coframe

la ¼
eνðt;rÞdt − eλðt;rÞdrffiffiffi

2
p ; na ¼

eνðt;rÞdtþ eλðt;rÞdrffiffiffi
2

p ;

ma ¼
Xðt; rÞdθ þ iXðt; rÞ sin θdϕffiffiffi

2
p ; ð37Þ

and compute

ρ ¼ X0ðt; rÞe−λðt;rÞ þ _Xðt; rÞe−νðt;rÞffiffiffi
2

p
Xðt; rÞ ;

μ ¼ X0ðt; rÞe−λðt;rÞ − _Xðt; rÞe−νðt;rÞffiffiffi
2

p
Xðt; rÞ ; ð38Þ

where an overdot stands for a time derivative.
Then, considering the spatial volume element dV3 ¼
eλðt;rÞX2ðt; rÞ sin θdrdθdϕ, the area law in terms of the
areal radius r̃ ≔ Xðt; rÞ is found as

Sgrav ¼ γ

Z
rH

0

Z
Ω

���μþ ρ

2

���dV3 ¼
ffiffiffi
2

p
πγ

Z
rH

0

X0ðt; rÞXðt; rÞdr

¼ πγffiffiffi
2

p X2ðt; rHÞ ¼ πr̃2H; ð39Þ

where in the last step we have chosen γ ¼ ffiffiffi
2

p
.

B. Specializing to the Lemaître-Tolman-Bondi
spacetime

A specific subcase of (36) for dust-filled spacetimes is
the Lemaître-Tolman-Bondi metric [88]

ds2 ¼ −dt2 þ ½X0ðt; rÞ�2
1þ 2EðrÞ dr

2 þ X2ðt; rÞdΩ2: ð40Þ

Depending on the sign of the expansion rate, this metric can
also be adopted for describing an expanding inhomo-
geneous universe by interpreting the function EðrÞ as
the generalization of the constant spatial-curvature param-
eter k of the Friedman universe [89]. Working now in the
coframe

la ¼
1ffiffiffi
2

p
�
dt −

X0ðt; rÞdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2EðrÞp �

;

na ¼
1ffiffiffi
2

p
�
dtþ X0ðt; rÞdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2EðrÞp �
;

ma ¼
Xðt; rÞdθ þ iXðt; rÞ sin θdϕffiffiffi

2
p ; ð41Þ

we obtain

Ψ2 ¼
−X2Ẍ0 þX _X _X0 þXẌX0 þ ð2E− _X2ÞX0−XE0

6X2X0 ; ð42Þ
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DW ¼
ffiffiffi
2

p ½−X2Ẍ0 þ X _X _X0 þ XẌX0 þ ð2E − _X2ÞX0 − XE0�ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p þ _XÞ
4X3X0 ; ð43Þ

for the Weyl scalar and the frame derivative of the Weyl
tensor. Thus,

DW
Ψ2

¼ 3ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p þ _XÞffiffiffi
2

p
X

: ð44Þ

If we further assume the model to describe a quickly
expanding universe, or that the black hole formation
process is occurring slowing as compared to the curvature
effects, so that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p
≫ − _X, we can again reproduce

the Bekenstein law in terms of the areal radius because

Sgrav¼
1

3
ffiffiffi
2

p
Z

rH

0

Z
Ω

����DW
Ψ2

����X0X2 sinθffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2E

p drdθdϕ

≈2π

Z
rH

0

Xðt;rÞX0ðt;rÞdr¼ πX2ðt;rHÞ¼ πr̃2H: ð45Þ

This route corresponds to consider the entropy density as
given by the Newman-Penrose spin coefficient μ. On the

other hand, we get ρ ¼
ffiffiffiffiffiffiffiffiffi
1þ2E

p
− _Xffiffi

2
p

Xðt;rÞ , which can be used as an

entropy density function in the regime in whichffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p
≫ _X. In the intermediate cases, the appropriate

entropy density function to consider is ∝ jμþ ρj, as already
discussed in the general framework. As a mathematical
remark, we need to mention that the spin coefficients are
suitable integrands being scalars in the spacetime consid-
ered in this section [90].

C. Friedman-Lemaître-Robertson-Walker
and (anti–)de Sitter limit

We have noted that in the case of static and spherically
symmetric black holes discussed in Sec. II A, the entropy
density can be equivalently written in terms of the
Newman-Penrose spin coefficients because

μ ¼ ρ ∝
DW
W

: ð46Þ

This observation has helped us when finding the entropy
density function in dynamical spherically symmetric space-
times and it also constitutes a hint for extending our
formalism to the conformally flat case of the Friedman-
Lemaître-Robertson-Walker universe. In this case, the
metric tensor is

ds2¼−dt2þ a2ðtÞ
1−kr2

dr2þa2ðtÞr2ðdθ2þ sin2 θdϕ2Þ; ð47Þ

where k ∈ f1; 0;−1g for the cases of closed, flat, and
hyperbolic universes, respectively. In the null coframe

la ¼
1ffiffiffi
2

p
�
dt −

aðtÞdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p
�
;

na ¼
1ffiffiffi
2

p
�
dtþ aðtÞdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − kr2
p

�
;

ma ¼ aðtÞ rdθ þ ir sin θdϕffiffiffi
2

p ; ð48Þ

we get the following result for the Newman-Penrose spin
coefficients of interest,

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p
− _arffiffiffi

2
p

aðtÞr ; μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p
þ _arffiffiffi

2
p

aðtÞr : ð49Þ

Considering the volume element dV3 ¼ a3ðtÞr2 sin θdrdθdϕffiffiffiffiffiffiffiffiffi
1−kr2

p , and

taking into account that for a Friedman-Lemaître-
Robertson-Walker spacetime the spin coefficients ρ and
μ can be written in terms of scalar quantities [90] making
them suitable as integrand functions, we can compute10

Sgrav ¼
1ffiffiffi
2

p
Z

rH

0

Z
Ω

����ρþ μ

2

����dV3 ¼ 2πa2ðtÞ
Z

rH

0

rdr¼ πr̃2H;

ð50Þ

where once again we have introduced the areal radius
r̃ ≔ aðtÞr. It should be noted once again that our procedure
provides an appropriate entropy density for the Hawking-
Bekenstein law only if the upper endpoint of the integral is
given by the horizon location. For example for the de Sitter
universe we have r̃H ¼ ffiffiffiffiffiffiffiffiffi

3=Λ
p

, and therefore a variation
δSgrav would require a variation δr̃H and then a variation of
δΛ, e.g., of the physical properties of the universe. On the
other hand a variation δr does not require any variation of
the physical state of the universe, nor it implies a change in
its thermodynamical properties, as indeed the Hawking-
Bekenstein entropy is not associated to arbitrary spatial
domains but only to those bound by a horizon (in the
cosmological case it is better known as the Gibbons-
Hawking entropy [91]).

IV. DISCUSSION AND OPEN QUESTIONS

In this workwe have proposed a new gravitational entropy
density function based only on the Weyl curvature and its
derivative, working in the frame formulation to utilize the
Cartan invariants. It is an improvement compared to proposal

10Here we have in mind the dynamical apparent horizon
defined by the condition jj∇ar̃jj2H ¼ 0, where r̃ ≔ aðtÞr is the
areal radius [37].

UNDERSTANDING GRAVITATIONAL ENTROPY OF BLACK … PHYS. REV. D 105, 104017 (2022)

104017-9



(1), which in five-dimensional general relativity works only
for Schwarzschild black holes. Our proposal (12) in four
dimensions utilizes the Newman-Penrose scalarΨ2 (the only
nonzeroWeyl scalar for Petrov type-D spacetimes), which is
related to the Newman-Penrose spin coefficient11 ρ by
DΨ2 ¼ 3ρΨ2. The quantity ρ ¼ jj∇ar̃jj2 describes the
divergence of the null geodesic congruence and therefore
encodes the “strength of gravitational field” in focusing light
rays, and hence also governs the evolution of area element of
the horizon (as a trapped surface) [92]. Keeping in mind that
entropy is a function of state; only changes of entropy
between two different states are physically relevant, not the
entropy of a given state. We can therefore appreciate why it
makes sense for Ψ2 to appear in our gravitational entropy
function, along with the frame derivative of the Weyl tensor
which essentially encodes the effect of tidal forces. In the
five-dimensional case we cannot work with the Newman-
Penrose ρ or Ψ2 because one cannot construct the null
coframe. However, one can explicitly fix a frame and
compute the Weyl tensor and frame derivatives with respect
to this frame and work with those instead.
Much like the original proposal (1), we can only obtain

the area law up to a constant prefactor. In addition, we have
difficulties with deriving the entropy of black holes that is
not of the standard A=4 form in some modified theories of
gravity, such as fðRÞ gravity and Einstein-Gauss-Bonnet
gravity. However, this failure itself might be a hint at deeper
physics. In order to obtain the correct form of the modified
area law, in principle one has to choose other combinations
of curvature quantities to construct a different entropy
density function. Since many of these quantities have
physical significance (e.g., Weyl curvature being related
to the tidal deformation, ρ being related to the convergence
of light rays etc.), this suggests that gravitational entropy in
different theories of gravity might be a manifestation of
different physical effects. Consequently these black holes
might have very different underlying microstates or micro-
structures (whatever they might be) from black holes in
general relativity.
While mathematically straightforward, a mystery remains

regarding the physical interpretation of taking the volume
integral over r ∈ ð0; rHÞ, since for Schwarzschild black
holes r is a temporal coordinate, whereas for nonextremal
Reissner-Nordström black holes r is a temporal coordinate
between the inner and outer horizons. (We note that the
Clifton-Ellis-Tavakol proposal of gravitational entropy [33]
when applied to a Schwarzschild black hole also integrates
over r in exactly the same manner.) On the other hand, in the
case of cosmological spacetimes, the integral over r out
towards the apparent horizon is intuitively clear since r is a

radial coordinate.Why should these very different characters
of r be treated on equal footing?We leave this question open
for future consideration.
We started off with the call for a further understanding of

gravitational entropy with motivations stemming from the
cosmological conundrum of the arrow of time, which
emphasizes that in the very early Universe matter and
radiation were in thermal equilibrium but the gravitational
sector was not. It is perhaps curious as to why a proposal for
gravitational entropy—whichwe claimdescribes the entropy
of gravitational fields—wouldwork to reproduce the entropy
for a Reissner-Nordström black hole, which is a nonvacuum
solution. Perhaps this has to dowith the fact that gravitational
entropy depends on the Weyl curvature, and the Reissner-
Nordström black hole belongs to the Petrov class type-D
along with Schwarzschild black hole; that is, they share the
same symmetry as far as theWeyl tensor is concerned. By the
same logic, one would expect that the entropy of the Kerr
solution can also be computed in a similar manner (see also,
[33]). By exploiting theNewman-Janis algorithmwe showed
that this is indeed the case if one takes into account the role
played by the axis of rotation which breaks the spherical
symmetry by picking a preferred spatial direction, though
muchwork needs to be done in the future to fully understand
the mathematical subtleties involved.
Bekenstein introduced his entropy formula as the Shannon

information entropy applied to a black hole [25].On the other
hand, Hawking derived the same result invoking the concept
of thermodynamical entropy by claiming that the black hole
entropy should be related to the area because of the non-
decreasing theorems [93]. In this paper, we have explicitly
proved in some specific configurations that the Hawking-
Bekenstein entropy can be regarded also as gravitational
entropy because it can be written just in terms of the Weyl
curvaturewithout being sensitive to the matter content filling
the exterior region in which the black hole is placed (indeed
Bekenstein was interested in the entropy of the configura-
tions inside the horizon [94] which is a crucial difference
from the concept of entanglement entropy [95]). As a future
project we intend to investigate whether in cosmology our
same formula can be interpreted also as statistical entropy
(the number of different inhomogeneous realizations on
small scales which are compatible with the same coarse-
grained large-scale homogeneous one) for tackling the
structure formation problem; this would require one to check
whether in an arbitrary spatial region the entropy is an
increasing function of time in the same time intervals in
which the spacetime shear is. For example, this latter quantity
in the spacetime (36) reads

σ2 ¼ e−2νðt;rÞ½Xðt; rÞ_λðt; rÞ − _Xðt; rÞ�2
3X2ðt; rÞ : ð51Þ

It has already been argued that the formation of astrophysical
structures could be tracked following the evolution of some

11This is essentially the Bianchi identity, whose form holds
because the tangent vector field for the geodesic null congruence
is a double-principal null direction of the Weyl tensor
(Ψ0 ¼ Ψ1 ¼ 0) for the systems we considered [65], p.87.
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of the entropy proposals we mentioned in Sec. I [96], and in
particular of the Kullback-Leibler relative information
entropy [97]; the latter however relies on the distribution
of the cosmic matter density whose direct connection to the
Weyl curvature (e.g. tidal effects which trigger the gravita-
tional collapse) is in general not self evident.
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