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This work proposes a set of equations that can be used to numerically compute spacetimes containing a
stationary black hole. The formalism is based on the 3þ 1 decomposition of General Relativity with
maximal slicing and spatial harmonic gauge. The presence of the black hole is enforced using the notion of
apparent horizon in equilibrium. This setting leads to the main result of this paper: a set of boundary
conditions describing the horizon and that must be used when solving the 3þ 1 equations. Those
conditions lead to a choice of coordinates that is regular even on the horizon itself. The whole procedure is
validated with three different examples chosen to illustrate the great versatility of the method. First, the
single rotating black holes are recovered up to very high values of the Kerr parameter. Second, nonrotating
black holes coupled to a real scalar field, in the presence of a negative cosmological constant (the so-called
Martinez-Troncoso-Zanelli black holes), are obtained. Last, black holes with complex scalar hairs are
computed. Eventually, prospects for future work, in particular in contexts where stationarity is only
approximate, are discussed.
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I. INTRODUCTION

Black holes are objects so compact that nothing, light
included, can escape their intense gravitational field. If
this concept was first considered in the eighteenth century,
it is with the advent of General Relativity that the
mathematical description of those objects was made
possible. The first solution of a single nonrotating black
hole was obtained by Schwarzschild in 1916. In 1963,
Kerr extended the solution to include rotation and found
the metric which took his name [1]. Not only does this
metric describe a rotating black hole, but it has been
proven that, under some assumptions, it is the only
possible choice. This result arises from the uniqueness
theorems (see [2] for a review).
If it is long known that massive stars should end up their

life producing a black hole, direct proofs of the existence
of astrophysical black holes are now available with more
and more confidence. First there is the detection of the
gravitational waves emitted by the coalescence of two
black holes. When two such objects are orbiting each
other, they lose energy by deforming the spacetime and
eventually merge into a single black hole. The emitted
gravitational waves can be detected by laser interferom-
etry on Earth [3,4]. Since the first detection in 2015 [5],
several tens of such binaries have been detected. The

observed waveforms are in total agreement with the
prediction of General Relativity [6,7].
On the other hand, observations with very high angular

resolutions enabled to confirm the existence of super-
massive black holes at the center of galaxies, mainly in
two cases: first, at the center of our galaxy where the orbits
of stars indicate the existence of a small dark object of mass
≈4 × 106 M⊙. Observations are consistent with this object
being a classical black hole described by General Relativity
[8]. Using very-long baseline interferometry it was also
possible to directly image an accretion disk around the
center of the galaxy M87 [9]. The obtained image exhibits a
shadow consistent with the fact that the disk is indeed
orbiting a black hole.
It is expected that all those types of detectors will reach

higher and higher sensitivity in the coming years. New
detectors, like the LISA space interferometer [10,11] or the
Einstein Telescope [12], will also come online. This will
enable precise tests of the black hole paradigm. If so far
observations are consistent with the compact objects being
classical Kerr black holes, there is possibility that they are
indeed more complicated ones. An example of such an
alternative model is the black hole with scalar hairs studied
in Sec. V. To maximize the scientific impact of the future
observations, theoretical studies of the various models of
black holes are needed. Many of those studies rely on
analytic choices, in particular concerning the coordinates
used. This can be a limitation when those coordinates are
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singular or when fast rotation is included (see [13] for
instance).
In this paper, a framework is proposed that enables the

numerical description of stationary black holes in a rather
general context. The formalism should lead to a choice of
coordinates that is regular everywhere, in particular across
the black hole horizon. The formalism relies on the 3þ 1
decomposition of spacetime. The choice of coordinates is
based on maximal slicing for the time coordinate and on
the spatial harmonic gauge for the spatial ones. The
presence of the black hole is enforced by demanding that
spacetime contains an apparent horizon in equilibrium.
Let us mention that this is far from being the first proposal
for such a description. A method based on the spatial
symmetries of the spacetimes can be found in [14–16].
It has been applied successfully to various situations
(asymptotically anti–de Sitter, various dimensions).
A method relying on the use of the Dirac gauge can
be found in [17] where it is applied to the Kerr
spacetime.
The paper is organized as follows. In Sec. II, the

formalism is presented. The bulk equations coming from
the 3þ 1 setting are exhibited. The description of the
apparent horizon is also investigated in detail and the
resulting boundary conditions for the metric fields are
given. Three different applications are then shown.
In Sec. III, the Kerr black hole is recovered in this
coordinate system (which is not analytic). In Sec. IV,
a model of black hole studied by Martinez and collabo-
rators is recovered numerically. The model has no
angular dependence and contains a real scalar field
minimally coupled to gravity. There is also a negative
cosmological constant which causes the spacetime to
be asymptotically anti–de Sitter. Section V shows the
construction of black holes with complex scalar hairs
as already obtained in [18,19]. Future prospects are
considered in Sec. VI.
Throughout this paper Greek indices are four-

dimensional ones, ranging from 0 to 3, whereas Latin
indices are spatial ones, ranging from 1 to 3. Units such that
G ¼ c ¼ 1 are used.

II. FORMALISM

A. 3 + 1 formalism and gauge conditions

The 3þ 1 decomposition of Einstein’s equations is
widely used in the field of numerical relativity and it is
at the core of this work as well. Basic features of
this formalism are recalled (see for instance [20] for
more details). The four-dimensional metric g is decom-
posed as

gμνdxμdxν ¼ ð−N2 þ BiBiÞdt2 þ 2Bidxidtþ γijdxidxj:

ð1Þ
The hypersurfaces Σt of constant time t are mapped by

the purely spatial coordinates xi. The 3þ 1 quantities are
then a scalar function N the lapse, a vector field Bi

the shift, and the metric induced on Σt, γij. All indices of
spatial quantities are manipulated by the induced
metric. In the following ∇ denotes the covariant
derivative associated with gμν and D the one associated
with γij.
The normal to each slice Σt is nμ ¼ ð−N; 0; 0; 0Þ. In this

framework, the second fundamental form, the extrinsic
curvature tensor, reads as follows:

Kij ¼
1

2N
ðDiBj þDjBi − ∂tγijÞ: ð2Þ

Each index of Einstein’s equations can then be projected
either on the hypersurface Σt or along the normal. It leads to
the 3þ 1 equations of general relativity:

H∶ Rþ K2 − KijKij − 2Λ ¼ 16πE; ð3Þ

Mi∶ DjKij −DiK ¼ 8πPi; ð4Þ

Eij∶ − ∂tKij þ LBKij −DiDjN

þ NðRij þ KKij − 2KikKk
j − ΛγijÞ

¼ 4πNð2Sij − ðγklSkl − EÞγijÞ; ð5Þ

where L denotes the Lie derivative, Rij and R the
Ricci tensor and scalar, and K the trace of the extrinsic
curvature tensor. H denotes the Hamiltonian constraint,Mi
the momentum constraint, and Eij the evolution equation.
The equations are written here with a cosmological
constant Λ and in the presence of matter. Matter terms
contain the 3þ 1 projections of the stress-energy tensor E,
Pi, and Sij.
As such, the system of equations (3)–(5) [supplemented

with Eq. (2)] cannot be solved to find the fields N, Bi; and
γij. Indeed, the choice of coordinates ðt; xiÞ has not been
prescribed yet and the general covariance of the theory
would lead to an ill-posed problem.
In the following, one uses the same choice of coordinates

that was successfully employed in [21] and the mathemati-
cal properties of which were assessed in [22]. The slicing of
spacetime (i.e., the choice of Σt) is defined by the maximal
slicing condition K ¼ 0. One also demands that the spatial
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coordinates fulfill the spatial harmonic gauge (the 3D
version of the well-known 4D harmonic one). It amounts
to enforcing that

Vk ≡ γijðΓk
ij − Γ̄k

ijÞ ¼ 0: ð6Þ

Γk
ij are the Christoffel symbols of γij whereas the Γ̄k

ij

correspond to a fixed background metric γ̄ij. Different
choices of the background metric would lead to different
choices of spatial coordinates. In standard cases the back-
ground metric is usually the flat metric one (in spherical or
Cartesian coordinates). When a negative cosmological
constant is present (as in [21] or in Sec. IV) it is convenient
to consider spatial metrics linked to the anti–de Sitter (AdS)
spacetime.
In [22] it has been shown that the Ricci tensor can be

expressed as

Rij ¼ −
1

2
γklD̄kD̄lγij þ

1

2
ðDiVj þDjViÞ þ termsð∂γ∂γÞ;

ð7Þ
where D̄ denotes the covariant derivative associated with
the background metric. Using Vi ¼ 0 thus ensures that the
second-order derivatives of the metric appearing in the
Ricci tensor are all accounted for by γklD̄kD̄lγij, which is a
Laplacian-like operator and thus well behaved (see
Sec. (3.2) of [21] for more details).
In order to enforce the gauge conditions, one removes all

the occurrence of K in the 3þ 1 equations. Rij is also
replaced by Rij − 1=2ðDiVj þDjViÞ, making the associ-
ated second-order part Laplacian-like. In the following,
only stationary black holes are considered so that one can
also remove all the terms ∂t. This leads to the following
system of equations:

H∶ R −DkVk − KijKij − 2Λ ¼ 16πE; ð8Þ

Mi∶ DjKij ¼ 8πPi; ð9Þ

Eij∶ LBKij −DiDjN

þ N

�
Rij −

1

2
ðDiVj þDjViÞ − 2KikKk

j − Λγij
�

¼ 4πNð2Sij − ðγklSkl − EÞγijÞ; ð10Þ

where Vi is given by Eq. (6) and Kij by Eq. (2), which in
that case reduces to

Kij ¼
1

2N
ðDiBj þDjBiÞ: ð11Þ

Equations (8)–(10) are now an invertible system of ten
components, corresponding to the ten unknown fieldsN, Bi,

and γij. Once this system is solved, a very important check
consists of verifying, a posteriori, that the gauge fieldsK and
Vi are indeed zero. If this is not the case, the solved
equations do not coincide with the original ones, making
the overall procedure fail. This check is of utmost impor-
tance and it is very difficult to pass if anything is wrong
somewhere in the equations. It is carefully monitored for the
three different examples presented in this paper. The above
procedure is the three-dimensional equivalent of the so-
called De Turck procedure used to enforce the four-dimen-
sional harmonic gauge [14,23]. Validity of the procedure is
discussed, for instance, in [24,25].

B. Apparent horizon boundary conditions

It is well known that event horizons are global objects
that require the knowledge of the full spacetime in order to
be located. It makes them difficult to use in the context
of numerical relativity. In order to enforce the presence of
black holes, one usually relies on the local notion of
apparent horizon, first introduced in [26]. By local one
means that apparent horizon can be defined on each slice Σt
by the sole knowledge of the geometry of the slice.
Apparent horizons are commonly used in black hole
simulations (see for instance [27–29] for applications in
the binary context). In the following only relevant proper-
ties of apparent horizons are discussed (see [30] for a
detailed review). Let us also point out that, in the stationary
cases, apparent and event horizon coincide.
Without loss of generality, the apparent horizon is

assumed to be a sphere of constant radius rH. Spherical
coordinates ðr; θ;φÞ are used to map the slices Σt and
tensors are given with respect to the associated (orthonor-
mal) spherical tensorial basis. Let us denote s̃i the unit,
outward, spacelike, normal to the horizon. If need be, it can
be shown that

s̃i ¼ ð
ffiffiffiffiffiffi
γrr

p
; 0; 0Þ; ð12Þ

s̃i ¼ 1ffiffiffiffiffiffi
γrr

p ðγrr; γrθ; γrφÞ: ð13Þ

The very definition of an apparent horizonmeans that it is the
outermost trapped surface. So, the expansion Θ of the
outward future null vector must vanish. Using the 3þ 1
expression for Θ (see [30]), it gives rise to the following
equation:

Θ≡Dis̃i þ s̃is̃jKij ¼ 0: ð14Þ

Moreover, following [29,30], one can ask that the
coordinate system be stationary with respect to the horizon
(i.e., the horizon location is fixed). It implies that, on the
horizon,
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N ¼ Bis̃i: ð15Þ

One can also show (see for instance [17]) that the
shear σab of the null light rays must vanish. It implies
that the shift vector Bi must be a conformal Killing
vector of the sphere. A possible choice together with
Eq. (15) is

Bi ¼ Ns̃i −ΩBHmi; ð16Þ

where ΩBH is a constant that captures the rotation velocity
of the black hole and mi ¼ ð∂φÞi. The minus sign ensures
that the angular momentum is positive.
Equations (14)–(16) have been successfully used in

many publications, especially for computing binary black
holes initial data [29,31,32]. However, in those papers the
spatial metric is set to be conformally flat, an assumption
that is not used in this work.

C. Differential gauges

Maximal slicing and the spatial harmonic gauges are
differential gauges. By that, it is to be understood that
they do not impose conditions directly on the metric
fields but rather lead to partial differential equations.
When regularity of the full spacetime is required, it
leads to a unique choice of coordinates. However, as will
be illustrated below, when a horizon is present, the
coordinate system is fixed up to some boundary con-
ditions which can be used to freely specify some
quantities.
Consider an infinitesimal coordinate change of time of

the form t0 ¼ tþ αðxiÞ. At first order it does induce a
change on the lapse and the shift proportional to ∂iα.
Demanding that the new coordinate system obeys the
maximal slicing condition K0 ¼ 0 leads to a partial
differential equation which is second order in terms of
the coordinate change α, K0 containing first-order deriv-
atives of the shift. So, in order to transform an arbitrary
coordinate system into one with maximal slicing,
one needs to solve a second-order partial differential
equation for α. It follows that α is determined up to
two boundary conditions. The one at infinity is implicitly
accounted for by demanding that the metric takes a fixed
form (flat one in Secs. III and Vor AdS in Sec. IV). In the
presence of a horizon, the inner boundary condition for α
can translate in the free choice of the lapse. So, on the
horizon the lapse is a freely specifiable angular func-
tion N0ðθ;φÞ.

The situation concerning the spatial coordinates is
similar. Considering a coordinate change of the form
x0i ¼ xi þ ξiðxjÞ, one can show that the spatial harmonic
gauge equation (6) is of second order in terms of ξi. Indeed,
the Christoffel symbols contain first-order derivatives of the
metric which, in turn, contains first-order derivatives of ξi.
However, not all of the components of ξi can be chosen
freely. Remember that the location of the horizon has been
chosen beforehand as being a sphere of constant radius. In
order to maintain this location, one needs to have ξr ¼ 0.
The two angular components of the coordinate change,
however, can be freely chosen on the horizon and this
choice translates into the possible free choice of some of the
3þ 1 quantities. The shift being fixed by Eq. (16), it is
more convenient to enforce the value of some components
of the metric. The most natural choice is to fix the
components γrθ and γrφ of the spatial metric (with the
spectral methods used in this paper those components have
the same spectral bases as ξθ and ξφ, leading to a well-
posed numerical system; this is probably more profound
than just technicalities of the numerical method). So, on the
horizon one sets γrθ ¼ f and γrφ ¼ g, where f and g are
arbitrary angular functions.

D. Degeneracy of the equations

In the context of this work, an equation is said to be
degenerate if the prefactor of the highest-order derivative
vanishes. As an illustration, consider the following
equation: aðxÞf00 þ bðxÞf0 þ cðxÞf þ dðxÞ ¼ 0 on
½−1; 1�. If aðxÞ does not vanish, then it can be solved with
the imposition of two boundary conditions, at x ¼ −1 and
x ¼ 1. If aðx ¼ −1Þ ¼ 0, the equation is degenerate and
one can no longer choose any boundary condition at
x ¼ −1. Indeed, at this point, the equation reduces to
bðxÞf0 þ cðxÞf þ dðxÞ ¼ 0, which is the only compatible
choice and must be used as a boundary condition. In a
sense, the equation is its own boundary condition.
This type of behavior is present in the 3þ 1 equations

considered here and it must be dealt with carefully. This
can be seen in the evolution equations (10) where the
factor in front of the second-order radial derivatives of the
metric is ððBrÞ2 − N2γrrÞ=2N which vanishes on the
horizon, given Eq. (15). However, as the full set of
equations is coupled, one cannot simply assign one
equation to one unknown. The system should be consid-
ered as a whole. In order to do so, one needs to isolate, in
Eqs. (8)–(10), the terms involving the second radial
derivatives of the fields.
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This can be done and the result is given by (17). The
lines correspond to the equations of the system [i.e., line 1
to Eq. (8), lines 2–4 to Eq. (9), and lines 5–10 to Eq. (10)].
The columns correspond to the metric fields (i.e., column
1–N, columns 2–4 to Bi, and columns 5–10 to γij). The
quantities in (17) are then the factors of the terms ∂2

rr of a
given field, in a given equation.
As already noted, the factor appearing on the last

lines vanishes on the horizon. Though it is difficult
to find explicitly the eigenvalues of (17), one can
investigate them numerically after assigning some
random but realistic values to the fields on the
horizon. It appears that the multiplicity of the null
eigenvalue is always 3. It follows that the only degen-
erate equations correspond to the last three lines of (17),
which are the purely angular components of Eq. (10)
[i.e., the components ðθ; θÞ, ðθ;φÞ, and ðφ;φÞ]. Those
components must be solved without any boundary
conditions or equivalently as being their own boundary
conditions.

E. Behavior of the expansion

At this point, it seems that there are enough boundary
conditions to solve the problem. Indeed, one could use
N ¼ N0, Bi ¼ Ns̃i −ΩBHmi, Θ ¼ 0, γrθ ¼ f, γrφ ¼ g, and
Eθθ ¼ Eθφ ¼ Eφφ ¼ 0. This is a set of ten boundary
equations for the ten unknown fields N, Bi, and γij.
Numerical experiments (more details about the numerics

can be found in Sec. III) were first constructed in the
nonrotating case, that is, by setting ΩBH ¼ 0. If convergence
is not impossible to achieve, the numerical system seems to
exhibit some instabilities. It is observed that the code is much
more stable when the boundary condition Θ ¼ 0 is relaxed
and replaced by the imposition of the value of γrr on the
horizon. One can thenmonitor the value of the expansion and
check that it is indeed zero. This is shown in Fig. 1, where the
value of Θ on the horizon is shown, as a function of the
resolution, for three different values of γrr on the horizon.
Whenprecision increasesΘ goes to zero, for all three different
values of γrr. It shows that all the configurations correspond to
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valid nonrotating black holes, the different choices of γrr on
the horizon corresponding to different masses.
The fact that there is no need to enforce directlyΘ ¼ 0 in

the nonrotating case can actually be understood analyti-
cally. WhenΩBH ¼ 0, the only nonvanishing component of
the shift is Br and the spatial line element reduces to
ds2 ¼ Adr2 þ BdΩ2. All the quantities depend only on the
radial coordinate. Given those expressions, one can com-
pute the expansion and the trace of Kij and find that

Θ¼ rBBr∂rAþ2rAB∂rBrþ2ðrN∂Bþ2BNÞ ffiffiffiffi
A

p

2rABN
; ð18Þ

K¼ rBBr∂rAþ2rAB∂rBrþ2rABr∂rBþ4ABBr

2rABN
: ð19Þ

Inserting K ¼ 0 in Eq. (18) then leads to

Θ ¼ ðN ffiffiffiffi
A

p
− ABrÞð2r∂rBþ 4BÞ

2rABN
; ð20Þ

which is indeed zero on the horizon given the boundary
condition Eq. (15). So, it follows that if the system of
equations ensures that K ¼ 0, then Θ ¼ 0 is also guaran-
teed. If the procedure presented in Sec. II A used to enforce
maximal slicing works properly, then there is no need to
explicitly impose that Θ ¼ 0. Given the curves shown in
Fig. 1, it appears to be the case.
When rotation is present (i.e., when ΩBH ≠ 0) the

situation is slightly more complicated. If one tries the
same procedure as in the nonrotating case, one can show
that fixing γrr on the horizon does not lead to Θ ¼ 0.
Moreover, one can observe that the error does not contain
any spherically symmetric component (for instance, if

projected onto spherical harmonics, there is no component
on Y0

0). So, in order to maintain some kind of continuity
between the nonrotating and rotating cases, one is led to
consider the following choice of boundary conditions:

(i) The spherical part of γrr is chosen arbitrarily.
(ii) The nonspherical part of Θ ¼ 0 must be solved.
In this paper, spectral methods are used so that the

splitting between spherical and nonspherical parts is
essentially straightforward. Should other numerical meth-
ods be used, this may not be as simple but this is beyond the
scope of this work.

F. Complete set of boundary conditions

The full set of boundary conditions on the horizon (here
a sphere of fixed radius) is given by

N ¼ N0ðθ;φÞ;
Bi ¼ Ns̃i −ΩBHmi;

Spherical part∶ γrr ¼ γ0

Nonspherical part∶ Θ ¼ 0

γrθ ¼ fðθ;φÞ;
γrφ ¼ gðθ;φÞ;
Eθθ ¼ 0;

Eθφ ¼ 0;

Eφφ ¼ 0: ð21Þ

In those equations, there are three freely specifiable
angular functions N0, f, and g and one free number γ0. A
standard choice for those values is N ¼ 1=2, f ¼ g ¼ 0,
and γ0 ¼ 8. Unless otherwise stated, this is what is used
throughout this paper. The equations are solved numeri-
cally, using the KADATH library [33,34]. This tool relies on
spectral methods to solve systems of partial differential
equations and it has been successfully applied to the study
of various problems in general relativity and theoretical
physics.
Let us recall that, once the equations are solved, it needs

to be checked a posteriori that the gauge conditions K ¼ 0

and Vi ¼ 0 are indeed verified. As already stated, this is a
very important test. There is also a need to verify that the
spherical part of Θ vanishes, as it is not explicitly enforced
by the set of boundary conditions, Eq. (21).

III. KERR BLACK HOLES

The simplest and most straightforward application of the
equations presented above is the computation of a single
rotating black hole in general relativity. It must lead to the
famous Kerr spacetime [1]. However, with the gauge
choices used in this paper, the solution is found in
coordinates that are not analytical.

FIG. 1. For a nonrotating black hole, maximum value of the
expansion jΘj on the horizon, as a function of the resolution (i.e.,
number of radial collocation points). Three different values of γrr
on the horizon are displayed. Θ clearly goes to zero when
precision increases.
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The equations solved are (8)–(10) with the inner boundary
conditions (21). Λ is set to zero and there is no matter. The
system is closed by demanding that flat spacetime is
recovered at spatial infinity. It simply implies that N ¼ 1,
Bi ¼ 0, and γij ¼ fij, where fij denotes the flat metric.
For the single black hole problem, the numerical

spacetime is decomposed into several (typically four)
spherical shells. The last domain extends up to infinity
by means of the variable 1=r so that boundary conditions
are enforced at exact spatial infinity. The solutions are
found iteratively by means of a Newton-Raphson iteration.
The first computed configuration is the Schwarzschild one,
for which ΩBH ¼ 0. The angular velocity is then incre-
mented in order to compute a sequence of rotating black
holes with different Kerr parameters.
Once a given configuration has been computed, various

global, coordinate-independent quantities can be com-
puted. The ADM (Arnowitt-Deser-Misner) mass is given
by a surface integral at infinity:

MADM ¼ 1

16π

Z
r¼∞

fikfjlðD̄jγkl − D̄kγjlÞdS; ð22Þ

where D̄ denotes the covariant derivative associated with
the flat metric fij and dS is the surface element at infinity.
The spacetime being stationary, one can also define the
Komar mass of the system by

MKomar ¼
1

4π

Z
r¼∞

ðs̃iDiN − Kijs̃is̃jÞdS: ð23Þ

Given Eq. (16), rotation is around the z axis only and the
angular momentum is given by

J ¼ 1

8π

Z
r¼∞

Kijmis̃jdS: ð24Þ

Various error indicators are monitored in Fig. 2. The
quantities are plotted as a function of the resolution. This
corresponds to the number of coefficients of the spectral

FIG. 2. Various error indicators for a configuration with rH ¼ 1 and ΩBH ¼ 0.1. All the quantities are shown as a function of the
number of spectral coefficients in both the r and θ directions. The first panel shows the gauge quantities K and Vi, the second one the
maximum value of Θ on the horizon, the third one the relative difference between MADM and MKomar, and the last one the relative
difference between the numerical and analytical values of ΩBH.
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expansion, with respect to the coordinates r and θ (in that
case the same number is used for both dimensions).
Convergence of the various indicators is shown for a
configuration with rH ¼ 1 and ΩBH ¼ 0.1, which corre-
sponds to a mass MADM ≈ 2.18 and a Kerr parameter
a=M ≈ 0.73. The first panel shows that the quantitiesK and
Vi decrease exponentially as resolution increases. As
already stated, this is an important test that ensures that
the system solved coincides with Einstein’s equations and
that the gauge choices are indeed fulfilled. The second
panel of Fig. 2 shows the maximal value of Θ [Eq. (14)] on
the horizon. As seen in Sec. II E the spherical part of Θ ¼ 0
is not solved numerically and this curve shows that it is
indeed verified as it goes to zero exponentially.
The last two panels involve the computation of global

quantities and so the errors are slightly bigger. Indeed, the
computation of those quantities involve surface integrals at
infinity that introduce additional numerical errors, when
compared to quantities like K or Vi. This can explain the
fact that convergence is less regular, as seen with the values
for a resolution of 25. The saturation level is also somewhat
higher, with a value of about 10−7−8. This is not surprising
as the Newton-Raphson algorithm was stopped at a thresh-
old of 10−8. That being said, the last two panels of Fig. 2
still show a good convergence with resolution. The third
one shows the relative difference between the ADM and
Komar masses, as it is known that the two must be equal in
that case (see Sec. 8.6.2 of [20] for more details on this
equality). The last panel shows the relative difference from
the numerical angular velocity ΩBH and the one computed
from MADM and a by the analytic expression

Ω ¼ a

2MðM þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
Þ
: ð25Þ

Using the highest resolution at hand (33 points in r and
θ), one can compute a sequence of Kerr black holes, with

different values of the Kerr parameter a=M. It is well
known that this parameter goes from 0 (Schwarzschild
black hole) to 1 (extremal Kerr black hole). In order to
compute the sequence, one can start from the nonrotating
solution and increase ΩBH step by step. If this does work
properly at first (i.e., for moderate values of a=M), a
technical difficulty stems from the fact that ΩBH is not a
monotonic function of the Kerr parameter, when the
radius rH is fixed. This is clearly seen in the first panel
of Fig. 3. In order to be able to pass the maximum, the
value of ΩBH can be made an unknown of the numerical
problem and the condition that a=M has a given value can
be added to the system. The KADATH library enables the
use of such global unknowns (i.e., unknowns that are not
fields but numbers). Doing so, one can reach high values
of the Kerr parameters that correspond to small values of
ΩBH. In the second panel the angular velocity is also
shown, as a function of a=M, but this time scaled with the
ADM mass. The fact that the mass is not constant along
the sequence (it is rH that is fixed) explains the different
behavior between the two panels. As is expected [see
Eq. (25)], MΩBH goes to 1=2 when one gets closer to the
extremal case. Let us finally mention that very high values
of a=M ≈ 0.99 can be reached without much trouble and
while maintaining an accuracy of about 10−7. If need be,
even higher values could be computed.
As an illustration, in Fig. 4 various contours of some

fields are shown, in the xz plane, for the configuration with
the highest value of a=M ≈ 0.99.

IV. MARTINEZ-TRONCOSO-ZANELLI BLACK
HOLES

In this section the formalism presented in Sec. II is
applied to a class of nonrotating black holes with a negative
cosmological constant and a minimally coupled scalar
field. This solution was obtained analytically by
Martinez, Troncoso, and Zanelli (MTZ) in [35].

FIG. 3. The first panel shows ΩBH as a function of a=M for a sequence of constant radius rH ¼ 1 and the secondMΩBH as a function
of a=M also. Configurations are computed with the highest resolution at hand.
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A. Analytic solution and adjustments
to the system of equations

The field equations are the Einstein ones with a negative
cosmological constant Λ ¼ −3=l2

ADS, as well as the Klein-
Gordon equation for a real scalar field ϕ, minimally
coupled to gravity.
The stress-energy tensor is given by

Tμν ¼ ∇μϕ∇νϕ −
1

2
gμνgαβ∇αϕ∇βϕ − gμνVðϕÞ; ð26Þ

and the interaction potential is

VðϕÞ ¼ −
3

4πl2
ADS

sinh2
ffiffiffiffiffiffi
4π

3

r
ϕ: ð27Þ

The 3þ 1matter terms in that particular case are given in
Appendix A 1.
In [35], a family of black hole solutions parametrized by

an integration constant μ (linked to the black hole mass) is
found:

ds2 ¼ rðrþ 2μÞ
ðrþ μÞ2

�
−
�

r2

l2
ADS

−
�
1þ μ

r

�
2
�
dt2

þ
�

r2

l2
ADS

−
�
1þ μ

r

�
2
�−1

dr2 þ r2dσ2
�
; ð28Þ

ϕ ¼
ffiffiffiffiffiffi
3

4π

r
Arctanh

�
μ

rþ μ

�
: ð29Þ

The term dσ2 represents the line element of a two-
dimensional manifold with constant negative curvature. In
this work, it is chosen as

dσ2 ¼ 1

cos2 θ
ðdθ2 þ sin2 θdφ2Þ: ð30Þ

This is to be contrasted with [35] where this two-
dimensional manifold (and hence the horizon) is assumed
to be compact. The form (30) corresponds to coordinates on
the hyperbolic plane.
Furthermore, the vector field ð∂φÞi appearing in the

boundary conditions (21) is not a conformal Killing field of
the surface described by (30). However, as the solution
represents a nonrotating black hole, for which ΩBH ¼ 0,
this is not an issue.
For r → ∞ or equivalently μ ¼ 0, anti–de Sitter space-

time with constant negative (4D) curvature 4R ¼ 2Λ is
recovered. The solution is said to be asymptotically anti–de
Sitter (AAdS).
The constant μ is bounded from below by μ > lAdS

4
and r

must be larger than the maximum of 0 and −2μ. Under
those conditions, there is a horizon located at r ¼ rþ with

rþ ¼ lAdS

2

0B@1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4μ

lAdS

s 1CA: ð31Þ

The corresponding apparent horizon is a surface of constant
negative curvature.
In order to describe surfaces of negative curvature, one

considers the following reference spatial metric:

γrefij dx
idxj ¼ dr2 þ r2dσ2 ¼ dr2 þ r2

cos2 θ
ðdθ2 þ sin2 θdφ2Þ:

ð32Þ

This reference metric is used when defining the Christoffel
symbols of the real metric. More precisely, what is
computed numerically is the difference between the
Christoffel symbols of γij and those of γrefij . This differs
from more usual situations where the reference metric is the

FIG. 4. Contours of N (first panel), Br (second panel), and γrφ (third panel) in the xz plane, for the configuration with a=M ≈ 0.99.
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flat one. The numerical description of the reference metric
is done via the basis

er ¼ ∂r; eθ ¼
cos θ
r

∂θ; eφ ¼ cos θ
r sin θ

∂φ; ð33Þ

which makes its orthonormal.
As the solutions are not asymptotically flat but AAdS,

the AdS boundary must be dealt with carefully, as some
metric quantities diverge at this location. In order to do so, a
particular form of the AdS spacetime is chosen:

ds2 ¼ −
cos2

�
log RADS

r

�
sin2

�
log RADS

r

� dt2 þ l2
ADS

r2sin2
�
log RADS

r

� γrefij dx
idxj:

ð34Þ

RADS is a freely specifiable value that gives the position
of the boundary of the AdS spacetime, which is located at
r ¼ RAdS. The form (34) is chosen because the spatial
metric relates conformally to the reference one:

γAdSij ¼ l2
AdS

r2sin2
�
log RAdS

r

� γrefij : ð35Þ

The AdS spatial metric is the one which is used in defining
the spatial harmonic gauge, meaning that γ̄ij ¼ γADSij

[see Eq. (6)].
From Eq. (34) one can see that the lapse and spatial

metric diverge at this boundary. In order to allow for a
numerical treatment there is a need to regularize the
divergences. This is done by defining the conformal factor,

Ω≡ sin
�
log

RADS

r

�
: ð36Þ

Ω can then be used to define the following regularized
quantities (denoted by a tilde):

Ñ ≡ΩN; ð37Þ

B̃i ≡ Bi; ð38Þ

γ̃ij ≡Ω2γij; ð39Þ

ϕ̃≡ ϕ: ð40Þ

The outer boundary conditions, where r ¼ RAdS, are

then Ñ ¼ 1, B̃i ¼ 0, γ̃ij ¼ l2AdS
R2
AdS

γrefij; and ϕ̃ ¼ 0.

All the quantities appearing in the equations must be
regularized near the AdS boundary, along with the equa-
tions themselves (see Appendix A 2 for explicit
expressions).

This regularization procedure applies in the outermost
numerical domain, which is a spherical shell extending up
to the AdS boundary at r ¼ RAdS. Proper continuity of the
fields and their radial derivatives across the boundary with
the inner domain is enforced. This translates into the
following nontrivial conditions [where superscripts (I)
and (O) stand for inner and outer, respectively]:

∂rÑðOÞ ¼ NðIÞ∂rΩþ Ω∂rNðIÞ; ð41Þ

∂rγ̃
ðOÞ
ij ¼ Ω2∂rγ

ðIÞ
ij þ 2Ωð∂rΩÞγðIÞij : ð42Þ

Last but not least, it must be noted that the Klein-Gordon
equation is degenerate on the horizon. From its expression,
given by Eq. (A5), one can notice that the only contribution
to the principal symbol for double-r partial derivatives is

ðγrr − ðBrÞ2
N2 Þ∂2

rrϕ. It is the same factor that appears in the
Einstein evolution equations (see Sec. II D) and it vanishes
on the horizon with the boundary condition (15). Therefore,
the Klein-Gordon equation is degenerate on the horizon
and there is no need to impose any additional boundary
condition on the scalar field itself.

B. Results

The cosmological constant is chosen so that lAdS ¼ 20.
Space is split into two spherical shells. The outer one goes
from r ¼ 30 to r ¼ RAdS ¼ 40 and so extends up to the
AdS boundary. The radius of the horizon is varied in order
to compute different configurations.
At the inner boundary, which is the apparent horizon,

one sets N0 ¼ 1=2, γ0 ¼ 1, and f ¼ g ¼ 0 [see Eqs. (21)].
Recall that the MTZ solution is a static one so
that ΩBH ¼ 0.
As in the Kerr black hole case, spectral convergence of

the gauge quantities and of the expansion on the horizon is
monitored. Figure 5 shows these quantities as a function of
the radial resolution and convergence is clear. The satu-
ration seen at 10−8 is due to the Newton-Raphson solver
that is stopped at this level.
Profiles of various fields are shown in Fig. 6 for a

configuration with rH ¼ 8. Divergence of the lapse and of
the spatial metric at the ADS boundary is noticeable
(remember that this boundary is at RAdS ¼ 40). The
smoothness of the curves of N and γij illustrates the good
behavior of the regularization procedure.
In order to compare the numerical results with the

solution (28), coordinate-independent quantities must be
compared. The four-dimensional Ricci scalar on the hori-
zon 4RHðϕHÞ is one possibility. It can be computed in the
3þ 1 formalism by Eq. (3.75) [20], written here in the case
K ¼ 0:
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FIG. 5. Maximum value of the gauge quantities K and Vr and of the expansion on the horizon, as a function of the radial number of
coefficients. Spectral convergence is clearly seen.

FIG. 6. Profiles of various fields (first panel N, second Br, third γrr, and γθθ and fourth ϕ) for rH ¼ 8 and 21 radial coefficients in each
domain. As expected, the lapse and spatial metric diverge near the AdS border.
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4R ¼ Rþ KijKij −
2

N
DiDiN: ð43Þ

A sequence of MTZ black holes with various radii for the
horizon, ranging between rH ¼ 6.5 and rH ¼ 10, is com-
puted. Although each solution cannot directly be linked to a
specific value of μ, the sequence consists of black holes
with different masses. The four-dimensional Ricci scalar on
the horizon, as a function of the value of the scalar field on
the horizon, is shown in Fig. 7. The circles denote the
numerical results and the solid curve the analytical one. A
very good agreement between the two is achieved. The
smaller the horizon radius, the more intense the scalar field
on the horizon and the larger the absolute value of the
curvature on the horizon. This means that small radii
correspond to more relativistic configurations.

V. BLACK HOLES WITH SCALAR HAIRS

In this section, the construction of Kerr black holes with
scalar hairs is explained. This is the same system as
computed by [18,19] but using a different choice of
coordinates.

A. Equations for the scalar field

The class of hairy black holes constructed here relies on
the existence of a complex scalar field Φ. This field is
minimally coupled to gravity and solutions containing a
horizon can be found. The scalar field obeys the Klein-
Gordon equation ∇μ∇μΦ ¼ μ2Φ, where ∇ denotes the
covariant derivative of the four-dimensional metric. The
right-hand side corresponds to the case of a free massive
field which has a potential VðjΦj2Þ ¼ μ2jΦj2, where μ is
the mass of the field.
In previous works the field is assumed to have the form

Φ ¼ ϕðr; θÞ exp ½iðωt − kφÞ�, where ω is the angular veloc-
ity and k an integer dubbed the rotational quantum number.
Given the expression of the action (see [18,19]), which has
a Uð1Þ symmetry, the resulting spacetimes are axisym-
metric [the two Killing vectors being ð∂tÞμ and ð∂φÞμ] and
the quantitiesω and k appear as parameters of the solutions.
When the ansatz is inserted into the Klein-Gordon equa-
tion, it leads to an expression of the form

ðRKG þ iIKGÞ exp ½iðωt − kφÞ� ¼ 0: ð44Þ

In [18,19] the part RKG is the only one considered and it is
the equation fixing the value of the amplitude ϕ. Indeed,
given the coordinates used, and in particular the fact that the
only nonvanishing component of the shift is Bφ, it is easy to
show that IKG is identically zero. With the coordinate
system introduced in this work, this is no longer the case
(basically because the shift has a nonvanishing radial
component). It means that the original ansatz does not
pass through the equation and that a more general form
must be used.
One considers the following form for the scalar field,

introducing an additional imaginary component:

Φ ¼ ðRΦðr; θÞ þ iIΦðr; θÞÞ exp ½iðωt − kφÞ� ¼ 0: ð45Þ

Inserting (45) in the Klein-Gordon equation and using
the 3þ 1 decomposition of spacetime, one can find the
expressions for RKG and IKG in terms of RΦ and IΦ.
One gets

RKG ¼ ðωþ kBiδφi Þ2
N2

RΦ þ 1

N
Di

�
N

�
γij −

BiBj

N2

��
DjRΦ þ

�
γij −

BiBj

N2

�
DiDjRΦ − γijk2δφi δ

φ
j RΦ − μ2RΦ

− ω
Bi

N2
DiIΦ −

ω

N
Di

�
Bi

N
IΦ

�
þ 1

N
Di

�
N

�
γij −

BiBj

N2

�
kδφj IΦ

�
þ
�
γij −

BiBj

N2

�
kδφi DjIΦ; ð46Þ

where δφi is the gradient of φ. Expressed in the spherical
orthonormal basis used in this paper, it is given by
δφi ¼ ð0; 0; 1

r sin θÞ. Divisions by sin θ—which vanishes on

the z axis—are performed using the coefficients of
the spectral expansion of the fields, in order to avoid
divergences.

FIG. 7. Four-dimensional Ricci scalar on the horizon as a
function of the value of the scalar field on the horizon. The solid
line is computed from the analytic solution, while the circles
correspond to the numerical results. Horizon radii rH range from
6.5 to 10 (from right to left). Large radii correspond to reduced
scalar field and weaker curvature.
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Equation (46) is of the form AðRΦÞ þ BðIΦÞ ¼ 0, where
A and B are linear differential operators of the scalar field
(A is second order and B first order). Not surprisingly, given
the ansatz used, the expression of IKG is very similar to the
one for RKG. One finds that IKG ¼ AðIΦÞ − BðRΦÞ.
As a first step, the metric fields are fixed and only the

Klein-Gordon equation is solved. It means that the back-
reaction of the field on the metric is neglected. This is
known as a cloud solution. For the metric fields one uses
the Kerr black hole configurations computed in Sec. III. Let
us mention that, following [18,19], the angular velocity of
the black hole and of the field are linked by ω ¼ kΩBH, a
condition that prevents the field from having a flux across
the horizon. This condition is enforced throughout
this paper.
The resolution of this linear problem needs to be

dealt with carefully. First, one can notice that the part of
RKG that contains second-order radial derivatives is
ðγrr − BrBr

N2 Þ∂2
rRΦ. As already seen in Secs. II and IV, with

the boundary conditions used, this term vanishes on the
horizon. The same is true for IKG, with respect to IΦ. It
means that those equations do not require any inner
boundary condition (see Sec. II D). So, there is no need
to enforce anything on the fields at the horizon.
Two other properties of the linear Klein-Gordon

equations must be taken into account. First, notice that
RΦ ¼ IΦ ¼ 0 is a solution so that one needs to prevent the
code from converging to this trivial configuration. Also, it
is expected that solutions can be found only for a discrete
set of the physical parameters (k, ΩBH, μ in particular). The
numerical procedure should be able to find those values.
Those two features are typical of linear systems and have
been dealt with successfully in the context of spacetimes
with cosmological constants in [36,37] and the reader
should refer to those publications for details about the
procedure. It is only briefly sketched below.
The equations being second order, they should be solved

by demanding the matching of the fields and their normal
derivative across the boundaries of the various numerical
domains. For one such boundary, the continuity of one
angular spectral coefficient is relaxed and replaced by the
condition that this coefficient has a given value (1 for
instance). By construction, this prevents the code from
going to the trivial solution. The value of the coefficient
itself is unimportant, the problem being linear. However, in
general, that would lead to a solution with a discontinuity
on the derivative. The next step is then to scan the possible
values of the parameter space and it appears that for some
values, the error on the discontinuity vanishes. An example
of that is shown in Fig. 8 where the error on the derivative
of RΦ is plotted, as a function of the parameter μ, around the
value for a true solution. The correct value of μ can be
determined by a dichotomy algorithm. However, a good
precision is required, as the error varies very fast with μ
(notice the abscissa range in Fig. 8). As observed in

[36,37], there are several possible values of the parameters
that are admissible. They correspond to different number of
nodes of the amplitude jΦj. Only nodeless configurations
are considered here.
An additional difficulty arises from the fact that the

quantities RΦ and IΦ are determined up to a constant phase;
the fields defined as R0

Φ ¼ RΦ cos α − IΦ sin α and I0Φ ¼
RΦ sin αþ IΦ cos α are also a valid solution of the system.
The value of this phase must be enforced when solving the
equations numerically; otherwise, the Newton-Raphson
iteration would fail. To do so, one follows that same
procedure for IΦ as for RΦ: the continuity of the derivative
is relaxed and replaced by a condition on the value of one
coefficient of IΦ, at an arbitrary location. It appears that
different values of IΦ all lead to valid solutions that
correspond to different choices of α. As this technique is
also implemented in the full system case (i.e., the one with
gravitation), more details are given about this in Sec. V C.
The cloud solutions described in this section are only

used as an initial guess to get the configurations of the
coupled Einstein-Klein-Gordon system so that they are not
investigated much here. However, their validity has been
carefully checked by comparing with results coming from
the direct resolution of the Teukolsky equation as done in
[38] for instance.

B. Coupling with gravity

When the scalar field is coupled to gravity, one must
take into account the stress-energy tensor of the field,
which reads Tμν¼∇ðμΦ∇νÞΦ̄− 1

2
gμνð∇μΦ∇μΦ̄þVðjΦj2ÞÞ.

Using the ansatz of the field (45), one can split the time and
space components of the stress-energy tensor and from that
deduce the 3þ 1 matter terms entering Einstein’s equa-
tions. Expressions of E, Pi, and Sij, as a function of the

FIG. 8. Discontinuity of the radial derivative of RΦ, as a
function of μ. The circle denotes the location of the true solution
for which Φ is regular. The background corresponds to a quickly
rotating Kerr black hole with M ≈ 5. and a=M ≈ 0.95.
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scalar field components RΦ and Iϕ are given in
Appendix B.
Equations (8)–(10) are solved using the inner boundary

conditions (21) and demanding that, at spatial infinity, flat
spacetime is recovered.
Concerning the Klein-Gordon equation, the situation is

different from the linear case exposed in Sec. VA. Indeed,
with the coupling with gravity, the problem is no longer
linear and admits solutions not for discrete values of the
parameters but on a whole continuum. It follows that the
whole procedure about RΦ described in Sec. VA is
irrelevant. However, the discussion about the arbitrary
phase in the definition of RΦ and IΦ still holds and the
same procedure as in Sec. VA is used.
The choice of the initial guess is of utmost importance

and that is where the knowledge of the cloud solutions of
Sec. VA is needed. Consider a linear solution of the Klein-
Gordon equation, corresponding to a set of parameters.
When moving away from this solution, by changing the
value of some of the parameters, one can construct a
sequence of nonlinear solutions. The further away the
parameters are from the linear values, the higher the
amplitude of the scalar field. In this work, a sequence is
constructed by varying the parameter ΩBH, maintaining the
equality ω ¼ kΩBH. This is only a choice and other
parameters could be varied (μ for instance).
In order to use the cloud solution as an initial configu-

ration, one proceeds as follows. A small amplitude for the
maximum of the field is chosen and the cloud solution is
scaled so that it has this maximum value. The parameter
ΩBH is considered as an unknown of the numerical
problem. By this it is to be understood that the solver is
allowed to change its value. As the system contains an
additional unknown it needs to be supplemented with an
additional condition. This condition is the fixing of the
amplitude of the field. By increasing the amplitude of the

field, different configurations can be computed, corre-
sponding to different values of ΩBH. Alternatively, once
the first full solutions are known, one can directly vary the
parameter ΩBH along the sequence, in order to compute
solutions with different amplitude of the field. The steps
must be small enough so that the code does not converge to
the trivial solution where the field vanishes everywhere.

C. Numerical results

A small modification in the numerical setting stems from
the fact that the scalar field and black hole sizes are
somewhat different. In the computations, the black hole
is located at a coordinate radius of rH ¼ 1. However, the
toroidal shape of the scalar field has a maximum at about 30
times this value. In order to deal with those two scales,
more numerical domains than in Sec. III are required.
Typically, for each shell, the outer radius is twice the inner
radius and a dozen domains are used.
As already mentioned, a sequence of diverse values of

ΩBH is exhibited. The starting point of the sequence is a
cloud solution (see Sec. VA) constructed from a Kerr black
hole with M ≈ 5 and a=M ≈ 0.95, which corresponds to
ΩBH ≈ 0.0724. The rotational quantum number is chosen to
be k ¼ 1.
As in previous cases, one must check that the gauge

quantities K and Vi converge to zero when resolution
increases. The value of the expansion (14) on the horizon
should also go to zero. In order to do so, an arbitrary
configuration is chosen and computed with different
numbers of points. The chosen configuration corresponds
to ΩBH ≈ 0.069831.
The maximum values ofK and Vi in the whole space and

of Θ on the horizon are shown in Fig. 9. The three different
resolutions correspond to N r ¼ N θ ¼ 13, 17, and 21,
where N r and N θ denote the number of collocation points
in the r and θ directions. The two panels of Fig. 9 clearly

FIG. 9. Maximal values of K and Vi (first panel) and of Θ on the horizon (second panel) as a function of resolution. The configuration
emerges from a Kerr black hole with M ≈ 5 and a=M ≈ 0.95 and corresponds to ΩBH ≈ 0.069831. The various indicators exhibit a
spectral convergence to zero.
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show a spectral convergence of the various quantities
proving the validity of the solution.
As explained in Sec. VA, the quantities RΦ and IΦ are

defined up to a constant phase. The continuity of the radial
derivative of IΦ is relaxed, for one spectral coefficient. The
matching of the radial derivative is replaced by a condition
fixing the value of that same coefficient, for the field itself.
It amounts to fixing the constant phase. In the following
two possible choices are considered: one can demand that
the coefficient of the field IΦ vanishes (referred to as the
zero-phase condition) or that the coefficient of IΦ is half
that of RΦ (referred to as the half-phase condition).
For the solution with ΩBH ¼ 0.067, the fields resulting

from those two cases are shown in Fig. 10, where profiles
of the fields along the x axis are shown. As expected, the
decomposition of the complex scalar field in terms of RΦ
and IΦ changes. However, it is easy to check that the two
relate by a constant phase rotation, the parameter being
α ≈ −0.464 in that particular case. It is also easy to check
that the two configurations lead to the same global
quantities (mass, charge, etc…) as they should.
The continuity of the radial derivative of IΦ can also be

used to monitor the validity of the procedure. As it has not
been enforced numerically, it needs to be checked that it is
actually satisfied by the solution. Figure 11 shows the error
on the continuity of the radial derivative of IΦ, as a function
of resolution. As expected with spectral methods, the error
converges quickly to zero confirming that the solution is
smooth as it should. Even if they are not explicitly shown
here, the solutions passed several other tests (like equality
of the ADM and Komar masses for instance).
The ADM mass and angular momentum of the solutions

can be computed using the standard formulas (22) and (24).
As one moves along the sequence by going away from the
Kerr black hole solution, those quantities increase, as the
contribution of the scalar field to their values is more
important. This can be seen in Fig. 12, where the mass

and momentum are shown, as a function of ΩBH. The last
point to the right (i.e., with ΩBH ≈ 0.0724) corresponds
to theKerr black hole fromwhich the sequence is constructed.
In order to monitor the relative importance of the black

hole compared to the scalar field, following [18,19], one
can compute the Noether charge. With the setting used in
this paper it reads (see Sec. V B for a precision about the
use of the notations R̄Φ and ĪΦ)

Q¼−
Z
Σt

1

N

�
ðωþkδφi B

iÞðRΦR̄ΦþIΦĪΦÞ

þBi

2
ðIΦDiR̄Φþ ĪΦDiRΦ−RΦDiĪΦ− R̄ΦDiIΦÞ

� ffiffiffi
γ

p
d3x:

ð47Þ

From the Noether charge one defines the quantity
q ¼ kQ=J. For a Kerr black hole q ¼ 0 as the Noether

FIG. 10. Profiles along the x axis of RΦ (blue curves) and IΦ (red curves) for the zero-phase condition (solid lines) and the half-phase
one (dashed lines) (see text for details). The second panel shows the region close to the origin and the vertical line indicates the surface
where the value of the phase is enforced.

FIG. 11. Discontinuity of the radial derivative of IΦ as a
function of resolution (i.e., the number of radial and angular
coefficients). The configuration is the same as the one of Fig. 9.
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charge vanishes. For a boson star, it is known that J ¼ kQ,
so that q ¼ 1 [39]. It follows that the quantity q measures
the relative importance of the hole and the field along the
sequence, as it starts from 0 for the Kerr black hole and
approaches 1 as the amplitude of the scalar field increases.
The quantity q as a function of ΩBH is shown in the first
panel of Fig. 13.
The Komar mass can also be used as a way of measuring

the influence of the field. Indeed, if it can be computed as a
surface integral at infinity by Eq. (23), it can also be
obtained by the sum of two terms, MBH a surface integral
on the horizon andMΦ a volume integral over matter terms.
The general expressions for MBH and MΦ can be found in
[20] [Eqs. (8.70) and (8.71)], respectively. In the situation
at hand they are obtained as

MBH ¼ 1

4π

Z
r¼rh

ffiffiffi
h

p
ðs̃iDiN − Kijs̃iBjÞdS; ð48Þ

MΦ ¼
Z
Σt

ffiffiffi
γ

p ½NðEþ γijSijÞ − 2PiBi�d3x; ð49Þ

where h denotes the determinant of the metric induced on
the horizon hij ¼ γij − s̃is̃j. In the second plot of Fig. 13
those quantities are shown as a function of ΩBH. They are
scaled by the total mass so that the sum is 1 (given that
MKomar ¼ MADM). As for the quantity q, one goes from a
regime dominated by the black hole to a situation where the
scalar field contributes more to the total mass.

FIG. 13. The first panel shows the quantity q, as a function of ΩBH. The second panel shows the ratios MBH=MADM and MΦ=MADM,
also as a function of ΩBH. Both panels illustrate that one goes from a pure Kerr black hole situation (right side) to a situation where the
field is dominant (left side).

FIG. 12. ADM mass (first panel) and angular momentum (second panel), as a function of ΩBH, for a sequence emerging from a Kerr
black hole with M ≈ 5 and a=M ≈ 0.95. The Kerr black hole corresponds to the point at the right end of the curves.
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Last, as an illustration, some profiles of jΦj ¼
ðRΦR̄Φ þ IΦĪΦÞ1=2 are shown in Fig. 14, along the x axis.
One can note that the maximum value of the field is located
at about 40 times the radius of the black hole rH ¼ 1. As
expected, the further ΩBH is from the value of the Kerr
black hole used to initiate the sequence, the higher the
amplitude of the scalar field.

VI. LAST WORDS

A formalism to compute spacetimes containing sta-
tionary black holes is presented. The geometry is described
by the 3þ 1 decomposition of spacetime and the various
metric fields are found using the maximal slicing gauge for
the choice of time and the spatial harmonic gauge for the
spatial coordinates. The presence of the hole itself is
enforced by demanding that a given sphere is an apparent
horizon. Moreover, as stationarity is assumed, one demands
that this horizon is in equilibrium. Using a combination of
analytical and numerical studies, a set of boundary con-
ditions for the various metric quantities is found. Let us
point out that this leads to a choice of coordinates that is
regular everywhere, even on the horizon itself. This is to be
contrasted with the analytic Boyer-Lindquist coordinates of
the Kerr black hole, which are singular on the horizon. This
property may prove useful in numerical applications.
The whole procedure is applied to three different

situations. The system of equations is solved numerically
using spectral methods and the KADATH library [33,34].
The first and most simple application is to recover the
classical Kerr black hole (in coordinates that are not
analytical). Configurations up to a Kerr parameter a=M
of 0.99 are easily computed. The second application
concerns a static black hole where gravity is minimally
coupled to a real scalar field, with a negative cosmological
constant. It is called the MTZ black hole, from the names of

the authors who obtained it analytically [35]. The formal-
ism appears to work well also in the case of this spacetime
which is asymptotically anti–de Sitter. The last application
is devoted to the computation of a family of black holes
with complex scalar hairs [18,19]. This last example
combines a coupling with matter (i.e., the scalar field)
and the inclusion of rotation. For the three cases, errors are
carefully checked, especially by showing fast convergence
to zero of several error indicators when the numerical
resolution increases.
In the future, it is hoped that the formalism presented

here will be a valuable tool to study various models of black
holes. Many of the results in the field of black holes in
alternative theories of gravity rely, to some degree, on the
analytic choice of coordinate systems. This can be a
difficulty to get the more general solutions possible.
This is especially true when rotation is included. For
instance, there is no rotating equivalent of the MTZ black
hole known yet.
Another extension of this work concerns black holes that

are not in exact equilibrium. In particular, this is the case for
objects in binary systems. The boundary conditions pro-
posed here could be applied to generate improved initial data
for binary coalescence simulations. Usually initial data are
generated assuming that the spatialmetric is conformally flat
(see [27–29,32]). This assumption could be relaxed using
the techniques developed in this paper. However, due to the
emission of gravitational waves, the horizons are not in
equilibrium and thus it is not expected that the boundary
conditions will be exact. However, their accuracy should
improve as the separation increases. Equilibrium of the
horizons are not the only place where deviation from
stationarity must be accounted for. The terms in ∂t present
in Eqs. (3)–(5) must also be considered. Outer boundary
conditions must also be carefully investigated, as simple
spatial asymptotic flatness may not be sufficiently precise
when gravitational waves are present. It is beyond the scope
of this paper to implement the boundary conditions pre-
sented here in the binary black hole context. However, this is
something that is planned for the future and one can hope
that the formalism exposed here will lead to significant
improvement in the precision of the computation of initial
data for binary black holes configurations.
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FIG. 14. Values of jΦj along the x axis, for four different values
of ΩBH. The black hole horizon is located at rh ¼ 1.
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APPENDIX A: SYSTEM OF EQUATIONS FOR
THE MTZ BLACK HOLES

1. Matter terms for the MTZ black hole

For a stationary real scalar field, the various 3þ 1matter
terms can be obtained as

E ¼ 1

2
DiϕDiϕþ ðBiDiϕÞ2

2N2
þ VðϕÞ; ðA1Þ

Pi ¼
ðBjDjϕÞ

N
Diϕ; ðA2Þ

Sij ¼ Tij ¼ DiϕDjϕ −
1

2
ðDkϕDkϕÞγij

þ ðBkDkϕÞ2
2N2

γij − VðϕÞγij; ðA3Þ

S ¼ −
1

2
ðDkϕDkϕÞ þ 3

2

ðBkDkϕÞ2
N2

− 3VðϕÞ: ðA4Þ

In this context, the Klein-Gordon equation is given by

EKG∶
1

N
Di

�
N

�
γij −

BiBj

N2

�
Djϕ

�
−
dV
dϕ

¼ 0: ðA5Þ

2. Regularization at the ADS border

For the MTZ black hole, the regularized quantities used
close to the AdS boundary are given. The various quantities
are multiplied by the appropriate power of Ω [Eq. (36)] in
order to avoid divergences. It leads to

γ̃ij ¼ γij=Ω2; ðA6Þ

B̃i ¼ Ω2Bi; ðA7Þ

D̃iϕ̃ ¼ Ω∂iϕ; ðA8Þ

D̃ ¼ Ω∂ � Γ̃; ðA9Þ

Γ̃k
ij ¼ ΩΓk

ij ¼
1

2
Ωγ̃klð∂iγ̃lj þ ∂jγ̃il − ∂lγ̃ijÞ

− γ̃klðγ̃lj∂iΩþ γ̃il∂jΩ − γ̃ij∂lΩÞ; ðA10Þ

R̃ij ¼ Ω2Rij ¼ Ωð∂Γ̃k
ij − ∂iΓ̃k

jkÞ
− ðΓ̃k

ij∂kΩ − Γ̃k
jk∂iΩÞ þ Γ̃k

ijΓ̃l
kl − Γ̃l

ikΓ̃k
jl; ðA11Þ

R̃ ¼ R; ðA12Þ

gDjN ¼ Ω2DjN ¼ D̃jÑ − Ñ∂iΩ; ðA13Þ

gDiDjN ¼ Ω3DiDjN ¼ −2ð∂iΩÞgDjN þ D̃i
gDjN; ðA14Þ

gDiBj ¼ Ω3DiBj ¼ D̃iB̃j − 2B̃j∂iΩ; ðA15Þ

D̃iγ̃jk ¼ 2∂iγ̃jk ≠ 0; ðA16Þ

D̃iγ̃
jk ¼ −2∂iΩγ̃jk ≠ 0; ðA17Þ

K̃ij ¼ Ω2Kij ¼ð gDiBj þ gDjBiÞ=2Ñ; ðA18Þ

K̃i
j ¼ Ki

j; ðA19Þ

K̃ij ¼ Kij=Ω2; ðA20Þ

Ṽk ¼ Vk=Ω ¼ γ̃kijðΓ̃k
ij − Γ̃k

ijÞ; ðA21Þ

Ṽi ¼ ΩVi; ðA22Þ

gDiVj ¼ Ω2DiVj ¼ D̃iṼj − Ṽj∂iΩ; ðA23Þ

gLBKij ¼ Ω3LBKij ¼ LB̃K̃ij − 2K̃ijB̃k∂kΩ; ðA24Þ

Ẽ ¼ E ¼ 1

2
γ̃ijD̃iϕ̃D̃jϕ̃þ Vðϕ̃Þ þ ðB̃iD̃iϕ̃Þ2

2Ñ2
; ðA25Þ

P̃i ¼ ΩPi ¼
B̃iD̃iϕ̃

Ñ
D̃iϕ̃; ðA26Þ

S̃ij ¼ Ω2Sij ¼ D̃iϕ̃D̃jϕ̃ −
1

2
ðγ̃klD̃kϕ̃D̃lϕ̃Þγ̃ij

þ ðB̃iD̃iϕ̃Þ2
2Ñ2

γ̃ij − Vðϕ̃Þγ̃ij; ðA27Þ

S̃ ¼ S ¼ γ̃ijS̃ij: ðA28Þ

The regularized equations are thus

H̃ ¼ H∶γ̃klðR̃kl − gDkVlÞ − K̃ijK̃ij − 2Λ − 16πGẼ ¼ 0;

ðA29Þ

M̃i ¼ ΩMi∶D̃jK̃
j
i − 8πGP̃i ¼ 0; ðA30Þ

Ẽij ¼ Ω3Eij∶ gLB̃Kij − gDiDjN

þ Ñ

�
R̃ij − gDðiVjÞ − 2K̃ikK̃k

j − Λγ̃ij

− 8πG

�
S̃ij −

S̃ − Ẽ
2

γ̃ij

��
¼ 0; ðA31Þ

gEKG ¼ EKG∶
1

Ñ
D̃j

�
Ñ

�
γ̃ij −

B̃iB̃j

Ñ2

�
D̃iϕ̃

�
¼ 0: ðA32Þ
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APPENDIX B: MATTER TERMS FOR THE
EINSTEIN-KLEIN-GORDON SYSTEM

The 3þ 1 matter terms derived from the ansatz (45) are
computed. Given the dependence in terms of t and φ, one
can compute the various following terms:

∂tΦ∂tΦ ¼ ω2ðRΦR̄Φ þ IΦĪΦÞ; ðB1Þ

∂tΦDiΦ̄þ ∂tΦ̄DiΦ ¼ ωðRΦDiĪΦ þ R̄ΦDiIΦ

− IΦDiR̄Φ − ĪΦDiRΦÞ
− 2kωδφi ðRΦR̄φ þ IΦĪΦÞ; ðB2Þ

DiΦDjΦ̄ ¼ DiRΦDjR̄Φ þDiIΦDjĪΦ

þ k2δφi δ
φ
j ðRΦR̄Φ þ IΦĪΦÞ

þ kðδφj ĪΦDiRΦ þ δφi IΦDjR̄Φ

− δφj R̄ΦDiIΦ − δφi RΦDjĪΦÞ: ðB3Þ

Even if RΦ and IΦ are real quantities, the notations R̄Φ
and ĪΦ are kept to differentiate terms that are in factor of
exp ½iðωt − kφÞ� and those of exp ½−iðωt − kφÞ�.
The terms (B1)–(B3) enter into the expressions of the

components of the stress-energy tensor as

T≡∇μΦ∇μΦ̄þVðjΦj2Þ

¼−
1

N2
½∂tΦ∂tΦ̄�þ Bi

N2
½∂tΦDiΦ̄þ∂tΦ̄DiΦ�

þ
�
γij−

BiBj

N2

�
½DiΦDjΦ̄�þμ2ðRΦR̄ΦþIΦĪΦÞ; ðB4Þ

Ttt ¼ ½∂tΦ∂tΦ̄� − 1

2
ð−N2 þ BiBiÞT; ðB5Þ

Tti ¼ ½∂tΦDiΦ̄þ ∂tΦ̄DiΦ� − 1

2
BiT; ðB6Þ

Tij ¼
1

2
½DiΦDjΦ̄þDjΦDiΦ̄� − 1

2
γijT: ðB7Þ

From those components, the 3þ 1 matter terms are
expressed as

E ¼ 1

N2
Ttt − 2

Bi

N2
Tti þ

BiBj

N2
Tij; ðB8Þ

Pi ¼ −
1

N
Tti þ

Bj

N
Tij; ðB9Þ

Sij ¼ Tij: ðB10Þ
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