PHYSICAL REVIEW D 105, 104014 (2022)

Entropy of Kerr-Newman-AdS black holes with torsion
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The canonical approach to black hole entropy in Poincaré gauge theory without matter is extended to
include the Maxwell field as a matter source. The new formalism is used to calculate asymptotic charges
and entropy of Kerr-Newmann-AdS black holes with torsion. The result implies that the first law, with a
nontrivial contribution of the Maxwell field, takes the same form as in general relativity.
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I. INTRODUCTION

The analysis of black hole spacetimes in general rela-
tivity (GR) shows that astrophysically, the most significant
among them are those produced by rotating massive bodies
[1]. The simplest spacetime of this type is the rotating,
asymptotically flat solution found by Kerr [2]. The Kerr
metric has been further generalized by including first the
electric charge, and then a nonvanishing cosmological
constant [3,4]. The final result of these generalizations is
the Kerr-Newman-Anti de Sitter (KN-AdS) black hole,
which is the most general stationary, asymptotically anti-de
Sitter solution of Einstein-Maxwell field equations [5].

Starting from the early 1980s, many well-known exact
solutions of GR have been generalized to solutions of the
Poincaré gauge theory (PG), a modern gauge theory of
gravity in which both the curvature and the torsion have
their own dynamical roles [6]. Successful constructions of
exact solutions with torsion [7-9] have been followed, inter
alia, by an intensive investigation of the concept of
conserved charge [10,11]. In contrast to that, a systematic
investigation of black hole entropy in PG has long been
neglected, although some incomplete attempts could have
been noticed in the literature, as noted in [12].

A few years ago, a general canonical approach to black
hole entropy in PG was proposed in [12]. The approach is
based on a canonical formulation of the idea developed in
GR, according to which entropy is just the Noether charge
on the horizon [13]. Applying this approach to a number of
black holes with or without torsion [14—16], we found a
somewhat unexpected result: in spite of many geometric
and dynamic differences with respect to GR, entropy of
black holes in PG without matter, as well as the associated
first law, follows essentially the same pattern as in GR, up
to a multiplicative constant. In the present paper, we extend
our investigation of entropy by introducing the Maxwell
field as a matter source for gravity (PG-Maxwell system).
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The analysis is focused on exploring thermodynamic
properties of the generalized KN-AdS black hole, con-
structed by Baekler ef al. [8] in the late 1980s.

The paper is organized as follows. In Sec. II, we present a
brief account of the general thermodynamic aspects of the
PG-Maxwell system. In particular, a new definition of the
black hole entropy in the presence of a Maxwell field is
introduced as a natural generalization of the earlier defi-
nition, valid in vacuum. In Sec. III, we describe geometric
aspects of the KN-AdS black hole as a solution of the PG-
Maxwell system. Next, in Secs. IV and V, we use these
results to calculate energy, angular momentum, and
entropy. The thermodynamic role of the Maxwell field
and the resulting first law are clarified in Sec. VI.
Section VII is devoted to concluding remarks, and appen-
dixes contain some important technical details.

Our conventions are the same as in Ref. [16]. The Latin
indices (i, J,...) are the local Lorentz indices, the Greek
indices (u, v, ...) are the coordinate indices, and both run over
0,1,2,3. The orthonormal coframe (tetrad) 9’ and the metric
compatible (Lorentz) connection @/ = —@/’ are 1-forms,
the dual basis (frame) is e; = ¢;#0,, the interior product
of e; with &/ is e; 19/ = 5{ , and A is the electromagnetic
potential 1-form. The metric components in the local
Lorentz and coordinate basis are 7;; = (1,-1,-1,-1) and
G = 1;j9 ¥, respectively, and ;;,, is the totally anti-
symmetric symbol with &41,3 = 1. The Hodge dual is marked
by a star *, and the wedge product of forms is implicit.

II. PG-MAXWELL SYSTEM

We begin with an overview of the general Lagrangian and
thermodynamic aspects of the PG dynamics in the presence
of a Maxwell field; for more details, see Refs. [12,17].

A. Lagrangian formalism

In PG, the structure of spacetime is characterized
by a Riemann-Cartan geometry, in which the torsion

© 2022 American Physical Society
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T = d9 + o', 9" and the curvature RV = dw' + o' 0"
(2-forms) are the gravitational field strengths, associated
with the Poincaré (translational and Lorentz) gauge poten-
tials, the tetrad 9/, and the Lorentz connection @V,
respectively. Moreover, our physical system contains also
the Maxwell field characterized by the field strength F =
dA (2-form), where A is the electromagnetic gauge poten-
tial (1-form).

Dynamical properties of the PG-Maxwell system are
defined by the total Lagrangian

L =Lg+ Ly, (2.1)

where Lg=Lg(8,T',RY) is a parity even PG
Lagrangian, assumed to be at most quadratic in the field
strengths, and Ly, = Ly, (9', F) describes the Maxwell field
interacting with gravity. The gravitational field equations
are obtained by varying L with respect to the gravitational
potentials ' and w". Introducing the gravitational covar-
iant momenta, H; := OLg/0T" and H,; := OLg/OR", and
the associated energy-momentum and spin currents, E; =
OLG/0b" and E;; := OLg/0w", these equations can be
written in a compact form as

sbi: VH; + E; = —;, (2.2a)

The source term on the right-hand side of (2.2a) is the
Maxwell energy-momentum current 7, := 9L, /09, while
the related spin current vanishes, o;; :== OLy/0w" = 0.
Similarly, the variation of L with respect to the electro-
magnetic potential A yields the Maxwell equation,

S6A: dH =0, (2.2¢)
where H := 0Ly /0A is the electromagnetic covariant

momentum.
The PG part of the total Lagrangian (2.1) has the form

3
Lg = —*(aoR+2A) + T > " *(a,"T;)
n=1
1 &
+ ERI] Z *(bn<n)Rij)’

n=1

(2.3a)

where (ag, A, a,,b,) are the gravitational coupling con-
stants, and <”)T,~,(”>R,»j are irreducible parts of the field
strengths. The Maxwell part reads

1
Ly = 4a, <—§F*F> , F:=dA, (2.3b)

where 4a; is a suitably normalized coupling constant.

In the analysis of black hole thermodynamics, we need
the following explicit formulas:

2
H; =2 *(a,"™T)),

(2.4a)
m=1
6
Hj; = =2ay*(9:9;) +2) *(b,"R;;).  (2.4b)
n=1
H = —4a,*F. (2.4¢)

B. Thermodynamics

The Hamiltonian approach to black hole entropy in PG
[12] is based on the ideas developed originally in GR
[13,18], according to which the asymptotic charges (energy
and angular momentum) as well as entropy, can be defined
by certain boundary terms. Here, we introduce an extended
version of that approach, suitable for analyzing nonvacuum
solutions of the PG-Maxwell system.

Consider a stationary black hole spacetime whose
spatial section X has a two-component boundary, one
component at infinity and the other at horizon, 0% =
Sew U Sy. Then, asymptotic charges and entropy of a
PG-Maxwell black hole are determined by the boundary
integral I := ", — 'y, determined by the following varia-
tional equations:

ol = ]gm SB(&), Ty = %SH SB(¢&), (2.5a)
53(5) = (§J19i)5Hi + 58{(54Hi) ‘f‘%(fJa)lijij
1. ..
+500Y(S36H ) + (1 A)SH
+ (6A) (&1 H). (2.5b)

By construction, 6B is obtained from the canonical gen-
erator of local translations. It contains not only the
gravitational term (upper line), but also the Maxwell term
(bottom line), extending thereby the construction adopted
in [12] to nonvacuum solutions.' Specific forms of the
Killing vector & (§ = d,, 0,, or a linear combination thereof)
are chosen so that the boundary integrals (I, ') could be
physically interpreted in terms of the asymptotic charges,
black hole entropy, and an external, Maxwell term. To have
a consistent interpretation, we require the operation & to
satisfy the following rules:

"The electric charge is not defined by the Maxwell term in
(2.5b); it is, by definition, related to the electromagnetic U(1)
boundary term; see Sec. VI.
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(i) (rl) On S, the variation § acts on the parameters of
a black hole solution, but not on the parameters of
the background configuration.

(i1) (12) On Sy, the variation 6 must keep surface gravity
constant.

Moreover, mathematical consistency strongly depends on
the boundary conditions:

(iii) (r3) When the boundary terms (6, dy) are &-
integrable and finite, they can be given the usual
thermodynamic interpretation.

Finally, note that I', and I'y; are introduced as a priori
independent objects. However, the analysis of their con-
struction from the canonical gauge generator reveals that the
regularity of the generator can be expressed by the relation

o'y — 'y =0, (2.6)
which is equivalent to the first law of black hole thermo-
dynamics. The Maxwell contribution to §B is an essential
part of the first law.

III. GEOMETRY AND DYNAMICS

In this section, we analyze basic properties of KN-AdS
black holes as solutions of the PG-Maxwell system [8].

A. Metric and tetrad

The metric of a KN-AdS black hole in Boyer-Lindquist
coordinates has the form [1]

A 2 2

as* = = (di+ “sin0de)* - dr - % 4o
2, 2 2
20 adt+ ") g7 (3.1a)
p
where
A(r)s=(r?+a®)(1+4r*)=2(mr—gq*), a:=1-ia?

p?(r,0)=r>+a*cos’0, f(0):=1—2Aa’*cos’d.  (3.1b)

Here, m, a. and ¢ are the parameters characterizing energy
(mass), angular momentum, and electric charge of the
solution, and A = —A/3a,. The orthonormal tetrad asso-
ciated with the metric is chosen in the form

d
90 :N<dt+asin29d(p>, g =4
a N
sin @ (r’ 4+ a?)

92 =Pdo, & :P[ di+ dp|, (3.2a)

where

N(r.0) =\/a/2 P(ro) = [0/,

The larger root of A(r) =0 defines the outer horizon,

(3.2b)
(rX +a*)(1 + %) =2(mr. —¢*) =0, (3.3)

and the angular velocity and surface gravity have the same
form as in GR [5,15],

aa a(l1+r%)

a)+:m, Q+::w++ﬂazw, (34)
. r2 o+ 324+ ﬂgzri ;az - 2q2’ (3.5)

2ri(r} +a%)

and the area of the horizon is
4 2 2

Ay = / b3 = M‘ (3.6)

r+ a

The Riemannian connection @9 is calculated in

Appendix A.

B. Torsion, connection, and curvature

Riemann-Cartan geometry of PG is characterized by a
nonvanishing torsion. For KN-AdS black holes, the ansatz for
torsion is formally the same as for the Kerr-AdS case [8,14],

T°=T!
1 1

- ﬁ [—V1190191 - 2V4192193] + m [V219_192 + V319_193],
1

T2 = N (V59792 + V,979%],

1
T3 = N [—V419_192 + V519_193], (37)
where 9~ = 9° — 9!, but the metric function N and the
torsion functions V, are modified by the nonvanishing
electric charge parameter ¢,

1
Vi =L (mr = 2¢7)r = macosta,
p
1
V, = _p4—P(mr — ¢*)a® sin @ cos 0,
1% ! ( 2rasin6
= ——(mr — ra s
3 p4P q
1 2
Vy=—(mr—q*)acos0,
p
1 2
V5 _;(mr—q )l" (38)

Having introduced torsion, the Riemann-Cartan connec-
tion can be expressed as
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ol =@ + K,

(3.9a)

where K% is the contortion 1-form, implicitly defined by
the relation T = K, b,

1

Ko = AL
1 1

K02 - K12 - —WVTg_ + N (V5192 - V4193),
1 1

K% = K" = ALY (V497 + Vs9),

2
K23 - - N V419_. (39b)

The curvature 2-form RV = dw'/ + o' @*/ has only two
nonvanishing irreducible parts:

ORY = 9'9/, HRAC = §<mr -g*»)979°.  (3.10)

The quadratic invariants (Euler, Pontryagin, and Nieh-Yan)
are given by

I 5= (1/2)e; RUR™ = *R,,, R™ = 127%2,

IP = RIJRIJ :0, INY:TiTi—Rijbibj :O (311)

C. PG-Maxwell field equations

Since the only nonvanishing parts of the gravitational
field strengths are (V77,77 and RV (ORY the “effec-
tive” form of the gravitational Lagrangian reads

LG = —*(aoR + 2/\) + Ti*(al (I)Tl‘ + az(z)Ti)

1

+ ERif*(b4<4>R,j + bs'%R;)). (3.12)

The covariant momenta H; and H;
equations (2.2), are given by

o appearing in the field

H;= 241*<(1)Ti - 2(2)Ti),

H;j=—2A0*(9;9;) +2bs*WR;;,  Aj=ayg—Aibs, (3.13)
and the corresponding spin currents are
Ei=ejaLg—(e;4T™)H,, — % (e;aR™)H,,,,

E;; = —(9,E; - 9,E;). (3.14)

The contribution of the electromagnetic sector to
Egs. (2.2) is described by the Maxwell energy-momentum
current [17]

Ti:ei—'LM—(ei_lF)H. (315)

The form of z; depends on the Maxwell potential in
a KN-AdS spacetime [19],

A= _p“%&o = —% (dH—gsinz Qd(p), (3.16)

where ¢, is the electromagnetic charge parameter. This
expression is a natural generalization of the spherically
symmetric form A = —(q,/r)dt. The related field strength
and the covariant momentum are

F = —q—j [(r? — a® cos? 0)9°9! + 2arcos 09293, (3.17a)
p

H = —4a; 112 = a? cos? 0)929° — 2ar cos 09991,
p
(3.17b)

When all the previous results taken into account, the
explicit calculation shows that basic dynamical variables
(9%, ", A) of a KN-AdS black hole, which are defined in
Egs. (3.2a), (3.9a) and (3.16), solve the PG-Maxwell field
equations (2.2) if the Lagrangian parameters (a,,b,, A)
and the solution parameters (4, ¢, ¢,) satisfy the relations

2Cll +Cl2 = 0,
3hay + A =0,

(10 —a —/l(b4 +b6) = 0,

q% =24 (3.18)
Thus, according to our conventions, the electromagnetic
charge parameter ¢, differs from the metric charge param-
eter g. However, none of them coincides with the asymp-
totic Maxwell charge, as will be shown in Sec. VL.

IV. ASYMPTOTIC BOUNDARY TERMS

The asymptotic values of energy and angular momentum
are defined by the boundary term 6B(§) in (2.5). Two
aspects of explicit calculations deserve special attention.

First, Carter [20] and Henneaux and Teitelboim [21]
demonstrated that the asymptotic metric of Kerr-AdS
spacetimes cannot be properly described in Boyer-
Lindquist coordinates. They found a new set of coordinates
in which this deficiency is brought under control. However,
our variational approach (2.5) allows a simpler procedure
[14,15], in which only the subset (z,¢) of the Boyer-
Lindquist coordinates is transformed to the “untwisted”
form,

T =1,

¢ =@ —Aat. (4.1a)

Under these transformations, the components (v,, v(/,) of a
4-vector v, transform as
(4.1b)

vr = v, + Adav,, vy =1,

104014-4
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In particular,

919 = Gip + Gop>

Q, = (gT‘P> —w
o0/ .

And second, the background configuration, defined by
m = g =0, depends on the parameter a. To avoid the
variation of those a’s that are associated with the back-
ground, we introduce a more precise formulation of the rule
(rl) for the variation §, given below Eq. (2.5), (r1’) In
calculating 6 (€), first apply & to all the parameters
(m, a, q), then subtract those a terms that survive the limit
m = g = 0, as they come from the background.

Before continuing, it is interesting to note that the lower
line in the expression 6B(&), Eq. (2.5), which refers to the
contribution of the Maxwell field, yields vanishing boun-
dary terms at infinity, but not at horizon. This follows from
the asymptotic behavior of the variables A and H, defined
by Egs. (3.16) and (3.17). Hence, nontrivial energy and
angular momentum are generated only by the contributions
stemming from the gravitational sector.

In the subsequent calculations, we use the following
notation:

2
dQ :=sin0dfdgp — 4, dQ) = sin*0d0dgp — §4ﬂ.

A. Angular momentum

The angular momentum is defined by JE,, := 6I'w,(0,,).
The calculation is performed by ignoring (m, ¢)-independent
da terms (background), even when they are divergent, and by
omitting asymptotically vanishing terms. The nonvanishing
contributions are

'3 OH 3 + 60 H s, = 2a15<g> aqy,
b°,6Hy + Sb°Hy, = 4a, <g> gy

Summing up the two terms, one obtains

ma
(SE(/, = 16ﬂ015<?> . (42)

B. Energy

Going over to energy, we calculate the nonvanishing
contributions to 6E, = 6['y,(0,),

1
Sw'?H y, + dw"3H 5, = 2a,md (—) dQ,
a

b0 SH, = 4a,5 <T> Q.
(04

Hence,

o= o [35(3) +(3)]

The result is not d-integrable but, as we mentioned above, it
can be corrected by moving to the untwisted coordinates

(T.9):

(4.3)

SEy = OF, + jadE, = 167m15(ﬁ2>.
o

The expressions (4.2) and (4.3) are proportional to the
corresponding GR values.

V. ENTROPY

In this section, we analyze the PG part of the boundary
term at horizon, oIy, where the Killing vector £ is given by

£=07—Q,0,=0,—w,0,. (5.1)

As will be shown, this part defines the black hole entropy.
The Maxwell contribution to 6"y will be discussed in the
next section.

In what follows, we use the notation Vg = &ayp and
A6 =do— lb6

A. Nonvanishing terms

The calculation entropy is organized in two technical
steps.

The only nonvanishing contributions stemming from the
first element of oI} are

0)011551'101 (=] w01§5H019q)

2 2 2
:2A6<;<—V1 e 2)5(”“1 > sin6,
ry+a a

(5.2a)

0)0355]‘103 + 601355[‘113
(=] K®:5(Ho39, + Hi3g,) + @' :6H 3,

1 2
— 24, (— 2 %) : 6<PN f) sin’ 0
N "ri+a a
ar N mr, — q*Pa\ .
(rz —|—a2) ( N 5 7 Sln3 0. (52b)
+ P+

Here, the symbol [=| stands for an equality up to the
factor dOde.

In the second element of 6I";, there are two more
nonvanishing contributions,

+24bs
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5w02H02§ + 5(012H125
(=] 6K g(Hone, + Hize,y) + 60'29H 12¢,,
_ 2A/5((mr+ )y P) Np% .
= 24} . I
P+

NPr+> mry—q* .

— 205
* < P ) NPa

(5.3a)

and

5&)03H035 + 5&)13H13§
=] - 5K03¢(H0359 + Hyzg9) — 55)13¢H13§9
__2A15 (mr+_q2)r+ Nppi
= 0 2 2 2
NPp a ri+a

N ¢ P
— by () P T
aP N ri+a

sin 6

(5.3b)

2. 6F2 = blgéH, + 6blHl§

In oI',, the nonvanishing contributions are

b0§5H0 [:] b0§5H09¢

2 2
p (mri—q°)r
:Zaler —:a25< + +(ri+a2+pi))

+ Nap?,
x sin@, (5.4a)
0 .
Na\ V5P
:_2a15<—a>i L5 sin?0,  (5.4b)
a) N ri+
5 5 sin@
6b*Hyz [=] 6b%gHg, = 2a,(6P)(V, _VS)P—aP+’ (5.4¢)
5b3H3§ [:] —(Sb3(pH3§9
24,2
ri+a T
:26115< Pa >(V1—V5)Pmsln9. (54d)

B. Simplifications

The above contributions can be simplified using the
following properties (see Appendix B):
(i) S1. The sum of the terms proportional to SN/N in
(5.2)—(5.4) vanishes.
(ii) S2. The sum of the terms proportional to §P/P in
(5.2)—(5.4) vanishes.
Hence, the original contributions (5.2)-(5.4) can be
simplified as follows:

2 2 2
(5.24): 2A6<K—V1 = >5<’++“>Sine,

r+a? a
a(mr, —q*)r a
6%.5(_)@&9
pi(ry +a’) o
2

+ 20yt 25(’"”2_ 1 9) sin’6.
ry+a P4 a

(5.2b): 24

2 2
(5.3a): —2A65((m”q)”>p+sine

4
1 a

2
_ 2,1b45c_;r> usmg’
1 a

r

pra 2 +ad?

2
—2,1b45<r—+>%sin9.
a) ri+a

(5.3b): sin @

2 )
(540): 202252 ) ) sing
r ap?.
2

2
(5.4b): — 2a15<f> mry =49 Py

3
r.asin’@
+ )
a) pi ritad

(5.4¢): =0,

2 2 2
. rita P+
(54d) . 2a15( o > (Vl — V5) msln 0.

Next, we use the relation A, = Aby + a; to express these
contributions in terms of only two independent constants,
Aby and a;. The analysis of the Ab, part leads to an
additional simplification (Appendix B).

(iii) S3. When the Ab, part is integrated over dfde, it

vanishes.

The conclusions S1, S2, and S3 are the KN-AdS
extensions of the results found for the Kerr-AdS black
holes in [14].

C. The terms proportional to a;

The property S3 allows us to simply replace A by a; in
(5.2) and (5.3), ignoring the vanishing Ab, terms. Then,

(5.2a) + (5.2b), + (5.3a), + (5.3b), :

2 2 2
2alsin6[(K—V1 s 2)5(““)
ry+a a

_ 2
Ll =g s (ﬁ) asin20
pi(ri +a’) a

_p_i(S((mm - qz)m) o 5<(mr+ - qz)u)] ’

4 2 2 2
a s ry+a pLa

104014-6
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(5.4a) + (5.4b) + (5.4d):

2 r2 2
2a1p7+sina{vla< +ta )

2

ri—l—a a
_M(s@ng
P a
2 2 2 2
ryta (mry —q*)ry (mry —q*)ry
+ 5( 1 +o|l———"—|
a JZas apy

All terms except the first one (proportional to k) cancel each
other, so that the sum becomes

2a,k sin 0 ('& : “2>. (5.5)
Then, the integration over dfdg yields
(6Ty)F6 = 87za1;<5<r2+ Z“z) — T5S,
S = 167a, @, (5.6)

where T := /27 is the temperature. Thus, entropy is also
proportional to the GR value.

VI. MAXWELL BOUNDARY TERM
AND THE FIRST LAW

The standard canonical analysis of the Maxwell sector
implies that the asymptotic electric charge Q can be defined
by the boundary integral

Q:—/ H:4a1/ q—j(rz—a2c0s29)b2b3:167ra1&.
Se Se P a
(6.1)

The minus sign is just a matter of convention. Next,
following Ref. [19], we define the electric potential @ by

_ e+
-2 2
riy+a

(6.2)

r+

Then, the Maxwell contribution on horizon has the
form
()M = A:6H + (6A)H; = A:0H = ®60Q.  (6.3)
Combining this relation with the result obtained in
Egs. (4.2), (4.3) and (5.6), one can immediately conclude
that the first law o'y = oI, takes the form

TS + ®5Q = SE7 — Q. 5E,,. (6.4)

The result is confirmed by the identity (C.2). After
removing the common factor 16za;, the first law (6.4)
becomes identical to its GR form.

In our approach to black hole thermodynamics, all
Lagrangian parameters, including the cosmological con-
stant A, are treated as constants. However, in recent years,
an alternative formalism has been developed in which A is
promoted to a new thermodynamic variable, the vacuum
pressure, and, as a consequence, the first law is modified;
for more details see [22]. The consistency of the new
formalism in the presence of torsion has not yet been
examined.

VII. CONCLUDING REMARKS

The canonical approach to black hole entropy proposed
in [12] has been successfully applied to a number of
vacuum solutions of PG [14-16]. In the present paper, we
introduce its natural extension to nonvacuum solutions, by
including the Maxwell field as a matter source of gravity.
Using this formalism, we study thermodynamic properties
of KN-AdS black holes, encoded in the boundary terms at
infinity and horizon, 6"y, and oIy, respectively.

Analyzing energy and angular momentum as the boun-
dary terms at infinity, we found that their KN-AdS values
are exactly the same as for the uncharged Kerr-AdS
solution [4,14]. This is in agreement with the fact that
the asymptotic Maxwell contribution vanishes. Moreover,
these asymptotic charges are proportional to the related GR
expressions.

The boundary term at horizon produces entropy and an
external, Maxwell term, such that both of them are also
proportional to the corresponding GR expressions [4,15].
Then, the first law is described by the general relation
o', = 6I'y, which follows from the way the boundary
terms are constructed, see Sec. Il B. Apart from this general
argument, we give an explicit proof of the first law based on
the identity derived in Appendix B. After removing the
overall multiplicative factor, the first law becomes identical
to its GR form.

Thus, although PG has a rather different dynamical
structure from GR, the present description of the KN-AdS
thermodynamics is rather close to the GR results. A reason
for this “accidental” similarity might be hidden in the
identity found in Appendix B.
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APPENDIX A: TECHNICAL FORMULAS

The condition of vanishing torsion, d9' + ' 9% =0,
defines the Riemannian connection:
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" = —N'B® = = sin 03,
Pp

a0 a2 sinﬁzcosebo 3 @cos b3,
Pp p
N
0" = —%sineb1 +a—200s¢9b2,
P
2sin@cos N
a2 s1n2 c0st, +r_2b2’
p°P P
N
@ = =2 sin0b° + b3,
Pp p
N Pcos@ — 0yPsinf
@ = = Thcos o0 + 2SO T ps (Al
P P~ sin@
Some general relations:
NON|, = k(rk + a?)
rtVir, pi ’
2
(6290, =N—22—. (299, =0. (A2)
Ty re + Ty
Interior products & 1 @':
2 .
£100 = —N'(£1b°) = —x, éJ&)()z:Na szanC(;sQ
P(ri+a*)
Nar
i3 — A G,
SO TR R @)
1@ =112 =0, Ea@® ~ N2,

The explicit form of the covariant momenta H; and H;; is
given by

4a 2a
H, :Wl[—v4b°b1 +Vsb2b?] +N—21[—V2b‘b3 +V3b~b2)],
Hl — —H(),
2
H, :%KVI =Vs)b™b> = Vb7,
2611 _12 _13
and
Hy, = —2A,b*b3,
A
Hyp, = 2Apb'D° + 2b4X (mr — q*)b™ b3,
A
H12 = —2A6b0b3 — 2b4K (mr - q2)b—b3’
A
H03 = —2A6blb2 - 2b4K (mr — qz)b_bz,
A
H3 = 2A,b°b* + N (mr — ¢*)b™b?,
Hy = —2A6b0b1. (A4)

APPENDIX B: ON THE EVALUATION
OF ENTROPY

In this appendix, we discuss certain technical details of
the derivation of entropy.

1. Elimination of 6N/N and 6P/P terms

Starting from the basic results on entropy obtained in
Egs. (5.2)—(5.4) in Sec. VA, we are now going to show that
both 6N/N and 6P/P terms cancel out.

Consider first the coefficients of the N /N terms. By a
suitable rearrangement of these coefficients, shown in the
following formulas,

(5.3) + (5.3b): 24} = aby) =T+ = 7) (1 P )

ap’, ri+a

X sinf,

_ 2 2
(54a): _2alr+(mr+2 &l )<1—|— 2p+ 2) sin@,
ap’ ri+a

one can directly conclude that their sum vanishes, as a
consequence of A, = a; + Ab,.There are two more con-
tributions of this type,

(mr, —q*)r.a*
5.2b): 2(A}, — Aby) ———————sin’6,
( ) ( 0 4) ap%r(r%r + aZ) Sin

(mry —q*)r.a’

5.4b): —2a
(340) Capl (Rt )

sin’0,

whose sum also vanishes. Hence, all (6N)/N terms in
entropy can be simply ignored.

After removing 6N/N terms, one finds that the sum of
6P/ P terms also vanishes:

(5.2b) + (5.3a) +
(5.4¢) +

(5.3p):
(5.44d):

’

0
0.

2. Elimination of Ab, terms

After eliminating all SN/N and §P/P terms, one can
use the relation Aj = a; +Ab, in Egs. (5.2) and (5.3),
Sec. V B, to express them in terms of only two independent
parameters, a; and Ab,. Focusing on the Ab, terms and
omitting the overall factor 21b,, the resulting contributions
take the form

2 2 2
(5.2a): [K—Vl = ]5(”“’ >sin9,

r+a? a
sy [Hrs (o)
pi(ri+a’) aj rita ry o a
x sin’0,
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(53a): — [/)_i(s((mu _ qz)”) Tt qzé(r—*)]
a i a P

X sin @,
2 _ 2 2
(53b): — { 2 25<(""+2 q )r+>+m§+ 1 5(”)]
ry+a pLa ry+a a
X sinf.

Step 1. Let us first transform the first term in (5.2a) using
the identity (C.2),

m am 2r.q q
52a): 2|8 =) -Q. 6| — )| ———6(
s2a1:2[5() - 2.0( ) - 250 0)

2 2 2
P~ 25(r++a>] sin @.
ri+a a

The result can be conveniently written as a sum of two
parts, proportional to §(mr, — ¢*) and (mr, — ¢?),

_ 2ry sin@
(5.2a),: Tmé(mu—qz),

2r, (mry, — q*) 1
52a),: ——S5—_ 2212 +a*-2p2)8( —
( a)z (ri+a2)pi (r+—|-a ,0+) p

2 2

a

where we used the identities

2 2r (mr, — q*)

Vip: = 72 - m,
+
ao
Q, = + Aa,
+ rJr + a2

1 Aa 3./1
—a? ) ==sa==65=
(1-2%a )6<a2) 2 da 25<a>'
Step 2. Looking at the remaining contributions in (5.2b),

(5.3a) and (5.3b), one again finds two types of terms. The
part proportional to §(mr, — g*) is given by

2r, sin@

[(5.2b) + (5.3a) + (5.3b)],: — " +a25(mr+ —¢?),

and it directly cancels the contribution (5.2a), given above,
as expected.

As far as the part proportional to (mr, —g?) is
concerned, we find it convenient to separate the terms

proportional to &r,, &(1/a) and the remaining ada

2,
terms”:

[(5:2b)+(5.3a) +(5.3b)),:

Sry - 2(mri—q )(”++“ +P+)< 2r2+> sind.
ap? (i +a?) P
<1> 2r (mry — Q)

o= — 55

a) (ri+a*)p}
2ry (mry—q*)
ap? (r} +a?)

(a*sin?0—p? )sind,

. 2(ra +a*+p%)
<Sln29+%
Py

ada: 00529> sind.

Summing these terms with the corresponding expressions
in (5.2a),, one obtains

2 -3 /(1 1 2r?
51’+: —M T‘I’ﬁ ’;Jr sind
o voritat py

: 2r, (mr, —q*) (_sin229+2(r2++ci2)00529> g
P+ Py

Since the integrals over  of the underlined terms vanish, it
follows that the total contribution proportional to Ab, also
vanishes.

APPENDIX C: PROOF OF THE FIRST LAW

In this appendix, we derive an identity which is of
essential importance for understanding the kinematic origin
of the first law.

We start by introducing the notation

m . gery
) ® =5

M = .
" +a?

J:=Ma,

After using the horizon equation to express or, in terms of
(6m, 8q,,6a), one finds

2 2
L= 55(” +a ) — L,,6m + L,6a — ®5q,,

2 a
r
L =—"
" a(rt + a?)
1+ Ar2) (=1 +34r2 1+ Ar2)q?
La:a( + r+)(2 +34r7) ag —|—2r+)qe2 . (Cla)
2a°r, 20r, (ri + a*)

In an analogous manner, one obtains the relation

The remaining ada terms are those that do not stem from éa.
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Ri=6M —Q, 6] —®5 <q—> =R, om+ R,6a—®5 <&> :
a a

Rm = Lm’

R :a(—l +34r1) (14 4r%)

—1+34r2)q2
+a( r1)q

. (Clb
20°r (r3 +a?) (C1b)

2
2001,

Then, a direct comparison shows that the relation L = R is
identically satisfied:

2 2
k (ri+a 4.
= =M -Q 5] —ds( ). (C2
25( - ) 5 57 5<a> (C2)

This identity coincides with the first law in GR.
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