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A critical point is an important structure in the phase diagram of a thermodynamic system. In this work,
we introduce topology to the study of black hole thermodynamics for the first time by following Duan’s
topological current ϕ-mapping theory. Each critical point is endowed with a topological charge. We find
that critical points can be divided into two classes, the conventional and the novel. Further study shows that
the first-order phase transition can extend from the conventional critical point, while the presence of the
novel critical point cannot serve as an indicator of the presence of the first-order phase transition near it.
Moreover, the charged anti–de Sitter black hole and the Born-Infeld anti–de Sitter black hole have different
topological charges, which indicates they are in different topological classes from the viewpoint of
thermodynamics. These give the first promising study on the topology of black hole thermodynamics. Such
approach is also expected to be extended to other black holes, and much more topological information
remains to be disclosed.
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I. INTRODUCTION

Thermodynamics is one of the most fascinating fields in
black hole physics. Apart from the fact that the strong
gravitational phenomena can be tested through the obser-
vation of the gravitational waves [1], black hole thermo-
dynamics remains to be tested. Of particular interest is that
the Bekenstein-Hod universal bound on information emis-
sion rate was checked in Ref. [2], which is consistent with
black hole thermodynamics. This further confirms that
black holes are indeed thermodynamic systems. However,
early studies just revealed that there are four laws of black
hole mechanics. For example, the first law reads [3]

dM ¼ κ

8πG
dAþ

X
i

Yidxi; ð1Þ

where M, κ, and A are, respectively, the mass, surface
gravity, and area of the black hole. Yidxi is the ith chemical
potential term. Toward the thermodynamics, Bekenstein
and Hawking made a big step when they regarded the area
and surface gravity as the entropy and temperature of the
black hole [4–6],

S ¼ A
4G

; T ¼ κ

2π
: ð2Þ

Naturally, the four laws of black hole mechanics become
the laws of thermodynamics, and (1) turns to

dM ¼ TdSþ
X
i

Yidxi: ð3Þ

It is quite interesting that the phase transition has been
discovered in the black hole systems including the
Hawking-Page phase transition [7] and the small-large
black hole phase transition [8]. Especially, recent study
indicates that the cosmological constant can be interpreted
as the thermodynamics pressure [9], which leads to

dM ¼ TdSþ VdPþ
X
i

Yidxi; ð4Þ

while the mass obtains a new physical meaning, the
enthalpy M≡H rather than the energy of the system.
Subsequently, rich phase transitions and phase structures
have been observed. Among them, the small-large black
hole phase transition was found to exist in most of the black
hole systems. Such phase transition is similar to the liquid-
gas phase transition of the van der Waals fluid [10], and the
corresponding black hole microstructure and characteristic
interaction potential were explored [11–13]. With the
decrease of the temperature, the coexistence curve of the
small and large black holes extends from a critical point and
ends at the origin in the pressure-temperature diagram.
Near the critical point, the universal phenomena are
observed, which is the same as that of the mean field
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theory. Although different phase structures possess differ-
ent patterns, a critical point always emerges, and it plays a
key to understanding the system. In the following, we shall
examine the corresponding topological property corre-
sponding to the critical point.

II. THERMODYNAMICAL FUNCTION
AND TOPOLOGY

Temperature and entropy are two key quantities in black
hole thermodynamics. In general, the temperature can be
expressed as a function of the entropy S, pressure P, and
other parameters xi for a thermodynamic system

T ¼ TðS; P; xiÞ: ð5Þ

Here one can eliminate one parameter in the temperature
(5) by requiring ð∂STÞP;xi ¼ 0. Then we denote the new
thermodynamic function as Φ with the pressure P being
eliminated,

Φ ¼ 1

sin θ
TðS; xiÞ; ð6Þ

where the factor 1
sin θ is an auxiliary term, which can

simplify our study of the topology of black hole
thermodynamics.
Now we introduce a new vector field ϕ ¼ ðϕS;ϕθÞ,

ϕS ¼ ð∂SΦÞθ;xi ; ϕθ ¼ ð∂θΦÞS;xi : ð7Þ

The first advantage of the θ term is that the direction of the
introduced vector ϕ is perpendicular to the horizontal lines
at θ ¼ 0 and π, which can be treated as two boundaries
in the parameter space. Another advantage is that the zero
point of ϕ is always at θ ¼ π=2. It is also easy to check that
the critical point exactly locates at the zero point of ϕ. This
is an important property that allows us to introduce the
topology to study the black hole critical point.
Here, we would like to give a brief discussion on the

conditions determining the critical point. Recently, when
treating the cosmological constant as pressure [9], the
phase transition has been extensively studied in various
anti–de Sitter (AdS) black hole systems. The small-large
black hole phase transition was found to be similar to the
liquid-gas phase transition of the van der Waals fluid [10].
In particular, in the pressure-temperature plane, this first-
order phase transition starts at the origin and ends at a
critical point with the increase of the temperature.
The critical point is generally determined by

�∂P
∂V

�
T
¼ 0;

�∂2P
∂V2

�
T
¼ 0: ð8Þ

However, these conditions are not unique. In Refs. [14,15],
via starting from the first law of black hole thermodynamics

and the free energy, we have pointed out that the small-
large black hole phase transition point can be obtained from
the Maxwell equal area law in different thermodynamical
parameter spaces. As a straightforward derivation, the
conditions to determine the critical point are given. For
example, if one starts from the first law (4), beside the
conditions (8), there are two more kinds of conditions, i.e.,

�∂T
∂S

�
P;xi

¼ 0;

�∂2T
∂S2

�
P;xi

¼ 0; ð9Þ

�∂xi
∂Yi

�
T;P

¼ 0;

�∂2xi

∂Y2
i

�
T;P

¼ 0: ð10Þ

As we know, an arbitrary black hole possesses the entropy
and temperature, so the conditions (9) are universal, which
is not only effective for the charged AdS black holes, but
also for the rotating black holes. This is also one of the
reasons that we choose this condition to obtain the critical
point in this paper. On the other hand, the equivalence
between the conditions (8) and (9) has been confirmed in
Ref. [16] (see the Appendix) by using the mathematical
calculation.
Following Duan’s ϕ-mapping topological current theory

[17,18], we can construct the topological current as

jμ ¼ 1

2π
ϵμνρϵab∂νna∂ρnb; μ; ν; ρ ¼ 0; 1; 2; ð11Þ

where ∂ν ¼ ∂
∂xν and xν ¼ ðt; r; θÞ. The normalized vector is

defined as na ¼ ϕa

kϕk (a ¼ 1, 2) with ϕ1 ¼ ϕS and ϕ2 ¼ ϕθ.

It is easy to check that this topological current is conserved

∂μjμ ¼ 0: ð12Þ

By making use of the Jacobi tensor ϵabJμðϕxÞ ¼
ϵμνρ∂νϕ

a∂ρϕ
b and the two-dimensional Laplacian

Green’s function Δϕa ln kϕk ¼ 2πδðϕÞ, this topological
current can be further expressed as

jμ ¼ δ2ðϕÞJμ
�
ϕ

x

�
: ð13Þ

From this expression, it is clear that jμ is nonzero only at
the zero points of ϕa, i.e., ϕaðxiÞ ¼ 0, and we denote its ith
solution as x⃗ ¼ z⃗i. Then according to the δ-function theory
[19], one can obtain the density of the topological current

j0 ¼
XN
i¼1

βiηiδ
2ðx⃗ − z⃗iÞ: ð14Þ

The positive Hopf index βi measures the number of the
loops that ϕa makes in the vector ϕ space when xμ goes
around the zero point zi (we suppose there are N solutions).
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The Brouwer degree ηi ¼ signðJ0ðϕ=xÞziÞ ¼ �1. Finally,
the corresponding topological charge at given parameter
region Σ can be calculated via

Q ¼
Z
Σ
j0d2x ¼

XN
i¼1

βiηi ¼
XN
i¼1

wi; ð15Þ

where wi is the winding number for the ith zero point
of ϕ [20].
Obviously, for each critical point, we can endow it with a

topological charge, which equals the winding number. For a
thermodynamic system, we can calculate its topological
charge when one chooses Σ as its complete thermodynamic
parameter space. Then different thermodynamic systems
can be divided into different classes. This shall allow us to
examine the topological transition among these different
thermodynamic systems. On the other hand, since ηi can be
positive or negative, these critical points have two different
topological properties. Here we would like to name them as
the conventional one with ηi ¼ −1 (or wi ¼ −1) and novel
one with ηi ¼ 1 (or wi ¼ 1).

III. TOPOLOGY OF BLACK HOLE SYSTEMS

The charged AdS black hole is the first black hole system
admitting the small-large black hole phase transition [8,10]
and a critical point is present in the phase diagram of such
system. Here we would like to examine its topological
property by calculating the topological charge.
There are many approaches to obtain the black hole

Hawking temperature. Regarding the inverse of the period
of the Euclidean section of the black hole space-time as the
Hawking temperature, one obtains

T ¼ 2P
ffiffiffi
S

p
ffiffiffi
π

p −
ffiffiffi
π

p
q2

4S
3
2

þ 1

4
ffiffiffi
π

p ffiffiffi
S

p ; ð16Þ

where q and P are the charge and pressure of the black
hole system, respectively. The first law holds, i.e., dM ¼
TdSþ φdqþ VdP with φ and V being the electric
potential and thermodynamic volume of the black hole
system. A little algebra yields the explicit form of the
thermodynamic function

Φ ¼ 1

sin θ

�
1

2
ffiffiffiffiffiffi
πS

p −
ffiffiffi
π

p
q2

S
3
2

�
: ð17Þ

The components of the vector field ϕ are

ϕS ¼ csc θð6πq2 − SÞ
4

ffiffiffi
π

p
S

5
2

; ð18Þ

ϕθ ¼ −
cot θ csc θðS − 2πq2Þ

2
ffiffiffi
π

p
S

3
2

: ð19Þ

The normalized vector field can be obtained through

n ¼ ð ϕS

kϕk ;
ϕθ

kϕkÞ, which is exhibited in Fig. 1. We can clearly

see there is a critical point at ð ffiffiffi
S

p
; θÞ ¼ ð ffiffiffiffiffiffi

6π
p

q; π
2
Þ.

From the viewpoint of topology, we know that, if the
contour encloses the critical point, it will give a nonzero
topological charge, otherwise it is zero. In order to calculate
the topological charge, we shall construct two contours C1

and C2, which are parametrized by ϑ ∈ ð0; 2πÞ as
�
r ¼ a cosϑþ r0;

θ ¼ b sinϑþ π
2
:

ð20Þ

We choose ða; b; r0Þ ¼ ð0.4; 0.3; ffiffiffiffiffiffi
6π

p Þ for C1, and (0.3,
0.5, 5.3) for C2. We define a new quantity measuring the
deflection of the vector field along the given contour

ΩðϑÞ ¼
Z

ϑ

0

ϵabna∂ϑnbdϑ: ð21Þ

Then the topological charge must be Q ¼ 1
2πΩð2πÞ. For the

contours C1 and C2, we list ΩðϑÞ in Fig. 2. Considering that
the contour C2 does not enclose the critical point, one must
have Q ¼ 0. From the figure, we clearly see that, with the
increase of ϑ, Ω first decreases, then increases, and finally
vanishes at ϑ ¼ 2π. Thus, we get Q¼ 1

2πΩð2πÞ¼0 as
expected, while for C1, Ω gradually decreases and
approaches −2π at ϑ ¼ 2π. Therefore, the topological
charge QCP1 ¼ −1. According to our classification, this
critical point is a conventional one. Actually, near this point,
there exists a stable small-large black hole phase transition

C1

C2

CP1

3.0 3.5 4.0 4.5 5.0 5.5 6.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

S

FIG. 1. The red arrows represent the vector field n on a portion
of the

ffiffiffi
S

p
-θ plane for the charged AdS black hole with the charge

q ¼ 1. The critical point CP1 located at ð ffiffiffi
S

p
; θÞ ¼ ð ffiffiffiffiffi

6π
p

q; π
2
Þ is

marked with a black dot. The blue contours C1 and C2 are two
closed loops and C1 encloses the critical point, while C2 does not.
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of first order. Moreover, since there exists only one critical
point, we have the topological charge

Q ¼ −1; ð22Þ

for the charged AdS black hole system.
Now let us turn to the charged Born-Infeld (BI) AdS

black hole [24], where besides the conventional critical
point, a novel one shall emerge. After treating the cosmo-
logical constant as the pressure, the Hawking temperature
takes the following form [25]:

T ¼ 1

4
ffiffiffiffiffiffiffiffi
π3S

p
�
2b̃2S − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b̃4S2 þ π2b̃2q2

q
þ 8πPSþ π

�
:

ð23Þ

Parameter b̃ represents the maximal electromagnetic field
strength, which can also be related to string tension. The
corresponding thermodynamic function reads

Φ ¼ 1

2
ffiffiffiffiffiffi
πS

p
sin θ

�
1 −

2πb̃q2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b̃2S2 þ π2q2

p
�
: ð24Þ

Then one can easily obtain the vector field ϕ and the
normalized vector field n. We exhibit the behavior of the
normalized vector field n in Fig. 3 with q ¼ 1 and b̃ ¼ 0.4
for the charged BI-AdS black hole. For this case, two
critical points CP2 and CP3 are found. We construct three
contours C3, C4, and C5, which share the same para-
metrized form as (21), but with ða; b; r0Þ ¼ ð0.3; 0.3; 1.97Þ,
(0.3, 0.3, 3.69), and (1.5, 0.9, 2.83), respectively. We
calculate the deflection angle ΩðϑÞ for these three contours
and the results are shown in Fig. 4. They present different
behaviors. The function ΩðϑÞ increases along C3 and
decreases along C4, while it first decreases, then increases,
and finally decreases along C5. Ωð2πÞ ¼ 2π, −2π, and 0
for these three contours. Therefore, the topological charge
QCP2 ¼ 1 and QCP3 ¼ −1 for the critical points CP2 and
CP3. Since they have different values, these two critical

points belong to different topological classes. CP3 is the
conventional critical point, while CP2 is a novel one.
Significantly, the total topological charge for the charged
BI-AdS black hole is

Q ¼ QCP2 þQCP3 ¼ 0; ð25Þ

which equals that along contour C5. Thus, the charged
black hole system and the BI-AdS black hole system have
different topology from the viewpoint of thermodynamics.

IV. FEATURE OF CRITICAL POINTS

As shown above, there are two types of critical points
from the topology. The conventional critical point has

FIG. 2. Ω vs ϑ for contours C1 (red solid curve) and C2 (blue
dashed curve).

C3
C4

C5

CP3CP2

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

S

FIG. 3. The red arrows represent the vector field n on a portion of
the

ffiffiffi
S

p
-θ plane for the charged BI-AdS black hole with the charge

q ¼ 1 and b ¼ 0.4. The critical points CP2 and CP3 located at
ð ffiffiffi

S
p

; θÞ ¼ ð1.97; π
2
Þ and (3.69, π

2
) are marked with black dots, and

they are enclosed with the blue contour C3 and C4, respectively,
while the gray contour C5 encloses both the critical points.

FIG. 4. Ω vs ϑ for the contours C3 (solid curve), C4 (dashed
curve), and C5 (dot dashed curve) for the charged BI-AdS
black hole.
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Q ¼ −1 while the novel one has Q ¼ 1. One wonders
whether there exist differences between them. Here we aim
to disclose it.
We show the isobaric curves in Fig. 5 near the critical

points CP2 and CP3. The local thermodynamic stability of a
system is determined by the heat capacity CP ¼
Tð∂STÞ−1P;xi . Therefore, the black hole branch with positive
slope is stable, while the black hole branch with negative
slope is unstable. In the figure, the solid (dashed) curve
denotes the stable (unstable) black hole branch.
Near the conventional critical point CP3, we can see that

the intermediate black hole branch is unstable, and it can be
eliminated by using Maxwell’s equal area law. By con-
structing these two equal areas [in green and red colors, see
Fig. 5(a)], one can determine the first-order phase transition
among these two black hole branches marked with blue
solid color. This behavior is well known among the small-
large black hole phase transition. In the P-T phase diagram,
one can observe that the coexistence curve of the first-order
phase transition extends from such critical point.
Near the novel critical point CP2, we observe a different

pattern, shown in Fig. 5(b). The intermediate black hole
branch is stable, while others are unstable. So Maxwell’s
equal area law is not applicable for this case, and thus no
first-order phase transition can take place.
Therefore, we can conclude that the first-order phase

transition can emerge from the conventional critical point
with Q ¼ −1, while it cannot from the novel critical point
with Q ¼ 1.

V. SUMMARY

In this work, we introduced the topology to the study of
the critical point in black hole thermodynamics, especially
by using the black hole temperature and entropy. Although
critical points have been well understood in the study of
the phase transition, we emphasized that there are two
different types of critical points, which are neglected
before. We named them the conventional and novel critical
points, respectively, endowed with the topological charge
Q ¼ −1 and 1.

The different topological charges reveal that these two
types of critical points have different topological properties.
As an example, we showed that the coexistence curve of
the first-order phase transition can only extend from the
conventional critical points, while the presence of the novel
critical points cannot serve as an indicator of the first-order
phase transition.
Moreover, the topological charge for the black hole

systems is the sum of the winding number of all its critical
points. For the charged AdS black hole with q ¼ 1, its
topological charge Q ¼ −1, while for the charged BI-AdS
black hole with q ¼ 1 and b ¼ 0.4, the topological charge
vanishes. This suggests that they belong to different classes
of topology from the viewpoint of thermodynamics. Since
there are more richer phase structures for some other black
hole systems, it is worth generalizing this topological study
and we believe more interesting topological properties shall
be uncovered. Note that this approach is also applicable for
other ordinary thermodynamic systems.
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APPENDIX: CRITICAL POINTS

The critical point can be determined by one of the
conditions shown in Eqs. (8)–(10). However, in this paper,
we employ a different way. Here we would like to give a
brief clarification to show that they are equivalent. For
convenience, we take the four-dimensional charged AdS
black hole as an example. The generalization will be
natural then.
By making use of the equation of state (16), we show the

isobaric curves described by the red solid curves in Fig. 6
with q ¼ 1. As expected, there are two extremal points of
the temperature on each isobaric curve with a pressure

S

T

(a)
S

T

(b)

FIG. 5. Behaviors of the isobaric curves for the BI-AdS black
hole with a ¼ 1 and b̃ ¼ 0.4. Solid and dashed curves are for the
thermodynamic stable and unstable black hole branches, respec-
tively. (a) Near the conventional critical point CP3. The shadowed
regions have the same area. (b) Near the novel critical point CP2.

0 20 40 60 80 100 120 140
0.025

0.030

0.035

0.040

0.045

0.050

0.055

0.060

S

T

FIG. 6. Isobaric curves (red solid curves) for the charged AdS
black hole shown in the T-S plane with q ¼ 1. The blue dashed
curve is for the extremal points of the temperature and the critical
point is marked with the black dot.
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below its critical value. With the increase of the pressure,
these two extremal points coincide at the critical point.
Adopting the condition (9), we easily obtain the critical

point

P ¼ 1

96πq2
; T ¼

ffiffiffi
6

p

18πq
; S ¼ 6πq2; ðA1Þ

which is exactly the result given in Ref. [10] and is marked
with the black dot in the figure.
Our approach in this paper is calculating the extremal

points of the temperature first. Solving ð∂STÞP;q ¼ 0, one
easily has the pressure

P ¼ S − 3π

8S2
: ðA2Þ

Plugging (A2) into (16), we obtain the temperature of these
extremal points

T ¼ S − 2πq2

2
ffiffiffiffiffiffiffiffi
πS3

p ; ðA3Þ

which is exactly the function of Φ � sin θ and is described
by the blue dashed curve. Further taking ð∂STÞq ¼ 0 or
ð∂SΦÞq ¼ 0, the critical point will be obtained.
Alternatively, we can also find this result from the figure,
that the critical point obtained by (9) exactly meets the
extremal point of the temperature (A3) described by the
blue dashed curve.
Now we can see that these two methods determining the

critical point are equivalent for the small-large black hole
phase transition.
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