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Bootstrapped Newtonian gravity is a nonlinear version of Newton’s law, which can be lifted to a fully
geometric theory of gravity starting from a modified potential. Here, we study geodesics in the
bootstrapped Newtonian effective metric in vacuum and obtain bounds on a free parameter from Solar
System data and S-star orbits near our Galaxy center. These bounds make vacuum bootstrapped Newtonian
gravity experimentally indistinguishable from General Relativity.
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I. INTRODUCTION

General Relativity is presently the most successful theory
for describing the gravitational interaction at the classical
level. Its own failure is marked by the prediction of the
formation of geodesic singularities whenever a trapped
surface arises from the gravitational collapse of a compact
object [1].1 Such considerations open up the possibility that
significant departures from General Relativity might occur
where our experimental data do not yet place strong enough
constraints, like for example in regions of strong gravity
near a very massive source. However, Einstein’s field
equations are not linear, and this makes it difficult to
modify the laws of gravity in the strong-field regimewithout
affecting also the weak-field behavior, since these regimes
are likely to be related nontrivially in any nonlinear theories.
The bootstrappedNewtonian gravity [3,4] is an attempt at

investigating these issues in a somewhat simplified context.
This approach, based on Deser’s conjecture [5], consists of
retrieving the full Einstein’s theory including gravitational
self-coupling terms in the Fierz-Pauli action on flat space-
time.2 These additional terms must be consistent with
diffeomorphism invariance, in order to preserve the covari-
ance of any (modified)metric theory.We can obtain different

modified gravitational theories depending on the choice of
boundary conditions in the reconstruction procedure [7]. A
key observation is that a practically effective dynamics can
be derived only startingwith a “small” contribution ofmatter
sources. For large astrophysical sources, this implies that the
matter source must also be included in a nonperturbative
way. In the present approach, this task is addressed starting
from the Fierz-Pauli action corresponding to the potential
generated by an arbitrarily large static source and putting
in extra terms representing gravitational self-coupling.
Furthermore, the coupling constants for the additional terms
are not fixed to their Einstein-Hilbert values in order to
accommodate for diverse underlying dynamics. This
approach then results in a nonlinear equation including
pressure effects and the gravitational self-interaction terms
to next-to-leading order in the Newton constant, whose
solution is the gravitational potential operating on test
particles at rest. Such an equation was used to investigate
compact objects [8–10] and coherent quantum states
[11,12].3

The motion of (test) particles and photons in the sur-
roundings of a compact object represents the most imme-
diate tool to gather information on the gravitational potential
in which they revolve. In Ref. [15], a full (effective) metric
tensor was obtained from the bootstrapped Newtonian
potential, which allows one to study these trajectories in
general and to compare them with results from General
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1We also recall that pointlike sources are mathematically

incompatible with the Einstein field equations [2].
2This idea is indeed older; see, e.g., Ref. [6].

3These quantum states show some of the properties [13] found
in the corpuscular model of black holes [14]. However, we shall
not discuss quantum aspects in this work.
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Relativity. The requirement that the resulting theory of
gravity is covariant is satisfied by the use of an effective
metric tensor, since the bootstrapped Newtonian dynamics is
implicitly assumed to be invariant under coordinate trans-
formations. Nonetheless, the particular metric found in
Ref. [15] differs from the Schwarzschild geometry; hence,
it is not a solution of the Einstein equations in the vacuum.
An effective fluid is therefore present, as was already noted
in the cosmological context [16].
The bootstrapped effective metric is given as a function of

parametrized post-Newtonian (PPN) parameters [17] in the
weak-field expansion. These parameters can be consistently
chosen so as to minimize deviations from the Schwarzschild
metric only up to a point. In fact, some of the PPN parameters
are uniquely related, and at the PPN order determined in
Ref. [15], they can be expressed in terms of one free
parameter. In this work, we report on a phenomenological
investigation aiming at placing bounds on this remaining free
parameter from the measured precessions in the Solar System
[18–22] and from the study of S-star orbits around the black
hole in the center of the Galaxy [23–28].
The paper is organized as follows. In Sec. II, we briefly

review the equation for the bootstrapped Newtonian poten-
tial and its solution in the vacuum. We then just recall the
full effective metric reconstructed from this potential,
which is then used to analyze Solar System data and S-
star motions in Sec. III. We conclude with comments and an
outlook in Sec. IV.

II. BOOTSTRAPPED NEWTONIAN VACUUM

We shall only review briefly the derivation of the boot-
strapped Newtonian equation, since all the details can be
found in Refs. [3,8,10,12]. We shall use units with the speed
of light c ¼ 1 in this section. We start from the Lagrangian
for the Newtonian potential V ¼ VðrÞ generated by a static
and spherically symmetric source of density ρ ¼ ρðrÞ, to wit

LN½V� ¼ −4π
Z

∞

0

r2dr

�ðV0Þ2
8πGN

þ Vρ

�
; ð2:1Þ

where primes denote derivatives with respect to r. The
corresponding Euler-Lagrange field equation is given by
Poisson’s

1

r2
d
dr

�
r2
dV
dr

�
¼ 4πGNρ; ð2:2Þ

where we recall that the radial coordinate r is the one
obtained from harmonic coordinates [15,17]. We next couple
V to a gravitational current proportional to its own energy
density,

JV ≃ 4
dUN

dV
¼ −

½V 0ðrÞ�2
2πGN

; ð2:3Þ

where V is the spatial volume and UN is the Newtonian
potential energy. We also add the “one loop term”
Jρ ≃ −2V2, which couples to ρ, and the pressure term p [8].
The total Lagrangian then reads

L½V� ¼ −4π
Z

∞

0

r2dr

�ðV 0Þ2
8πGN

ð1 − 4qVVÞ

þ ðρþ 3qppÞVð1 − 2qρVÞ
�
; ð2:4Þ

where the coupling constants qV , qp, and qρ can be used to
track the effects of the different contributions. For instance,
the case qV ¼ qp ¼ qρ ¼ 1 reproduces the Einstein-Hilbert
action at next-to-leading order in perturbations around
Minkowski [8,10,12]. Finally, the bootstrapped Newtonian
field equation reads

1

r2
d
dr

�
r2
dV
dr

�
¼ 4πGN

1− 4qρV

1− 4qVV
ðρþ 3qppÞ þ

2qVðV 0Þ2
1− 4qVV

;

ð2:5Þ

which must be solved along with the conservation equa-
tion p0 ¼ −V 0ðρþ pÞ.

A. Vacuum potential

In vacuum, we have ρ ¼ p ¼ 0, and Eq. (2.5) simplifies to

1

r2
d
dr

�
r2
dV
dr

�
¼ 2qðV0Þ2

1 − 4qV
; ð2:6Þ

where we renamed q≡ qV for simplicity. The exact solution
was found in Ref. [3] and reads

VðrÞ ¼ 1

4q

�
1 −

�
1þ 6qGNM

r

�
2=3

�
: ð2:7Þ

The asymptotic expansion away from the source yields

V2 ≃ −
GNM
r

þ q
G2

NM
2

r2
− q2

8G3
NM

3

3r3
; ð2:8Þ

so that the Newtonian behavior is always recovered (for
q ¼ 0) and the post-Newtonian terms are seen to depend on
the coupling q (see Fig. 1).

B. Vacuum effective metric

A complete spacetime metric was reconstructed from the
vacuum potential (II.7) in Ref. [15]. The procedure is rather
cumbersome, and we shall only recall here a few main steps
leading to the necessary expressions in the weak-field
regime. We explicitly show the speed of light c from here
on. One starts from the PPN form [17]
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ds2 ≃
�
1 − α

2Rg

r̄
þ ðβ − αγÞ 2R

2
g

r̄2
þ ðζ − 1Þ 8R

3
g

r̄3

�
c2dt2

þ
�
1þ γ

2Rg

r̄
þ ξ

4R2
g

r̄2
þ σ

8R3
g

r̄3

�
dr̄2 þ r̄2dΩ2; ð2:9Þ

where Rg ¼ GNM=c2 and r̄ is the areal radius, which differs
from the radial coordinate r in which the potential (2.7) is
expressed. The latter is obtained from harmonic coordinates.
and the two radial coordinates are related by [15]

r ≃ r̄þ ð1 − 3γÞRg

2
þ ð1 − 3γ þ 2γ2 − 2ΞÞR

2
g

r̄
; ð2:10Þ

in which Ξ is a free parameter. Furthermore, we have

q ¼ β þ γ − 1

2
: ð2:11Þ

We can next set α ¼ 1 by simply absorbing this
coefficient in the definition of the mass M [29], and β ¼
γ ¼ 1 in order to satisfy the experimental constraints
jγ − 1j ≃ jβ − 1j ≪ 1. From Eq. (2.11), this is tantamount
to setting q ¼ 1, as expected. The higher order PPN
parameters are then fully determined by Ξ according to

ξ ¼ 1þ Ξ ð2:12Þ

ζ ¼ 1 −
5þ 6Ξ
12

¼ 13 − 6ξ

12
ð2:13Þ

σ ¼ 9þ 14Ξ
4

: ð2:14Þ

As already noted in Ref. [15], the General Relativistic
PPN combination ξ ¼ ζ ¼ 1 cannot be obtained for any

value of Ξ, and the bootstrapped metric for which we have
the minimum deviation from the Schwarzschild form is
thus given by

ds2≃−
�
1−

2Rg

r
− ð5þ 6ΞÞ 2R3

g

3c6r3

�
c2dt2þ

�
1þ 2Rg

r

þð1þΞÞ4R
2
g

r2
þð9þ 14ΞÞ2R

3
g

r3

�
dr2þ r2dΩ2; ð2:15Þ

in which we drop the bar from the areal coordinate for
simplicity from now on. We can see that there are
contributions in the metric coefficients which cannot be
reduced to the Schwarzschild expressions. This deviation
from the Schwarzschild solution is encoded by the free
parameter Ξ, whose value is a priori unknown and must be
constrained by observations. In particular, we will test these
corrections by analyzing the planets in the Solar System
and S-stars motion around Sgr A�.
The geodesic equations

ẍμ þ Γμ
αβ _x

α _xβ ¼ 0; ð2:16Þ

where a dot indicates the derivative with respect to the
proper time, can be equivalently computed using the Euler-
Lagrange equations

d
ds

�∂L
∂ _xμ

�
−

∂L
∂xμ ¼ 0; ð2:17Þ

with L ¼ gαβ _xα _xβ ¼ −1 for a massive object. From the
metric in Eq. (2.15), one then finds

̈t ¼ 6_r _t ½ð5þ 6ΞÞR3
g þ Rgr2�

2ð5þ 6ΞÞR3
grþ 6Rgr3 − 3r4

ð2:18Þ

and

θ̈ ¼ _ϕ2 sin θ cos θ −
2_r _θ
r

; ð2:19Þ

which are the usual conservation equations for the angular
momentum and the energy conjugated to t, respectively.
Moreover,

ϕ̈ ¼ −
2 _ϕ

r
ð_rþ r_θ cot θÞ; ð2:20Þ

and spherical symmetry as usual implies that the orbital
motion occurs on a plane (_θ ¼ 0) which we can arbitrarily
set at θ ¼ π=2. Finally, radial motion is governed by

̈r ¼ Rgf4ð1þ ΞÞRgr_r2 þ R2
g½3ð9þ 14ΞÞ_r2 − c2ð5þ 6ΞÞ_t2� þ r2ð_r2 − c2_t2Þg þ r5ð_θ2 þ _ϕ2sin2θÞ
r½2ð9þ 14ΞÞR3

g þ 4ð1þ ΞÞR2
grþ 2Rgr2 þ r3� : ð2:21Þ

FIG. 1. Bootstrapped Newtonian potential V in Eq. (2.7)
compared to its expansion V2 from Eq. (2.8) and to the New-
tonian potential VN (for q ¼ 1).
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The above parametric system of nonlinear differential
equations can be integrated numerically in order to study
the orbits.

1. Precession

It is easy to express the perihelion precession in terms of
the PPN parameters [17]. At leading order, one has

Δϕð1Þ ¼ 2πð2 − β þ 2γÞRg

l
; ð2:22Þ

where l ¼ að1 − e2Þ is the semilatus rectum, a is the
semimajor axis, and e is the eccentricity. For β ¼ γ ¼ 1,
Eq. (2.22) reproduces the General Relativistic result

Δϕð1Þ
S ¼ 6π

Rg

l
: ð2:23Þ

The second order correction depends on ξ and ζ, and for
β ¼ γ ¼ 1, it reads [15]

Δϕð2Þ ¼ π

�
ð41þ 10ξ − 24ζÞ þ ð16ξ − 13Þ e

2

2

�
R2
g

l2

≃ π

�
ð37þ 22ΞÞ þ ð3þ 16ΞÞ e

2

2

�
R2
g

l2

≃ Δϕð2Þ
S þ 2π½11ξ − 7þ 4ðξ − 1Þe2�R

2
g

l2
; ð2:24Þ

where the General Relativistic result Δϕð2Þ
S corresponds to

ξ ¼ ζ ¼ 1. From Eqs. (2.12) and (2.13), it follows that we
cannot have ξ ¼ ζ ¼ 1 for any value of Ξ, and a deviation
from General Relativity remains.

III. ASTRONOMICAL TESTS

In order to constrain the free parameter of the boot-
strapped Newtonian potential, Ξ, we confronted the theo-
retical results exposed in Sec. II B with astronomical data.
To infer a range of validity for Ξ, we compared the

analytical expression of the precession with the observed
values of the perihelion advance of Solar System’s planets
(Sec. III A).

Then, we turned our attention to the Galactic Center, and
we studied the motion of S-stars orbiting around Sgr A�. To
constrain Ξ, we let it vary in a given range and fit the
corresponding simulated orbits to astrometric observations.
In particular, we adopted a fully relativistic approach which
consists of integrating numerically Eqs. (2.18)–(2.21) in
order to get the mock orbits, instead of solving Newton’s
law with the standard potential replaced by the modi-
fied one.

A. Perihelion precession in the Solar System

In order to constrain Ξ, we can start from the Solar
System planets whose orbital precession has been mea-
sured, namely Mercury, Venus, Earth, Mars, Jupiter, and
Saturn [30]. The confidence region for Ξ can be identified
as the set of values such that the precession

Δϕ ¼ Δϕð1Þ þ Δϕð2Þ ð3:1Þ

is compatible with the observations. The planetary param-
eters,4 the corresponding observed values of the precession
[30], and the General Relativistic value obtained by
Eq. (2.23) are reported in Table I from first to seventh
columns. The allowed region of Ξ for each planet is defined
as the range of values compatible with data, having as
extremes the values of Ξ solving the equation

Δϕ ¼ Δϕobs: ð3:2Þ

The inferred lower and upper limits on Ξ are reported in the
last column of Table I, and the included area is depicted in
Fig. 2 for each planet (gray shades). It is worth noticing the
discrepancy between the General Relativistic value (the red
line) and the observed precession (blue dashed lines) for
Mars and Jupiter; it could be attributed to the incomplete
subtraction of nonrelativistic effects from the observed
value, complicated by the presence of the asteroid belt
between Mars and Jupiter, and the presence of an anoma-
lous residual precession [30,31].

TABLE I. Values of semimajor axis (a), orbital period (P), tilt angle (i), eccentricity (e), observed orbital precession (Δϕobs), orbital
precession as predicted by General Relativity (ΔϕS), and constraints on Ξ for Solar System’s planets.

Planet að106 kmÞ PðyearsÞ ið°Þ e Δϕobsð00=cyÞ ΔϕSð00=cyÞ ½Ξmin;Ξmax�
Mercury 57.909 0.24 7.005 0.2056 43.1000� 0.5000 42.9822 ½−89708.7; 144995�
Venus 108.209 0.61 3.395 0.0067 8.6247� 0.0005 8.6247 ½−1149.67; 1167.47�
Earth 149.596 1.00 0.000 0.0167 3.8387� 0.0004 3.83881 ½−3660.86; 2094.96�
Mars 227.923 1.88 1.851 0.0935 1.3565� 0.0004 1.35106 ½155248:; 179879:�
Jupiter 778.570 11.86 1.305 0.0489 0.6000� 0.3000 0.0623142 ½5.46709 × 108; 1.92679 × 109�
Saturn 1433.529 29.45 2.485 0.0565 0.0105� 0.0050 0.0136394 ½−1.57315 × 108; 3.59618 × 107�

4The reported values are taken from NASA fact sheet at https://
nssdc.gsfc.nasa.gov/planetary/factsheet/.
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The tightest interval on the parameter Ξ is obtained with
Venus, for which it can vary between −1149.67 and
1167.47. We can use the values defining such an interval
to predict the precession for Uranus, Neptune, and Pluto,
for which no observation is available. The results, sum-
marized in Table II, show that the bootstrapped theory
predictions are in perfect agreement with General
Relativity.
Now, it is useful to move to a different scale and analyze

S2 (see Table III) the only one among the S-stars whose
precession was observed [32]. We can next calculate the
precession for Mars, Jupiter, and S2 with the values of Ξ as
obtained by Mercury, Venus, Earth, and Saturn to check
agreement with the corresponding Schwarzschild value and

with the observations (see Table IV). The mean value of the
parameter Ξ such that

Δϕ ¼ ΔϕS ð3:3Þ

is given by

Ξ ¼ −1.64236� 0.10305: ð3:4Þ

B. S-star dynamics

We can confirm the bounds on Ξ deduced from orbital
precessions by comparing them with results deduced from
the analysis of stellar orbits at the Galactic Center. This

FIG. 2. Bootstrapped orbital precession as a function of the parameter Ξ. Black lines give the theoretical prediction from Eq. (3.1), blue
dashed lines represent the measurements adapted from Ref. [30], and red lines depict the General Relativistic values as in Eq. (2.23).
Confidence regions for Ξ are shaded in gray.
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further analysis consists in comparing simulated orbits in
bootstrapped Newtonian gravity, obtained by integrating
numerically Eqs. (2.18)–(2.21), with observed orbits of
three S-stars constructed by astrometric observations (see
Sec. III B 1). In particular, we focused on stars S2, S38, and
S55 for two main reasons: among the brightest stars, they
are those with the shortest period. These properties are
desired because highly bright stars are less prone to being
confused with other sources, and a short period allows us to
observe a larger part of the orbit in a given observation
session. For simplicity, we neglected perturbations from
other members of the cluster and any extended matter
structures.

1. Astrometric data

Astrometric data are taken from Ref. [33] and cover
25 years of observations performed in the near-infrared
(NIR), where the interstellar extinction amounts to about
three magnitudes. Different instruments have been used,
which we briefly describe below:
(1) SHARP.—First high-resolution data of the Galactic

Center were obtained in 1992 with the SHARP
camera at the European Southern Observatorys
(ESO’s) 3.5 m New Technology Telescope (NTT)
in Chile, operating in Speckle mode with exposure
times of 0.3, 0.5, and 1.0 s. The data, described in
detail in Ref. [34] led to the detection of high proper
motion near the central massive object.

(2) NACO.—The first Adaptive Optics (AO) imaging
data were produced by Naos-Conica (NACO)

system, mounted at the telescope Yepun (8.0 m)
of the Very Large Telescope (VLT) and starting to
operate in 2002. It followed a great improvement
due to larger telescope aperture and the higher Strehl
ratio (about 40%).

(3) GEMINI.—The dataset includes observations ob-
tained by the 8 m telescope Gemini North in Mauna
Kea, Hawaii. These images, obtained using the AO
system in combination with the NIR camera Quirc,
were processed by the Gemini team.

The astrometric calibration of these data, treated in Ref. [35],
consists in the following steps: obtaining high-quality maps
of the S-stars, extracting pixel positions, and transforming
them to a common astrometric coordinate system. In
particular, the astrometric reference frame is implemented
relating the S-stars positions to a set of selected reference
stars, which are in turn related to a set of Silicon Monoxide
(SiO) maser stars whose positions relative to Sgr A�
is known.

2. Fitting procedure

The first step of the fitting procedure is the numerical
integration of the system of parametric nonlinear differ-
ential equations (2.18)–(2.21) to produce stellar simulated
orbits in bootstrapped Newtonian gravity.
Preliminarily, we fix the Keplerian elements and the

parameters of the central mass to the values reported in
Tables V and VI. In particular, for the study of S2, we used
the values obtained by the GRAVITY Collaboration [32],
and for S38 and S55, we used those obtained in Ref. [33].

TABLE IV. Precession for Mars, Jupiter, and S2 as predicted by confidence regions for Ξ inferred from Mercury, Venus, Earth, and
Saturn.

Object ΔϕS ΔϕðΞMercuryÞ ΔϕðΞVenusÞ ΔϕðΞEarthÞ ΔϕðΞSaturnÞ
Mars 1.35106 ½1.34814; 1.35577� ½1.35102; 1.3511� ½1.35094; 1.35113� ½−3.75855; 2.5191�
Jupiter 0.0623142 ½0.0622752; 0.0623773� ½0.0623137; 0.0623147� ½0.0623126; 0.0623151� ½−0.00607962; 0.0779489�
S2 730.382 ½−57243.9; 94435.7� ½−11.7295; 1485.75� ½−1634.61; 2085.15� ½−1.01666 � 108; 2.32414 � 107�

TABLE II. Orbital parameters from Nasa Fact Sheet, the General Relativistic prediction for the precession in the sixth column, and the
values predicted by the bounds on the parameter Ξ of the bootstrapped theory deduced for Venus (see Table I).

Planet að106 kmÞ PðyearsÞ ið°Þ e ΔϕSð 00=cyÞ ½Δϕmin;Δϕmax�
Uranus 2872.463 84.01 0.772 0.0457 0.00238404 ½0.00238404; 0.00238405�
Neptune 4495.060 164.786 1.769 0.0113 0.000775374 ½0.000775373; 0.000775375�
Pluto 5869.656 247.936 17.16 0.2444 0.000419669 ½0.000419669; 0.00041967�

TABLE III. For the star S2, orbital parameters [32], observed orbital precession (Δϕobs), orbital precession as predicted by General
Relativity (ΔϕS), and constraints on Ξ.

Star aðAUÞ PðyearsÞ ið°Þ e Δϕobsð 00=orbitÞ ΔϕSð 00=orbitÞ ½Ξmin;Ξmax�
S2 1031.32 16.0455 134.567 0.884649 730.382 × ð1.10� 0.19Þ 730.382 ½−103.066; 326.398�
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In order to have a well-defined Cauchy problem, we must
provide initial conditions for the four-dimensional coor-
dinates and their derivatives with respect to the proper time:
frð0Þ; _rð0Þ; θð0Þ; _θð0Þ;ϕð0Þ; _ϕð0Þ; tð0Þ; _tð0Þg. We assume
that the star initially lies on the equatorial plane of the
reference system, for which θð0Þ ¼ π=2, and that its initial
velocity is parallel to the equatorial plane, that is _θð0Þ ¼ 0.
It then follows that θ̈ð0Þ ¼ 0 identically. In particular, we
set the initial conditions for r and ϕ at the time of passage of
the apocenter, when the Cartesian coordinates of the star
expressed in the orbital plane are given by

ðxorb; yorbÞ ¼ ð−að1þ eÞ; 0Þ ð3:5Þ

and the Cartesian components of its velocity read

ðvx;orb; vy;orbÞ ¼
�
0;
2πa2

Tr

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p �
: ð3:6Þ

The initial condition for _t can be retrieved from the
normalization of four-velocities requiring that the geodesic
is timelike.
Starting from the initial conditions of each star, we

proceed with an explicit Runge-Kutta numerical integration
of the relativistic equations of motion. The results are the
stars mock orbit in the orbital plane, described by a four-
dimensional array ftðτÞ; rðτÞ; θðτÞ;ϕðτÞg. To compare the
theoretical orbits with those observed from the Earth, we
must project any point ðxorb; yorbÞ on the orbital plane into
the point ðx; yÞ on the observer’s sky plane. Such a
transformation is realized by applying the Thiele-Innes
formulas [36,37]:

x ¼ l1xorb þ l2yorb ð3:7Þ

y ¼ m1xorb þm2yorb: ð3:8Þ

The Thiele-Innes elements l1, l2,m1, andm2 depend on the
Keplerian elements by according to

l1 ¼ cosΩ cosω − sinΩ sinω cos i ð3:9Þ

l2 ¼ − cosΩ sinω − sinΩ cosω cos i ð3:10Þ

m1 ¼ sinΩ cosωþ cosΩ sinω cos i ð3:11Þ

m2 ¼ − sinΩ sinωþ cosΩ cosω cos i: ð3:12Þ

The second step consists in the fitting procedure itself and
has the aim to constrain the parameter Ξ. Guided by the
results obtained from the precession in Sec. II B 1, we let it
vary freely in an appropriate range including the value (3.4).
For each value of Ξ, we repeated the aforementioned
procedure to get the true positions ðxi; yiÞ and velocities
ð_xi; _yiÞ of the stars at all the observed epochs. After
transforming the true positions into the apparent positions
ðxthi ; ythi Þ, we computed the reduced-χ2 distribution to
quantify the discrepancy between theory and observations as

χ2red¼
1

2N−1

XN
i

��
xobsi −xthi
σxobsi

�
2

þ
�
yobsi −ythi
σyobsi

�
2
�
; ð3:13Þ

where ðxobsi ; yobsi Þ and ðxthi ; ythi Þ are respectively the observed
and the predicted positions, N is the number of observations,

TABLE V. Orbital parameters of S2, S38, and S55: semimajor axis a, eccentricity e, inclination i, angle of the line
of node Ω, angle from ascending node to pericenter ω, orbital period T, and the time of the pericenter passage tp.

Parameter S2 S38 S55

a (mas) 125.058� 0.041 141.6� 0.2 107.8� 1.0
Ω (°) 228.171� 0.031 101.06� 0.24 325.5� 4.0
e 0.884649� 0.000066 0.8201� 0.0007 0.7209� 0.0077
i (°) 134.567� 0.033 171.1� 2.1 150.1� 2.2
ω (°) 66.263� 0.031 17.99� 0.25 331.5� 3.9
tp (yr) 2018.37900� 0.00016 2003.19� 0.01 2009.34� 0.04
T (yr) 16.0455� 0.0013 19.2� 0.02 12.80� 0.11
mK 13.95 17. 17.5
References [32] [33] [33]

TABLE VI. Parameters of the central BH: the mass M and the distance R.

Star MðM⊙Þ RðkpcÞ References

S2 ð4.261� 0.012Þ × 106 8.2467� 0.0093 GRAVITY Collaboration [32]
S38 ð4.35� 0.13Þ × 106 8.33� 0.12 Gillessen et al. [33]
S55 ð4.35� 0.13Þ × 106 8.33� 0.12 Gillessen et al. [33]
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and ðσxobsi
; σyobsi

Þ are the observative uncertainties. Finally,
we calculated the likelihood probability distribution,
2 logL ¼ −χ2redðΞÞ. The best-fit value for Ξ was derived
as the point that maximizes the likelihood distribution.

3. Results

Our results are summarized in Table VII and represented
in Figs. 3, 4, and 5.

TABLE VII. Best-fit values for Ξ.

Star Ξ

S2 −5900þ39358.8
−44964.9

S38 25500þ22607.1
−23312.88

S55 60400þ81386
−87446.9

Multi-star 17400þ30555.6
−32244.3

FIG. 3. Comparisons between the NTT/VLTastrometric observations with their errors (black circles) and the theoretical best-fit orbits
using parameters reported in the first three rows of Table VII. The results for S2, S55, and S38 are illustrated respectively in the top left,
top right, and bottom panels.
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In Fig. 3, we show the comparison between best fit and
observed orbits of the selected stars: the top left panel, the
top right panel, and the bottom panel illustrate the results
respectively for S2, S55, and S38. Astrometric data are
reported with their own error bars to note the effectiveness
of our fitting procedure.

Figure 4 depicts the comparisons between the
observed and simulated coordinates with the correspond-
ing residuals. The left column contains the right ascen-
sion (RA), while the right column reports the declination
(Dec). It is worth noticing that in all stars and for
both coordinates, residuals are larger at the beginning

FIG. 4. Top panels show the comparison between the observed and fitted coordinates, and bottom panels show the corresponding
(O-C) residuals for S2, S38, and S55.
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observing epochs and decrease as astrometric accuracy
improves.
Finally, we show in Fig. 5 the orbits of the studied S-stars

corresponding to the best multistar fit for Ξ ¼
17400þ30555.6

−32244.3 (last row of Table VII). As expected, the
parameter Ξ is compatible with the mean value (3.4) such
that the bootstrapped Newtonian precession recovers
General Relativity.

IV. CONCLUSIONS

In this paper, we tested astronomically the bootstrapped
Newtonian gravity. The starting point is the complete
spacetime metric (2.15) derived in Ref. [15]. The leading
order deviation from the Schwarzschild solution cannot be
eliminated and is encoded in the free parameter Ξ, which is
not a priori known and must be constrained by observations.
First, we showed that bounds on Ξ can be deduced from

the comparison between the measurements of the orbital
precession of Solar System bodies and the theoretical
predictions arising from bootstrapped Newtonian metric
computed in Ref. [15]. The inferred confidence region for
Ξ for each planet is reported in Table I and graphically
depicted in Fig. 2. Based on the tightest interval obtained
with Venus, we found that Ξ lies in the range
½−1149.67;þ1167.47�. With these values of the parameter
Ξ, we predicted the orbital precession for Uranus, Neptune,
and Pluto, and we found a theoretical precession in great
agreement with the General Relativistic value. Such a
compatibility was confirmed by turning our attention to
the Galactic Center and repeating the same analysis for
the star S2 [32]. The mean value of the parameter Ξ such
that the bootstrapped Newtonian precession equals the
Schwarzschild value is

Ξ ¼ −1.64236� 0.10305: ð4:1Þ

We next focused on the Galactic Center scale to constrain
Ξ by investigating the orbital motion of S-stars. We used a
fully relativistic approach based on an agnostic method: for
each value of Ξ, we solved the geodesic equations numeri-
cally starting from initial conditions at the apocenter. After
applying the Thiele-Innes formulas to the mock positions,
we were able to compare the resulting solution with the
observed stellar orbits. Finally, we quantified the discrep-
ancy between the simulated and observed orbits performing
a χ2-statistics. The inferred confidence region for Ξ is
compatible with the bounds obtained by the precession
analysis, and thus with General Relativity. Indeed, we
found 17400þ30555.6

−32244.3 . Since S-stars are at a distance of about
r > 1000 Rg from the source, strong-field effects are not
relevant, and such a result was expected.
The proposed approach is completely general and

represents a useful tool in the classification of extended
theories of gravity. Moreover, this approach has already
been used to test a Yukawa-like gravitational potential by
means of dynamical tests at the Galactic Center [38–41],
where no significant deviations from General Relativity
were found either. Nevertheless, the definitive confirmation
(or exclusion) of a given extended theory of gravity
requires the improvement of the constraints on its free
parameters based on the observation of various strong-field
effects. This task can be accomplished taking advantage of
the increasing high accuracy observations of second gen-
eration instruments like GRAVITY [42].
In particular, we focus on finding stars with short

semimajor axis and highly eccentric orbits within the
pericenter of S2. The existence of such a population of
stars can be inferred from the recent discovery of the
sources S62, S4711, and S4714 [43,44]. Observing stars at
smaller radii is essential to detect strong-field effects, which
become no longer negligible for distances of the pericenter
r ≃ 10 Rg, and therefore any deviations from General
Relativity to find out the underlying gravitational theory.
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