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We investigate a puzzle in the recent thermodynamics of scalar-tensor gravity, in which general relativity
is a zero-temperature state of equilibrium and scalar-tensor gravity is the nonequilibrium configuration of
an effective dissipative fluid. A stealth solution of Brans-Dicke gravity with constant positive temperature
is shown to be analogous to a metastable state for the effective fluid and to suffer from an instability.
The stability analysis employs a version of the Bardeen-Ellis-Bruni-Hwang gauge-invariant formalism for
cosmological perturbations adapted to modified gravity. The metastable state is destroyed by tensor
perturbations.
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I. INTRODUCTION

Gravity is one of only four fundamental forces known
but it behaves differently than the electroweak and strong
interactions in several respects. For this reason, it has been
suggested that gravity may not be fundamental after all, but
rather be emergent, an idea that has been formulated in
various approaches (see [1–10] for reviews). A particularly
influential approach was that of Jacobson’s thermodynam-
ics of spacetime in which the Einstein equation was derived
with purely thermodynamical considerations [11]. Later on,
scalar-tensor gravity [in its incarnation as metric fðRÞ
gravity] was examined and its field equations were again
derived from thermodynamics [12]. Moreover, the idea was
advanced that general relativity (GR) constitutes a state of
equilibrium while modified gravity corresponds to an out-
of-equilibrium state ([12], see also [13]). This idea is not
outrageous if one thinks that the field content of scalar-
tensor gravity consists of the two massless spin two modes
of GR plus a (usually massive) scalar mode propagating as
well. Exciting this scalar mode corresponds to an excited
state with respect to GR.
In spite of a large literature, the order parameter, or

equations, describing the approach to equilibrium have
never been found. Recently, a different approach was
proposed for scalar-tensor gravity, including a definition
of “temperature of gravity” quantifying the proximity (or
lack thereof) of a theory of gravity to GR and an equation
describing the approach to equilibrium [14–18]. We refer to
this approach of [14–17] as “thermodynamics of scalar-
tensor gravity” and we stress that, in spite of similarities

with the basic idea of Refs. [11,12], it is not thermody-
namics of spacetime (as commonly the work inspired by
[11,12] is referred to), but it is a very different approach.
Although less insightful in fundamental aspects, at the
same time it is minimalistic in its assumptions, which is the
reason why it allows progress in finding an effective
temperature of gravity and in describing the approach to
the GR equilibrium state [14–17].
The key feature of this new formalism is that the field

equations of scalar-tensor gravity are written as effective
Einstein equations by moving all terms containing ϕ and its
first and second derivatives to the right-hand side, where

they form an effective stress-energy tensor TðϕÞ
ab . It is then

shown that, when the gradient ∇aϕ is timelike, TðϕÞ
ab has the

form of the stress-energy tensor of a dissipative fluid
[14,17,19,20], to which one can apply the constitutive
relations of Eckart’s first-order thermodynamics [21].
Within the well-known limitations of Eckart’s theory
(e.g., [22,23]), these relations lead to the definition and
physical interpretation of fluid quantities as effective
temperature of gravity T , thermal conductivity K, heat
flux density, anisotropic stresses, and shear and bulk
viscosity coefficients [14–16]. This formalism has since
been extended to Horndeski gravity [17] and applied to
Friedmann-Lemaître-Robertson-Walker (FLRW) cosmol-
ogy [18] (its application to other situations in gravity is
in progress).
The thermodynamics of scalar-tensor gravity is consis-

tent (within the limitations of Eckart’s theory) in both the
general theory and its application to specific analytical
solutions but, in this context, a little puzzle remains. There
is a stealth solution of Brans-Dicke theory that corresponds
to a state of constant nonzero temperature [16], which is
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difficult to interpret. The present paper is devoted to solving
this conundrum and learning a lesson that is important for
the general theory beyond specific solutions. Here we show
that this Brans-Dicke stealth solution can be interpreted as a
sort of metastable state of the theory which exists at
constant (nonzero) temperature and, therefore, always
remains far away from the GR state of equilibrium (which
corresponds to zero temperature instead). However, this
state is unstable and small perturbations destroy it, as it
happens for supercooled water, which freezes as soon as its
container is shaken or impurities acting as ice nucleation
nuclei are thrown into it. In our case, the perturbations are
either scalar or tensor perturbations and the stability
analysis is performed using a gauge-invariant formalism
designed for modified gravity.
Let us be more specific about the theory, the solution,

and the thermodynamical formalism (we follow the nota-
tion of Ref. [24]). The context is the Brans-Dicke theory of
gravity, described by the action [25]

SBD ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
ϕR −

ω

ϕ
∇cϕ∇cϕ − VðϕÞ

�
ð1:1Þ

in vacuo, where ϕ is the Brans-Dicke scalar field corre-
sponding, approximately, to the inverse of the effective
gravitational coupling Geff , R is the Ricci scalar, ω is a
constant (“Brans-Dicke coupling”), VðϕÞ is a scalar field
potential, and g is the determinant of the metric gab.
Several analytical solutions of Brans-Dicke gravity are

known, including time-dependent ones (see the review
[26]). The solution of interest here [27] corresponds to the
choice

ω ¼ −1; VðϕÞ ¼ V0ϕ; ð1:2Þ

where V0 is a positive constant.1 The line element and
scalar field in spherical coordinates ðt; r; ϑ;φÞ are [27]

ds2 ¼ −dt2 þ A−
ffiffi
2

p
ðrÞdr2 þ A1−

ffiffi
2

p
ðrÞr2dΩ2

ð2Þ; ð1:3Þ

ϕðt; rÞ ¼ ϕ0e2a0tA1=
ffiffi
2

p
ðrÞ; ð1:4Þ

where AðrÞ ¼ 1 − 2m=r, m; a0;ϕ0 are constants, and
dΩ2

ð2Þ ¼ dϑ2 þ sin2 ϑdφ2 is the line element on the unit

2-sphere. This geometry is conformal to that of the Fonarev
solution of GR [28] and can be seen as a special case of
the Campanelli-Lousto family of solutions [29,30], but the
functional form of the scalar field is different from
the Campanelli-Lousto one [29,30]. Since ω ¼ −1

Brans-Dicke gravity is the low-energy limit of bosonic
string theory [31,32], presumably there is some stringy
analog of this solution. Here, however, we are only
interested in the special case obtained by the limit
m → 0, which produces the Minkowski metric

ds2 ¼ −dt2 þ dr2 þ r2dΩ2
ð2Þ ð1:5Þ

with

ϕðtÞ ¼ ϕ0e2a0t; ð1:6Þ

a little-known stealth solution in which the scalar field does
not gravitate. In Ref. [16], this analytical solution was
examined as an example of the new thermodynamics of
scalar-tensor gravity, resulting in a surprise: in general, the
product of thermal conductivity and temperature is given
by [15,16]

KT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−∇cϕ∇cϕ

p
8πϕ

ð1:7Þ

which, for the stealth solution (1.5) and (1.6), becomes
constant [16]

KT ¼ ja0j
4π

: ð1:8Þ

Such states are in principle possible because the approach
to the GR equilibrium is described by the equation [16]

dðKTÞ
dτ

¼ 8πðKTÞ2 − ΘKT þ □ϕ

8πϕ
; ð1:9Þ

where τ is the proper time of the effective ϕ-fluid, its four-
velocity is

ua ¼ ∇aϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−∇cϕ∇cϕ

p ; ð1:10Þ

and Θ is its expansion scalar, given by [14]

Θ ¼ ∇aua

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−∇cϕ∇cϕ

p
�
□ϕ −

∇aϕ∇bϕ∇a∇bϕ

∇eϕ∇eϕ

�
: ð1:11Þ

In order for ua to be future oriented for the specific solution
(1.5) and (1.6), it must be a0 < 0 [16]. It is clear that states
KT ¼ const. ≡C can be obtained if

C2 − CΘþ □ϕ

8πϕ
¼ 0: ð1:12Þ1Since ϕ ¼ G−1

eff > 0, the potential is then effectively bounded
from below.
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For the particular solution (1.5) and (1.6) it is Θ ¼ 0, while
the equation of motion of the Brans-Dicke field

□ϕ ¼ 1

2ωþ 3

�
ϕ
dV
dϕ

− 2V

�
ð1:13Þ

gives □ϕ ¼ −V0ϕ for ω ¼ −1, VðϕÞ ¼ V0ϕ, and
ϕ¼ϕ0e2a0ϕ. As a result, Eq. (1.12) is satisfied if
V0 ¼ 4a20, a relation derived also in [16] with independent
considerations.
The physical interpretation of this state with constant

KT > 0 remained unclear and is the subject of the present
paper. We show that this solution can be interpreted as a
sort of metastable state of the theory which exists at
constant (nonzero) temperature and, therefore, always
remains far away from the GR state of equilibrium (which
corresponds to KT ¼ 0). However, this state is unstable
with respect to tensor perturbations of the spacetime (1.5)
and (1.6). The stability analysis with respect to these
perturbations is carried out using the Bardeen-Ellis-
Bruni-Hwang gauge-invariant formalism developed for
cosmological perturbations in [33–37] and adapted to
modified gravity in [38–44]. It can be applied because
the stealth Minkowski spacetime (1.5) and (1.6) is a trivial
FLRW spacetime.
The instability matches the intuition that this stealth state

of gravity is analogous to a metastable state in which a fluid
(in our case, an effective fluid) can remain hanged for a
while, but is destroyed by arbitrarily small perturbations.
Section II recalls the needed equations of the gauge-
invariant formalism for cosmological perturbations of
scalar-tensor gravity, which are solved in Sec. III, establish-
ing the presence of instability. Section IV contains con-
clusions on the significance of this metastable state for the
thermodynamics of scalar-tensor gravity.

II. EQUATIONS OF GAUGE-INVARIANT
PERTURBATION THEORY FOR

MODIFIED GRAVITY

Gauge-invariant cosmological perturbation theory in
modified gravity was developed in [38–44] for a rather
general class of theories, i.e., mixed scalar-tensor/fðRÞ
gravity in the metric formalism. The vacuum action is

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
fðϕ;RÞ

2
−
ω̄ðϕÞ
2

∇cϕ∇cϕ−VðϕÞ
�
: ð2:1Þ

Assuming a spatially flat FLRW universe with line
element

ds2 ¼ −dt2 þ a2ðtÞðdx2 þ dy2 þ dz2Þ; ð2:2Þ

the corresponding field equations analogous to the
Einstein-Friedmann equations of GR read

H2 ¼ 1

3F

�
ω̄

2
_ϕ2 þ RF

2
−
f
2
þ V − 3H _F

�
; ð2:3Þ

_H ¼ −
1

2F
ðω̄ _ϕ2 þ F̈ −H _FÞ; ð2:4Þ

ϕ̈þ 3H _ϕþ 1

2ω̄

�
dω̄
dϕ

_ϕ2 −
∂f
∂ϕþ 2

dV
dϕ

�
¼ 0; ð2:5Þ

where an overdot denotes differentiation with respect to the
comoving time t, H ≡ _a=a is the Hubble function, and
F≡ ∂f=∂R. The metric perturbations in the Bardeen-Ellis-
Bruni-Hwang formalism [33–37] are completely described
by the quantities A;B;HL, and HT defined by

g00 ¼ −a2ð1þ 2AYÞ; ð2:6Þ

g0i ¼ −a2BYi; ð2:7Þ

gij ¼ a2½hijð1þ 2HLÞ þ 2HTYij�; ð2:8Þ

where hij is the three-dimensional metric of the FLRW
background, the scalar harmonics Y are the eigenfunctions
of the eigenvalue problem ∇̄i∇̄iY ¼ −k2Y, k is the corre-
sponding eigenvalue, and ∇̄i is the covariant derivative
operator of hij. The vector and tensor harmonics Yi and Yij

are given by

Yi ¼ −
1

k
∇̄iY; ð2:9Þ

Yij ¼
1

k2
∇̄i∇̄jY þ 1

3
Yhij; ð2:10Þ

respectively. The Bardeen gauge-invariant potentials [33]
are

ΦH ¼ HL þHT

3
þ _a

k

�
B −

a
k
_HT

�
; ð2:11Þ

ΦA ¼ Aþ _a
k

�
B −

a
k
_HT

�
þ a

k

�
_B −

1

k
ða _HTÞ_

�
; ð2:12Þ

the Ellis-Bruni variable [34] is

Δϕ ¼ δϕþ a
k
_ϕ

�
B −

a
k
_HT

�
; ð2:13Þ

while similar relations define the gauge-invariant variables
Δf;ΔF, and ΔR.
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To first order, the gauge-invariant perturbations satisfy the (redundant) system of equations [38–44]

Δϕ̈þ
�
3H þ

_ϕ

ω̄

dω̄
dϕ

�
Δ _ϕþ

�
k2

a2
þ

_ϕ2

2

d
dϕ

�
1

ω̄

dω̄
dϕ

�
−

d
dϕ

�
1

2ω̄

∂f
∂ϕ −

1

ω̄

dV
dϕ

��
Δϕ

¼ _ϕð _ΦA − 3 _ΦHÞ þ
ΦA

ω̄

�∂f
∂ϕ − 2

dV
dϕ

�
þ 1

2ω̄

∂2f
∂ϕ∂RΔR; ð2:14Þ

ΔF̈ þ 3HΔ _F þ
�
k2

a2
−
R
3

�
ΔF þ F

3
ΔRþ 2

3
ω̄ _ϕΔ _ϕþ 1

3

�
_ϕ2 dω̄

dϕ
þ 2

∂f
∂ϕ − 4

dV
dϕ

�
Δϕ

¼ _Fð _ΦA − 3 _ΦHÞ þ
2

3
ðFR − 2f þ 4VÞΦA; ð2:15Þ

ḦT þ
�
3H þ

_F
F

�
_HT þ k2

a2
HT ¼ 0; ð2:16Þ

− _ΦH þ
�
H þ

_F
2F

�
ΦA ¼ 1

2

�
Δ _F
F

−H
ΔF
F

þ ω̄

F
_ϕΔϕ

�
; ð2:17Þ

�
k
a

�
2

ΦH þ 1

2

�
ω̄

F
_ϕ2 þ 3

2

_F2

F2

�
ΦA ¼ 1

2

�
3

2

_FΔ _F
F2

þ
�
3 _H −

k2

a2
−
3H
2

_F
F

�
ΔF
F

þ ω̄

F
_ϕΔ _ϕþ 1

2F

�
_ϕ2 dω̄

dϕ
−
∂f
∂ϕþ 2

dV
dϕ

þ 6ω̄ _ϕ

�
H þ

_F
2F

��
Δϕ

�
; ð2:18Þ

ΦA þΦH ¼ −
ΔF
F

; ð2:19Þ

Φ̈H þH _ΦH þ
�
H þ

_F
2F

�
ð2 _ΦH − _ΦAÞ þ

1

2F
ðf − 2V − RFÞΦA

¼ −
1

2

�
ΔF̈
F

þ 2H
Δ _F
F

þ ðP − ρÞΔF
2F

þ ω̄

F
_ϕΔ _ϕþ 1

2F

�
_ϕ2 dω̄

dϕ
þ ∂f
∂ϕ − 2

dV
dϕ

�
Δϕ

�
; ð2:20Þ

and

ΔR ¼ 6

�
Φ̈H þ 4H _ΦH þ 2

3

k2

a2
ΦH −H _ΦA −

�
2 _H þ 4H2 −

k2

3a2

�
ΦA

�
: ð2:21Þ

Although this system is complicated, it simplifies substan-
tially in the case of the Minkowski background associated
with the analytical solution of Brans-Dicke gravity under
examination with homogeneous, but time-dependent,
stealth scalar field. Even with this simplification, solving
these equations is nontrivial.

III. STABILITY OF THE CONSTANT KT
STEALTH SOLUTION

Let examine the equations for gauge-invariant perturba-
tions and assess the stability of the stealth solution (1.5) and
(1.6). We set

H ¼ 0; _H ¼ 0; a ¼ 1; R ¼ 0; ð3:1Þ

then the comparison of the actions (1.1) and (2.1) with
ω ¼ −1 and V ¼ V0ϕ yields

fðϕ; RÞ ¼ 2ϕR; ω̄ðϕÞ ¼ −
2

ϕ
; F ¼ 2ϕ; ð3:2Þ

while Eq. (1.6) gives _ϕ=ϕ ¼ 2a0.
The gauge-invariant equations listed in Sec. II simplify

considerably. Equation (2.16) for the tensor modes decou-
ples from the other equations, assuming the form

ḦT þ 2a0 _HT þ k2HT ¼ 0: ð3:3Þ

The term containing _HT describes friction if a0 > 0 and
antifriction if a0 < 0, therefore, tensor modes are stable if
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a0 ≥ 0 and unstable if a0 < 0. As seen in Sec. II, it must be
a0 < 0 in order for the four-velocity of the effective ϕ-fluid
to be future oriented, and we conclude that the stealth
solution is unstable with respect to tensor modes of short
wavelengths.
Proceeding, Eqs. (2.17)–(2.19) give

− _ΦH þ a0ΦA ¼ 1

2

�
Δ _ϕ

ϕ
− 2a0

Δϕ
ϕ

�
; ð3:4Þ

k2ΦH þ a02ΦA

¼ 1

2

�
a0

Δ _ϕ

ϕ
þ Δϕ

ϕ

�
−k2 þ V0 − 8a02

2

��
; ð3:5Þ

and

ΦA þΦH ¼ −
Δϕ
ϕ

: ð3:6Þ

Equation (2.21) gives

ΔR ¼ 6

�
Φ̈H þ 2k2

3
ΦH þ k2

3
ΦA

�
; ð3:7Þ

which, substituted into Eq. (2.15), yields

Δϕ̈ −
4a0
3

Δ _ϕþ
�
k2 þ 4

3
a02 −

2

3
V0

�
Δϕ

¼ ϕ

�
−2Φ̈H þ 2a0ð _ΦA − 3 _ΦHÞ

þ 4

3

�
V0 −

k2

2

�
ΦA −

4k2

3
ΦH

�
: ð3:8Þ

Using Eq. (3.6), we can now eliminate Φ̈A, _ΦA, and ΦA;
Eqs. (3.4) and (3.5) simplify to

_ΦA þ a0ΦA þ Δ _ϕ

2ϕ
− a0

Δϕ
ϕ

¼ 0; ð3:9Þ

ðk2−a02ÞΦA ¼−
a0
2

Δ _ϕ

ϕ
−
�
k2

2
þV0

4
−2a20

�
Δϕ
ϕ

; ð3:10Þ

which, in turn, allows one to eliminate Φ̈A, _ΦA, and ΦA.
Equation (3.8) then becomes

ð4a02 − V0ÞΔ _ϕþ 1

2a0

��
2a02 −

V0

2

�
k2

þ a20

�
−26a02 þ

21

2
V0

�
þ V2

0

�
Δϕ ¼ 0: ð3:11Þ

The relation V0 ¼ 420 of the unperturbed Minkowski space
then implies that Δϕ ¼ 0. However, the Bardeen potentials
ΦA;H diverge: in fact, Eq. (3.9) yields

_ΦA ¼ −a0ΦA; ð3:12Þ

with solutionΦAðtÞ¼ðΦAÞ0e−a0t which diverges as t→þ∞
sincea0 < 0, as already established. Equation (3.6) gives the
other Bardeen potentialΦH ¼ −ΦA, which diverges as well,
together with

ΔR ¼ −6
�
a20 þ

k2

3

�
ΦA; ð3:13Þ

which follows from Eq. (3.7).

IV. CONCLUSIONS

We have uncovered an instability of the stealth solution
(1.5) and (1.6) with respect to tensor perturbations. The
timescale for the instability is ja0j−1. The only exception
occurs for the parameter value a0 ¼ 0which corresponds to
Einstein theory, to constant scalar field ϕ ¼ ϕ0e2a0t, and to
stability, in agreement with the fact that GR is the zero-
temperature state of equilibrium for scalar-tensor gravity in
the thermodynamical formalism [14–17].
The information that a0 is negative is crucial to establish

the instability of the solution (1.5) and (1.6) and comes
from the requirement that the four-velocity of the effective
ϕ-fluid be future oriented. The correct time orientation is
crucial when discussing dissipative phenomena that are
irreversible, but no hint on the sign of the parameter a0
would be available without the point of view of the
thermodynamics of scalar-tensor gravity, and the conclu-
sion that the Brans-Dicke stealth spacetime (1.5) and (1.6)
is unstable depends crucially on this argument and only
acquires physical meaning in this context. Perhaps the only
other indication corroborating this point is that, if a0 > 0,
then the effective gravitational coupling Geff ¼ ϕ−1

0 e2ja0jt

diverges in the far future, which could by itself be taken as
signaling instability. The lesson to be learned here is that
the Brans-Dicke stealth spacetime (1.5) and (1.6), describ-
ing the analog of a metastable state of the effective ϕ-fluid
with constant KT, is unstable with respect to tensor
perturbations. In retrospect this conclusion could have
been expected, but first one needed to understand the role
of this analytical solution. It is significant that the thermo-
dynamics of scalar-tensor gravity gives new meaning to
phenomena and analytical solutions that would otherwise
be unremarkable.
Apart from the specific solution (1.5) and (1.6) and the

specific ω ¼ −1 Brans-Dicke theory considered (which is,
however, somehow special as it is the low-energy limit
of the bosonic string [31,32]), one learns that nontrivial
states can in principle exist in the thermodynamics of
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scalar-tensor gravity. Future work will search for other
possible metastable states and, above all, will check further
the consistency of the formalism and its consequences for
various gravity regimes and physical situations.
Going beyond the particular solution examined here,

is known that a variety of stealth solutions are possible
in Horndeski and in higher-order scalar-tensor theories
[45,46], a much more general framework than Brans-Dicke
or “first generation” scalar-tensor gravity. Presumably, the
stability of these stealth solutions depends on the details of
the scalar fields appearing in them, as is the case for the
situation examined in the present manuscript. The exten-
sion of our discussion to these theories is not trivial because
the Bardeen-Ellis-Bruni-Hwang formalism does not apply
directly to cosmological perturbations in these theories.

Second, the thermodynamics of scalar-tensor gravity that
motivates this work has been extended to “viable”
Horndeski gravities (which turn out to be those that admit
an Einstein-frame representation) [17], but not to other
Horndeski and higher-order theories. Assessing the stabil-
ity of stealth solutions in these more general scalar-tensor
theories will be the subject of future research.
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