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In the context of general relativity, both energy and linear-momentum constraints lead to the same
equation for the evolution of the speed of free localized particles with fixed proper mass and structure in a
homogeneous and isotropic Friedmann-Lemaître-Robertson-Walker universe. In this paper we extend this
result by considering the dynamics of particles and fluids in the context of theories of gravity nonminimally
coupled to matter. We show that the equation for the evolution of the linear momentum of the particles may
be obtained irrespective of any prior assumptions regarding the form of the on-shell Lagrangian of the
matter fields. We also find that consistency between the evolution of the energy and linear momentum of
the particles requires that their volume-averaged on-shell Lagrangian and energy-momentum tensor trace
coincide (Lon-shell ¼ T). We further demonstrate that the same applies to an ideal gas composed of many
such particles. This result implies that the two most common assumptions in the literature for the on-shell
Lagrangian of a perfect fluid (Lon-shell ¼ P and Lon-shell ¼ −ρ, where ρ and P are the proper density
and pressure of the fluid, respectively) do not apply to an ideal gas, except in the case of dust (in which
case T ¼ −ρ).

DOI: 10.1103/PhysRevD.105.104005

I. INTRODUCTION

The energy-momentum content of the Universe is often
described macroscopically as a collection of minimally
coupled fluids—usually perfect fluids with no shear
stresses, viscosity or heat conduction—without an explicit
reference to the Lagrangians which describe their micro-
scopic dynamics. In the context of general relativity this is
not a problem, since the matter Lagrangians do not enter
explicitly in the equations of motion of the gravitational and
matter fields [1–3]. However, this is no longer the case in
theories of gravity with a nonminimal coupling (NMC)
betweenmatter and curvature. As a result of such couplings,
the energy-momentum tensor is not, in general, covariantly
conserved and the on-shell matter Lagrangians can directly
affect the dynamics of the gravitational and matter fields
(see, for example, [4–10]). Hence, caution must be taken
when assuming a specific form for the on-shell Lagrangian.
In fact, the various on-shell Lagrangians that have been used
in the literature to describe perfect fluids (such asLon-shell ¼
−ρ [3,11–15], Lon-shell ¼ P [3,14] or Lon-shell ¼ T
[14,16,17]) almost always lead to different physical pre-
dictions in the context of theories of gravity with a NMC
betweenmatter and curvature. Therefore, these Lagrangians

cannot generally be used to describe the same fluid, thus
implying that prior knowledge of their appropriate form
may be crucial for a correct characterization of the overall
dynamics. This is also true in the presence of a NMC
between different physical matter components even in the
absence of a NMC to gravity [18–36].
There is no universal on-shell Lagrangian of a fluid (see

[14] for a recent discussion of the Lagrangian description of
cosmic fluids). Even in the case of a perfect fluid, the on-
shell Lagrangian depends, in general, on its microscopic
properties. In fact, it is not hard to find examples of perfect
fluids which can have different on-shell Lagrangians but
the same energy-momentum tensor. Still, it has been shown
that the Lagrangian of any fluid which can be approximated
as a collection of moving point particles of fixed mass,
whose motion might be subject to multiple pointlike
collisions, is given by the trace of its energy-momentum
tensor [16,17] (Lon-shell ¼ T). This ideal gas approximation
provides a good description of a significant part of the
energy content of the Universe, including dark matter,
baryons and photons, but cannot be used to describe dark
energy [14] or a perfect fluid whose off-shell Lagrangian
depends solely on the particle number density [11–14].
The nonminimal coupling between gravity and the matter

fields generally gives rise to additional forces dependent on
the individual linearmomentumof the particles. These forces
may have a cosmological impact, in particular on the cosmic
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microwave background and primordial nucleosynthesis
[16,37], but can also play a non-negligible role on micro-
scopic scales [38]. They might also potentially lead to
violations of Etherington’s distance-duality relation [39],
of Boltzmann’s H-theorem [40] and of the second law of
thermodynamics [40,41]. In this paper we revisit the dynam-
ics of localized particles of fixed mass and structure, and of
ideal gases made up of such particles in the light of the
necessary consistency between the energy and the momen-
tum constraints on their dynamics—we shall make no
specific assumptions regarding the particles’ composition.
Particular attention will be devoted to the constraints on the
appropriate form of the on-shell Lagrangians.
The outline of this paper is as follows. In Sec. II we

briefly describe how the same evolution equation for the
speed of free localized particles of fixed mass and structure
in a homogeneous and isotropic Friedmann-Lemaître-
Robertson-Walker (FLRW) universe can be obtained in five
different ways by taking into account energy or linear-
momentum conservation. In Sec. III we extend the analysis
of Sec. II by considering the dynamics of particles and fluids
in FLRW universes in the context of theories of gravity
nonminimally coupled to matter. We start by deriving the
evolution of the particles’ linear momentum independently
of any prior assumptions regarding the form of the on-shell
Lagrangian of the matter fields. We then demonstrate that
the necessary consistency between energy and linear-
momentum evolution, both of the individual particles and
of ideal gases composed of many such particles, uniquely
defines the appropriate form of the corresponding on-shell
Lagrangians. Finally, we conclude in Sec. IV.
Throughout this paper we use units such that

c ¼ 16πG ¼ 1, where c is the value of the speed of light
in vacuum, andG is the gravitational constant.We also adopt
the metric signature ð−;þ;þ;þÞ. The Einstein summation
convention will be used when a greek or latin index appears
twice in a single term, once in an upper (superscript) andonce
in a lower (subscript) position. Greek and latin indices take
the values 0;…; 3 and 1;…; 3, respectively.

II. ENERGY-MOMENTUM CONSERVATION AND
THE DYNAMICS OF PARTICLES AND FLUIDS

In this section we shall present five different derivations
of the equation for the evolution of the speed of free
localized particles of fixed mass and structure in a homo-
geneous and isotropic FLRW universe, relying solely on
linear momentum and energy conservation.

A. Energy-momentum conservation
in general relativity

Let us start by considering the Einstein-Hilbert action

S ¼
Z

ðRþ LmÞ
ffiffiffiffiffiffi
−g

p
d4x; ð1Þ

where Lm is the matter Lagrangian, R is the Ricci scalar,
g ¼ detðgμνÞ and gμν are the components of the metric
tensor. In general relativity the energy-momentum tensor of
the matter fields, whose components are given by

Tμν ¼ 2ffiffiffiffiffiffi−gp δðLm
ffiffiffiffiffiffi−gp Þ

δgμν
¼ 2

δLm

δgμν
þ gμνLm; ð2Þ

is covariantly conserved, so that

∇νTν
μ ¼ 0: ð3Þ

Throughout this paper we shall consider either the energy-
momentum tensor of the individual particles with compo-
nents Tμν or the energy-momentum tensor of a perfect fluid
composed of many such particles. The components of the
latter are given by

T μν ¼ ðρþ PÞUμUν þ Pgμν; ð4Þ

where ρ, P and Uμ are respectively the proper energy
density, the proper pressure and the components of the
4-velocity of the perfect fluid—notice the use of a different
letter to identify the energy-momentum tensor of a perfect
fluid (this notation shall be used in both Secs. II and III).
Energy-momentum conservation implies that

hμβ∇αT α
β ¼ ðρþ PÞUν∇νUμ þ hμβ∇βP ¼ 0; ð5Þ

where hμν ¼ gμν þ UμUν is the projection operator. In the
case of dust P ¼ 0 and, therefore,

Uν∇νUμ ¼ 0: ð6Þ

B. Energy and momentum of particles
in a Minkowski spacetime

Consider a single particle and a rest frame where its
energy-momentum tensor is static. Assuming that the
gravitational interaction plays a negligible role on the
particle structure, the spacetime in and around the particle
may be described by a Minkowski metric line element

ds2 ¼ −dt2 þ dr⃗ · dr⃗ ¼ −dt2 þ dx2 þ dy2 þ dz2; ð7Þ

where t is the physical time and r⃗ ¼ ðx; y; zÞ are Cartesian
coordinates.
The particle’s proper frame is defined by

Z
Ti

0½prop�d3r½prop� ¼ −
Z

T0
i½prop�d3r½prop� ¼ 0; ð8Þ

with

E½prop� ¼ −
Z

T0
0½prop�d3r ð9Þ
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being the proper energy of the particle (the subscript ½prop�
is used to designate quantities evaluated in the proper
frame). On the other hand, the generalized von Laue
conditions [17,42],

Z
T1

1½prop�d3r½prop� ¼
Z

T2
2½prop�d3r½prop�

¼
Z

T3
3½prop�d3r½prop� ¼ 0; ð10Þ

are required for particle stability.
Consider a Lorentz boost in the x direction defined by

t ¼ γðt½prop� þ vx½prop�Þ; ð11Þ

x ¼ γðx½prop� þ vt½prop�Þ; ð12Þ

y ¼ y½prop�; ð13Þ

z ¼ z½prop�; ð14Þ

where γ ¼ ð1 − v2Þ−1=2 is the Lorentz factor and v is the
particle velocity. Under this boost, the components of the
energy-momentum tensor Tμν transform as

Tμ
ν ¼ Λμ

αΛν
βTα

β½prop� ð15Þ

where the nonzero components of Λμ
α and Λν

β are

Λ0
0 ¼ Λ1

1 ¼ Λ0
0 ¼ Λ1

1 ¼ γ; ð16Þ

Λ0
1 ¼ Λ1

0 ¼ −Λ0
1 ¼ −Λ1

0 ¼ γv; ð17Þ

Λ2
2 ¼ Λ3

3 ¼ Λ2
2 ¼ Λ3

3 ¼ 1; ð18Þ

with all other components vanishing. In the moving frame
the energy and linear momentum of the particle are given,
respectively, by

E ¼ −
Z

T0
0d3r ¼ E½prop�γ; ð19Þ

p ¼
Z

T1
0d3r ¼ E½prop�γv ¼ Ev; ð20Þ

where Eqs. (8), (9), (15), (16), (17), as well as Lorentz
contraction, have been taken into account in the derivation
of Eqs. (19) and (20). These two equations imply that
E2 − p2 ¼ E2

½prop� and

_p ¼ _E
E
p
¼

_E
v
¼ E½prop� _vγ3: ð21Þ

On the other hand, using Eqs. (15), (17), and (18) one
finds

Z
T1

1d3r ¼ E½prop�γv2 ¼ Ev2; ð22Þ
Z

T2
2d3r ¼

Z
T3

3d3r ¼ 0; ð23Þ

so that

Z
Ti

id3r ¼ E½prop�γv2 ¼ Ev2: ð24Þ

Also notice that

Z
Td3r ¼

Z
Tμ

μd3r ¼ −
E½prop�
γ

¼ −
E
γ2

: ð25Þ

C. Free particles in a FLRW spacetime

In a flat homogeneous and isotropic universe, described
by the FLRW metric, the line element may be written as

ds2 ¼ a2ðηÞð−dη2 þ dq⃗ · dq⃗Þ; ð26Þ

where aðηÞ is the scale factor, η ¼ R
dt=a is the conformal

time and q⃗ are comoving Cartesian coordinates. In a FLRW
spacetime the nonvanishing components of the connection
are given by

Γ0
00 ¼ H; Γ0

ij ¼ Hδij; Γi
0j ¼ Hδij; ð27Þ

whereH ¼ _a=a and a dot denotes a derivative with respect
to the conformal time.

1. Linear-momentum conservation

Consider again a single free particle moving along the x
direction. The x component of Eq. (3) describing momen-
tum conservation in a FLRW spacetime then implies that

0 ¼ ∇νTν
1 ¼ ∂0T0

1 þ ∂iTi
1 þ 4HT0

1: ð28Þ

Integrating over the spatial volume one finds that

_pþHp ¼ 0; ð29Þ

where

p ¼
Z

T0
1d3r ¼ a3

Z
T0

1d3q: ð30Þ

In this derivation we have assumed that the particle is
isolated so that the energy-momentum tensor vanishes
outside it. Hence,

Z
∂iTμ

νd3q ¼ 0 ð31Þ
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for any possible value of μ, ν and i. Notice that Eq. (29)
implies that p ¼ E½prop�γv ∝ a−1. Dividing Eq. (29) by
E½prop�, taking into account Eq. (21), one obtains the
equation for the evolution of the free particle velocity in
a homogeneous and isotropic FLRW universe:

_vþHð1 − v2Þv ¼ 0: ð32Þ

2. Energy conservation

Energy conservation, on the other hand, implies that

0 ¼ ∇νTν
0 ¼ ∂0T0

0 þ ∂iTi
0 þ 3HT0

0 −HTi
i: ð33Þ

Integrating over the spatial volume, and using Eqs. (24)
and (31), one finds that

_EþHv2E ¼ 0; ð34Þ

where

E ¼ −
Z

T0
0d3r ¼ −a3

Z
T0

0d3q: ð35Þ

Dividing Eq. (34) by v, taking into account Eq. (21),
once again one obtains Eq. (29) for the evolution of
linear momentum in a homogeneous and isotropic
FLRW universe.

D. Perfect fluids in a FLRW spacetime

We shall now derive the dynamics of free particles
assuming that they are part of a homogeneous perfect
fluid [see Eq. (4)] with the proper energy density ρ and the
proper pressure P depending only on time.

1. Linear-momentum conservation: Dust

In the case of a perfect fluid with vanishing proper
pressure P, the components of the energy-momentum
tensor are

T μν ¼ ρUμUν: ð36Þ

If the fluid moves in the positive x direction, then

U0 ¼ dη
dτ

¼ γ

a
; ð37Þ

U1 ¼ dq1

dτ
¼ _q1

dη
dτ

¼ vU0 ¼ v
γ

a
; ð38Þ

U2 ¼ U3 ¼ 0: ð39Þ

The x component of Eq. (3), describing momentum
conservation, implies that

_U1U0 þ 2Γ1
10U

0U1 ¼ 0: ð40Þ

Multiplying this equation by E½prop�a=U0, taking into
account that U1 ¼ γv=a and that Γ0

11 ¼ H, one obtains
once again Eq. (29) for the evolution of linear momentum
of a free particle in a homogeneous and isotropic FLRW
universe.

2. Energy conservation: Dust

The time component of Eq. (3), describing energy
conservation, is given by

_U0U0 þ Γ0
00U

0U0 þ Γ0
11U

1U1 ¼ 0: ð41Þ

Multiplying this equation byE½prop�a=U0, taking into account
that U0 ¼ γ=a, U1 ¼ γv=a, and that Γ0

00 ¼ Γ0
11 ¼ H, one

obtains once again Eq. (34) for the evolution of the energy
of a free particle in a homogeneous and isotropic FLRW
universe, which has been shown to be equivalent to Eq. (29)
for the evolution of the linear momentum.

3. Energy conservation: Homogeneous
and isotropic fluid

We shall now consider a homogeneous and isotropic
perfect fluid (at rest in the comoving frame, so that Ui ¼ 0)
made up of free particles all with the same speed v. This
fluid can be pictured as the combination of six equal
density dust fluid components moving in the positive/
negative x, y, and z directions. The time component of
Eq. (3), describing energy conservation, implies that

_ρþ 3Hðρþ PÞ ¼ 0: ð42Þ

If the number N of particles in a volume V ¼ a3 is
conserved then

ρ ¼ NE
V

¼ NE
a3

¼ NE½prop�
γ

a3
∝

γ

a3
: ð43Þ

On the other hand, if the perfect fluid is an ideal gas then its
proper pressure is given by

P ¼ ρv2=3: ð44Þ

Substituting the conditions given in Eqs. (43) and (44) into
Eq. (42) multiplied by a=N, one again arrives at Eq. (34),
the same as the one derived considering energy conserva-
tion for individual free particles.

III. ENERGY-MOMENTUM EVOLUTION AND
THE DYNAMICS OF PARTICLES AND FLUIDS

IN NMC GRAVITY

In this section we shall again present five different
derivations of the equation for the evolution of the speed
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of individual localized particles of fixed mass and
structure in a homogeneous and isotropic FLRW universe,
but now considering the possibility of a coupling between
gravity and the matter fields. We shall demonstrate
that consistency between the results obtained uniquely
defines the correct form of the corresponding on-shell
Lagrangians.

A. Energy-momentum constraints in NMC gravity

Let us start by considering the action [6]

S ¼
Z

fðR;LmÞ
ffiffiffiffiffiffi
−g

p
d4x; ð45Þ

allowing for a NMC between gravity and the matter matter
fields. In this and other NMC theories the energy-
momentum tensor of the matter fields, whose components
are given in Eq. (2), is not, in general, covariantly
conserved. Instead one has

∇νTμ
ν ¼ Sμ; ð46Þ

where

Sμ ¼ ðLmδ
ν
μ − Tν

μÞ
× ð½ln jf;Lm

j�;R∇νRþ ½ln jf;Lm
j�;Lm

∇νLmÞ: ð47Þ

This implies that the knowledge of the Lagrangian of the
matter fields is, in general, required in order to determine
the corresponding dynamics, even when considering a
perfect fluid. For the sake of definiteness, let us consider
the case where [4]

fðR;LmÞ ¼ f1ðRÞ þ Lmf2ðRÞ; ð48Þ

so that

Sμ ¼ ðLmδ
ν
μ − Tμ

νÞ∇νf2
f2

: ð49Þ

Here, we shall again consider either the energy-
momentum tensor of the individual particles with compo-
nents Tμν or the energy-momentum tensor of a perfect fluid
composed of many such particles whose components given
in Eq. (4).
In the case of a perfect fluid, Eq. (46), with Sμ given by

Eq. (49), implies that [4]

Uν∇νUμ ¼ 1

ρþ P

�
ðLf − PÞ∇νf2

f2
−∇νP

�
hμν; ð50Þ

where Lf and hμν ¼ gμν þ UμUν are the on-shell
Lagrangian of the perfect fluid and the projection operator,
respectively. In the following we shall also consider the

particular case of dust with Lf ¼ Ldust (characterized by
Pdust ¼ 0 and ρdust ¼ −T dust), for which

Uν∇νUμ ¼ Ldust

ρdust

∇νf2
f2

hμν; ð51Þ

B. Free particles in FLRW spacetimes

Consider once again the motion of localized particles of
fixed mass and structure in a FLRW background, but this
time in the context of NMC gravity. Given that the energy-
momentum tensor is no longer covariantly conserved, the
presence of additional dynamical terms, dependent on the
matter Lagrangian, will need to be taken into account.

1. Linear-momentum evolution

For a single isolated particle moving along the x
direction in a FLRW background, the x component of
Eq. (49) implies that

Z
S1d3r ¼ −p

_f2
f2

: ð52Þ

Hence, considering the x component of Eq. (46), and
following the same steps of the previous section, the
equation for the evolution of the linear momentum of
the particle can now be generalized to

_pþ Θp ¼ 0; ð53Þ

where Θ is defined by

Θ ¼
_b
b
¼ _a

a
þ

_f2
f2

¼ Hþ
_f2
f2

ð54Þ

and b ¼ af2. Notice that Eq. (53) was obtained without
making any prior assumptions about the specific form of
the on-shell Lagrangian.

2. Energy evolution

Of course, one must be able to arrive at the same result
using the time component of Eq. (46)—otherwise there
would be an inconsistency. The time component of Eq. (49)
requires that

Z
S0d3r ¼

�Z
Lmd3rþ E

�
_f2
f2

: ð55Þ

Following the same steps of the previous section but now
using the time component of Eqs. (46) and (55) one obtains

_EþHv2E ¼ −
�Z

Lmd3rþ E

�
_f2
f2

: ð56Þ
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Dividing Eq. (56) by v, taking into account Eqs. (20)
and (21), one finds that

_pþHp ¼ −
R
Lmd3rþ E

v

_f2
f2

: ð57Þ

Consistency with Eqs. (53) and (54) then requires that

p ¼
R
Lmd3rþ E

v
: ð58Þ

Taking into account that p ¼ vE ¼ E½prop�γv and Eq. (25),
this in turn implies that

Z
Lmd3r ¼ −

E
γ2

¼ −
E½prop�
γ

¼
Z

Td3r: ð59Þ

Hence, the volume average of the on-shell Lagrangian of a
particle of fixed mass and structure is equal to the volume
average of the trace of its energy-momentum tensor,
independently of the particle structure and composition.

C. Perfect fluids in FLRW spacetimes

Here, we shall derive the dynamics of moving localized
particles with fixed proper mass and structure in a FLRW
assuming that they are part of a homogeneous perfect fluid,
but now in the context of NMC gravity.

1. Linear-momentum constraints: Dust

In the case of dust, a perfect fluid with Pdust ¼ 0, the x
component of Eq. (50) may be written as

_U1U0 þ 2Γ1
10U

0U1 ¼ Ldust

ρdust

_f2
f2

U0U1: ð60Þ

Multiplying this equation by E½prop�a=U0, taking into
account that U1 ¼ γv=a and that Γ0

11 ¼ H, one obtains

_pþHp ¼ Ldust

ρdust

_f2
f2

p: ð61Þ

Consistency with Eqs. (53) and (54) requires that

Ldust ¼ −ρdust ¼ T dust: ð62Þ

2. Energy constraints: Dust

The time component of Eq. (51) is given by

_U0U0 þ Γ0
00U

0U0 þ Γ0
11U

1U1

¼ Ldust

ρdust

_f2
f2

ðg00 þ U0U0Þ: ð63Þ

Multiplying this equation by E½prop�a=U0, taking into
account that g00 ¼ −1=a2, U0 ¼ γ=a, U1 ¼ γv=a,
−1þ γ2 ¼ v2γ2, and that Γ0

00 ¼ Γ0
11 ¼ H, one obtains

_EþHv2E ¼ Ldust

ρdust

_f2
f2

Ev2: ð64Þ

Dividing Eq. (64) by v, taking into account Eqs. (20)
and (21), one again arrives at Eq. (61) for the evolution of
linear momentum.

3. Energy constraints: Homogeneous
and isotropic fluid

Consider a homogeneous and isotropic perfect fluid (at
rest in the comoving frame, so that Ui ¼ 0) made up of
localized particles of fixed mass and structure all with the
same speed v. The time component of Eq. (46), is given by

_ρf þ 3Hðρf þ PfÞ ¼ −ðLf þ ρfÞ
_f2
f2

; ð65Þ

where Lf , ρf, and Pf are the on-shell Lagrangian, proper
energy density and proper pressure of the fluid, respec-
tively. If the number of particles is conserved then Eq. (43)
is satisfied. On the other hand, if the perfect fluid is an
ideal gas then its proper pressure is given by Eq. (44):
Pf ¼ ρfv2=3. Substituting the conditions given in Eqs. (43)
and (44) into Eq. (65) and multiplying it by a3=N, one
obtains

_EþHv2E ¼ −
�
Lf

ρf
þ 1

�
_f2
f2

E: ð66Þ

As in Sec. II D 3, this homogeneous and isotropic perfect
fluid can be pictured as the combination of six equal
density dust fluid components moving in the positive/
negative x, y, and z directions. Therefore, in the proper
frame of the resulting perfect fluid, the evolution of particle
energy and linear momentum of each of its dust compo-
nents and of the total combined fluid must be the same,
i.e. Eqs. (64) and (66) must result in the same equation of
motion. This implies that

−
Ldust

ρdust
v2 ¼ Lf

ρf
þ 1: ð67Þ

We can therefore write the on-shell Lagrangian of the
perfect fluid as

Lf ¼ −ρf
�
Ldust

ρdust
v2 þ 1

�
¼ ρfðv2 − 1Þ

⇒ Lf ¼ 3Pf − ρf ¼ T f ; ð68Þ

where we have taken into account Eqs. (44) and (62).
Naturally, in the case of dust (v ¼ 0) Eq. (68) again implies
that Ldust ¼ T dust ¼ −ρdust. However, if v ≠ 0 the on-shell
Lagrangian of the fluid (Lf ¼ T f ) differs from any of the
two usual assumptions in the literature for the on-shell
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Lagrangian of a perfect fluid (Lon-shell ¼ P and
Lon-shell ¼ −ρ). In particular, it vanishes if v ¼ 1, as
expected for a radiation fluid [14,16].

IV. DISCUSSION AND CONCLUSIONS

The recent increase in research on NMC gravity has
brought further attention to the importance of using the
correct form of the on-shell Lagrangian of the matter fields
in order to provide an accurate description of the corre-
sponding physical implications.
In this work we demonstrated that the equation for the

evolution of the linearmomentumof a localized particlewith
fixed mass and structure in a broad class of NMC gravity
theories may be univocally determined independently of
any specific assumptions about the form of the on-shell
Lagrangian of the matter fields. We have further shown
that consistency between energy and linear-momentum
evolution requires that their volume-averaged on-shell
Lagrangian and energy-momentum tensor trace coincide.
Despite being derived in the context of NMC theories of
gravity, this is a general result, valid regardless of the type of
couplingwith gravity or other fields, as long as gravity plays
a negligible role on the particle structure.We emphasize that
the equality Lon-shell ¼ T is only true on average and is not
expected to hold everywhere inside a particle.
We also found that consistency between the evolution of

the energy and linear momentum in the context of theories
of gravity with an NMC coupling to the matter fields

requires that the condition Lon-shell ¼ T is again satisfied
when applied to an ideal gas. In the derivation of this result
the crucial assumption is that the fluid can be described by
the ideal gas equation of state—no assumptions have been
made regarding the role of gravity on the structure of the
particles in this case. The fact that Lon-shell ¼ T is required
for consistency gives no margin to other possibilities
for the on-shell Lagrangian of an ideal gas—including
for the two recurrent assumptions in the literature for the
on-shell Lagrangian of a perfect fluid, Lon-shell ¼ P and
Lon-shell ¼ −ρ (with the exception of dust, in the latter
case). Notice that this result is not in contradiction with the
findings of Refs. [11,12], according to which the on-shell
Lagrangian of a fluid with (1) a conserved number of
particles and (2) an off-shell Lagrangian dependent solely
on the particle number number density is Lon-shell ¼ −ρ,
since the second condition does not apply to an ideal gas.
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