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The canonical approach to black hole entropy in Poincaré gauge theory without matter is extended to
include the Maxwell field as a matter source. The new formalism is used to calculate asymptotic charges
and entropy of Kerr-Newmann-AdS black holes with torsion. The result implies that the first law, with a
nontrivial contribution of the Maxwell field, takes the same form as in general relativity.
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I. INTRODUCTION

The analysis of black hole spacetimes in general rela-
tivity (GR) shows that astrophysically, the most significant
among them are those produced by rotating massive bodies
[1]. The simplest spacetime of this type is the rotating,
asymptotically flat solution found by Kerr [2]. The Kerr
metric has been further generalized by including first the
electric charge, and then a nonvanishing cosmological
constant [3,4]. The final result of these generalizations is
the Kerr-Newman-Anti de Sitter (KN-AdS) black hole,
which is the most general stationary, asymptotically anti-de
Sitter solution of Einstein-Maxwell field equations [5].
Starting from the early 1980s, many well-known exact

solutions of GR have been generalized to solutions of the
Poincaré gauge theory (PG), a modern gauge theory of
gravity in which both the curvature and the torsion have
their own dynamical roles [6]. Successful constructions of
exact solutions with torsion [7–9] have been followed, inter
alia, by an intensive investigation of the concept of
conserved charge [10,11]. In contrast to that, a systematic
investigation of black hole entropy in PG has long been
neglected, although some incomplete attempts could have
been noticed in the literature, as noted in [12].
A few years ago, a general canonical approach to black

hole entropy in PG was proposed in [12]. The approach is
based on a canonical formulation of the idea developed in
GR, according to which entropy is just the Noether charge
on the horizon [13]. Applying this approach to a number of
black holes with or without torsion [14–16], we found a
somewhat unexpected result: in spite of many geometric
and dynamic differences with respect to GR, entropy of
black holes in PG without matter, as well as the associated
first law, follows essentially the same pattern as in GR, up
to a multiplicative constant. In the present paper, we extend
our investigation of entropy by introducing the Maxwell
field as a matter source for gravity (PG-Maxwell system).

The analysis is focused on exploring thermodynamic
properties of the generalized KN-AdS black hole, con-
structed by Baekler et al. [8] in the late 1980s.
The paper is organized as follows. In Sec. II, we present a

brief account of the general thermodynamic aspects of the
PG-Maxwell system. In particular, a new definition of the
black hole entropy in the presence of a Maxwell field is
introduced as a natural generalization of the earlier defi-
nition, valid in vacuum. In Sec. III, we describe geometric
aspects of the KN-AdS black hole as a solution of the PG-
Maxwell system. Next, in Secs. IV and V, we use these
results to calculate energy, angular momentum, and
entropy. The thermodynamic role of the Maxwell field
and the resulting first law are clarified in Sec. VI.
Section VII is devoted to concluding remarks, and appen-
dixes contain some important technical details.
Our conventions are the same as in Ref. [16]. The Latin

indices ði; j;…Þ are the local Lorentz indices, the Greek
indices ðμ; ν;…Þ are the coordinate indices, and both run over
0,1,2,3. The orthonormal coframe (tetrad) ϑi and the metric
compatible (Lorentz) connection ωij ¼ −ωji are 1-forms,
the dual basis (frame) is ei ¼ eiμ∂μ, the interior product
of ei with ϑj is ei ⌟ ϑj ¼ δji , and A is the electromagnetic
potential 1-form. The metric components in the local
Lorentz and coordinate basis are ηij ¼ ð1;−1;−1;−1Þ and
gμν ¼ ηijϑ

i
μϑ

j
ν, respectively, and εijmn is the totally anti-

symmetric symbolwith ε0123 ¼ 1. TheHodge dual ismarked
by a star ⋆, and the wedge product of forms is implicit.

II. PG-MAXWELL SYSTEM

We begin with an overview of the general Lagrangian and
thermodynamic aspects of the PG dynamics in the presence
of a Maxwell field; for more details, see Refs. [12,17].

A. Lagrangian formalism

In PG, the structure of spacetime is characterized
by a Riemann-Cartan geometry, in which the torsion*mb@ipb.ac.rs, cbranislav@ipb.ac.rs
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Ti ¼ dϑi þ ωi
kϑ

k and the curvature Rij ¼ dωij þ ωi
kω

kj

(2-forms) are the gravitational field strengths, associated
with the Poincaré (translational and Lorentz) gauge poten-
tials, the tetrad ϑi, and the Lorentz connection ωij,
respectively. Moreover, our physical system contains also
the Maxwell field characterized by the field strength F ¼
dA (2-form), where A is the electromagnetic gauge poten-
tial (1-form).
Dynamical properties of the PG-Maxwell system are

defined by the total Lagrangian

L ¼ LG þ LM; ð2:1Þ

where LG ¼ LGðϑi; Ti; RijÞ is a parity even PG
Lagrangian, assumed to be at most quadratic in the field
strengths, and LM ¼ LMðϑi; FÞ describes the Maxwell field
interacting with gravity. The gravitational field equations
are obtained by varying L with respect to the gravitational
potentials ϑi and ωij. Introducing the gravitational covar-
iant momenta, Hi ≔ ∂LG=∂Ti and Hij ≔ ∂LG=∂Rij, and
the associated energy-momentum and spin currents, Ei ¼
∂LG=∂bi and Eij ≔ ∂LG=∂ωij, these equations can be
written in a compact form as

δbi∶ ∇Hi þ Ei ¼ −τi; ð2:2aÞ

δωij∶ ∇Hij þ Eij ¼ 0: ð2:2bÞ

The source term on the right-hand side of (2.2a) is the
Maxwell energy-momentum current τi ≔ ∂LM=∂ϑi, while
the related spin current vanishes, σij ≔ ∂LM=∂ωij ¼ 0.
Similarly, the variation of L with respect to the electro-
magnetic potential A yields the Maxwell equation,

δA∶ dH ¼ 0; ð2:2cÞ

where H ≔ ∂LM=∂A is the electromagnetic covariant
momentum.
The PG part of the total Lagrangian (2.1) has the form

LG ¼ −⋆ða0Rþ 2ΛÞ þ Ti
X3
n¼1

⋆ðanðnÞTiÞ

þ 1

2
Rij

X6
n¼1

⋆ðbnðnÞRijÞ; ð2:3aÞ

where ða0;Λ; an; bnÞ are the gravitational coupling con-
stants, and ðnÞTi; ðnÞRij are irreducible parts of the field
strengths. The Maxwell part reads

LM ≔ 4a1

�
−
1

2
F⋆F

�
; F ≔ dA; ð2:3bÞ

where 4a1 is a suitably normalized coupling constant.

In the analysis of black hole thermodynamics, we need
the following explicit formulas:

Hi ¼ 2
X2
m¼1

⋆ðanðmÞTiÞ; ð2:4aÞ

Hij ¼ −2a0⋆ðϑiϑjÞ þ 2
X6
n¼1

⋆ðbnðnÞRijÞ; ð2:4bÞ

H ¼ −4a1⋆F: ð2:4cÞ

B. Thermodynamics

The Hamiltonian approach to black hole entropy in PG
[12] is based on the ideas developed originally in GR
[13,18], according to which the asymptotic charges (energy
and angular momentum) as well as entropy, can be defined
by certain boundary terms. Here, we introduce an extended
version of that approach, suitable for analyzing nonvacuum
solutions of the PG-Maxwell system.
Consider a stationary black hole spacetime whose

spatial section Σ has a two-component boundary, one
component at infinity and the other at horizon, ∂Σ ¼
S∞ ∪ SH. Then, asymptotic charges and entropy of a
PG-Maxwell black hole are determined by the boundary
integral Γ ≔ Γ∞ − ΓH, determined by the following varia-
tional equations:

δΓ∞ ¼
I
S∞

δBðξÞ; δΓH ¼
I
SH

δBðξÞ; ð2:5aÞ

δBðξÞ ≔ ðξ ⌟ϑiÞδHi þ δϑiðξ ⌟HiÞ þ
1
2
ðξ ⌟ωijÞδHij

þ 1

2
δωijðξ ⌟ δHijÞ þ ðξ ⌟AÞδH

þ ðδAÞðξ ⌟HÞ: ð2:5bÞ

By construction, δB is obtained from the canonical gen-
erator of local translations. It contains not only the
gravitational term (upper line), but also the Maxwell term
(bottom line), extending thereby the construction adopted
in [12] to nonvacuum solutions.1 Specific forms of the
Killing vector ξ (ξ ¼ ∂t; ∂φ or a linear combination thereof)
are chosen so that the boundary integrals ðΓ∞;ΓHÞ could be
physically interpreted in terms of the asymptotic charges,
black hole entropy, and an external, Maxwell term. To have
a consistent interpretation, we require the operation δ to
satisfy the following rules:

1The electric charge is not defined by the Maxwell term in
(2.5b); it is, by definition, related to the electromagnetic Uð1Þ
boundary term; see Sec. VI.
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(i) (r1) On S∞, the variation δ acts on the parameters of
a black hole solution, but not on the parameters of
the background configuration.

(ii) (r2) On SH, the variation δmust keep surface gravity
constant.

Moreover, mathematical consistency strongly depends on
the boundary conditions:
(iii) (r3) When the boundary terms ðδΓ∞; δΓHÞ are δ-

integrable and finite, they can be given the usual
thermodynamic interpretation.

Finally, note that Γ∞ and ΓH are introduced as a priori
independent objects. However, the analysis of their con-
struction from the canonical gauge generator reveals that the
regularity of the generator can be expressed by the relation

δΓ∞ − δΓH ¼ 0; ð2:6Þ

which is equivalent to the first law of black hole thermo-
dynamics. The Maxwell contribution to δB is an essential
part of the first law.

III. GEOMETRY AND DYNAMICS

In this section, we analyze basic properties of KN-AdS
black holes as solutions of the PG-Maxwell system [8].

A. Metric and tetrad

The metric of a KN-AdS black hole in Boyer-Lindquist
coordinates has the form [1]

ds2 ¼ Δ
ρ2

ðdtþ a
α
sin2θdφÞ2 − ρ2

Δ
dr2 −

ρ2

f
dθ2

−
f
ρ2

sin2θ

�
adtþ ðr2 þ a2Þ

α
dφ

�
2

; ð3:1aÞ

where

ΔðrÞ≔ ðr2þa2Þð1þ λr2Þ−2ðmr−q2Þ; α≔ 1− λa2;

ρ2ðr;θÞ≔ r2þa2cos2θ; fðθÞ≔ 1− λa2cos2θ: ð3:1bÞ

Here, m, a. and q are the parameters characterizing energy
(mass), angular momentum, and electric charge of the
solution, and λ ¼ −Λ=3a0. The orthonormal tetrad asso-
ciated with the metric is chosen in the form

ϑ0 ¼ N

�
dtþ a

α
sin2θdφ

�
; ϑ1 ¼ dr

N
;

ϑ2 ¼ Pdθ; ϑ3 ¼ sin θ
P

�
adtþ ðr2 þ a2Þ

α
dφ

�
; ð3:2aÞ

where

Nðr; θÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
Δ=ρ2

q
; Pðr; θÞ ¼

ffiffiffiffiffiffiffiffiffiffi
ρ2=f

q
: ð3:2bÞ

The larger root of ΔðrÞ ¼ 0 defines the outer horizon,

ðr2þ þ a2Þð1þ λr2þÞ − 2ðmrþ − q2Þ ¼ 0; ð3:3Þ
and the angular velocity and surface gravity have the same
form as in GR [5,15],

ωþ ¼ aα
r2þ þ a2

; Ωþ ≔ ωþ þ λa¼ að1þ λr2þÞ
r2þ þ a2

; ð3:4Þ

κ ¼ r2þ þ 3λr4þ þ λa2r2þ − a2 − 2q2

2rþðr2þ þ a2Þ ; ð3:5Þ

and the area of the horizon is

AH ¼
Z
rþ
b2b3 ¼ 4πðr2þ þ a2Þ

α
: ð3:6Þ

The Riemannian connection ω̃ij is calculated in
Appendix A.

B. Torsion, connection, and curvature

Riemann-Cartan geometry of PG is characterized by a
nonvanishing torsion. ForKN-AdSblack holes, the ansatz for
torsion is formally the same as for the Kerr-AdS case [8,14],

T0 ¼ T1

¼ 1

N
½−V1ϑ

0ϑ1 − 2V4ϑ
2ϑ3� þ 1

N2
½V2ϑ

−ϑ2 þ V3ϑ
−ϑ3�;

T2 ≔
1

N
½V5ϑ

−ϑ2 þ V4ϑ
−ϑ3�;

T3 ≔
1

N
½−V4ϑ

−ϑ2 þ V5ϑ
−ϑ3�; ð3:7Þ

where ϑ− ¼ ϑ0 − ϑ1, but the metric function N and the
torsion functions Vn are modified by the nonvanishing
electric charge parameter q2,

V1 ¼
1

ρ4
½ðmr − 2q2Þr −ma2cos2θ�;

V2 ¼ −
1

ρ4P
ðmr − q2Þa2 sin θ cos θ;

V3 ¼
1

ρ4P
ðmr − q2Þra sin θ;

V4 ¼
1

ρ4
ðmr − q2Þa cos θ;

V5 ¼
1

ρ4
ðmr − q2Þr: ð3:8Þ

Having introduced torsion, the Riemann-Cartan connec-
tion can be expressed as
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ωij ¼ ω̃ij þ Kij; ð3:9aÞ

where Kij is the contortion 1-form, implicitly defined by
the relation Ti ¼ Ki

kbk,

K01 ¼ 1

N
V1ϑ

−;

K02 ¼ K12 ¼ −
1

N2
V2ϑ

− þ 1

N
ðV5ϑ

2 − V4ϑ
3Þ;

K03 ¼ K13 ¼ −
1

N2
V3ϑ

− þ 1

N
ðV4ϑ

2 þ V5ϑ
3Þ;

K23 ¼ −
2

N
V4ϑ

−: ð3:9bÞ

The curvature 2-form Rij ¼ dωij þ ωi
kω

kj has only two
nonvanishing irreducible parts:

ð6ÞRij ¼ λϑiϑj; ð4ÞRAc ¼ λ

Δ
ðmr − q2Þϑ−ϑc: ð3:10Þ

The quadratic invariants (Euler, Pontryagin, and Nieh-Yan)
are given by

IE ≔ ð1=2ÞεijmnRijRmn ≡ ⋆RmnRmn ¼ 12λ2ϵ̂;

IP ≔ RijRij ¼ 0; INY ¼ TiTi − Rijbibj ¼ 0: ð3:11Þ

C. PG-Maxwell field equations

Since the only nonvanishing parts of the gravitational
field strengths are ð1ÞTi; ð2ÞTi and ð4ÞRij; ð6ÞRij, the “effec-
tive” form of the gravitational Lagrangian reads

LG ¼ −⋆ða0Rþ 2ΛÞ þ Ti⋆ða1ð1ÞTi þ a2ð2ÞTiÞ

þ 1

2
Rij⋆ðb4ð4ÞRij þ b6ð6ÞRijÞ: ð3:12Þ

The covariant momenta Hi and Hij, appearing in the field
equations (2.2), are given by

Hi¼ 2a1⋆ðð1ÞTi−2ð2ÞTiÞ;
Hij¼−2A0

0
⋆ðϑiϑjÞþ2b4⋆ð4ÞRij; A0

0 ≔ a0−λb6; ð3:13Þ

and the corresponding spin currents are

Ei ¼ ei ⌟LG − ðei ⌟TmÞHm −
1
2
ðei ⌟RmnÞHmn;

Eij ¼ −ðϑiEj − ϑjEiÞ: ð3:14Þ

The contribution of the electromagnetic sector to
Eqs. (2.2) is described by the Maxwell energy-momentum
current [17]

τi ¼ ei ⌟LM − ðei ⌟FÞH: ð3:15Þ

The form of τi depends on the Maxwell potential in
a KN-AdS spacetime [19],

A ≔ −
qer

ρ
ffiffiffiffi
Δ

p ϑ0 ≡ −
qer
ρ2

�
dtþ a

α
sin2 θdφ

�
; ð3:16Þ

where qe is the electromagnetic charge parameter. This
expression is a natural generalization of the spherically
symmetric form A ¼ −ðqe=rÞdt. The related field strength
and the covariant momentum are

F ¼ −
qe
ρ4

½ðr2 − a2 cos2 θÞϑ0ϑ1 þ 2ar cos θϑ2ϑ3�; ð3:17aÞ

H ¼ −4a1
qe
ρ4

½ðr2 − a2 cos2 θÞϑ2ϑ3 − 2ar cos θϑ0ϑ1�:

ð3:17bÞ

When all the previous results taken into account, the
explicit calculation shows that basic dynamical variables
ðϑi;ωij; AÞ of a KN-AdS black hole, which are defined in
Eqs. (3.2a), (3.9a) and (3.16), solve the PG-Maxwell field
equations (2.2) if the Lagrangian parameters ðan; bn;ΛÞ
and the solution parameters ðλ; q; qeÞ satisfy the relations

2a1 þ a2 ¼ 0; a0 − a1 − λðb4 þ b6Þ ¼ 0;

3λa0 þ Λ ¼ 0; q2e ¼ 2q2: ð3:18Þ

Thus, according to our conventions, the electromagnetic
charge parameter qe differs from the metric charge param-
eter q. However, none of them coincides with the asymp-
totic Maxwell charge, as will be shown in Sec. VI.

IV. ASYMPTOTIC BOUNDARY TERMS

The asymptotic values of energy and angular momentum
are defined by the boundary term δBðξÞ in (2.5). Two
aspects of explicit calculations deserve special attention.
First, Carter [20] and Henneaux and Teitelboim [21]

demonstrated that the asymptotic metric of Kerr-AdS
spacetimes cannot be properly described in Boyer-
Lindquist coordinates. They found a new set of coordinates
in which this deficiency is brought under control. However,
our variational approach (2.5) allows a simpler procedure
[14,15], in which only the subset ðt;φÞ of the Boyer-
Lindquist coordinates is transformed to the “untwisted”
form,

T ¼ t; ϕ ¼ φ − λat: ð4:1aÞ

Under these transformations, the components ðvt; vφÞ of a
4-vector vμ transform as

vT ¼ vt þ λavφ; vϕ ¼ vφ ð4:1bÞ
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In particular,

gTφ ¼ gtφ þ gφφ;

Ωþ ≔
�
gTφ
gφφ

�
rþ

¼ ωþ þ λa ¼ að1þ λr2þÞ
r2þ þ a2

: ð4:1cÞ

And second, the background configuration, defined by
m ¼ q ¼ 0, depends on the parameter a. To avoid the
variation of those a’s that are associated with the back-
ground, we introduce a more precise formulation of the rule
(r1) for the variation δ, given below Eq. (2.5), (r10) In
calculating δΓ∞ðξÞ, first apply δ to all the parameters
ðm; a; qÞ, then subtract those δa terms that survive the limit
m ¼ q ¼ 0, as they come from the background.
Before continuing, it is interesting to note that the lower

line in the expression δBðξÞ, Eq. (2.5), which refers to the
contribution of the Maxwell field, yields vanishing boun-
dary terms at infinity, but not at horizon. This follows from
the asymptotic behavior of the variables A and H, defined
by Eqs. (3.16) and (3.17). Hence, nontrivial energy and
angular momentum are generated only by the contributions
stemming from the gravitational sector.
In the subsequent calculations, we use the following

notation:

dΩ ≔ sin θdθdφ → 4π; dΩ0 ≔ sin3θdθdφ →
2

3
4π:

A. Angular momentum

The angular momentum is defined by δEφ ≔ δΓ∞ð∂φÞ.
The calculation is performedby ignoring ðm; qÞ-independent
δa terms (background), evenwhen they are divergent, and by
omitting asymptotically vanishing terms. The nonvanishing
contributions are

ω13
φδH13 þ δω13H13φ ¼ 2a1δ

�
ma
α2

�
dΩ0;

b0φδH0 þ δb0H0φ ¼ 4a1δ

�
ma
α2

�
dΩ0:

Summing up the two terms, one obtains

δEφ ¼ 16πa1δ

�
ma
α2

�
: ð4:2Þ

B. Energy

Going over to energy, we calculate the nonvanishing
contributions to δEt ¼ δΓ∞ð∂tÞ,

δω12H12t þ δω13H13t ¼ 2a1mδ

�
1

α

�
dΩ;

b0tδH0 ¼ 4a1δ

�
m
α

�
dΩ:

Hence,

δEt ¼ 16πa1

�
m
2
δ

�
1

α

�
þ δ

�
m
α

��
:

The result is not δ-integrable but, as we mentioned above, it
can be corrected by moving to the untwisted coordinates
ðT;ϕÞ:

δET ¼ δEt þ λaδEφ ¼ 16πa1δ

�
m
α2

�
: ð4:3Þ

The expressions (4.2) and (4.3) are proportional to the
corresponding GR values.

V. ENTROPY

In this section, we analyze the PG part of the boundary
term at horizon, δΓH, where the Killing vector ξ is given by

ξ ≔ ∂T − Ωþ∂ϕ ¼ ∂t − ωþ∂φ: ð5:1Þ

As will be shown, this part defines the black hole entropy.
The Maxwell contribution to δΓH will be discussed in the
next section.
In what follows, we use the notation vξ ≔ ξ ⌟ v and

A0
0 ≔ a0 − λb6.

A. Nonvanishing terms

The calculation entropy is organized in two technical
steps.

1. δΓ1 = 1
2ω

ij
ξδHij + 1

2 δω
ijHijξ

The only nonvanishing contributions stemming from the
first element of δΓ1 are

ω01
ξδH01½¼�ω01

ξδH01θφ

¼ 2A0
0

�
κ − V1

ρ2þ
r2þ þ a2

�
δ

�
r2þ þ a2

α

�
sin θ;

ð5:2aÞ

ω03
ξδH03 þ ω13

ξδH13

½¼�K03
ξδðH03θφ þH13θφÞ þ ω̃13

ξδH13θφ

¼ 2A0
0

�
1

N
V3

ρ2þ
r2þ þ a2

�
· δ

�
PN

a
α

�
sin3 θ

þ 2λb4
arþN

Pðr2þ þ a2Þ δ
�
mrþ − q2

Nρ2þ

Pa
α

�
sin3 θ: ð5:2bÞ

Here, the symbol ½¼� stands for an equality up to the
factor dθdφ.
In the second element of δΓ1, there are two more

nonvanishing contributions,
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δω02H02ξ þ δω12H12ξ

½¼� δK02
θðH02ξφ þH12ξφÞ þ δω̃12

θH12ξφ

¼ −2A0
0δ

�ðmrþ − q2Þrþ
ρ4þ

P
N

�
Nρ2þ
Pα

sin θ

− 2λb4δ

�
NPrþ
ρ2þ

�
mrþ − q2

NPα
sin θ; ð5:3aÞ

and

δω03H03ξ þ δω13H13ξ

½¼� − δK03
φðH03ξθ þH13ξθÞ − δω̃13

φH13ξθ

¼ −2A0
0δ

�ðmrþ − q2Þrþ
NPρ2þα

�
NPρ2þ
r2þ þ a2

sin θ

− 2λb4δ

�
Nrþ
αP

�
mrþ − q2

N
P

r2þ þ a2
sin θ: ð5:3bÞ

2. δΓ2 = biξδHi + δbiHiξ

In δΓ2, the nonvanishing contributions are

b0ξδH0 ½¼� b0ξδH0θφ

¼ 2a1N
ρ2þ

r2þþa2
δ

�ðmrþ−q2Þrþ
Nαρ4þ

ðr2þþa2þρ2þÞ
�

×sinθ; ð5:4aÞ

δb0H0ξ ½¼� − δb0φH0ξθ

¼ −2a1δ
�
Na
α

�
V3P
N

ρ2þ
r2þ þ a2

sin2 θ; ð5:4bÞ

δb2H2ξ ½¼� δb2θH2ξφ ¼ 2a1ðδPÞðV1−V5Þ
sinθ
Pα

ρ2þ; ð5:4cÞ

δb3H3ξ ½¼�−δb3φH3ξθ

¼2a1δ

�
r2þþa2

Pα

�
ðV1−V5ÞP

ρ2þ
r2þþa2

sinθ: ð5:4dÞ

B. Simplifications

The above contributions can be simplified using the
following properties (see Appendix B):

(i) S1. The sum of the terms proportional to δN=N in
(5.2)–(5.4) vanishes.

(ii) S2. The sum of the terms proportional to δP=P in
(5.2)–(5.4) vanishes.

Hence, the original contributions (5.2)–(5.4) can be
simplified as follows:

ð5.2aÞ∶ 2A0
0

�
κ − V1

ρ2þ
r2þ þ a2

�
δ

�
r2þ þ a2

α

�
sin θ;

ð5.2bÞ∶ 2A0
0

aðmrþ − q2Þrþ
ρ2þðr2þ þ a2Þ · δ

�
a
α

�
sin3θ

þ 2λb4
arþ

r2þ þ a2
δ

�
mrþ − q2

ρ2þ

a
α

�
sin3θ:

ð5.3aÞ∶ − 2A0
0δ

�ðmrþ − q2Þrþ
ρ4þ

�
ρ2þ
α
sin θ

− 2λb4δ

�
rþ
ρ2þ

�
mrþ − q2

α
sin θ;

ð5.3bÞ∶ − 2A0
0δ

�ðmrþ − q2Þrþ
ρ2þα

�
ρ2þ

r2þ þ a2
sin θ

− 2λb4δ

�
rþ
α

�
mrþ − q2

r2þ þ a2
sin θ:

ð5.4aÞ∶ 2a1
ρ2þ

r2þþa2
δ

�ðmrþ−q2Þrþ
αρ4þ

ðr2þþa2þρ2þÞ
�
sinθ

ð5.4bÞ∶ −2a1δ

�
a
α

�
mrþ−q2

ρ4þ

ρ2þ
r2þþa2

rþasin3θ;

ð5.4cÞ∶ ¼ 0;

ð5.4dÞ∶ 2a1δ

�
r2þ þ a2

α

�
ðV1 − V5Þ

ρ2þ
r2þ þ a2

sin θ:

Next, we use the relation A0
0 ¼ λb4 þ a1 to express these

contributions in terms of only two independent constants,
λb4 and a1. The analysis of the λb4 part leads to an
additional simplification (Appendix B).
(iii) S3. When the λb4 part is integrated over dθδφ, it

vanishes.
The conclusions S1, S2, and S3 are the KN-AdS

extensions of the results found for the Kerr-AdS black
holes in [14].

C. The terms proportional to a1
The property S3 allows us to simply replace A0

0 by a1 in
(5.2) and (5.3), ignoring the vanishing λb4 terms. Then,

ð5.2aÞ þ ð5.2bÞ1 þ ð5.3aÞ1 þ ð5.3bÞ1∶

2a1 sinθ

��
κ −V1

ρ2þ
r2þ þ a2

�
δ

�
r2þ þ a2

α

�

þ ðmrþ − q2Þrþ
ρ2þðr2þ þ a2Þ · δ

�
a
α

�
asin2θ

−
ρ2þ
α
δ

�ðmrþ − q2Þrþ
ρ4þ

�
−

ρ2þ
r2þ þ a2

δ

�ðmrþ − q2Þrþ
ρ2þα

��
;
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ð5.4aÞ þ ð5.4bÞ þ ð5.4dÞ∶

2a1
ρ2þ

r2þ þ a2
sin θ

�
V1δ

�
r2þ þ a2

α

�

−
ðmrþ − q2Þrþ

ρ4þ
δ

�
a
α

�
asin2θ

þ r2þ þ a2

α
δ

�ðmrþ − q2Þrþ
ρ4þ

�
þ δ

�ðmrþ − q2Þrþ
αρ2þ

��
:

All terms except the first one (proportional to κ) cancel each
other, so that the sum becomes

2a1κ sin θδ

�
r2þ þ a2

α

�
: ð5:5Þ

Then, the integration over dθdφ yields

ðδΓHÞPG ¼ 8πa1κδ

�
r2þ þ a2

α

�
¼ TδS;

S ≔ 16πa1
πðr2þ þ a2Þ

α
; ð5:6Þ

where T ≔ κ=2π is the temperature. Thus, entropy is also
proportional to the GR value.

VI. MAXWELL BOUNDARY TERM
AND THE FIRST LAW

The standard canonical analysis of the Maxwell sector
implies that the asymptotic electric chargeQ can be defined
by the boundary integral

Q¼−
Z
S∞

H¼ 4a1

Z
S∞

qe
ρ4

ðr2−a2 cos2 θÞb2b3 ¼ 16πa1
qe
α
:

ð6:1Þ

The minus sign is just a matter of convention. Next,
following Ref. [19], we define the electric potential Φ by

Φ ≔ Aξ

����
∞

rþ

¼ −
qerþ
ρ2þN

b0ξ

����
∞

rþ

¼ qerþ
r2þ þ a2

: ð6:2Þ

Then, the Maxwell contribution on horizon has the
form

ðδΓHÞM ¼ AξδH þ ðδAÞHξ ¼ AξδH ¼ ΦδQ: ð6:3Þ

Combining this relation with the result obtained in
Eqs. (4.2), (4.3) and (5.6), one can immediately conclude
that the first law δΓH ¼ δΓ∞ takes the form

TδSþΦδQ ¼ δET −ΩþδEφ: ð6:4Þ

The result is confirmed by the identity (C.2). After
removing the common factor 16πa1, the first law (6.4)
becomes identical to its GR form.
In our approach to black hole thermodynamics, all

Lagrangian parameters, including the cosmological con-
stant Λ, are treated as constants. However, in recent years,
an alternative formalism has been developed in which Λ is
promoted to a new thermodynamic variable, the vacuum
pressure, and, as a consequence, the first law is modified;
for more details see [22]. The consistency of the new
formalism in the presence of torsion has not yet been
examined.

VII. CONCLUDING REMARKS

The canonical approach to black hole entropy proposed
in [12] has been successfully applied to a number of
vacuum solutions of PG [14–16]. In the present paper, we
introduce its natural extension to nonvacuum solutions, by
including the Maxwell field as a matter source of gravity.
Using this formalism, we study thermodynamic properties
of KN-AdS black holes, encoded in the boundary terms at
infinity and horizon, δΓ∞ and δΓH, respectively.
Analyzing energy and angular momentum as the boun-

dary terms at infinity, we found that their KN-AdS values
are exactly the same as for the uncharged Kerr-AdS
solution [4,14]. This is in agreement with the fact that
the asymptotic Maxwell contribution vanishes. Moreover,
these asymptotic charges are proportional to the related GR
expressions.
The boundary term at horizon produces entropy and an

external, Maxwell term, such that both of them are also
proportional to the corresponding GR expressions [4,15].
Then, the first law is described by the general relation
δΓ∞ ¼ δΓH, which follows from the way the boundary
terms are constructed, see Sec. II B. Apart from this general
argument, we give an explicit proof of the first law based on
the identity derived in Appendix B. After removing the
overall multiplicative factor, the first law becomes identical
to its GR form.
Thus, although PG has a rather different dynamical

structure from GR, the present description of the KN-AdS
thermodynamics is rather close to the GR results. A reason
for this “accidental” similarity might be hidden in the
identity found in Appendix B.
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APPENDIX A: TECHNICAL FORMULAS

The condition of vanishing torsion, dϑi þ ωi
kϑ

k ¼ 0,
defines the Riemannian connection:
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ω̃01 ¼ −N0b0 −
ar
Pρ2

sin θb3;

ω̃02 ¼ a2 sin θ cos θ
Pρ2

b0 −
aN
ρ2

cos θb3;

ω̃03 ¼ −
ar
Pρ2

sin θb1 þ aN
ρ2

cos θb2;

ω̃12 ¼ a2 sin θ cos θ
ρ2P

b1 þ rN
ρ2

b2;

ω̃13 ¼ −
ar
Pρ2

sin θb0 þ Nr
ρ2

b3;

ω̃23 ¼ −
aN
ρ2

cos θb0 þ P cos θ − ∂θP sin θ
P2 sin θ

b3: ðA1Þ

Some general relations:

N∂rNjrþ ¼ κðr2þ þ a2Þ
ρ2þ

;

ðξ ⌟ ϑ0Þjrþ ¼ N
ρ2þ

r2þ þ a2
; ðξ ⌟ ϑaÞjrþ ¼ 0: ðA2Þ

Interior products ξ ⌟ ω̃ij:

ξ⌟ ω̃01 ¼ −N0ðξ⌟b0Þ ¼ −κ; ξ⌟ ω̃02 ¼ Na2 sinθ cosθ
Pðr2þ þ a2Þ ;

ξ⌟ ω̃13 ¼ −
Narþ

Pðr2þ þ a2Þ sinθ;

ξ⌟ ω̃03 ¼ ξ⌟ ω̃12 ¼ 0; ξ⌟ ω̃23 ∼N2:

The explicit form of the covariant momenta Hi and Hij is
given by

H0¼
4a1
N

½−V4b0b1þV5b2b3�þ
2a1
N2

½−V2b−b3þV3b−b2Þ�;
H1¼−H0;

H2¼
2a1
N

½ðV1−V5Þb−b3−V4b−b2�;

H3¼
2a1
N

½−ðV1−V5Þb−b2−V4b−b3�: ðA3Þ

and

H01 ¼ −2A0
0b

2b3;

H02 ¼ 2A0
0b

1b3 þ 2b4
λ

Δ
ðmr − q2Þb−b3;

H12 ¼ −2A0
0b

0b3 − 2b4
λ

Δ
ðmr − q2Þb−b3;

H03 ¼ −2A0
0b

1b2 − 2b4
λ

Δ
ðmr − q2Þb−b2;

H13 ¼ 2A0
0b

0b2 þ 2b4
λ

Δ
ðmr − q2Þb−b2;

H23 ¼ −2A0
0b

0b1: ðA4Þ

APPENDIX B: ON THE EVALUATION
OF ENTROPY

In this appendix, we discuss certain technical details of
the derivation of entropy.

1. Elimination of δN=N and δP=P terms

Starting from the basic results on entropy obtained in
Eqs. (5.2)–(5.4) in Sec. VA, we are now going to show that
both δN=N and δP=P terms cancel out.
Consider first the coefficients of the δN=N terms. By a

suitable rearrangement of these coefficients, shown in the
following formulas,

ð5.3aÞþð5.3bÞ∶ 2ðA0
0−λb4Þ

rþðmrþ−q2Þ
αρ2þ

�
1þ ρ2þ

r2þþa2

�

×sinθ;

ð5.4aÞ∶ −2a1
rþðmrþ−q2Þ

αρ2þ

�
1þ ρ2þ

r2þþa2

�
sinθ;

one can directly conclude that their sum vanishes, as a
consequence of A0

0 ≡ a1 þ λb4.There are two more con-
tributions of this type,

ð5.2bÞ∶ 2ðA0
0 − λb4Þ

ðmrþ − q2Þrþa2
αρ2þðr2þ þ a2Þ sin3θ;

ð5.4bÞ∶ − 2a1
ðmrþ − q2Þrþa2
αρ2þðr2þ þ a2Þ sin3θ;

whose sum also vanishes. Hence, all ðδNÞ=N terms in
entropy can be simply ignored.
After removing δN=N terms, one finds that the sum of

δP=P terms also vanishes:

ð5.2bÞ þ ð5.3aÞ þ ð5.3bÞ∶ 0;

ð5.4cÞ þ ð5.4dÞ∶ 0:

2. Elimination of λb4 terms

After eliminating all δN=N and δP=P terms, one can
use the relation A0

0 ¼ a1 þ λb4 in Eqs. (5.2) and (5.3),
Sec. V B, to express them in terms of only two independent
parameters, a1 and λb4. Focusing on the λb4 terms and
omitting the overall factor 2λb4, the resulting contributions
take the form

ð5.2aÞ∶
�
κ − V1

ρ2þ
r2þ þ a2

�
δ

�
r2þ þ a2

α

�
sin θ;

ð5.2bÞ∶
�
aðmrþ−q2Þrþ
ρ2þðr2þþa2Þ δ

�
a
α

�
þ arþ
r2þþa2

δ

�
mrþ−q2

ρ2þ

a
α

��

×sin3θ;
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ð5.3aÞ∶ −
�
ρ2þ
α
δ

�ðmrþ − q2Þrþ
ρ4þ

�
þmrþ − q2

α
δ

�
rþ
ρ2þ

��

× sin θ;

ð5.3bÞ∶ −
�

ρ2þ
r2þþa2

δ

�ðmrþ−q2Þrþ
ρ2þα

�
þmrþ−q2

r2þþa2
δ

�
rþ
α

��

×sinθ:

Step 1. Let us first transform the first term in (5.2a) using
the identity (C.2),

ð5.2aÞ∶ 2

�
δ

�
m
α2

�
− Ωþδ

�
am
α2

�
−

2rþq
r2þ þ a2

δ

�
q
α

�

− V1

ρ2þ
r2þ þ a2

δ

�
r2þ þ a2

α

��
sin θ:

The result can be conveniently written as a sum of two
parts, proportional to δðmrþ − q2Þ and ðmrþ − q2Þ,

ð5.2aÞ1∶
2rþ
α

sin θ
r2þ þ a2

δðmrþ − q2Þ;

ð5.2aÞ2∶ −
2rþðmrþ − q2Þ
ðr2þ þ a2Þρ2þ

�
ðr2þ þ a2 − 2ρ2þÞδ

�
1

α

�

þ δðr2þ þ a2Þ
α

�
sin θ;

where we used the identities

V1ρ
2þ ¼ 2rþðmrþ − q2Þ

ρ2þ
−m;

Ωþ ¼ aα
r2þ þ a2

þ λa;

ð1 − λa2Þδ
�
1

α2

�
−
λa
α2

δa ¼ 3

2
δ

�
1

α

�
:

Step 2. Looking at the remaining contributions in (5.2b),
(5.3a) and (5.3b), one again finds two types of terms. The
part proportional to δðmrþ − q2Þ is given by

½ð5.2bÞ þ ð5.3aÞ þ ð5.3bÞ�1∶ −
2rþ
α

sin θ
r2þ þ a2

δðmrþ − q2Þ;

and it directly cancels the contribution ð5.2aÞ1 given above,
as expected.
As far as the part proportional to ðmrþ − q2Þ is

concerned, we find it convenient to separate the terms

proportional to δrþ, δð1=αÞ and the remaining aδa
terms2:

½ð5.2bÞþð5.3aÞþð5.3bÞ�2∶

δrþ∶ −
2ðmrþ−q2Þðr2þþa2þρ2þÞ

αρ2þðr2þþa2Þ
�
1−

2r2þ
ρ2þ

�
sinθ;

δ

�
1

α

�
∶
2rþðmrþ−q2Þ
ðr2þþa2Þρ2þ

ða2sin2θ−ρ2þÞsinθ;

aδa∶
2rþðmrþ−q2Þ
αρ2þðr2þþa2Þ

�
sin2θþ2ðr2þþa2þρ2þÞ

ρ2þ
cos2θ

�
sinθ:

Summing these terms with the corresponding expressions
in ð5.2aÞ2, one obtains

δrþ∶ −
2ðmrþ−q2Þ

α

�
1

ρ2þ
þ 1

r2þþa2
−
2r2þ
ρ4þ

�
sinθ

×

;

δ

�
1

α

�
∶0;

aδa∶
2rþðmrþ−q2Þ
αðr2þþa2Þ

�
−
sin2θ
ρ2þ

þ2ðr2þþa2Þcos2θ
ρ4þ

�
sinθ

×

:

Since the integrals over θ of the underlined terms vanish, it
follows that the total contribution proportional to λb4 also
vanishes.

APPENDIX C: PROOF OF THE FIRST LAW

In this appendix, we derive an identity which is of
essential importance for understanding the kinematic origin
of the first law.
We start by introducing the notation

M ≔
m
α2

; J ≔ Ma; Φ ≔
qerþ

r2þ þ a2
:

After using the horizon equation to express δrþ in terms of
ðδm; δqe; δaÞ, one finds

L ≔
κ

2
δ

�
r2þ þ a2

α

�
¼ Lmδmþ Laδa −Φδqe;

Lm ≔
r2þ

αðr2þ þ a2Þ ;

La ¼
að1þ λr2þÞð−1þ 3λr2þÞ

2α2rþ
−

að1þ λr2þÞq2e
2α2rþðr2þ þ a2Þ : ðC1aÞ

In an analogous manner, one obtains the relation

2The remaining aδa terms are those that do not stem from δα.
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R≔ δM−ΩþδJ−Φδ

�
qe
α

�
¼RmδmþRaδa−Φδ

�
qe
α

�
;

Rm≔Lm;

Ra¼
að−1þ3λr2þÞð1þλr2þÞ

2α2rþ
það−1þ3λr2þÞq2e

2α2rþðr2þþa2Þ : ðC1bÞ

Then, a direct comparison shows that the relation L ¼ R is
identically satisfied:

κ

2
δ

�
r2þ þ a2

α

�
¼ δM −ΩþδJ −Φδ

�
qe
α

�
: ðC2Þ

This identity coincides with the first law in GR.
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