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Static, spherically symmetric solutions representing stars made of barotropic perfect fluid are studied in
the context of two theories of type-II minimally modified gravity, VCDM and VCCDM. Both of these
theories share the property that no additional degree of freedom is introduced in the gravity sector, and
propagate only two gravitational waves besides matter fields, as in General Relativity (GR). We find that,
on imposing physical boundary conditions on the Misner-Sharp mass of the system, the solutions in V(C)
CDM exactly coincide with the ones in GR; namely, they also satisfy the Tolman-Oppenheimer-Volkoff
equation.
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I. INTRODUCTION

We live in a particular era in cosmology due to the
remarkable precision achieved in various cosmological
observations. As a matter of fact, since the discovery of
gravitational waves [1], General Relativity (GR) has been
confirmed by yet another independent experimental data.
GR then appears more and more to be the theory of
classical gravitational interactions. This picture is quite
astonishing for a theory that was introduced more than one
hundred years ago.
To this beautiful picture and powerful result of theoretical

physics, cosmological observations are adding to it several
discrepant results. One of the most problematic among them
is the tension among different measurements of the expan-
sion rate of our Universe today, which is called the Hubble
parameter H0. Although this is one of the oldest and
elementary measurements in cosmology, on assuming GR
to hold at all times after the big bang, we find that different
data sets find different values for this unique observable. The
only ways this can be explained; experiments are wrong,
statistical analysis is not correct, or surprisingly, the assumed
underlining theory does not hold.
If GR is not suspicious in the context of cosmology, then

either the cosmological data or the statistical analysis in
determining H0 cannot be trusted. Evidently, this statement
(if correct) needs then to be completed by finding the reason
why the data and/or the analysis are wrong. As long as we do
not have a clear explanation for it, the other possibilities need
to be explored. One could also conclude that the classical
theory of gravity as described by GR is correct; what is
missing is a proper description of the matter present in the
Universe. Then, we need to understand better what kind of
matter can be responsible for the different values of H0

without contradicting all the experiments and observations
so far. On top of that, one would like to give possible
predictions from the requirement that the extra matter
responsible for the tension would be “visible” only in
cosmology and have no (or negligible) effects otherwise,
e.g., at solar system scales.
Recently, more cosmological data have been adding to

this obscure picture another unsolved puzzle [2–4]. In the
context of GR, these data sets tend to give a prediction for the
growth rate of the structure which is lower than, and in
tension with, the predictions coming from early times data
sets [5]. On top of that, extra matter fields, adding energy to
the system in general, tend to enhance the rate of growth for
the matter perturbations and thus increasing the tension.
The bottom line is that the cosmological picture seems to

be not fitting with a simple ΛCDM model of the Universe.
Even though we end up with this revolutionary conclusion,
we still need to find a valid alternative to the so-far consensus
of the cosmological model, i.e., a new model which is
required to overcome the existing puzzles that we are facing
in cosmology.
Recently, a new paradigm has been introduced, i.e.,

changing gravity minimally [6]. This implies that we change
gravity without introducing any additional degrees of free-
dom on top of what are already present in GR, i.e., two
tensor modes. This class of modified gravity theories were
named minimally modified gravity (MMG) [7] and classified
into two types [8]; type-I theories have the Einstein frame
and type-II theories do not. This classification was recently
further refined in [9]; type-Ia and type-IIa having the
standard dispersion relation ω2 ¼ k2 for tensorial gravita-
tional waves, and type-Ib and type-IIb having nonstandard
dispersion relations. While all type-I MMG theories can be
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systematically constructed by the general method developed
in [10], type-II MMG theories have so far been discovered in
a case-by-case manner. The construction of type-II MMG
theories can thus be accomplished in several different ways,
and any approaches the number of gravity’s degrees of
freedom need to be set nonlinearly and on a general
background. Though not necessary, the construction of these
theories typically involves the study of the degrees of
freedom in the Hamiltonian formalism of the theory. In
several cases, it is simpler to introduce theories of MMG
directly at the level of the Hamiltonian [11]. This approach
has been implemented following different paths e.g., in
[6,7,10,11]. Further studies were aimed at finding whether
these models could accommodate cosmological data
[8,12–18], or to find other models which could be more
suitable for cosmology, especially in the light of the puzzles
of today’s gravity at large scales. In particular, recently a
theory of type-IIa MMG called VðϕÞ cold dark matter
(VCDM) was introduced to implement a dynamical com-
ponent at the level of the cosmological background without
introducing any new degree of freedom [19], which seems to
give a promising insight into the H0-tension puzzle [20].
Moreover, for this theory, spherically symmetric vacuum
solutions were studied in [21] showing that for compact
objects the solutions were the same as in GR. Finally, in [22],
the minimal approach followed in VCDM was extended to
have a dark matter component which could have different
dynamics from the standard baryonic component. In par-
ticular, in this new theory, here and after called VCCDM,
such a dark component could feel an effectively different
gravity force, a phenomenon which was proposed to explain
the weakening of growth of structure as compared
to ΛCDM.
Independent of the above mentioned theories, another

theory of MMG named cuscuton has also been introduced in
the literature [23] (see also [24] for an extended version).
This theory can be considered as a infinite speed of sound
limit of the k-essence theory. It was established in [9] that,
when the divergence of λigf vanishes, the prediction of the
VCDM theory exactly agrees with that of the cuscuton
theory, where λigf is the vector-type Lagrange multiplier
enforcing the spatial constancy of an auxiliary scalar field.
Indeed, if the divergence of λigf vanishes (or more generally if
the divergence of λigf divided by the lapse function is
spatially constant) then the equations of motion of the
VCDM enforces the constant mean curvature slice
K ¼ KðtÞ. This is consistent with the fact that the cuscuton
in the unitary gauge is always in the constant mean curvature
slice.1 Therefore, the predictions of the two theories agree

with each other for a flat Friedmann–Lemaître–Robertson–
Walker (FLRW) background and the linear perturbations
around it. On the other hand, if one is to show the
equivalence of the two theories, such a configuration,
namely Diλ

i
gf ¼ 0, needs to be satisfied globally (i.e., over

the whole spacetime) and nonlinearly (i.e., not only at the
level of a homogeneous background and linear perturbations
but also at any order in perturbations and even nonpertur-
batively). Furthermore, the equations of motion of VCDM
completely determine the divergence of λigf which also
depends on the trace of the extrinsic curvature which in
turn satisfies its own equations of motion (i.e., the modified
Einstein equations for the metric components). Therefore, in
general the divergence of λigf divided by the lapse function
depends on the spatial coordinates and this means that the
VCDM is not in the constant mean curvature slice. This
indeed happens e.g., for the general time-dependent back-
ground solutions of spherically symmetric vacuum configu-
rations [21]. Therefore, it is concluded that the VCDM
theory differs from the cuscuton in the unitary gauge. See
[28] for more detailed and precise discussions on similarities
and differences between these two theories at various levels.
For VCDM (and VCCDM) spherically symmetric,

static, and nonstatic solutions were found in vacuum
[21]. In particular, new nontrivial black holes solutions
were found which, on setting boundary conditions suit-
able for compact objects in terms of the Misner-Sharp
mass, and matching the effective cosmological constant to
the asymptotic cosmological value, are reduced to the
standard Schwarzschild-de Sitter one of ΛCDM.
In this paper, we pursue the search for physical solutions

of VCDM (and VCCDM) by looking for static and
spherically symmetric configurations in the presence of a
barotropic-baryonic (i.e., neglecting dark matter contribu-
tions) fluid with some given general equations of state
p ¼ pðρÞ. In other words, we are looking for static solutions
which would show the existence of spherically symmetric
stars for these MMG theories. We find indeed that in this
case, the solutions for VCDM and VCCDM coincide with
each other and are in general different from the ones found in
ΛCDM. However, similarly to the case of black holes, once
we impose suitable asymptotic conditions on the Misner-
Sharp mass of the system, we refind, on further neglecting
(as in ΛCDM) the tiny cosmological constant, the standard
solutions of the Tolman-Oppenheimer-Volkoff (TOV) equa-
tion of GR [29,30]. These solutions are, as far as we know,
the first exact stellar solutions for MMG theories. Although
the result shows no deviation from GR for static, spherically
symmetric configurations satisfying the suitable boundary
conditions, their existence still makes these theories suitable
to tackle gravity not only at cosmological scales but also at
astrophysical scales such as those of compact objects. We
hope this work will then motivate further studies into the
phenomenology of MMG theories in other astrophysical
contexts, such as rotating compact objects and gravitational
collapses.

1For this reason the cuscuton differs from a low-energy limit of
the projectable Hořava-Lifshitz gravity [25], which possesses
three gravitational degrees of freedom, i.e., the tensorial gravi-
tational waves and the “dark matter as integration constant”
[26,27].

DE FELICE, MUKOHYAMA, and POOKKILLATH PHYS. REV. D 105, 104013 (2022)

104013-2



II. THE MODEL DESCRIPTION

In this section wewill briefly review the theories of type-II
minimally modified gravity (MMG) introduced in [19,22],
the metric ansatz and the description of baryonic matter.

A. VCDM and VCCDM

The idea behind the theories is rather simple. The starting
point is the Hamiltonian of General Relativity (GR). Then a
canonical transformation to another frame is performed via
a generating function that depends on new variables and old
momenta. At this level, one still has GR in a vacuum
although written in unconventional variables. At this level,
in the new frame either 1) a cosmological constant, or 2) a
cosmological constant and a dark matter model of one’s
choice is/are added. The former gives the VCDM theory
and the latter gives the VCCDM theory, after the following
steps. On adding (1) and (2) in this frame, GR changes into
another theory. On doing this one loses one first-class
constraint which reduces to a second-class one. Then we
need to introduce a further second-class constraint to keep
the same number of degrees of freedom as that of GR in the
gravity sector, i.e., to keep the theory minimal. After this
step, an inverse canonical transformation is performed. The
resulting Hamiltonian is the Hamiltonian of the new theory
(either VCDM or VCCDM) written in the original variables
introduced at the starting point. Now a Legendre trans-
formation is performed to find the Lagrangian of the new
theory. To this Lagrangian, we can safely add other matter
Lagrangians including the standard model of particle
physics, e.g., the radiation and baryon sectors (as well
as dark matter in the case of VCDM).2

By construction, the theory only possesses two tensorial
degrees of freedom in the gravity sector together with the
matter degrees of freedom. Furthermore, whenever dark
matter can be neglected, VCDM and VCCDM share the
same phenomenology, i.e., the same solutions of the
modified Einstein equations. In the following we will
discuss solutions of static, spherically symmetric matter
fields forming a star. In this case we will consider dark
matter to be negligible (as almost pressureless), and as such
VCDM and VCCDM will have the same phenomenology
for stars.
Let us now define the Lagrangian of the theory, coupled

to a baryonic fluid as the only matter field present in the
system. First of all we will make use of the ADM
formalism, introducing the lapse N, the shift Ni, and the
three-dimensional metric γij. Out of these variables we can
define the extrinsic curvature

Kij ≡ 1

2N
ð_γij −DiNj −DjNiÞ; ð1Þ

where Di is the three-dimensional covariant derivative
compatible with the metric γij. Then we introduce a
three-dimensional auxiliary scalar field ϕ so that we can
build up the following action for the system

S ¼
Z

d4xN
ffiffiffi
γ

p �
M2

P

2
ðRþKijKij −K2 − 2VðϕÞÞ

−
λigf
N

M2
P∂iϕ−

3

4
M2

Pλ
2 −M2

PλðK þ ϕÞ þLbaryon

�
; ð2Þ

where R is the three-dimensional Ricci scalar of γij, K ≡
γijKij is the trace of the extrinsic curvature, Lbaryon is the
matter Lagrangian of the baryonic matter field (which later
on, for simplicity, will be modeled by a single perfect fluid
component), and λ and λigf are two Lagrange multiplier
fields which are meant to set the constraints which are
necessary as to make the theory possess only two tensorial
degrees of freedom in the gravity sector. As a consequence
of the constraint enforced by λigf, ϕ is a function of only
time and thus is a global variable. Furthermore, VðϕÞ is a
free function,3 which then becomes, at most, a free function
of time, and which can be used in order to fulfill some
wanted cosmological dynamics [19,20].

B. The ansatz

Let us start with the metric ansatz

γijdxidxj ¼ ½FðrÞ2 þΦ�dr2 þ F2ðrÞ2ð1þ ζÞ

×

�
dz2

1 − z2
þ ð1 − z2Þdφ2

�
; ð3Þ

whereF andF2 are general functions of the radial coordinate
r. Here we have introduced z≡ cosϑ, where ϑ and φ
represent the standard polar angles. The two perturbations
Φðt; rÞ and ζðt; rÞ are introduced just to find the two
background equations of motion, and thus are set to zero
after first-order variations of the action with respect to them
are computed.
We introduce the shift vector as

Ni∂i ¼
�
B
F
þ χ

�
∂r; ð4Þ

where B ¼ BðrÞ is another free function of r and for
VCCDM (or VCDM) needs to be determined by the
equations of motion (instead of a gauge condition). We
also need to introduce the lapse function

2In principle, one can add all matter fields in the new frame and
then, after imposing the extra second-class constraint, perform the
inverse canonical transformation in order to reach the initial
starting frame. This step was done in [8], but it was found that the
dynamic of this type-I theory, in the baryonic sector, was quite
strongly constrained.

3In VCCDM we would have, in the dark matter Lagrangian,
another free function of the scalar ϕ.

STATIC, SPHERICALLY SYMMETRIC OBJECTS IN TYPE-II … PHYS. REV. D 105, 104013 (2022)

104013-3



N ¼ NðrÞð1þ αÞ; ð5Þ

and the three-dimensional auxiliary scalar field

ϕ ¼ ϕðrÞ þ δϕ: ð6Þ

Similarly to Φ and χ introduced above, the variables ζ, α,
and δϕ are perturbations (and functions of t and r) which
are meant to be used to find the background equations of
motion, and thus are set to be zero after taking the
variations of the action with respect to them.
Finally, we also need to introduce the Lagrange

multipliers

λ ¼ λðrÞ þ δλ; λi∂i ¼
�
λVðrÞ
F

þ δλV

�
∂r; ð7Þ

which are meant to set the constraints for V(C)CDM.
Again, the perturbations δλ and δλV are introduced just to
find the background equations and thus are set to zero at
the end of the calculation. For this static ansatz the
extrinsic curvature reduces to

Kij ¼
1

2N
ðDiNj þDjNiÞ: ð8Þ

We are now ready to introduce the matter components in
these theories.

C. Baryonic matter fluid

For the matter, here we consider a baryonic matter
component, i.e., having some nonzero pressure. If we were
to consider a pressureless fluid (assuming CDM to fulfill this
assumption) then we would need to study a gravitational
collapse, which is time dependent and inhomogeneous.
Although the study of the gravitational collapse is interesting
on its own, we will leave it as a future project and instead
focus on a different physical issue, namely to find how a star
profile changes for these theories with respect to GR. In
order to study standard astrophysical objects (neglecting at
least for the moment more exotic possibilities), we consider
baryonic matter in the form of a single perfect fluid with
nonzero pressure, and assume a barotropic equation of state
(yet not explicitly fixed) of the kind p ¼ pðρÞ. Once we
restrict our attention to a standard matter component, i.e., a
combination of the components already present in the
standard model of particle physics, then VCCDM and
VCDM solutions coincide as they differ in the behavior
of CDM only. We suppose that the matter fluid respects the
spherical symmetry, being then compatible with the sym-
metries of the three-dimensional metric field, the lapse
function, the shift vector, and the remaining fields of
V(C)CDM, ϕ included, evidently. To this aim we define

J0 ¼ J0ðrÞ þ δJ; ð9Þ

Ji∂i ¼½JrðrÞ þ δj�∂r; ð10Þ

which together form the four-vector Jμ. Out of these
quantities we can build up the four-scalar JμJνgμν, which
in the ADM language becomes

JμJνgμν ¼ −ðN2 − NiNiÞðJ0Þ2 þ 2J0ðNiJiÞ þ JiJi; ð11Þ

where Ni ¼ γijNj, and Ji ¼ γijJj. We can now introduce
the number density four-scalar, n, as

n ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−JμJνgμν

p
; ð12Þ

which sets Jμ to be a timelike four-vector. We also need to
introduce another scalar, l, as

l ¼ lðt; rÞ þ δl; ð13Þ

where we have also introduced the time dependence as l is
shift symmetric in the Lagrangian.
We can now introduce the Schutz-Sorkin Lagrangian for

the perfect fluid (see e.g., [31,32]) as

Lpf ¼ −N
ffiffiffi
γ

p
ρðnÞ − N

ffiffiffi
γ

p ðJ0 _lþ Ji∂ilÞ; ð14Þ

which needs to be added to the VCDM (VCCDM)
Lagrangian. Since p ¼ nρ;n − ρ, then on giving p ¼ pðρ),
we also fix ρ ¼ ρðnÞ, so that we are now ready to find the
equations of motion for the system and possibly solve them.
Before proceeding further we want to point out here that the
four-vector

uα ¼ Jα

n
; ð15Þ

by construction satisfies the constraint uαuβgαβ ¼ −1, and
corresponds to the four-velocity of the fluid element. Then,
since we focus on a static solution, staticity is shared also by
matter fields so that we need to impose the spatial velocity ui

to vanish. In turn this leads to setting

Ji∂i ¼ Jr∂r ¼ 0; or JrðrÞ ¼ 0: ð16Þ

III. MATTER FIELD EQUATIONS IN VCDM
(VCCDM)

In the context of VCDM and VCCDM let us consider the
spherically symmetric static solutions as produced by a
baryonic fluid and how they differ from the standard GR
solutions. In GR, it is well known that on considering a
static and spherically symmetric perfect fluid with the
general barotropic equation of state, namely p ¼ pðρÞ,
where p and ρ are the pressure and the energy density of the
fluid respectively, then the system is described by a solution
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of the Tolman-Oppenheimer-Volkoff (TOV) equations. We
need then to find and solve the new equations of motion for
the matter fluid in V(C)CDM.
First of all, without loss of generality we can fix the

radial coordinate once for all by setting

F2ðrÞ ¼ r; ð17Þ

so that the area of the two-dimensional two sphere, i.e., the
surface having r ¼ R ¼ const., becomes S2 ¼ 4πR2.
Furthermore, since Ji ¼ 0 (in particular Jr ¼ 0), then we
have n ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−JμJνgμν
p ¼ J0

ffiffiffiffiffiffiffiffiffiffi−g00
p ¼ J0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 − B2

p
. We use

this condition as to express J0ðrÞ in terms of the number
density n ¼ nðrÞ as

J0 ¼ nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 − B2

p ;

where we assume that N2 > B2. Now we can proceed
solving the equations of motion for this background. First
of all, the equation of motion for δλV leads to

∂rϕ ¼ 0; or ϕ ¼ ϕ0 ¼ constant;

where we have used the assumption of staticity. The
equations of motion for δJ and δj lead to

∂tl ¼ −ρ;n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 − B2

p
; ð18Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 − B2

p
∂rl ¼ ρ;nBF; ð19Þ

respectively. The enthalpy per particle μ is defined as
μ ¼ ∂ρ=∂n, so we can also write, for instance that
∂tl ¼ −μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 − B2

p
. These equations make sense if and

only if l satisfies

l ¼ −μ0tþ l̃ðrÞ; ð20Þ

where μ0 is a constant. In turn this implies that

∂ρ
∂n ¼ μðrÞ ¼ μ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N2 − B2
p ; ð21Þ

and

l̃ ¼
Z

r BFρ;nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 − B2

p dr̄: ð22Þ

Therefore, so far, these equations exactly coincide with the
corresponding ones in GR, when we set a gauge for
which B ≠ 0.
The equation of motion for δλ instead sets the profile of

λðrÞ as

λ ¼ −
2

3
ϕ0 þ

2

3

B0

NF
þ 4

3

B
rNF

: ð23Þ

In this case we still have the equations of motion for the
fields α, Φ, δϕ, ζ, χ, which we name as Eα ¼ 0, EΦ ¼ 0,
and so on. These equations of motion have been written
explicitly in Appendix A. All these equations are not
independent. In fact, we can show that

Eζ þ
r½n0ðB2 − N2Þ þ N0nN − nB0B�

2nðB2 − N2Þ EδJ

þ rðFB0 − BF0Þ
F2

Eχ þ
rN0

2N
Eα − rF0FEΦ

þ rB
2F

�
E0
χ −

2F3

B
E0
Φ

�
¼ 0; ð24Þ

identically.4 This last identity shows, for example, that ζ’s
equation of motion, Eζ is not an independent one, and as
such, it can be neglected. Hence, we can consider only the
equations of motion Eα ¼ 0, Eχ ¼ 0, and EΦ ¼ 0 coming
from the gravity sector. It should be noticed that, the
equation of motion Eδϕ ¼ 0, can be used in order to fix the
solution for λV, as

λV ¼
1

3r2

Z
r

0

ð3NFV;ϕr̄−2NFr̄ϕ0þ2B0r̄þ4BÞr̄dr̄: ð25Þ

Let us reconsider the equation of motion for the matter fluid
written in Eq. (21). We can use it in order to replace
everywhere ρ;n with μðrÞ. Furthermore, we also have that
p≡ nρ;n − ρ ¼ nμ − ρ, so that

dp ¼ μdnþ ndμ − ρ;ndn ¼ ndμ; ð26Þ

which, in turn, leads to the continuity equation

p0 ¼ nμ0 ¼ nμ
μ0

μ
¼ ðρþ pÞ μ

0

μ
¼ ðρþ pÞ½lnðμ=μ0Þ�0

¼ −ðρþ pÞNN0 − BB0

N2 − B2
: ð27Þ

This is identical, in form, to the expression found also in
GR, as expected from the fact that the matter Lagrangian
for the baryonic fluid does not get modified in these type-II
MMG theories.

A. TOV equation in VCDM (VCCDM)

Here we consider the Misner-Sharp mass for the system
which we define as

4Here we have also defined EδJ ≡ ðμ0−ρ;n
ffiffiffiffiffiffiffiffiffiffi
N2−B2

p
Þnr2NFffiffiffiffiffiffiffiffiffiffi

N2−B2
p , which is

equivalent to Eq. (21).
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4grr ¼ N2 − B2

N2F2
¼ 1 −

2GNm
r

−
Λeff

3
r2

¼ 1 −
mðrÞ
4πrM2

P
−
Λeff

3
r2; ð28Þ

where mðrÞ is the r-dependent Misner-Sharp mass and Λeff
is the effective cosmological constant of the system. The
above relation can be used as to perform a field redefinition,
e.g., replacing the variableFðrÞ in terms of the new variable
mðrÞ as in

F ¼ 2
ffiffiffi
3

p
MP

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πrðN2 − B2Þ

12πrM2
P − 3m − 4ΛeffM2

Pπr
3

s
: ð29Þ

If B were to vanish, then F would become a function of m
only. As a next step we consider a linear combination of
Eα þ b1EΦ þ b2Eχ , where the coefficients b1;2 are chosen
as to remove B00 and ðB0Þ2 from it, obtaining the following
constraint,

BB0 −NN0

N2−B2
¼ 8πΛeffM2

Pr
3 − 12πr3ðρþpÞþ 3ðrm0 −mÞ

2rð12πrM2
P− 4πΛeffM2

Pr
3− 3mÞ :

ð30Þ

On combining this with Eq. (27), we obtain the continuity
equation written in the following alternative form

p0 ¼ ðρþpÞ8πΛeffM2
Pr

3 − 12πr3ðρþpÞ þ 3ðrm0 −mÞ
2rð12πrM2

P − 4πΛeffM2
Pr

3 − 3mÞ :

ð31Þ

This equation can also be solved for m0 in terms of p0
giving

m0 ¼ ð24r − 8r3ΛeffÞπM2
P − 6m

3ðρþ pÞ p0

þ 12πr3ðρþ pÞ þ 3m − 8πΛ0M2
Pr

3

3r
: ð32Þ

Now, let us make the following field redefinition

N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N̄2 þ B2

p
; ð33Þ

so that Eq. (27) can be rewritten as

p0 ¼ −
ðρþ pÞN̄0

N̄
; ð34Þ

which can be solved for N̄ giving

N̄ ¼ C1 exp
�
−
Z

r p0dr1
ρþ p

�
: ð35Þ

In the following calculations we may need to use Eq. (32)
for m0 as found above. Then, on replacing p0 inside Eα ¼ 0
by the right hand side of Eq. (31) we obtain the following
equivalent constraint

Eα

N̄
¼ ðrB0 þ 2BÞ2

�
ΛeffM2

Pπr
3 − 3πrM2

P þ
3m
4

�

− 9r

�
πr2

�
ρþ

�
V −

ϕ2
0

3
− Λeff

�
M2

P

�
−
m0

4

�

× C21e
−
R

2p0
ρþpdr ¼ 0: ð36Þ

The solution to this equation can be written as

B ¼ C2
r2

� 3C1
r2

Z
r

0

r3=21 dr1e
−
R

r1 p0
ρþpdr2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð12r1 − 4r31ΛeffÞπM2
P − 3m

p
×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0 − 4r21πρ − 4

�
V −

ϕ2
0

3
− Λeff

�
M2

Pπr
2
1

s
; ð37Þ

and to avoid a singularity at the origin, we need to set
boundary conditions so that C2 ¼ 0. Substituting this
solution in the Eχ ¼ 0 equation of motion as well as using
Eq. (32), we obtain the following expression for m00,

m00 ¼ −
�
16π

3
M2

Pr
2Λeff þ

4m
r

− 16πM2
P

�
p0

ρþ p

þ 4πr2ρ0 −
16πrM2

PΛeff

3
þ 2m

r2
þ 8ðρþ pÞπr: ð38Þ

On replacing p0 in this last equation by the expression
obtained in Eq. (31), we find

m00 −
2

r
m0 − 4πr2ρ0 ¼ 0: ð39Þ

This result is indeed considerably simple. In fact, its
solution is given by

m¼
Z

rð4πρþC3Þr2drþC4 ¼
Z

r

0

4πρr2drþ1

3
C3r3; ð40Þ

where we have set boundary conditions so that mðr¼0Þ¼0
to avoid a singularity at the origin. Notice that the constant C3
induces a new contribution to the Misner-Sharp mass.
However, for a compact object it is unphysical to let m
grow up to infinity as the distance to the compact object
source increases. In fact, we would rather like to setm to stop
growing after p (or, equivalently, ρ by virtue of the equation
of state) vanishes. On using this extra boundary condition, we
are then bound to set C3 ¼ 0. On doing this last step, we
finally obtain the same results as in GR (in the presence of a
nonzero cosmological constant and matter).
Then the final TOV equation, a direct consequence of

Eq. (31), can be rewritten as
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p0 ¼−ðρþpÞ 3r3pþ 3
R
r
0 ρr

2
1dr1− 2ΛeffM2

Pr
3

2rð3rM2
P−ΛeffM2

Pr
3 − 3

R
r
0 ρr

2
2dr2Þ

; ð41Þ

which exactly matches the GR result. In fact, we can also
immediately write down that

N̄ ¼ C1 exp
�Z

r

0

3r31pþ 3
R r1
0 ρr22dr2 − 2ΛeffM2

Pr
3
1

6r1M2
P − 2ΛeffM2

Pr
3
1 − 6

R r1
0 ρr22dr2

dr1
r1

�
;

ð42Þ

which again matches the GR results (see Appendix B). As
for the variable B, its general expression for a compact
object can be rewritten as

B ¼ � 6C1MP

r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Λeff þ

ϕ2
0

3
− V

�
π

s

×
Z

r

0

r5=21 dr1e
−
R

r1
0

p0
ρþpdr2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð3r1 − r31ΛeffÞ4πM2
P − 3m

p ; ð43Þ

where p0 needs to be replaced by the right-hand side of the
TOV equation, Eq. (41).
As for the value of the effective cosmological constant

Λeff , being a constant, its value needs to remain unchanged
well outside the compact object. This implies that its value
should correspond to the effective cosmological constant
found for the general static vacuum exterior solution given
in [21], namely

Λeff ¼ Λeff;exterior ≡ Λ0 þ 3b20 ¼ Vðϕ0Þ −
ϕ2
0

3
þ 3b20; ð44Þ

where b0 ¼ − 1
3
Kexterior is proportional to the trace of the

extrinsic curvature tensor for the exterior vacuum static
solution. Instead, Λ0 corresponds to the value of the
cosmological constant on the homogeneous and isotropic
background, see e.g., [19]. In this case we can rewrite B as
follows:

B ¼ � 9C1b0MP

r2

Z
r

0

r5=21 dr1e
−
R

r1
0

p0
ρþpdr2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½9r1 − r31ð3Vðϕ0Þ − ϕ2
0 þ 9b20Þ�M2

P − 9
R r1
0 ρr23dr3

q : ð45Þ

Furthermore, on setting b0 ¼ 0 as to make Λeff ¼ Λ0, then
we obtain BðrÞ ¼ 0 anywhere inside the star. However,
this would in general also set B to be vanishing for the
exterior solution. In any case, the formal expression of
the TOV does not change, except for replacing the term
Λeff with Λ0.

B. Regularity at the origin

Here we show that at the origin, r ¼ 0, the solutions are
regular. Let us expand the matter density inside the star
around the origin as

ρ ¼ ρ0 þ ρ1rþ
1

2
ρ2r2 þ

1

6
ρ3r3 þOðr4Þ: ð46Þ

Considering an equation of state for the fluid, we can write
p ¼ pðρÞ. Then expanding the TOV equation Eq. (41) at
the origin, comparing coefficients order by order we can
find that

ρ1 ¼ ρ3 ¼ 0; ð47Þ

ρ2 ¼ ðρ0 þ p0Þ
2ΛeffM2

P − 3p0 − ρ0
6M2

Pp;ρðρ0Þ
: ð48Þ

This allow us to write the pressure expanded at the origin in
the form

p ¼ p0 þ
1

2
p;ρðρ0Þρ2r2 þOðr4Þ: ð49Þ

Now, using Eqs. (46) and (49) in the solution of N̄ and B,
i.e., Eqs. (42) and (45) respectively, we find that

N̄ ¼ C1

�
1 −

2M2
PΛeff − 3p0 − ρ0

12M2
P

r2 þOðr4Þ
�
; ð50Þ

B¼�C1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Λeff þϕ2

0 − 3V
q �

r
3
þ 1

20

ρ0 þp0

M2
P

r3 þOðr5Þ
�
:

ð51Þ

Finally, we can show that

F ¼ 1 −
M2

Pðϕ2
0 − 3VÞ − 3ρ0
18M2

P
r2 þOðr4Þ; ð52Þ

where we have used Eqs. (29) and (33). Thus, N̄ and F are
even in r (and F ¼ 1 in the origin) while B is odd. This
shows that the solutions are regular at the origin.
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IV. CONCLUSIONS

In these last years, the phenomenology of gravity has
become very interesting in theoretical physics. Evidently,
in the context of cosmology, the possibility that ΛCDM
would not be able to explain all the most recent data—not
only the value of today’s Hubble parameter, but also the
lower growth rate in galaxy surveys—has forced us to
look either into unknown systematics or into new theories
which are meant to change the dark sector, i.e., to replace
the cosmological constant with some as yet unknown new
component. Furthermore, the discovery of gravitational
waves has paved the way to a plethora of possibilities that
are instead oriented to constraining gravity theories on
astrophysical scales, i.e., very different scales from the
cosmological ones. The signals to probe gravity at small
scales we have received so far are not pointing to anything
different from General Relativity. This implies that, even
though gravity does not behave as ΛCDM at large
cosmological scales, nonetheless, at astrophysical scales,
any modified Einstein-Hilbert action is required to be
giving astrophysical solutions which match, within our
experimental sensitivities, the ones found in GR. On the
other hand, one would, in general, expect that either
adding new matter fields or modifying the gravity theory,
would lead to some modifications at various scales.
Therefore, several studies have been proposed to make
modified gravity theories or extra matter fields not
changing the typical GR solutions at the solar system
scales. This has implied either the introduction of a very
light scalar field (e.g., quintessence) almost decoupled
from the standard matter sector or the constructions
of mechanisms able to screen any extra scalar force
(chameleon and Vainshtein mechanisms, for instance).
On the other hand, more recently [8,11,19,22], another

approach has been put forward in modified theories of
gravity. The idea for all these models is to modify gravity
without introducing any additional gravitational degrees
of freedom. This excludes quintessence, vector theories
or dRGT massive gravity [33,34], for instance. The new
class of theories, on the one hand, should have the same
(two tensorial) degrees of freedom as in GR, but on the
other hand it should be different from GR; namely, it
should have a different (and possibly interesting) gravi-
tational phenomenology (see e.g., [12,13,16,17,20]). In
particular, for the two theories (VCDM [19] and VCCDM
[22]), it was shown recently that in the absence of matter
fields, both time-dependent and static spherically sym-
metric black holes solutions reduce to the standard
Schwarzschild-de Sitter solutions of GR, provided that
physical boundary conditions on the Misner-Sharp mass
describing a compact source are imposed [21].

In this paper, we have explored the existence and
properties of static spherically symmetric solutions
sourced by a barotropic perfect fluid with an equation
of state p ¼ pðρÞ, for both VCDM and VCCDM. In other
words, we have looked for spherically symmetric stars for
these theories of type-II MMG. We also found that, once
we set the Misner-Sharp mass to satisfy physical
boundary conditions suitable for a compact object
(namely it should stop increasing outwards outside the
matter source), the stars for these theories reduce to the
ones in GR, namely those described by the Tolman-
Oppenheimer-Volkoff equation.
As mentioned in the Introduction, the relation between

the VCDM theory and the cuscuton theory at the non-
linear level is an open question. Considering the fact that
time-dependent nonlinear solutions in the VCDM are not
in general in the constant mean curvature slice and thus
are not solutions of the cuscuton in the unitary gauge, it is
important to study the corresponding solutions in the
cuscuton theories by extending the analysis in [35]. In
fact, the investigation to understand the similarities and
relations among these two theories of type IIa, i.e.,
cuscuton theory and VCDM, is extensively carried out
in [28].
This result on one side sheds light on the general

properties of these theories and how they differ (or not)
from GR. On the other side this result should push
forward the search for new properties, i.e., new phenom-
enology, for astrophysical objects/processes in V(C)
CDM. One possible future direction is to investigate
how gravitational waves propagate on the background
of stellar solutions found here, a study which could
provide additional understanding to distinguish this
model from GR.
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APPENDIX A: EQUATIONS OF MOTION

We report here the equations of motion,

Eα ≡ 1

3ðN2 − B2Þ32NF2
f½3r2F3N2ðB2 − N2Þρ − 3F3N4r2nρ;n þM2

PðB2 − N2Þf½3N2 þ ðB0r − BÞ2�F

− N2ðϕ2
0r

2 − 3r2V þ 3ÞF3 − 6F0N2rg�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 − B2

p
− 3r2F3N2μ0nðB2 − N2Þg ¼ 0; ðA1Þ

EδJ ≡ ðμ0 − ρn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 − B2

p
Þr2nNFffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N2 − B2
p ¼ 0; ðA2Þ

Eχ ≡ 2M2
PðN2 − B2Þ½fðrF0 − 2FÞBþ r½ðrB00 þ 2B0ÞF − rB0F0�gN − rFN0ðB0r − BÞ� − 3F3BN3r2nρn

3FN2ðB2 − N2Þ ¼ 0; ðA3Þ

EΦ ≡ 1

6ðN2 −B2Þ32N2F4
ð−3F3μ0nðB2 −N2ÞN3r2 þ ½3F3N3ðB2 −N2Þr2ρþ 3F3B2N3r2nρ;n

þf½ð3r2V − r2ϕ2
0 − 3ÞF3 þ 3F�N3 þ 6rN0FN2 þf½ð2r2B00 þ 2B0rÞBþ r2ðB0Þ2 − 3B2�F− 2rF0BðB0r−BÞgN

− 2rN0BFðB0r−BÞgðB2 −N2ÞM2
P�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 −B2

p
Þ ¼ 0; ðA4Þ

Eδϕ ≡ −M2
Pr

�
rN

�
Vϕ −

2ϕ0

3

�
F þ 2B0r

3
− rλ0V þ 4B

3
− 2λV

�
¼ 0; ðA5Þ

Eζ ≡ 2r

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 − B2

p
F2N2

�
3F3μ0nN3r

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 − B2

p �
−
3F3N3ρr

2

þM2
P

��
rðϕ2

0 − 3VÞF3

2
þ 3F0

2

�
N3 þ

�
3N0F0r

2
−
�
3rN00

2
þ 3N0

2

�
F

�
N2

þ
���

rB00

2
− B0

�
Bþ ðB0Þ2r

�
F −

F0BðB0r − BÞ
2

�
N −

N0BFðB0r − BÞ
2

���
: ðA6Þ

As shown in Eq. (24), the Eζ equation is not independent of
the others.

APPENDIX B: GR CASE

In GR, for a static spherically symmetric ansatz, we can
always make a coordinate transformation to new coordinates
ðT; RÞ so that the component gTR ¼ 0. So, in the following,
we consider the coordinates ðT; RÞ as those in which the
metric is diagonal and suppose that they are related to
the coordinates ðt; rÞ in which the metric is nondiagonal by
the following coordinate transformation,

t ¼ T þ VðRÞ;
r ¼ R:

In this case we find that the corresponding 1-forms are
related to each other by

dt ¼ dT þ V;RdR; ðB1Þ

dr ¼ dR: ðB2Þ

On the other hand, we have the following relation between
the vector basis,

∂
∂t ¼

∂
∂T ; ðB3Þ

∂
∂r ¼

∂
∂R − V;R

∂
∂T : ðB4Þ

Let us now consider a static matter source. In this case we
find

u ¼ uαeα ¼ u0ðRÞ ∂
∂T ¼ u0ðrÞ ∂∂t ; ðB5Þ

so that imposing a static matter, uR ¼ 0, leads to ur ¼ 0,
even after we change the vector basis. On the other hand u0

is found via the scalar constraint (which can be evaluated in
any coordinate frame); gðu; uÞ ¼ −1.
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Then, since in the ðt; rÞ coordinates the metric is non-
diagonal, let us consider the 4D metric written in the
following form

ds24 ¼ −ðN2 − B2Þdt2 þ 2BFdtdrþ F2dr2

þ r2
�

dz2

1 − z2
þ ð1 − z2Þdφ̃2

�
: ðB6Þ

Then in GR, we find that the equation of motion for δgtr is
equivalent to the one for δgrr. On the other hand, we can
also follow the route chosen in the main text for VCDM (or
VCCDM), and define F in terms of the Misner-Sharp mass
m, finding the same result as in Eq. (29). Then the Einstein
equations lead to

m0 ¼ 4πr2ρ; ðB7Þ
as expected. Furthermore, on defining N̄ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 − B2

p
as

we have also done in the main text, we find that B does

not appear any longer in the equations of motion (i.e., its
dynamics decouples, as expected from the fact that we
have a gauge choice for this degree of freedom), and we
finally find

N̄ ¼ C0 exp
�Z

r 2ΛM2
Pr

3
1 − 3r31p− 3

R
r1 r22ρdr2

2ΛM2
Pr

3
1 − 6r1M2

P þ 6
R
r1 r22ρdr2

dr1
r1

�
;

ðB8Þ

together with

p0 ¼ −
ðρþ pÞð2r3ΛM2

P − 3pr3 − 3
R
r2ρdrÞ

2r½3 R r2ρdrþ rM2
PðΛr2 − 3Þ� : ðB9Þ

So in GR the variable B can be set to any value we like,
but the solution for p, ρ, and N̄ will not change in any
way. Instead, in V(C)CDM, B is deduced by solving the
equations of motion.
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