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In most experiments to test the weak equivalence principle, the test objects coupled with gravity are
treated as point particles. To study whether the weak equivalence principle is obeyed by nonlocal objects,
especially wave packets with interesting physical configurations, one must first properly define the
trajectory of such objects. A phenomenon called the geometric spin Hall effect suggests that one can
directly use the energy-momentum tensor to describe the motion of wave packets. In this paper, we
construct spin-polarized free-falling electromagnetic wave packets in gravity, and calculate the evolution of
the center of the energy-momentum tensor. We find that the electromagnetic wave packets with opposite
helicity are separated in the direction perpendicular to spin and gravity. This behavior is thus a kind of
gravitational birefringence, and it means that motions of these spin-polarized wave packets in gravity do
violate the weak equivalence principle. Furthermore, we find that the trajectories defined by different
components and expressions of the energy-momentum tensor are not the same, and they are all different
from the trajectory given by the Mathisson-Papapetrou-Dixon equations with the constraint pμSμρ ¼ 0.
This suggests that the trajectory of spin-polarized wave packets in gravity, and its confrontation with the
weak equivalence principle, depend not only on the gravitational interaction but also strongly on how the
wave packets are measured and analyzed.
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I. INTRODUCTION

There are many experiments aiming to test the weak
equivalence principle (WEP) by using classical objects,
such as the GP-B [1–3] and GINGERino [4–6] experi-
ments. It has also been proposed to use a quantum object to
test the WEP [7–9]. However, the test objects coupled with
gravity in these experiments are treated as point particles. It
means that these experiments cannot tell us whether a
nonlocal object obeys the weak equivalence principle or
not. There are also several approaches aiming to describe
the motion of a nonlocal object in the gravitational field.
Using a multipole expansion of the energy-momentum
tensor (EMT), the dynamics of the spinning test objects
have been studied in the form of the Mathisson-Papapetrou-
Dixon (MPD) equations [10–13]. But it is impossible to
find a unique trajectory by solving the MPD equations
directly unless we artificially add a constraint to the angular
momentum Sμν. So the different artificial constraints would
lead to different trajectories. With the constraint S0ρ ¼ 0,
Papapetrou finds that the massive test particles with differ-
ent spins are separated in the transverse direction [14], and

this phenomenon is called gravitational birefringence.
However, the constraint S0ρ ¼ 0 does not make sense for
themassless particles and it cannot determine a uniqueworld
line [15,16]. By using the constraint pμSμρ ¼ 0, Duval finds
a different trajectory of massless particles [17]. He also finds
that the angle between the trajectories of test particles with
opposite helicity is θ ¼ −λ=πr0 þ 4GMλ=πr20 when they
come from a finite distance r0 to infinity [17]. But it is
unreasonable that there is a gravity-independent term−λ=πr0
in the angle θ given by Duval. Oancea finds a third different
trajectory from the Maxwell equations in gravity by taking
the Wentzel-Kramers-Brillouin approximation, and there is
no gravity-independent term in the angle θ [18]. There is
also another example called the Frenkel-Pirani constraint
uμSμν ¼ 0 [19–21]. These three constraints show different
advantages in describing the motion of objects, and more
importantly, the differences between the trajectories given by
them are not negligible [15]. But it is unclear how these
different constraints and trajectories are to be correlated with
actual experiments.
The energy flux center of a polarized light beam will

have a transverse shift when it is observed from a reference
frame tilted with respect to the direction of propagation of
the beam, and this phenomenon is called the geometric spin
Hall effect (GSHE) [22]. It suggests that we can directly use
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EMT to describe the motion of wave packets in gravity. So,
in this paper, we construct a spin-polarized free-falling
electromagnetic wave packet in gravity. Then we calculate
the center of EMT. We find there is an intersection angle θ
between the propagations of the two wave packets with
opposite helicity when they come from a finite distance r0.
However, in our results, the angle is θ ≃ αGMλ=πr20, where
the factor α depends on using which component and
expression of the EMT to describe the motion of the wave
packets. We find α ¼ 2 when using the energy density of
the symmetric EMT to describe the motion of the wave
packets. In this case, the angle θ given by us is the same as
the gravity-dependent term 2GMλ=πr20 in the angle given
by Duval. But the trajectory given by the energy density of
the symmetric EMT is different from the trajectory given by
Duval because of the gravity-independent term −λ=πr0.
This phenomenon means that the motions of spin-polarized
wave packets in gravity do violate the WEP.
We also find α ¼ 1 in the angle θ when using the center

of energy flux of the symmetric EMT to describe the
motion of the same spin-polarized wave packet. So, the
trajectories defined by different components of the EMTare
different from each other. When using the center of energy
flux of the canonical EMT to describe, we find α ¼ 1=2.
This phenomenon means there are also differences between
the trajectories given by different expressions of the EMT.
The former difference is mainly due to the GSHE induced
by gravity, while the latter difference is caused by the
evolution of spin angular momentum in the gravitational
field. So, we can also know which expression of EMT
would effectively describe the interaction between matter
and gravity by observing the gravitational birefringence of
spin-polarized wave packets.
The birefringence of light in materials has been studied

using the Fresnel equation and corresponding Kummer
surfaces [23–25]. Propagation of light in the gravitational
field can also be described by an effective optical material
[26,27]. By comparing the Maxwell equations in the
gravitational field and materials, we find an effective
Fresnel equation of light propagating in gravity. The so-
obtained angle between the two light beams with opposite
helicity agrees with the one given by the energy density of
the symmetric EMT.
Our paper is organized as follows. In Sec. II, we

construct a spin-polarized free-falling wave packet in
Schwarzschild spacetime and solve the Maxwell equations
of the wave packet. In Sec. III, we numerically calculate the
center of the EMT, and find that the wave packets with
opposite helicity will be separated in the transverse
direction near the gravity source. We also discuss the
differences between the trajectories defined by different
EMTs. In Sec. IV, we discuss the birefringence of wave
packets in Schwarzschild spacetime when they move to
infinity. We also discuss the differences between our results
and those given by the MPD equations. In Sec. V, we study

the propagation of light in gravity described by an effective
optical material. A summary of the main results is given
in Sec. VI.

II. A FREE-FALLING SPIN-POLARIZED WAVE
PACKET IN GRAVITY

We construct a spin-polarized free-falling electromag-
netic wave packet in gravity. Its initial position and velocity
are X⃗ ¼ ð0; 0; 0Þ and v⃗ ¼ ð0; 0; 1Þ. In this paper, we set
ℏ ¼ c ¼ 1. The gravity is along the negative direction of
the x axis. Figure 1 is a simple diagram of this physical
system.
In general relativity, the motion of a electromagnetic

wave packet is determined by the Maxwell equations:

∇μFμν ¼ 0: ð1Þ

By applying the covariant Lorentz gauge ∇λAλ ¼ 0, it
becomes

∇μ∇μAν ¼ 0: ð2Þ

When we adopt the harmonic coordinates, the
Schwarzschild metric reads

dτ2 ¼ 1 −GM=r
1þ GM=r

dt2 −
�
1þ GM

r

�
2

dx⃗2

−
�
1þ GM=r
1 −GM=r

�
G2M2

r4
ðx⃗ · dx⃗Þ2: ð3Þ

In a weak gravitational field, we can expand the metric
and keep it to the first order of GM=r:

FIG. 1. The big red ball represents the source of gravity, and O
is its center. The coordinates of O are ð−b; 0; 0Þ. The small blue
ball is a free-falling wave packet in gravity, and its initial
momentum p⃗ is along the z axis.
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gμν ¼ ημν þ hμν; hμν ¼
2GM
r

δμν: ð4Þ

Furthermore, we treat the influence of gravity on the
wave packet as a perturbation term Ãν. Then we have
Aν ¼ Āν þ Ãν. Āν is the zeroth order of the wave packet and
is given by

ημλ∂μ∂λĀν ¼ 0: ð5Þ

The perturbation term Ãν is determined by the first-order
terms of GM=r in the Maxwell equations:

∂λ∂λÃρ ¼ hδλα∂λ∂αĀρ þ ηλαΓβ
λα∂βĀρ − ∂αΓρ

αβĀ
β

− 2Γρ
αβ∂αĀβ; ð6Þ

where Γα
ρλ ¼ 1

2
ηαγð∂ρhδλγþ∂λhδργ −∂γhδλρÞ. Then Eq. (6)

is simplified to

ð−∂2
t þ∇2ÞÃρ ¼ 2h∇2Āρ þ 2∂ρh∂iĀi − δρα∂iĀα∂ih

− δρα∂αĀi∂ih; ð7Þ

where h ¼ 2GM=r. We have taken Ā0 ¼ 0 in Eq. (7).
Equation (7) is much simpler than the Maxwell equa-

tions in gravity, but it is still too difficult to solve. To
simplify the calculation, we assume that the wave packet’s
radius R is much smaller than the impact parameter b, and
that for the studied duration the wave packet travels a
distance much smaller than b. Therefore, we can expand
hμν at the initial position X⃗ ¼ ð−b; 0; 0Þ. When we keep hμν
to the first order of xi=b, h and ∂ih become

h ≃
2GM
b

�
1 −

x
b

�
; ∂xh ≃ −

2GM
b2

þ 4GMx
b3

;

∂yh ≃ −
2GMy
b3

; ∂zh ≃ −
2GMz
b3

: ð8Þ

Therefore, the evolution of Ã0 in gravity is determined by

ð−∂2
t þ∇2ÞÃ0 ¼

�
2GM
b2

−
4GMx
b3

�
∂tĀ1 þ 2GMy

b3
∂tĀ2

þ 2GMz
b3

∂tĀ3: ð9Þ

We can apply a Fourier transform to Eq. (9), which then
becomes

ð∂2
t þω2ÞÃ0

f ¼
�
2GM
b2

−
4GMi
b3

∂
∂kx

�
ðiωĀ1

fÞ

−
2GM
b3

∂
∂ky ðωĀ

2
fÞ−

2GM
b3

∂
∂kz ðωĀ

3
fÞ; ð10Þ

where Āi
f and Ãρ

f are

Āi
f ¼

1

ð2πÞ3
Z

Āi expð−ik⃗ · x⃗Þd3x;

Ãρ
f ¼

1

ð2πÞ3
Z

Ãρ expð−ik⃗ · x⃗Þd3x: ð11Þ

By using the same method, we find that Ãi
f is given by

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð∂2
t þ ω2ÞÃ1

f ¼ 4GM
b

�
1 − i

b
∂
∂kx

�
ðω2Ā1

fÞ − 4GM
b2

�
1 − 2i

b
∂
∂kx

�
ðikxĀ1

fÞ − 2GMi
b3

∂
∂ky ðikyĀ1

f þ ikxĀ2
fÞ

− 2GMi
b3

∂
∂kz ðikzĀ1

f þ ikxĀ3
fÞ;

ð∂2
t þ ω2ÞÃ2

f ¼ 4GM
b

�
1 − i

b
∂
∂kx

�
ðω2Ā2

fÞ − 2GM
b2

�
1 − 2i

b
∂
∂kx

�
ðikxĀ2

f þ ikyĀ1
fÞ − 4GMi

b3
∂
∂ky ðikyĀ2

fÞ

− 2GMi
b3

∂
∂kz ðikzĀ2

f þ ikyĀ3
fÞ;

ð∂2
t þ ω2ÞÃ3

f ¼ 4GM
b

�
1 − i

b
∂
∂kx

�
ðω2Ā3

fÞ − 2GM
b2

�
1 − 2i

b
∂
∂kx

�
ðikxĀ3

f þ ikzĀ1
fÞ − 2GMi

b3
∂
∂ky ðikyĀ3

f þ ikzĀ2
fÞ

− 3GMi
b3

∂
∂kz ðikzĀ3

fÞ

: ð12Þ

To find the perturbation term Ãν
f by solving Eqs. (10) and (12), we need to construct a zeroth-order term Āi

f. A spin-
polarized electromagnetic wave packet Āi in the Minkowski spacetime is

Āi ¼
Z

1

ω2

0
B@

k2z þ k2y − iσkxky

iσk2z þ iσk2x − kxky
−iσkykz − kxkz

1
CA exp

�
−
ðk⃗ − k⃗0Þ2
2Δk2

− iωt

�
expðik⃗ · x⃗Þd3k; ð13Þ
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where σ ¼ �1 is the helicity of the wave packet Āi, and
ω ¼ jk⃗j. When we take k⃗ ¼ ð0; 0; k0Þ, the momentum of
the wave packet Āi is p⃗ ¼ ð0; 0; k0Þ. This means the wave
packet will move along the third direction if the gravity
vanishes. According to Eq. (11), the Āi

f is given by

Āi
f ¼ 1

ω2

0
B@

k2z þ k2y − iσkxky

iσk2z þ iσk2x − kxky
−iσkykz − kxkz

1
CA exp

�
−
ðk⃗ − k⃗0Þ2
2Δk2

− iωt

�
:

ð14Þ

After straightforward calculations, we find that the
equations of Ãρ

f have the following form:

ð∂2
t þω2ÞÃρ

f ¼ cρðkÞexpð−iωtÞ þ dρðkÞ expð−iωtÞt; ð15Þ

where factors cρðkÞ and dρðkÞ are determined by Eqs. (10)–
(14). When we take the following initial conditions:

Ãρ
fjt¼0 ¼ 0 and ∂tÃ

ρ
fjt¼0 ¼ 0; ð16Þ

Eq. (15) has a solution:

Ãρ
f ¼

cρðkÞð1− expð2iωtÞ þ 2iωtÞ expð−iωtÞ
4ω2

þ dρðkÞð2ωt− iþ 2iω2t2 þ i expð2iωtÞÞ expð−iωtÞ
8ω3

:

ð17Þ

Finally, a spin-polarized electromagnetic wave packet Aρ

in gravity is

Aρ ¼ Āρ þ Ãρ;

¼
Z

Āρ
f expðik⃗ · x⃗Þd3kþ

Z
Ãρ
f expðik⃗ · x⃗Þd3k: ð18Þ

We can see that the perturbation term Ãν is determined by
the factors cρðkÞ and dρðkÞ through Eqs. (17) and (18).
Therefore, the wave packet Aρ could be calculated in
principle. However, the integrals in Eq. (18) are too difficult
to calculate analytically. So, we have to do numerical
integrations.

III. THE BIREFRINGENCE IN THE NEAR-FIELD
REGION

The notion of classical trajectory does not apply naively
to a nonlocal object like the wave packet. But we can use
the center of EMT to describe the motion of a wave packet.
It means we can define the trajectory of a wave packet by
the center of its EMT. However, there are many expressions
of the EMT. In this paper, we focus on the canonical and
symmetric ones.

In gravity, the center of the EMT is

hxii ¼
R ffiffiffi

g
p

xiTμνdVR ffiffiffi
g

p
TμνdV

: ð19Þ

In this article, we only care about the motions induced by
gravity. Therefore, we can use the first-order terms of
GM=b in the EMT to define the center of a wave packet:

hxii ≃
R
xiT̃μνdVR
T̄μνdV

; ð20Þ

where T̄μν is the zeroth-order terms ofGM=b in the EMTof
the wave packet. To make Eq. (20) physical, the integration
of T̄μν must satisfy

R
T̄μνdV ≠ 0. In our settings, we have

taken k⃗0 ¼ ð0; 0; k0Þ. After straightforward calculations,
we find that only four components of the EMT can be used
to define the center of the wave packet by Eq. (20). In this
paper, we focus on using the energy density and energy flux
to describe the motion of the wave packet in gravity.
We can use the energy density and energy flux of the

symmetric EMT to define the center of the wave packet:

hxiise ≃
R
xiT̃00

S dVR
T00
S dV

and hxiisk ≃
R
xiT̃30

S dVR
T̄30
S dV

; ð21Þ

where T̃00
S and T̃30

S are the first-order terms of h ¼ GM=b in
the symmetric energy density and energy flux, while T̄00

S
and T̄30

S are the zeroth-order terms. We can also use the
energy density and energy flux of the canonical EMT to
describe the motion of the wave packet:

hxiice ≃
R
xiT̃00

C dVR
T̄00
C dV

and hxiick ≃
R
xiT̃30

C dVR
T̄30
C dV

; ð22Þ

where T̃00
C and T̃30

C are the first-order terms of h ¼ GM=b in
the canonical energy density and energy flux, while T̄00

C and
T̄30
C are the zeroth-order terms. In the following, we will

show that these definitions of the center lead to different
trajectories.
After numerical calculations, we find that the motion of a

spin-polarized electromagnetic wave packet in the direction
of gravity can be fitted with

hxi ≃ −
GM
b2

t2: ð23Þ

Equation (23) is independent of the spin of wave packets.
We also find that the motions in the direction of gravity
described by different components and expressions of the
EMT are the same as Eq. (23).
However, a spin-polarized wave packet does have a

transverse shift depending on the spin and the definitions of
the trajectory. The numerical results are shown in Fig. 2.
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The transverse shift of a wave packet with the helicity σ in
the transverse direction agrees with the expression:

hyi ≃ α
GM
b

σt
k0b

; ð24Þ

where σ ¼ �1, and α ¼ 2; 3=2; 1; 1=2 depends on the
definitions of the trajectory. In detail, we find that α ¼ 2
when using the energy center of the symmetric EMT to
describe the motion of the wave packet, and α ¼ 1 when
using instead the energy-flux center of the symmetric EMT.
If we use the energy density of the canonical EMT, α
becomes 3=2. We also find that α ¼ 1=2 if using canonical
energy flux to define the center of the wave packet. The
relationships between the factor α and trajectories are
shown in Table I.
According to Eq. (24), we find that the transverse

velocity of the spin-polarized wave packet is dy=dt≃
αGMσ=k0b2. So, the transverse velocity dy=dt is indepen-
dent of the time of motion t. It means that the transverse
motion of the wave packet is a kinematic effect when t is
much less than the impact parameter b. If we expand the
trajectory given by Duval [17] and keep it to the first order
of t=b, we can also find such a kinematic effect in the
transverse trajectory.
When we use different components and expressions of

the EMT to define the center of the same spin-polarized
wave packet, the factor α has different values. Therefore,
we can determine which expression of the density would
effectively describe the interaction between matter and
gravity by measuring the transverse velocity dy=dt.
However, we will figure out why there are differences
between the trajectories first. The transverse trajectories
given by different components and expressions of the EMT
are shown in Fig. 3 when σ ¼ þ1.
The difference between the center of energy density and

energy flux is

δy≡ hyik − hyie ≃ −
GM
b

σt
k0b

: ð25Þ

As is known from GSHE, the energy flux center of a
polarized light beam will have a transverse shift when it is
observed from a reference frame tilted with respect to the
direction of propagation of the beam. According to
Eq. (23), the angle between the energy flux and the

FIG. 2. The transverse motions of wave packets with the
helicity σ ¼ �1. Here, we have set GM=b ¼ 1 and k0b ¼ 106.
The blue and orange bullets represent the numerically calculated
center coordinates. The black and orange straight lines are the
fitted results, and SD means the standard deviation.

TABLE I. The relationship between α and trajectories.

α Definitions of trajectories

2 Center of energy density of the symmetric EMT
3
2

Center of energy density of the canonical EMT
1 Center of energy flux of the symmetric EMT
1
2

Center of energy flux of the canonical EMT
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propagation of the wave packet is β ¼ 2GMt=b2. By
numerical calculations, the transverse shift of the energy
flux center is found to agree with the expression

hyigs ≃ −
GM
b

σt
k0b

: ð26Þ

We see that the transverse shift hyigs is the same as the
difference δy. When a wave packet moves in a gravitational
field, its propagation is changed by gravity. Therefore, the
angle β between the propagation and energy flux of the
wave packet is also changed. It means that if the wave
packet is observed from a reference frame tilted with
respect to its propagation, and if we still use the center
of the energy flux to describe the motion of the wave
packet, then the energy flux center does have a transverse
shift dependent on the spin and angle β because of the
GSHE. This transverse shift is just induced by the angle
β ≠ 0. If there is no interaction between spin and gravity,
then the energy flux center will still have this transverse
shift. So, this transverse shift is called the GSHE induced
by gravity [28].
When using the center of energy density to describe the

motion of a spin-polarized wave packet, the transverse shift
is caused by the interaction between spin and gravity.
However, if the energy flux is used, the transverse shift is
caused by two effects. One is from the interaction between
spin and gravity. The other one is the GSHE induced by
gravity. Therefore, the differences between the transverse
shifts of the wave packets described by different compo-
nents of the EMT are due to the GSHE induced by gravity.
There are also differences between transverse shifts of

the wave packets described by the canonical and symmetric
EMTs. According to the Eq. (24), the differences are

δye ¼ δyk ≃
GM
2b

σt
k0b

; ð27Þ

where δye ≡ hyise − hyice is the difference between the
centers of energy densities of the symmetric and canonical

EMTs, and δyk ≡ hyisk − hyick is the difference between
the centers of symmetric and canonical energy flux.
As we all know, the differences between the canonical

and symmetric EMTs are the Belinfant-Rosenfeld terms:

Tμν
s ¼ Tμν

c þ∇λBλμν; ð28Þ

where Bλμν ¼ 1
2
ðSμνλ þ Sνμλ − SλνμÞ. Sμνλ ¼ FμνAλ −

FμλAν is the spin angular momentum tensor of electro-
magnetic wave packets. So, the difference between the
energy densities of the canonical and symmetric EMTs is

∇λBλ00 ¼ ∇λS00λ: ð29Þ

In this paper, we only pay attention to the motions caused
by gravity. So, we can use the first-order terms of hμν in the
EMT to define the center of a wave packet. Then the
difference between energy densities of canonical and
symmetric EMTs is simplified to

∇λBλ00 ¼ ∂iS̃
00i; ð30Þ

where S̃00i is the first-order terms of hμν in the spin angular
momentum tensor S00i.
According to Eqs. (21), (22), and (30), the difference δys

between the centers of energy densities of canonical and
symmetric EMTs is

δys ¼
R
S̃020ðÃÞdVR
T̄00
C dV

¼ S̃02=E; ð31Þ

where E is the total energy, and S̃02 ≡ R
S̃020dV is the spin

angular momentum induced by gravity.
To solve the perturbation term Ãρ, we have set the

Fourier transform of Ãρ to be Ãρ
f ¼ 0 at t ¼ 0. According to

Eq. (18), the perturbation term becomes Ãρ ¼ 0 at t ¼ 0.
So, the spin angular momentum of the wave packet is
S̃02 ¼ 0 at t ¼ 0. However, S̃02 is changed with time t by
the interaction between spin and gravity. After numerical
calculations, we find that the difference δys agrees with the
expression:

δys ¼
GM
2b

σt
k0b

: ð32Þ

The difference δys is the same as δye and δyk. It means that
the differences between the centers of canonical and
symmetric EMTs are due to the evolution of spin angular
momentum in the gravitational field.
According to Eq. (32), the difference between the

transverse shifts given by canonical and symmetric
EMTs is δy ∼GMt=k20b

2. The gravitational potential on
the surface of the Earth isGM=b ∼ 10−9. So, this difference
is δy ∼ 10−9=k0 when the spin-polarized wave packet

FIG. 3. The transverse motion of a wave packet with the
helicity σ ¼ þ1. Here, we have set GM=b ¼ 1 and k0b ¼ 106.
The hyise and hyice are the centers of energy densities of the
symmetric and canonical EMTs. And the hyisk and hyick are the
centers of symmetric and canonical energy flux.
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moves on the Earth. We find this difference δy is mush less
than the wavelength λ ∼ 1=k0. Therefore, this difference δy
is too small to be detected. However, the trajectory of a
spin-polarized wave packet emitted from a celestial body
should be influenced by the gravity of the celestial body.
When the wave packet is detected on the Earth, the time of
motion t could be much larger than the radius R of the
celestial body. In this case, the difference δymight be larger
than the wavelength λ. Therefore, the difference between
the transverse shifts given by canonical and symmetric
EMTs could possibly be detected. In Sec. IV, we will
discuss it in detail.

IV. THE BIREFRINGENCE IN THE FAR-FIELD
REGION

According to Eq. (24), the spin-polarized electromag-
netic wave packets do have different trajectories in gravity,
and this phenomenon violates the weak equivalence prin-
ciple. The transverse shift of a spin-polarized wave packet
near the gravity source is

y ≃ α
GM
b

λσt
2πb

; ð33Þ

where λ ¼ 2π=k0 is the wavelength and σ ¼ �1 is the
helicity. The transverse velocity is

dy
dt

≃ α
GM
b

λσ

2πb
: ð34Þ

According to Eq. (34), we find that the transverse motion
of a spin-polarized wave packet in gravity is only a
kinematic effect when the time of motion t is much less
than the impact parameter b. So, we can assume that when
the time t is long, the transverse velocity becomes

dy
dt

≃
α

2π

GMσλ

b2 þ t2
: ð35Þ

However, when the time t is much less than b, Eq. (35)
should return to Eq. (34). So, it is reasonable to set that the
factor α in Eq. (35) is equal to the factor α in Eq. (34). The
relationships between the factor α and trajectories have
been shown in Table I.
When a wave packet moves from z ¼ −∞ to z ¼ þ∞,

the initial conditions are y ¼ 0 and dy=dt ¼ 0 at t ¼ −∞.
After straightforward calculations, the trajectory in the
transverse direction is

y ≃
α

2π

GMσλ

b

�
π

2
þ arctan

�
t
b

��
: ð36Þ

The trajectory is shown in Fig. 4 when α ¼ 1. The trans-
verse velocity is dy=dt ¼ 0 at t ¼ þ∞. So, two wave
packets with opposite helicity are separated, and there is no
intersection angle between them.

According to the equations of motion of a spin-polarized
particle given by Papapetrou [14], the separation distance
lMPD of two particles with opposite helicity is

lMPD ¼ 4GMλ

πb
; ð37Þ

where we have set velocity v ∼ 1. But according to Eq. (36),
the separation distance l is

l ≃
απ

4

4GMλ

πb
; ð38Þ

where α ¼ 2; 3=2; 1; 1=2. We find that the separation
distance l given by the canonical and symmetric EMTs
cannot be equal to lMPD. Therefore, the trajectory of a spin-
polarized wave packet given by the center of EMT is
different from the trajectory given by Papapetrou.
When a wave packet moves from a finite distance z ¼

−a to z ¼ þ∞, the initial conditions are y ¼ 0 and
dy=dt ¼ 0 at t ¼ 0. According to Eq. (35), the transverse
trajectory of a spin-polarized wave packet is

y ≃
GMα

2πb
σλ

�
arctanða=bÞ − arctan

�
a − t
b

��

−
α

2π

GMσλt
b2 þ ðaÞ2 : ð39Þ

The transverse trajectories are shown in Fig. 5 when
α ¼ 1. These trajectories are similar to those given by
Oancea [18]. The transverse velocity dy=dt at t ¼ þ∞
becomes

dy
dt

≃ −
α

2π

GMσλ

b2 þ a2
: ð40Þ

So, the angle θ between the two wave packets with opposite
helicity when moving from a finite distance r0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ a2

p
to infinity is

FIG. 4. The transverse trajectories of spin-polarized wave
packets moving from z ¼ −∞ to z ¼ þ∞ when α ¼ 1. The
blue and red lines are the trajectories. Here, we have set
GM=b ¼ 1. λ is the wavelength.
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θ ≃
α

2

2GMλ

πr20
: ð41Þ

But the angle θ given by Duval [17] with the constraint
pαSαρ ¼ 0 is

θ ¼ −
λ

πr0
þ 2GMλ

πr20
: ð42Þ

There is a gravity-independent term −λ=πr0 in Eq. (42).
This gravity-independent term means that the two spin-
polarized wave packets would also be separated when the
gravity vanishes. So, this gravity-independent term is
unreasonable in physics.
When we take α ¼ 2, the angle θ in Eq. (41) is equal to

the gravity-dependent term 2GMλ=πr20 in Eq. (42) given by
Duval [17]. So, it means the trajectory given by Duval with
the constraint pαSαρ ¼ 0 is the same as the trajectory given
by the center of energy density of symmetric EMT if we
ignore the gravity-independent term in Eq. (42).
If two wave packets with opposite helicity are emitted

from a celestial body with radius R, the angle between their
propagations should be θ ≃ αGMλ=πR2. When the two
wave packets reach the Earth, the separation distance
between them should be l ≃ αGMLλ=πR2, where L ≫ R
is the distance from the celestial body to the Earth. If the
celestial body is the Sun, the radius is about
R⊙ ∼ 7.0 × 105 km. The distance from the Sun to the
Earth is LSun ¼ 1 Au, and the gravitational potential on
the surface of the Sun is about GM⊙=R⊙ ∼ 2.1 × 10−6. So
the separation distance between the two wave packets with
opposite helicity is about lSun ∼ 4.6 × 10−4 αλ. We find the
separation distance lSun is much less than the wavelength λ.
It means the separation distance between the two wave
packets emitted from the Sun is too small to be detected.
However, if the celestial body is the Proxima Centauri, the
gravitational potential is similar to the Sun. The radius of

the Proxima Centauri is about R ∼ 0.15R⊙. The distance
from the Proxima Centauri to the Earth is about
L ∼ 6.4 × 104 AU. So the separation distance between
the two wave packets emitted from the Proxima Centauri
should be about l ∼ 79.7 αλ. In this case, the separation
distance l is about one hundred times the wavelength λ. We
can find that the farther away from the Earth, the larger the
separation distance is. Therefore, the separation distance
between two wave packets with opposite helicity could be
large enough to be detected when they are emitted from a
celestial body far away from the Earth.
However, the factor α in the separation distance l is

dependent on the definitions of the trajectory. If we use the
center of energy density of the symmetric EMT to define
the trajectory, the factor α is 2. So, the separation distance
of the two wave packets with opposite helicity given by the
energy density of symmetric EMT is lS ≃ 2GMLλ=πR2.
But when using the center of energy density of the
canonical EMT to define the trajectory, we find that the
factor α becomes 3=2. Therefore, the separation distance
given by the energy density of canonical EMT should be
lC ≃ 3GMLλ=2πR2, and it is not equal to the separation
distance lS given by the energy density of symmetric EMT.
There is a difference δl ≃ GMLλ=2πR2 between the sep-
aration distances lS and lC. It is important that this differ-
ence δl could be detected when the two wave packets are
emitted from a celestial body. So, there can only be one
separation distance that is consistent with a particular
experiment. And in this particular experiment, we can find
a suitable expression of the EMT to effectively describe the
interaction between matter and gravity.

V. BIREFRINGENCE INGRAVITYDESCRIBEDBY
AN EFFECTIVE OPTICAL MATERIAL

In general relativity, we have

∇μFμν ¼ 1ffiffiffi
g

p ∂μð
ffiffiffi
g

p
FμνÞ ð43Þ

and

Fμν ¼ ∇μAν −∇νAμ ¼ ∂μAν − ∂νAμ: ð44Þ

So, we could define an excitation tensor Hμν

Hμν ≡ ffiffiffi
g

p
gμρgναFρα; ð45Þ

and then the Maxwell equations in gravity become

∂μHμν ¼ 0: ð46Þ

In the absence of sources, the Maxwell equations in
materials are given by

FIG. 5. The transverse trajectories of wave packets with
opposite helicity moving from z ¼ −a to z ¼ þ∞ when
α ¼ 1. The blue and red lines are the trajectories of wave packets.
λ is the wave length. Here, we have set GM=b ¼ 1 and a ¼ b.
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8>>>>><
>>>>>:

∇ × H⃗ ¼ ∂tD⃗

∇ · B⃗ ¼ 0

∇ × E⃗ ¼ −∂tB⃗

∇ · D⃗ ¼ 0;

ð47Þ

where E⃗ and B⃗ are electric and magnetic field quantities,
and D⃗ and H⃗ are corresponding derived fields.
By comparing Eqs. (46) and (47), we find

Di ¼ H0i and Hi ¼ ϵijkHjk; ð48Þ

whereDi andHi are the components of D⃗ and H⃗, ϵijk is the
Levi-Civita symbol. By applying the metric given by
Eqs. (4) and (48) becomes

D⃗ ¼ ð1þ hÞE⃗ and H⃗ ¼ ð1 − hÞB⃗; ð49Þ

where h ¼ 2GM=r.
If the gravitational field is described by an effective

optical material, the effective permittivity ε and magnetic
permeability μ of this material are ε ¼ 1þ h and
μ ≃ 1þ h. As light propagates in this effective material,
its velocity is v ¼ 1=

ffiffiffiffiffi
εμ

p ≃ 1 − h. When light passes from
the vacuum into this effective material and travels near the
initial position X⃗ ¼ ð0; 0; 0Þ, the angle of incidence is about
θi ≃ t=b ≪ 1. So the angle between the incident and
refracted light beams is about

β ≃ −
2GMt
b2

; ð50Þ

and this angle is equal to the one given by Eq. (23).
According to Eqs. (47) and (49), the propagation of light

in this effective optical material is determined by

ð1þ 2hÞ∂2
t Ei −∇2Ei − 2∂jh∂iEj þ ∂jh∂jEi ¼ 0; ð51Þ

where we have ignored the term ∂i∂jhEj ∼GM=r3

because it is much smaller than the others. For convenience,
we can assume E⃗ ∝ expðik⃗ · x⃗ − iωtÞ, and then Eq. (51)
becomes

½ð1þ 2hÞω2δij− k2δijþ 2iki∂jh− ikk∂khδij�Ej ¼ 0: ð52Þ

In Sec. II, we have set the initial position of wave
packet X⃗ ¼ ð0; 0; 0Þ and the center of gravity source
O⃗g ¼ ð−b; 0; 0Þ. So, h and ∂ih near the position are
given by

h ¼ 2GM
b

and ∂ih ¼ −δ1i
2GM
b2

: ð53Þ

According to Eq. (47), k⃗ · E⃗ could be simplified to

k⃗ · E⃗ ¼ −i
2GM
b2

E1: ð54Þ

When a light beam passes into this effective material from
the vacuum along the third direction, we can find the
leading terms of k1 and k2 are the first order of h according
to Eq. (51). If the helicity of this light beam is σ, we can set
E2=E1 ¼ iσ for convenience. According to Eqs. (54) and
(52), we find that the angle between the two light beams
with opposite helicity is

θ ¼ 2

���� k2k3
���� ≃ 2GMλ

πb2
: ð55Þ

When taking α ¼ 2 in Eq. (34), we can find the angle θ is
equal to 2jvy=vzj ≃ 2GMλ=πb2. So, the angle between the
two light beams with opposite helicity when propagating
into this effective material from the vacuum is the same as
the one given by the center of energy density of the
symmetric EMT in gravity.

VI. SUMMARY

We construct a spin-polarized free-falling electromagnetic
wave packet in gravity, and thenwe calculate the center of the
EMT. We find that the spin-polarized free-falling wave
packets are indeed separated in the transverse direction. It
means we can use gravity to discriminate observed objects
with different spins by measuring the EMT. The trajectories
of spin-polarized wave packets are not the same and thus
violate the weak equivalence principle.
When a spin-polarized wave packet moves near the

gravitational source, the transverse shift given by the center
of energy density of the symmetric EMT is hyise ≃
2GMσt=k0b2. But the transverse shift given by the center
of energy flux of the symmetric EMT is hyisk ≃GMσt=
k0b2, and it is different from hyise. So, there are differences
between the transverse shifts of a spin-polarized wave
packet given by different components of the EMT. By
numerical calculations, we find these differences between
the different components are caused by the geometric spin
Hall effect induced by gravity. However, the transverse
shift given by the energy density of canonical EMT is
hyice ≃ 3GMσt=2k0b2. We find that hyice is not equal to
the transverse shift hyise given by the energy density of
symmetric EMT either. Therefore there are also differences
between the transverse shifts of a spin-polarized wave
packet given by the canonical and symmetric expressions
of the EMT. And these differences between the canonical
and symmetric expressions are mainly due to the evolution
of spin angular momentum in the gravitational field.
Finally, we compare the Maxwell equations in the gravi-
tational field and materials. We find the angle between the
light beams with opposite helicity given by the energy
density of symmetric EMT is the same as the one when the
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gravitational field is described by an effective optical
material.
We also compare our results with those given by the

MPD equations. We find that the trajectories given by
the canonical and symmetric EMTs are different from the
trajectories given by the MPD equations. If two wave
packets with opposite helicity move from a finite distance
r0 to infinity, the angle between their propagations is
θ ≃ αGMλ=πr20. It means that the separation distance of
the two spin-polarized wave packets emitted from a
celestial body can be large enough to be detected.
Therefore, it can be tested experimentally whether the
trajectories of spin-polarized wave packets violate the weak

equivalence principle or not. Because there are differences
between the trajectories given by different expressions of
the EMT, we can also determine which expression of the
EMT would effectively describe the interaction between
matter and gravity.
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