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We study linear perturbations about static and spherically symmetric black holes with a time-
independent background scalar field in shift-symmetric Horndeski theories, whose Lagrangian is
characterized by coupling functions depending only on the kinetic term of the scalar field X. We clarify
conditions for the absence of ghosts and Laplacian instabilities along the radial and angular directions in
both odd- and even-parity perturbations. For reflection-symmetric theories described by a k-essence
Lagrangian and a nonminimal derivative coupling with the Ricci scalar, we show that black holes endowed
with nontrivial scalar hair are unstable around the horizon in general. This includes nonasymptotically flat
black holes known to exist when the nonminimal derivative coupling to the Ricci scalar is a linear function
of X. We also investigate several black hole solutions in nonreflection-symmetric theories. For cubic
Galileons with the Einstein-Hilbert term, there exists a nonasymptotically flat hairy black hole with no
ghosts/Laplacian instabilities. Also, for the scalar field linearly coupled to the Gauss-Bonnet term,
asymptotically flat black hole solutions constructed perturbatively with respect to a small coupling are free
of ghosts/Laplacian instabilities.
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I. INTRODUCTION

Black holes (BHs) are fundamental objects whose
existence is theoretically predicted by general relativity
(GR) and other gravitational theories. With the dawn of
gravitational-wave astronomy [1], we can now probe
physics of BHs and possible deviations from GR at strong
gravity regimes [2–5]. The discovery of BH shadows [6]
also opened up a new window for exploring the properties
of BHs. Under this observational status, it is important to
classify what kinds of BHs exist in the presence of
additional degree(s) of freedom like a scalar field or in
gravitational theories beyond GR.
In GR with an electromagnetic field, a uniqueness

theorem states that asymptotically flat and stationary BH
solutions are characterized only by mass, angular momen-
tum, and electric charge [7–9]. This “no-hair” property of
BHs also holds for a minimally coupled canonical scalar
field ϕ [10,11], a minimally coupled k-essence [12], as well
as a scalar field nonminimally coupled to the Ricci scalar R
in the form FðϕÞR [13–16]. The no-hair theorem does
not persist in scalar-tensor theories containing derivative
couplings like G4ðXÞR in the Lagrangian, where X ¼
−gμν∂μϕ∂νϕ=2 is the kinetic term of the scalar field.
Such derivative couplings can be accommodated in a
framework of so-called Horndeski theories, which form

the most general class of scalar-tensor theories with second-
order Euler-Lagrange equations [17–20].
The Lagrangian of Horndeski theories contains four

coupling functions G2;3;4;5 depending on both ϕ and X. If
we impose the invariance under the constant shift
ϕ → ϕþ c, the functions G2;3;4;5 depend only on X. In
such shift-symmetric Horndeski theories, Hui and Nicolis
[21] argued that a no-hair result of BHs holds under the
following three hypotheses [22]:

(i) The background geometry is static and spherically
symmetric and the scalar field is also static [see the
ansatz (2.3)], i.e., the character of the scalar field is
spacelike (X < 0).

(ii) The spacetime is asymptotically flat with a vanish-
ing radial field derivative ϕ0ðrÞ → 0 at spatial
infinity (r → ∞) and the norm of the Noether
current associated with the shift symmetry is finite
on the BH horizon.

(iii) A canonical kinetic term X is present in the
Lagrangian and the X-derivatives of G2;3;4;5 contain
only positive or zero powers of X.

Namely, under these assumptions, we end up with the no-
hair BH solution, i.e., ϕ0ðrÞ ¼ 0 everywhere.
If we violate at least one of the conditions given above, it

is possible to realize hairy BH solutions endowed with
nontrivial scalar hair. For a scalar field with the linear
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dependence on time t of the form ϕ ¼ qtþΦðrÞ, which
evades the hypothesis (i), there exists a stealth
Schwarzschild solution [23].1 If the asymptotic flatness
of spacetime is not imposed, the linear quartic derivative
couplingX inG4 gives rise to exact hairy BH solutions with
an asymptotic geometry mimicking the Schwarzschild–
(anti-)de Sitter [(A)dS] spacetime [26–29] (see also
Refs. [30–35]). This is an outcome of the violation of
the hypothesis (ii). If we consider a quintic-order derivative
coupling of the form G5 ∝ αGB ln jXj, which is equivalent
to the Gauss-Bonnet term R2

GB linearly coupled to the scalar
field [19], there exists an asymptotically flat hairy BH
solution whose metric components are corrected by the
Gauss-Bonnet coupling αGB [36,37]. This arises from the
violation of the hypothesis (iii).2 Another asymptotically
flat BH solution violating the hypothesis (iii) exists in the
model where G4ðXÞ contains ð−XÞ1=2 [44].
The linear stability of BHs with a time-dependent scalar

field has been extensively studied in the literature [45–53].
On the other hand, it is yet unclear whether the non-
asymptotically flat BHs arising from the violation of the
hypothesis (ii) or (iii) are stable against perturbations about
the static and spherically symmetric background. The
perturbations of static and spherically symmetric BHs in
full Horndeski theories in the presence of a time-indepen-
dent background scalar field were investigated for both
odd-parity [54] and even-parity [55] sectors. In these
references, the authors obtained conditions for the absence
of ghosts and Laplacian instabilities for high-momentum
modes, except the angular stability condition of even-parity
perturbations. Recently, the authors of Ref. [56] general-
ized the results of Refs. [54,55] by taking into account a
perfect fluid, in which the propagation speeds of gravity
and scalar-field sectors along the angular directions were
also derived. The linear stability conditions given in
Ref. [56] can be applied not only to BHs but also to
neutron stars with nontrivial scalar hair [57,58].
In this paper, we study the linear stability of static and

spherically symmetric BHs in shift-symmetric Horndeski
theories arising from the violation of the hypothesis (ii) or
(iii). We keep the hypothesis (i), so that the background
scalar field has a static configuration ϕðrÞ. We show that
the BH solutions in reflection-symmetric subclass of shift-
symmetric Horndeski theories possessing only two cou-
pling functions G2ðXÞ and G4ðXÞ are generically prone to
the Laplacian instability of even-parity perturbations
around the horizon. In particular, this instability shows
up for an exact nonasymptotically flat BH present for
theories with G4 ⊃ X [26–29] as well as for an

asymptotically flat BH arising in theories with G4 ⊃
ð−XÞ1=2 [44].3 We also study several examples of BHs
in shift-symmetric Horndeski theories in the presence of the
coupling functions G3ðXÞ and G5ðXÞ, that break the
reflection symmetry. As a first example, we consider a
nonasymptotically flat BH in GR with a cubic Galileon
(G3 ∝ X) and show that the solution satisfies all the
stability conditions of linear perturbations. Thus, there
exists a stable hairy BH arising from the violation of the
hypothesis (ii). As a second example, we study the case
with the quintic coupling G5 containing positive powers of
X, for which it is difficult to realize stable BHs with
nontrivial scalar hair. Finally, we investigate the case of a
scalar field linearly coupled to the Gauss-Bonnet curvature
invariant, which corresponds to G5 ∝ αGB ln jXj. In this
case, there is an asymptotically flat BH with a finite field
derivative ϕ0ðrÞ on the horizon [36,37]. In the regime of
small couplings αGB, we show that all the linear stability
conditions are consistently satisfied for this solution.
The rest of this paper is constructed as follows. In Sec. II,

we review the shift-symmetric Horndeski theories and the
properties of static and spherically symmetric solutions in
vacuum. In Sec. III, we revisit linear stability conditions
for the odd- and even-parity perturbations derived in
Refs. [54–56]. In Sec. IV, we study the stability of GR
BH solutions with a trivial scalar-field profile ϕ0ðrÞ ¼ 0. In
Sec. V, we show that the hairy BHs with nonvanishing
scalar-field derivatives appearing in the reflection-symmet-
ric theories are generically unstable. In Sec. VI, we
investigate the linear stability of hairy BHs arising in
nonreflection-symmetric theories. The last Sec. VII is
devoted to giving a brief summary and conclusion.

II. SHIFT-SYMMETRIC HORNDESKI THEORIES

The action of shift-symmetric Horndeski theories is
given by [17–20]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
LH; ð2:1Þ

where g is the determinant of the metric tensor gμν and

LH ¼ G2ðXÞ −G3ðXÞ□ϕþ G4ðXÞRþG4;XðXÞ½ð□ϕÞ2
− ð∇μ∇νϕÞð∇μ∇νϕÞ�

þG5ðXÞGμν∇μ∇νϕ −
1

6
G5;XðXÞ½ð□ϕÞ3

− 3ð□ϕÞð∇μ∇νϕÞð∇μ∇νϕÞ
þ 2ð∇μ∇αϕÞð∇α∇βϕÞð∇β∇μϕÞ�; ð2:2Þ

1The existence conditions for stealth solutions with constant X
in higher-order scalar-tensor theories were specified in
Refs. [24,25].

2We note that there exist hairy BH solutions also for nonshift-
symmetric Gauss-Bonnet couplings ξðϕÞR2

GB such as ξðϕÞ ∝ ϕn

(n > 1) and ξðϕÞ ∝ e−ϕ [38–43].

3Here and in what follows, by G4 ⊃ ð−XÞp, we mean that the
nonminimal derivative coupling G4 contains a term proportional
to ð−XÞp on top of the constant term corresponding to the
Einstein-Hilbert term.
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with R and Gμν being the Ricci scalar and Einstein tensor,
respectively. The four functionsGj’s (j ¼ 2; 3; 4; 5) depend
only on the kinetic term X ¼ −gμν∇μϕ∇νϕ=2, with
the covariant derivative operator ∇μ. We also use the
notations □ϕ≡∇μ∇μϕ, and Gj;X ≡ dGj=dX, Gj;XX≡
d2Gj=dX2, etc.
We study static and spherically symmetric solutions in

shift-symmetric Horndeski theories. The metric and scalar
field are assumed to be of the following form:

ds2 ¼ −fðrÞdt2 þ h−1ðrÞdr2 þ r2ðdθ2 þ sin2θdφ2Þ;
ϕ ¼ ϕðrÞ; ð2:3Þ

where t, r, ðθ;φÞ are the temporal, radial, and angular
coordinates, respectively. The background configuration is
characterized by the three functions of r, i.e., fðrÞ, hðrÞ,
and ϕðrÞ. Note that, on the background (2.3), the kinetic
term of the scalar field can be written as

X ¼ −
1

2
hϕ02: ð2:4Þ

We note that our ansatz (2.3) corresponds to the hypothesis
(i) mentioned in Sec. I. The independent equations are the
tt-, rr-, and θθ-components of the equations of motion for
gμν, which are respectively given by [54–56]

Ett ≡
�
A1 þ

A2

r
þ A3

r2

�
ϕ00 þ

�
ϕ0

2h
A1 þ

A4

r
þ A5

r2

�
h0 þ G2

−
2G4;Xh2ϕ02 þ 2G4ðh − 1Þ

r2
¼ 0; ð2:5Þ

Err≡−
�
ϕ0

2h
A1þ

A4

r
þA5

r2

�
hf0

f
−
2ϕ0

r
A1

−
1

r2

�
ϕ0

2h
A2þðh−1ÞA4

�
−G2−hG2;Xϕ

02¼ 0; ð2:6Þ

Eθθ ≡
��

A2 þ
ð2h − 1Þϕ0A3 þ 2hA5

hϕ0r

�
f0

4f
þ A1 þ

A2

2r

�
ϕ00

þ 1

4f

�
2hA4 − ϕ0A2 þ

2hA5 − ϕ0A3

r

��
f00 −

f02

2f

�

þ
�
A4 þ

2hð2hþ 1ÞA5 − ϕ0A3

2h2r

�
f0h0

4f

−
h2G4;Xϕ

02 þ hG4

r
f0

f
þ
�
ϕ0

h
A1 þ

A4

r

�
h0

2
þG2

¼ 0; ð2:7Þ

where a prime represents the derivative with respect to r,
and we have defined the quantities A1;…; A5 in Eq. (A1).
These equations are combined to give

f0

2f
Ett þ E0

rr þ
�
f0

2f
þ 2

r

�
Err þ

2

r
Eθθ ¼ 0; ð2:8Þ

which corresponds to the scalar-field equation of motion
obtained by varying the action (2.1) with respect to ϕ. This
is due to the Noether identity associated with diffeomor-
phism invariance [59]. More explicitly, Eq. (2.8) can be
written as

d
dr

�
r2

ffiffiffi
f
h

r
Jr
�

¼ 0; ð2:9Þ

where Jr is a radial component of the Noether current Jμ

associated with shift symmetry, given by

Jr ¼ hϕ0J ; ð2:10Þ

with

J ≡G2;X −
�
2

r
þ f0

2f

�
hϕ0G3;X þ 2

�
1 − h
r2

−
hf0

rf

�
G4;X

þ 2hϕ02
�
h
r2

þ hf0

rf

�
G4;XX −

f0

2r2f
ð1 − 3hÞhϕ0G5;X

−
f0h3ϕ03

2r2f
G5;XX: ð2:11Þ

We note that with the ansatz (2.3) Jr is the only non-
vanishing component of Jμ. The solution to Eq. (2.9) is
expressed in the form

JrðrÞ ¼ Q
r2

ffiffiffi
h
f

s
; ð2:12Þ

whereQ is an integration constant corresponding to a scalar
charge. Then, the current strength squared reads

J2 ≡ gμνJμJν ¼ grrðJrÞ2 ¼
Q2

r4f
: ð2:13Þ

Requiring that J2 is finite on the horizon (f ¼ 0), which is
the hypothesis (ii) mentioned in Sec. I, the constant Q
should vanish. In this case, we have

JrðrÞ ¼ hϕ0J ¼ 0; ð2:14Þ

for any value of r. We mainly study solutions with Q ¼ 0
satisfying Eq. (2.14). Note that, for the Gauss-Bonnet term
linearly coupled to a scalar field [36,37], the divergence of
J2 does not necessarily invoke unphysical properties of the
BH solution [60], and hence a nonvanishingQ is allowed in
this particular case (see Sec. VI B).
Provided that J is finite in the limit of ϕ0 → 0, which is

the case when all Gj’s are analytic functions of X, namely,
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all Gj’s contain only the zero or positive integer powers of
X [the hypothesis (iii) in Sec. I], there are two branches of
solutions to Eq. (2.14). One is the branch ϕ0 ¼ 0, while the
other is a nontrivial branch satisfying

J ¼ 0: ð2:15Þ

If we impose the asymptotic flatness (f → 1; h → 1;
f0 → 0; h0 → 0 as r → ∞) with a vanishing field derivative
ϕ0ð∞Þ ¼ 0 and that the contribution of the ordinary kinetic
term in G2, namely G2;Xð0ÞX with G2;Xð0Þ ≠ 0, is dom-
inant in J in the large-r limit, which is the hypothesis (iii)
mentioned in Sec. I, theories with analytic coupling
functions lead to J → G2;Xð0Þ at spatial infinity. Hence,
J approaches a nonvanishing constant, meaning that the
branch J ¼ 0 is not present. In this case, we end up with
the no-hair branch with ϕ0ðrÞ ¼ 0 [21].
On the other hand, if the asymptotic flatness is not

imposed the derivative f0ðrÞ can be a growing function of r.
Then, it is possible that terms arising from the derivative
couplingsG3, G4, G5 in Eq. (2.11) balance the term G2;X to
realize J ¼ 0. The BH solution present for a quartic-order
linear derivative coupling X in G4 is such an example
[26–29]. The other possibilities for realizing BH solutions
with ϕ0 ≠ 0 are that G2, G3, G4, and G5 contain ln jXj, or
fractional/inverse powers of X [36,37,44], where the
derivatives G2;X, G3;X, G4;X, G4;XX, G5;X, and G5;XX have
inverse powers of ϕ0ðrÞ and their contributions to J
balance that of the canonical kinetic term in the limit
ϕ0ðrÞ → 0.

III. BLACK HOLE LINEAR
STABILITY CONDITIONS

In order to discuss the linear stability of BHs on the
background (2.3), it is useful to separate perturbations into
the odd- and even-parity sectors depending on the trans-
formation properties under the rotation in two-dimensional
plane ðθ;φÞ [61,62]. In full Horndeski theories with a time-
independent scalar field, the stability conditions against
linear perturbations in the odd- and even-parity sectors
were derived for BHs [54,55] and relativistic stars [56] (see
also Refs. [57,63–65]). The angular propagation speed of
even-parity perturbations was not obtained in Ref. [55], but
this issue was addressed in Ref. [56]. It should be noted that
the linear stability conditions in Ref. [56] were derived in
the presence of a perfect fluid with density ρ and pressure P
to model static and spherically symmetric stars, and the
stability conditions for BHs follow by taking the limits
ρ → 0 and P → 0. In the following, we summarize the
linear stability conditions for both odd- and even-parity
perturbations.
In the odd-parity sector, the quadratic action for higher

multipoles l ≥ 2 can be written in the form [54]

Sodd ¼
Z

dtdr

�
1

2
Kχ _χ

2 −
1

2
Gχχ

02

−
lðlþ 1Þ

2
Wχχ

2 −
1

2
Mχχ

2

�
; ð3:1Þ

where χ is the master variable and a dot denotes the
derivative with respect to t, and we have performed the
integration over the angular variables. Here, the coefficients
Kχ , Gχ , Wχ , and Mχ are determined by the coupling
functions in Eq. (2.2) and the background solution.
Although we do not present the explicit form of coeffi-
cients, we summarize below the stability conditions which
can be read off from the quadratic action. Note that the
boundedness of a Hamiltonian is a coordinate-dependent
concept [50], and there is a subtlety when the action
contains a cross term of time and spatial derivatives
[51], which happens for a time-dependent scalar profile
ϕ ¼ qtþΦðrÞ with q ≠ 0. In such a case, one should
change the coordinate system to remove the cross term. For
the time-independent scalar field we are considering now,
the cross term is absent from the outset, and hence there is
no such an ambiguity. The ghost-free condition is given by
Kχ > 0, which reads

G≡ 2G4 þ 2hϕ02G4;X −
f0h2ϕ03G5;X

2f
> 0: ð3:2Þ

For high-momentum modes, the squared propagation
speeds of odd-parity perturbations along the radial and
angular directions are given, respectively, by

c2r;odd ¼
grr
jgttj

Gχ

Kχ
¼ G

F
; c2Ω;odd ¼

gθθ
jgttj

Wχ

Kχ
¼ G

H
; ð3:3Þ

where

H≡ 2G4 þ 2hϕ02G4;X −
h2ϕ03G5;X

r
; ð3:4Þ

F ≡ 2G4 − hϕ02
�
1

2
h0ϕ0 þ hϕ00

�
G5;X: ð3:5Þ

Note that the factor lðlþ 1Þ in the quadratic action (3.1)
originates from the spherical Laplacian, and hence the
coefficient Wχ is associated with the angular propagation
speed. It should also be noted that the squared sound speeds
defined in this way are independent of the choice of
coordinates. Under the no-ghost condition (3.2), the
Laplacian instabilities can be avoided for

H > 0; ð3:6Þ
F > 0: ð3:7Þ

In the even-parity sector, the quadratic action for higher
multipoles l ≥ 2 can be written in the form [55]
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Seven ¼
Z

dtdr
X2
I;J¼1

�
1

2
KIJ _vI _vJ −

1

2
GIJvI0vJ0

− QIJvIvJ0 −
1

2
MIJvIvJ

�
: ð3:8Þ

Here, vI ¼ ðψ ; δϕÞ are the master variables, with ψ and δϕ
corresponding to gravitational field and scalar-field pertur-
bations, respectively. The coefficient matrices K, G, Q, and
M are determined by the coupling functions in Eq. (2.2)
and the background solution, and we choose the overall
numerical factor so that the components of K are finite in
the limit l → ∞. Note that the matrices K, G, and M are
symmetric and Q is antisymmetric. Although we do not
present the explicit form of coefficient matrices, we
summarize below the stability conditions which can be
read off from the quadratic action. Ghost instabilities can be
avoided if both the eigenvalues of K are positive, i.e.,

K11 > 0 and detK > 0: ð3:9Þ

Provided that the condition (3.7) holds, these conditions
can be satisfied if

K≡ 2P1 − F > 0; ð3:10Þ

where

P1 ¼
hμ

2fr2H2

�
fr4H4

μ2h

�0
;

μ ¼ 2ðϕ0a1 þ r
ffiffiffiffiffiffi
fh

p
HÞffiffiffiffiffiffi

fh
p ; ð3:11Þ

and a1 is defined in Eq. (A2). In the limit of high
frequencies, the squared radial propagation speeds of ψ
and δϕ are given as eigenvalues of the matrix

c2r;even ≡ grr
jgttj

K−1G: ð3:12Þ

Written explicitly, we have [54–56]

c2r1;even ¼
G
F
; ð3:13Þ

c2r2;even ¼
2ϕ0½4r2ðfhÞ3=2Hc4ð2ϕ0a1 þ r

ffiffiffiffiffiffi
fh

p
HÞ − 2a21f

3=2
ffiffiffi
h

p
ϕ0Gþ ða1f0 þ 2c2fÞr2fhH2�

f5=2h3=2ð2P1 − F Þμ2 ; ð3:14Þ

where c2 and c4 are defined in Eqs. (A3) and (A4). Since
c2r1;even is identical to c

2
r;odd in Eq. (3.3), the conditions (3.2)

and (3.7) ensure that c2r1;even > 0. In order to avoid the
Laplacian instability of δϕ along the radial direction, we
require that

c2r2;even > 0: ð3:15Þ

For the monopole mode (l ¼ 0), there is no propagation for
the gravitational perturbation ψ , while the scalar-field
perturbation δϕ propagates with the same radial velocity
as Eq. (3.14). For the dipole mode (l ¼ 1), there is a gauge
degree of freedom for fixing δϕ ¼ 0, under which the
perturbation ψ propagates with the same radial speed
squared as Eq. (3.14). The squared angular propagation
speeds of ψ and δϕ in the large-l limit are obtained as
eigenvalues of the matrix

c2Ω;even ≡ lim
l→∞

1

lðlþ 1Þ
gθθ
jgttj

K−1M: ð3:16Þ

This gives the following biquadratic equation [56]:

c4Ω þ 2B1c2Ω þ B2 ¼ 0; ð3:17Þ

namely,

c2Ω� ¼ −B1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
1 − B2

q
; ð3:18Þ

where B1 and B2 are defined in Eqs. (A5) and (A6). The
branch of the square root in Eq. (3.18) is chosen so that c2Ω�
are smooth functions of r [see also the comment below
Eq. (6.17)]. Note that the above squared sound speeds of
even-parity perturbations along the radial and angular
directions are scalar quantities independent of the choices
of gauges and coordinates. The Laplacian instabilities
along the angular direction can be avoided for

c2Ωþ > 0; ð3:19Þ

c2Ω− > 0: ð3:20Þ

From Eq. (3.18), these conditions are realized if

B2
1 ≥ B2 > 0 and B1 < 0: ð3:21Þ

In summary, there are neither ghosts nor Laplacian
instabilities under the conditions (3.2), (3.6), (3.7),
(3.10), (3.15), and (3.21). In Table I, we summarize these
stability conditions for convenience.
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IV. LINEAR STABILITY OF GENERAL
RELATIVITY SOLUTIONS

First of all, we study the linear stability of BH solutions
with a trivial scalar-field profile, i.e.,

ϕ0 ¼ 0: ð4:1Þ

As mentioned in Sec. II, such a solution exists as long as J
is finite in the limit that ϕ0 → 0. We shall discuss the other
branch of hairy BH solution satisfying J ¼ 0 in the next
sections. Note that the functions Gj’s and their derivatives
are evaluated at X ¼ 0 throughout this section. In this case,
the background equations (2.5)–(2.7) reduce to the follow-
ing two independent equations:

hf0 − fh0 ¼ 0; ð4:2Þ

2G4h
ðrfÞ0
r2f

− G2 −
2G4

r2
¼ 0: ð4:3Þ

They can be solved to yield

h ¼ C0f ¼ 1 −
r0
r
þ G2

6G4

r2; ð4:4Þ

with C0 and r0 being integration constants. The integration
constant C0 can be absorbed into a rescaling of t, and hence
we obtain the Schwarzschild-(A)dS metric, i.e., the BH
solution in GR. Nevertheless, due to the existence of a
dynamical scalar field, the stability under linear perturba-
tions is rather nontrivial, as we shall see below.
Let us first discuss the linear stability of no-hair BHs

against odd-parity perturbations. For ϕ0 ¼ 0, the quantities
relevant to stability of odd modes are simply given by

F ¼ G ¼ H ¼ 2G4: ð4:5Þ

Therefore, the no-ghost condition (3.2) yields

G4 > 0: ð4:6Þ

Also, we have

c2r;odd ¼ c2Ω;odd ¼ 1; ð4:7Þ

meaning that there is no Laplacian instability.
Next, we study the BH stability against even-parity

perturbations. A caveat here is that the quantities associated

with stability of even modes contain ϕ0 in their denomi-
nators, though one can obtain finite ϕ0 → 0 limits. In order
to remove vanishing ϕ0 in the denominator, one should redo
the computation of Refs. [55,56] with ϕ0 set to zero from
the outset, but this reproduces the ϕ0 → 0 limits of the final
results. Hence, one can safely take the ϕ0 → 0 limit.
Another point to note is that the quantity K, which is
associated with the no-ghost condition of even-parity
perturbations, is vanishing in the limit ϕ0 → 0. This could
be a problem because it may imply the degeneracy of the
kinetic matrix, which leads to strong coupling. However, as
pointed out in Ref. [55], the determinant of the kinetic
matrix is proportional to K=ϕ02, which is finite in the limit
ϕ0 → 0, meaning that the strong coupling problem is
actually absent. To be more concrete, we solve
Eqs. (2.5)–(2.7) for h0, f0, f00, substitute them into K,
and finally take the limits ϕ0 → 0 and ϕ00 → 0. Then, the
no-ghost condition is read off from

lim
ϕ0→0

K
ϕ02 ¼

G2;XG4 − G2G4;X

2G4

r2 > 0: ð4:8Þ

On using the inequality (4.6), this condition translates to

G2;XG4 −G2G4;X > 0: ð4:9Þ

If we consider the Schwarzschild BH solution, we have
G2 ¼ 0 in Eq. (4.4). In this case, the condition (4.9) reduces
to G2;XG4 > 0, which is consistent with the one derived in
Ref. [55]. The squared sound speeds in the radial direction
reduce to

c2r1;even ¼ c2r2;even ¼ 1: ð4:10Þ

Moreover, we have B1 ¼ −1 and B2 ¼ 1, so that

c2Ωþ ¼ c2Ω− ¼ 1: ð4:11Þ

In summary, the Schwarzschild-AdS solution is free of
ghosts/Laplacian instabilities if the conditions (4.6) and
(4.9) are satisfied, with the propagation speeds equivalent
to that of light.

V. GENERIC INSTABILITY FOR
REFLECTION-SYMMETRIC THEORIES

We investigate the linear stability of BH solutions in
shift- and reflection-symmetric Horndeski theories, for
which G3 ¼ G5 ¼ 0. Namely, we consider shift-symmetric
Horndeski theories containing two arbitrary functions
G2ðXÞ and G4ðXÞ with the Lagrangian

LH ¼ G2ðXÞ þG4ðXÞR
þ G4;XðXÞ½ð□ϕÞ2 − ð∇μ∇νϕÞð∇μ∇νϕÞ�: ð5:1Þ

TABLE I. Summary of the linear stability conditions.

No ghost c2r > 0 c2Ω > 0

Odd modes G > 0 F > 0 H > 0
Even modes K > 0 c2r2;even > 0 B2

1 ≥ B2 > 0 and B1 < 0
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We focus on BH solutions with a nontrivial scalar-field
profile ϕ0 ≠ 0 satisfying Eq. (2.15), so that

J ¼G2;X þ 2

�
1−h
r2

−
hf0

rf

�
G4;X þ 2hϕ02

�
h
r2
þhf0

rf

�
G4;XX

¼ 0: ð5:2Þ

An explicit example of BH solutions of this type is
present forG2ðXÞ ¼ ηX − Λ andG4ðXÞ ¼ M2

Pl=2 − α1X=2
[26–28]. As long as G2;X, G4;X, and G4;XX do not contain
fractional or negative powers of ϕ0, there is the trivial GR
solution ϕ0 ¼ 0 besides the branch (5.2). The linear
stability of BH solutions for the GR branch was already
studied in Sec. IV.
For the branch satisfying Eq. (5.2), the background

equations of motion can be simply expressed as [66]

8XðG2
4;X þ G4G4;XXÞ ¼ r2ðGG2Þ;X; ð5:3Þ

ðrG2hÞ0 ¼ Gð2G4 þ r2G2Þ; ð5:4Þ
�

f
G2h

�0
¼ 0: ð5:5Þ

We recall that G is given by Eq. (3.2), which in the present
case reads

G ¼ 2ðG4 − 2XG4;XÞ > 0: ð5:6Þ

We can solve Eq. (5.3) to yield X algebraically as a function
of r. Then, from Eqs. (5.4) and (5.5), we obtain h and f as
functions of r. More concretely,

f ¼ C1G2h; ð5:7Þ

h ¼ 1

rG2

Z
r

rs

drGð2G4 þ r2G2Þ; ð5:8Þ

where C1ð≠ 0Þ and rsð> 0Þ are integration constants.
Provided that the integrand in Eq. (5.8) approaches to a
constant as r → rs, we have the following expansions:

f ¼ f1ðr − rsÞ þ f2ðr − rsÞ2 þ � � � ; ð5:9Þ

h ¼ h1ðr − rsÞ þ h2ðr − rsÞ2 þ � � � ; ð5:10Þ

where fj and hj (j ¼ 1; 2;…) are constants. For f1 > 0

and h1 > 0, the coordinate distance rs can be identified as
the position of BH horizon. If there exists some finite
coordinate distance rcð> rsÞ such that f > 0 and h > 0 for
rs < r < rc and fðrcÞ ¼ hðrcÞ ¼ 0, the radius rc can be
identified as a cosmological horizon. The expansion of X
around the BH horizon is given by

X ¼ Xs þ X0ðrsÞðr − rsÞ þOððr − rsÞ2Þ; ð5:11Þ

where X0ðrsÞ can be evaluated by taking the r-derivative of
Eq. (5.2). Note that the value of Xs is obtained algebraically
from Eq. (5.3) with r ¼ rs. Unless G2 and G4 are fine-
tuned, we have Xs ≠ 0. The functions G2ðXÞ, G4ðXÞ, and
their X-derivatives appearing in quantities relevant to the
BH stability conditions are also expanded around the value
of X ¼ Xs at the BH horizon, e.g.,

G4ðXÞ ¼ G4ðXsÞ þG4;XðXsÞðX − XsÞ
þOððX − XsÞ2Þ: ð5:12Þ

In order to avoid ghosts/Laplacian instabilities, we
require that all the linear conditions listed in Table I are
satisfied from the BH horizon to spatial infinity (or the
cosmological horizon, if it exists). In the present case,
however, it is impossible to satisfy all these conditions.
Taking the product FKB2 in the vicinity of r ¼ rs, we
obtain

FKB2 ¼ −
4X4

sðG2
4;X þ G4G4;XXÞ2

ðG4 − 4XsG4;X − 4X2
sG4;XXÞ2

r2s
ðr − rsÞ2

þOððr − rsÞ−1Þ; ð5:13Þ

where G4 and its X-derivatives on the right-hand side are
evaluated at X ¼ Xs. Provided that

Xs ≠ 0 and G2
4;X þ G4G4;XX ≠ 0; ð5:14Þ

the leading-order contribution to Eq. (5.13) is negative, i.e.,

FKB2 < 0; for r → rs: ð5:15Þ

This shows that the quantities F , K, and B2 cannot be
positive at the same time near the BH horizon in general,
leading to instability. For instance, even if the two con-
ditions F > 0 and K > 0 are satisfied, we have B2 < 0,
and hence

c2Ω− ¼ −B1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
1 − B2

q
< 0: ð5:16Þ

Thus, the angular Laplacian instability of even-parity
perturbations is unavoidable around the BH horizon. We
stress that the knowledge of the angular propagation speeds
is essential to recognize the instability of this kind. A
similar instability was found for stealth Schwarzschild-dS
solutions with linearly time-dependent scalar hair in
degenerate higher-order scalar-tensor theories [53].
We note that, from Eq. (2.4), X < 0 outside the BH

horizon [hðrÞ > 0] and X > 0 inside the BH horizon
[hðrÞ < 0], and hence the character of the scalar field is
spacelike outside the horizon and timelike inside the
horizon, respectively. If a BH solution with Xs < 0 could
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be extended to the interior of the BH horizon, the
coordinate invariant X would have a sudden change of
the sign across the horizon, indicating that the horizon
would become a singular hypersurface. Thus, a BH
solution with Xs < 0 cannot be extended to the interior
of the BH horizon and can be defined only in the domain
outside the horizon where hðrÞ > 0 and the character of the
scalar field is spacelike. Our result (5.15) suggests that BH
solutions with Xs ≠ 0 generically suffer from instabilities
in the domain where the solution can exist, and hence such
solutions could not be realistic. In other words, only the
physically acceptable BH solution defined in both the
exterior and interior of the horizon should have Xs ¼ 0. We
note that a similar argument could be applied to the
cosmological horizon (if it exists), and a static and spheri-
cally symmetric solution with XðrcÞ < 0 could not be
extended to the exterior of the cosmological horizon.
The above instability is generic for the theories satisfying

the condition (5.14). In Secs. VA–VC, we apply the above
results to theories containing positive power-law functions
ð−XÞp with p > 0 in G4ðXÞ and G2ðXÞ ¼ ηX − Λ, with η
and Λ being constant. Note that the above discussion does
not apply if the conditions in Eq. (5.14) are not satisfied, in
which case a further analysis is required. Such a situation
occurs when, e.g., the nonminimal derivative coupling to
the Ricci scalar is absent (G4 ¼ constant). In this case, as
we shall see in Sec. V D, the perturbations would be
strongly coupled.

A. G4 ⊃ ð−XÞp with p > 1

As a demonstration of the generic instability, let us study
theories given by the coupling functions

G2 ¼ ηX − Λ; G4 ¼
M2

Pl

2
þ αp

2
ð−XÞp; ð5:17Þ

where MPl is the reduced Planck mass, and η, Λ, αp, and p
are constants. Note that we put a minus sign in ð−XÞp
because X ¼ −hϕ02=2 is negative for h > 0.
For the branch satisfying Eq. (5.2), the kinetic term of the

scalar field is expressed as

ð−XÞp−1 ¼ −
ηr2f

pαp½ð2p − 1Þðrf0 þ fÞh − f� : ð5:18Þ

The linear derivative coupling (p ¼ 1) is a special case in
which the left-hand side of Eq. (5.18) is constant. In this
section, we study the power-law models with

p > 1; ð5:19Þ

which accommodate the quartic Galileons (p ¼ 2). We
shall discuss the p ¼ 1 and p ¼ 1=2 cases separately in
Secs. V B and V C, respectively.

Around the BH horizon r ¼ rs, the leading-order con-
tributions to f and h are f1ðr − rsÞ and h1ðr − rsÞ,
respectively. This mean that, as r → rs, the kinetic term
X approaches a constant Xs, satisfying

ð−XsÞp−1 ¼ −
ηr2s

pαp½ð2p − 1Þh1rs − 1� ; ð5:20Þ

and hence Xs ≠ 0. As a result, ϕ02 diverges on the BH
horizon. Due to the property Xs ≠ 0, the term G2

4;X þ
G4G4;XX appearing in the numerator of Eq. (5.13) does
not generally vanish. Unless the coupling αp is fine-tuned to
satisfyG2

4;XþG4G4;XX∝ð2p−1Þαpð−XsÞpþðp−1ÞM2
Pl¼0,

the product FKB2 around r ¼ rs yields

FKB2¼−
p2α2pð−XsÞ2p½ð2p−1Þαpð−XsÞpþðp−1ÞM2

Pl�2
½ð4p2−1Þαpð−XsÞp−M2

Pl�2

×
r2s

ðr−rsÞ2
þOððr−rsÞ−1Þ: ð5:21Þ

The leading-order contribution to Eq. (5.21) is negative
outside the BH horizon, and hence the corresponding BH
solutions are unstable in general.

B. G4 ⊃ X

Having discussed general power-law quartic derivative
couplings G4 ⊃ ð−XÞp with p > 1, we now study the
special case p ¼ 1, for which the coupling functions read

G2 ¼ ηX − Λ; G4 ¼
M2

Pl

2
−
α1
2
X: ð5:22Þ

In this case, the field equations (5.3)–(5.5) yield the
following exact solution [26–29]:

f ¼ −
r0
r
þ

ffiffiffiffiffiffiffiffiffiffiffi−α1η
p ðM2

Plη − α1ΛÞ2
4M4

Plη
3r

arctan

�
−

ffiffiffiffiffiffiffiffiffiffiffi−α1η
p
α1

r

�

−
ðM2

Plηþ α1ΛÞ2
12M4

Plα1η
r2 þ ðM2

Plηþ α1ΛÞð3M2
Plη − α1ΛÞ

4M4
Plη

2
;

h ¼ 4M4
Plðηr2 − α1Þ2

½ðM2
Plηþ α1ΛÞr2 − 2M2

Plα1�2
f;

X ¼ ðM2
Plη − α1ΛÞr2

2α1ðα1 − ηr2Þ ; ð5:23Þ

where we have chosen the integration constants rs and C1

in Eqs. (5.4) and (5.5) so that f ≃ 1 − r0=r for small r. For
the existence of this solution, we require

α1η < 0: ð5:24Þ

Provided that M2
Plη − α1Λ ≠ 0, there exists a nontrivial

branch with X ≠ 0. Also, since the character of the scalar

MINAMITSUJI, TAKAHASHI, and TSUJIKAWA PHYS. REV. D 105, 104001 (2022)

104001-8



field is spacelike and X should be negative outside the BH
horizon, we have

M2
Plη − α1Λ < 0: ð5:25Þ

Let us denote by Xsð<0Þ the value of X at the BH horizon
r ¼ rs. As noted previously, the solution (5.23) could exist
only outside the BH horizon, as the scalar field becomes
imaginary inside the horizon. On the contrary, if a solution
similar to Eq. (5.23) exists inside the BH horizon where
hðrÞ < 0 and the scalar field is timelike (i.e., X > 0), it
could not be extended to the exterior of the BH horizon.
Then, the product FKB2 yields

FKB2 ¼ −
α41X

4
s

ðM2
Pl þ 3α1XsÞ2

r2s
ðr − rsÞ2

þOððr − rsÞ−1Þ; ð5:26Þ

whose leading-order term is negative. Thus, the exact BH
solution (5.23) is excluded by the instability problem around
the BH horizon. The instability of the solution (5.23) is one
of our main results. We note that, in generalized Proca
theories [67–69] with a vector field Aμ, there is an exact
Schwarzschild solution with a nonvanishing longitudinal
vector component in the presence of a quartic coupling
G4ðYÞ containing a linear function of Y ¼ −AμAμ=2
[67,70,71]. Such BH solutions are also prone to a similar
instability problem of vector-field perturbations in the odd-
parity sector around the horizon [72].
For the theory (5.22), there exists a GR branch of the

vanishing field profile (ϕ0 ¼ 0). This branch is free from
the ghost instability under the condition (4.9), i.e.,
M2

Plη − α1Λ > 0, which is an opposite inequality to
Eq. (5.25). Thus, under the inequality M2

Plη − α1Λ < 0,
neither the branch ϕ0 ≠ 0 nor the other branch ϕ0 ¼ 0 is
stable.

C. G4 ⊃ ð−XÞ1=2
Let us study another special case with p ¼ 1=2, i.e.,

G2 ¼ ηX − Λ; G4 ¼
M2

Pl

2
þ α1=2

2
ð−XÞ1=2: ð5:27Þ

Since J ¼ ð2ηr2X þ α1=2
ffiffiffiffiffiffiffi
−X

p Þ=ð2r2XÞ ¼ 0, the kinetic
term of the scalar field corresponding to the branch ϕ0 ≠ 0
is given by

X ¼ −
α21=2
4η2r4

; ð5:28Þ

where we have assumed ηα1=2 > 0. A positive power of ϕ0

is present in the denominator of J , so the radial current
equation, Jr ¼ hϕ0J ¼ 0, does not allow the existence of a
branch of vanishing field derivative (ϕ0 ¼ 0).

Integrating Eqs. (5.4) and (5.5) with Eq. (5.28), we
obtain the following exact solution [44]:

f ¼ h ¼ 1 −
r0
r
−

α21=2
4M2

Plηr
2
−

Λ
3M2

Pl

r2; ð5:29Þ

where the integration constants have been chosen to have
the behavior f ¼ h ≃ 1 − r0=r for small r. We note that,
because of the dependence ð−XÞ1=2 in G4, the solution
(5.29) is defined only in the domain where the scalar field is
spacelike (i.e., X < 0), which corresponds to the domain
outside the BH horizon and inside the cosmological
horizon (for Λ > 0). In the case of Λ ¼ 0, the solution
(5.29) becomes an asymptotically flat spacetime, i.e., f ¼
h → 1 as r → ∞. On using Eq. (5.28), in the vicinity of the
BH horizon r ¼ rs, the product FKB2 reduces to

FKB2 ¼ −
α41=2

64η2r4s

r2s
ðr − rsÞ2

þOððr − rsÞ−1Þ: ð5:30Þ

Since the leading-order contribution to FKB2 is negative
for α1=2 ≠ 0, the exact solution (5.29) with (5.28) inevitably
suffers from the instability around the BH horizon.

D. Strong coupling for k-essence

In this subsection, we study the case of k-essence given
by the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
G2ðXÞ þ

M2
Pl

2
R

�
: ð5:31Þ

From Eq. (5.2), the branch of a nonvanishing field
derivative obeys

G2;X ¼ 0; ð5:32Þ

implying that X is constant everywhere. Also, the value
of X is determined as a solution to the (algebraic)
equation (5.32). From the background Eqs. (2.5) and
(2.6), we obtain

G2 ¼
ðrhf0 þ fh − fÞM2

Pl

r2f
; hf0 ¼ fh0: ð5:33Þ

The quantities associated with the linear stability of BHs
yield

K ¼ 0; c2r2;even ¼ ∞; ð5:34Þ

with F ¼ G ¼ H ¼ M2
Pl and c2Ω� ¼ 1. Such a diverging

sound speed typically implies an infinitely strong coupling,
and hence the perturbative treatment would no longer be
viable in this case.
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VI. NONREFLECTION-SYMMETRIC
THEORIES: CASE STUDIES

In the previous section, we showed that BH solutions
with nontrivial scalar hair in the reflection-symmetric
subclass of shift-symmetric Horndeski theories are linearly
unstable in general. In this section, we study the linear
stability for several examples of BH solutions in non-
reflection-symmetric theories containing the coupling func-
tions G3ðXÞ or G5ðXÞ in the Lagrangian. In this case, the
scalar-field profile around the BH horizon is quite different
from the one in the reflection-symmetric case. Indeed,
substituting the expansions (5.9)–(5.11) around the BH
horizon into the background equations, one finds that the
left-hand side of Eq. (2.6) behaves as

ffiffiffiffiffiffiffi
2h1

p
ð−XsÞ3=2

�
G3;XðXsÞ þ

1

r2s
G5;XðXsÞ

�
ðr − rsÞ−1=2

þOððr − rsÞ0Þ; ð6:1Þ

which in general does not vanish unless

Xs ¼ 0 or G3;XðXsÞ þ
1

r2s
G5;XðXsÞ ¼ 0: ð6:2Þ

Therefore, unless G3 and G5 are fine-tuned to satisfy the
latter of Eq. (6.2), the kinetic term of the scalar field is
vanishing on the BH horizon. In what follows, we study
BHs having X ¼ 0 on the horizon in the presence of the
coupling functions G3 and G5. In Sec. VI A, we first
consider cubic-order power-law couplings G3ðXÞ ∝ ð−XÞp
with p > 0 and focus on the case of cubic Galileons
(p ¼ 1). In Sec. VI B, we discuss quintic-order power-law
couplings G5ðXÞ ∝ ð−XÞp with p > 0. In Sec. VI C, we
investigate the case with the scalar field linearly coupled to
the Gauss-Bonnet curvature invariant, which amounts
to G5ðXÞ ∝ ln jXj.

A. Cubic Galileons

We consider theories characterized by the coupling
functions

G2 ¼ ηX − Λ; G3 ¼ γpð−XÞp;

G4 ¼
M2

Pl

2
; G5 ¼ 0; ð6:3Þ

where η, Λ, γp, and pð> 0Þ are constants. The branch with
ϕ0ðrÞ ≠ 0 obeys Eq. (2.15), i.e.,

ηþ pγp

�
2

r
þ f0

2f

�
hϕ0ð−XÞp−1 ¼ 0; ð6:4Þ

where X ¼ −hϕ02=2. Around the BH horizon r ¼ rs, we
expand the metric components f and h as in Eqs. (5.9) and
(5.10). At leading order, the scalar-field derivative ϕ0
around r ¼ rs is expressed as

ϕ02p−1 ¼ −
η

pγp

�
h1
2

�
−p
ðr − rsÞ−ðp−1Þ; ð6:5Þ

and hence

X ∝ ðr − rsÞ1=ð2p−1Þ: ð6:6Þ

For p > 1=2, the kinetic term X vanishes on the horizon.
This property is different from that in the case of G4ðXÞ ⊃
ð−XÞp studied in Sec. VA, for which XðrsÞ < 0.
From Eq. (6.5), we find that the cubic Galileons (p ¼ 1)

correspond to a special case in which ϕ0 approaches a
nonvanishing constant as r → rs. For p > 1, the scalar-
field derivative diverges as ϕ0 ∝ ðr − rsÞ−ðp−1Þ=ð2p−1Þ on the
horizon. In the following, we study the linear stability of
BHs in cubic Galileons, i.e.,

G2 ¼ ηX; G3 ¼ γ1ð−XÞ; G4 ¼
M2

Pl

2
; G5¼ 0; ð6:7Þ

where the bare cosmological constant has been set to zero
for simplicity. Since the action has a symmetry under the
simultaneous change γ1 → −γ1 and ϕ → −ϕ, we assume

γ1 > 0; ð6:8Þ

without loss of generality. We note that the BH solutions for
cubic Galileons with the cosmological constant were
discussed in Ref. [73] by assuming a time-dependent scalar
field of the form ϕ ¼ qtþΦðrÞ, where q is a nonvanishing
constant. Here, we are considering a time-independent
scalar field (q ¼ 0) and addressing the linear stability of
BHs unexplored in Ref. [73].
We exploit the scalar-field equation (6.4) together with

the equations of motion (2.5) and (2.6) for the metric to
obtain the asymptotic forms of f, h, and ϕ0 around the BH
horizon and at spatial infinity. The solutions expanded
around r ¼ rs are given by

f
f1

¼ ðr − rsÞ þ
1

rs

�
η3r4s
γ21M

2
Pl

− 1

�
ðr − rsÞ2 þOððr − rsÞ3Þ;

ð6:9Þ

h¼ 1

rs
ðr− rsÞ−

1

r2s

�
3η3r4s
γ21M

2
Pl

þ 1

�
ðr− rsÞ2 þOððr− rsÞ3Þ;

ð6:10Þ

ϕ0 ¼ −
2ηrs
γ1

−
4η

γ1

�
η3r4s
γ21M

2
Pl

− 1

�
ðr − rsÞ þOððr − rsÞ2Þ;

ð6:11Þ

where f1 > 0. At spatial infinity, we obtain the following
expansion:

MINAMITSUJI, TAKAHASHI, and TSUJIKAWA PHYS. REV. D 105, 104001 (2022)

104001-10



f
f0

¼
ffiffiffi
6

p ð−ηÞ3=2
18γ1MPl

r2 þ 1 −
r1
r
−
3

ffiffiffi
6

p
γ1MPlr1

20ð−ηÞ3=2r3
þOðr−4Þ; ð6:12Þ

h ¼
ffiffiffi
6

p ð−ηÞ3=2
18γ1MPl

r2 þ 5

6
−
r1
r
−
11

ffiffiffi
6

p
γ1MPl

24ð−ηÞ3=2r2
þOðr−3Þ; ð6:13Þ

ϕ0 ¼
ffiffiffi
6

p
MPlffiffiffiffiffiffi−ηp
r
−
9M2

Plγ1
η2r3

þ 9M2
Plγ1r1
η2r4

þ 75
ffiffiffi
6

p
M3

Plγ
2
1

4ð−ηÞ7=2r5
þOðr−6Þ; ð6:14Þ

where f0ð>0Þ and r1 are constants. The constant f0 can be
chosen freely due to the time reparametrization invariance.
For the existence of this solution, we require that

η < 0: ð6:15Þ

Note that, as in the case of Schwarzschild-AdS BHs, the
metric components f and h are growing functions of r in
the region r ≫ rs. It should also be noted that there exists
another branch of solutions where the coefficients of r2 in f
and h are negative. We are not interested in this other
branch, because a numerical integration from the BH
horizon yields the branch of solution with (6.12)–(6.14),
as we shall see below.
In what follows, we verify that the above solution

satisfies all the stability conditions for both odd- and
even-parity perturbations. From Eqs. (3.2), (3.4), and
(3.5), we have

G ¼ H ¼ F ¼ M2
Pl > 0; ð6:16Þ

so that the stability conditions of odd-parity perturbations
are satisfied. For even-parity modes, the squared propaga-
tion speeds of gravitational perturbations along the radial
and angular directions reduce to

c2r1;even ¼ 1; c2Ω1 ¼ 1: ð6:17Þ

The latter follows from the fact that the term B2
1 − B2 in

Eq. (3.18) can be factored out in the form B2
1 − B2 ¼ B2

3,
where B3 can change its sign depending on the coordinate
distance r. Then, there are the two solutions c2Ω1 ¼
−B1 þ B3 and c2Ω2 ¼ −B1 − B3. One of them, which is
equivalent to unity, corresponds to the propagation speed
squared in the gravity sector, while the other to that of
the scalar field. Hence, on the static and spherically
symmetric background the cubic Galileon does not modify
the propagation speed of gravitational perturbations in
comparison to GR (analogous to the speed of tensor
perturbations on an isotropic cosmological background

[19,74]). Around r ¼ rs, the no-ghost condition for the
even-parity perturbations translates to

K ¼ −
2η3r4s
γ21

þOðr − rsÞ; ð6:18Þ

where we have used the inequality (6.15). Since the
leading-order contribution to Eq. (6.18) is positive, the
ghost is absent. In the vicinity of the horizon, the squared
radial and angular propagation speeds of the scalar field are
given, respectively, by

c2r2;even ¼ 1þOðr − rsÞ; ð6:19Þ

c2Ω2 ¼ 3þOðr − rsÞ; ð6:20Þ

and hence there are no Laplacian instabilities around
r ¼ rs. At spatial infinity, the quantities K and c2r2;even
can be estimated as

K ¼
ffiffiffi
6

p ð−ηÞ3=2MPl

4γ1
r2 þOðrÞ; ð6:21Þ

c2r2;even ¼
ð−ηÞ3=2ffiffiffi
6

p
γ1MPl

r2 þOðrÞ: ð6:22Þ

Under the condition (6.15), the leading-order contributions
to K and c2r2;even are positive. For r ≫ rs, the quantities B1

and B2 have the following asymptotic behavior:

B1 ¼ −
1

2
−
r1
4r

þOðr−2Þ;

B2 ¼
r1
2r

−
�
r21
2
þ 5

ffiffiffi
6

p
γ1MPl

4ð−ηÞ3=2
�
1

r2
þOðr−3Þ. ð6:23Þ

Then, the second angular propagation speed squared yields

c2Ω2 ¼
r1
2r

þ
�
r21
2
þ 5

ffiffiffi
6

p
γ1MPl

4ð−ηÞ3=2
�
1

r2
þOðr−3Þ: ð6:24Þ

Hence, the Laplacian stability along the angular directions
is ensured for

r1 > 0: ð6:25Þ

The above discussion shows that, under the three
conditions η < 0, γ1 > 0, and r1 > 0, there are neither
ghost nor Laplacian instabilities both around the BH
horizon and at spatial infinity. In order to show the
existence of stable BH solutions, we solve the background
equations of motion outwards from the vicinity of the BH
horizon. For this purpose, we introduce a dimensionless
parameter γ̂1 ¼ γ1MPl=r2s. In the left panel of Fig. 1, we plot
f, h, and rsϕ0=MPl versus the coordinate distance from the
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BH horizon x − 1 (where x ¼ r=rs) for the coupling γ̂1 ¼ 1
with η ¼ −1. As estimated from Eqs. (6.9)–(6.11), the
metric components f and h around the horizon linearly
grow in r, with ϕ0 ≃ constant. For x − 1≳ 10, f and h
increase as f ∝ r2 and h ∝ r2 according to the large-
distance solutions (6.12) and (6.13), with ϕ0 ∝ 1=r. As
r → ∞, the kinetic term ηX approaches a constant

ηX →
ð−ηÞ3=2MPlffiffiffi

6
p

γ1
; ð6:26Þ

which is positive. This positive asymptotic value works as a
negative cosmological constant, so the leading-order metric
components at spatial infinity are similar to those of
Schwarzschild-AdS spacetime. As we observe in the left
panel of Fig. 1, the solutions in two asymptotic regimes
(r ≃ rs and r ≫ rs) are smoothly joined with each other.
In the right panel of Fig. 1, we plot the quantities

associated with the stability conditions of even-parity
perturbations. The variable KðxÞ ¼ K=ðM2

Plx
2Þ is positive

throughout the horizon exterior, with the asymptotic values
of K given by Eqs. (6.18) and (6.21). The radial propa-
gation speed squared c2r2;even is also positive for r > rs, with
asymptotic behaviors (6.19) and (6.22). The angular
propagation speed squared c2Ω1 in the gravity sector is
unity [see Eq. (6.17)]. Also, Fig. 1 clearly shows that the
positivity of c2Ω2 holds outside the BH horizon.
While we have shown that the cubic Galileons with

γ1 > 0 and η < 0 allow the existence of static, spherically
symmetric, and asymptotically AdS BH solutions being

compatible with all the linear stability conditions listed in
Table, they are not sufficient to conclude that the BH
solutions are physically sensible, and further studies would
be required. As r → ∞, c2Ω2 is vanishing, while c2r2;even
grows toward infinity, which might imply the presence of a
strong coupling problem at the timelike AdS boundary. In
order to see whether this is the case or not, we need to study
whether higher-order nonlinear operators dominate over
those of linear perturbations in the Lagrangian. Moreover,
the BH stability at the nonlinear level should also be
studied, which is beyond the scope of this paper.

B. Quintic-order positive power-law couplings

We proceed to study the linear stability of BHs in the
presence of quintic-order couplings G5ðXÞ. Let us first
consider models with a positive power-law coupling given
by the functions

G2¼ηX; G3¼0; G4¼
M2

Pl

2
; G5¼ λpð−XÞp; ð6:27Þ

where λp and pð> 0Þ are constants. In this case, the scalar-
field equation (2.15) yields

ϕ02p−1 ¼ 2pηr2f
λppf0hp½ð2pþ 1Þh − 1� : ð6:28Þ

Then, the scalar-field derivative diverges at the coordinate
distance rd satisfying

FIG. 1. Left: background metric components f, h, and the scalar-field derivative rsϕ0=MPl versus x − 1 for γ̂1 ¼ 1 and η ¼ −1, where
x ¼ r=rs. The background equations of motion are integrated outwards from the distance x ¼ 1þ 10−6. As the boundary conditions
around r ¼ rs, we adopt the expanded solutions (6.9)–(6.11), with f1 ¼ 1=rs. Right: KðxÞ ¼ K=ðM2

Plx
2Þ, c2r2;even=x2, c2Ω1, and c2Ω2

versus x − 1 for the same model parameters and boundary conditions as those used in the left.
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hðrdÞ ¼
1

2pþ 1
; ð6:29Þ

provided it exists. If we impose asymptotic flatness of the
spacetime and construct solutions around the BH horizon
(h ≃ 0) and at large distances (h ≃ 1), then the two
solutions cannot be smoothly connected without hitting
the singular point (6.29). This problem also persists if h is a
growing function of r toward spatial infinity as in the
Schwarzschild-AdS spacetime. A possible way out is to
make the range of h finite as in the Schwarzschild-dS
spacetime so that it does not reach the singular point (6.29).
Let us first consider the model (6.27) with

p ¼ 1; ð6:30Þ

for concreteness. On using the background Eqs. (2.5)–
(2.7), the expanded solution at spatial infinity is given by

f
f0

¼ �
�
−

η3

55566M2
Plλ

2
1

�
1=4

r2 þ 1þOðr−1Þ; ð6:31Þ

h ¼ �
�
−

7η3

162M2
Plλ

2
1

�
1=4

r2 þ 139

28
þOðr−1Þ; ð6:32Þ

where f0 > 0 and the double signs are in the same order.
The existence of this solution requires that

η < 0: ð6:33Þ

For p ¼ 1, the scalar-field derivative on the BH horizon
(r ¼ rs) has a nonvanishing value ϕ0ðrsÞ ¼ −2ηr3s=λ1 and
hence XðrsÞ ¼ 0, where we have used the expansions (5.9)
and (5.10). Around r ¼ rs, the metric components are
given by

f
f1

¼ ðr − rsÞ þ
η3r8s −M2

Plλ
2
1

rsM2
Plλ

2
1

ðr − rsÞ2

þOððr − rsÞ3Þ; ð6:34Þ

h ¼ 1

rs
ðr − rsÞ −

3η3r8s þM2
Plλ

2
1

r2sM2
Plλ

2
1

ðr − rsÞ2

þOððr − rsÞ3Þ; ð6:35Þ

where f1 > 0. If we connect the above expanded solutions
and require that h does not reach the singular point (6.29),
then we should at least choose the minus sign in Eqs. (6.31)
and (6.32). On using the expanded solution around r ¼ rs,
the quantity associated with the no-ghost condition of even-
parity perturbations reads

K ¼ −
2η3r8s
λ21

þOðr − rsÞ; ð6:36Þ

whose leading-order term is positive under the inequality
(6.33). However, we have

B2 ¼ −3þ 2η3r8s
M2

Plλ
2
1

; ð6:37Þ

which is negative. This means that, even if the two
solutions around r ¼ rs and r → ∞ are connected without
reaching the singular point (6.29), the Laplacian instability
of even-parity perturbations is present around the BH
horizon.
Next, let us consider the case with p > 1. Assuming the

existence of a BH horizon, from Eq. (6.28), the leading
term of the scalar-field derivative around r ¼ rs is given by
ϕ0 ∝ η1=ð2p−1Þðr − rsÞ−ðp−1Þ=ð2p−1Þ. Then, one can verify
that the background Eqs. (2.5) and (2.6) are consistently
satisfied around r ¼ rs only when η ¼ 0, for which we
have ϕ0 ¼ 0 everywhere. Hence, for p > 1, a nontrivial
scalar-field profile is not present even at the back-
ground level.

C. Gauss-Bonnet couplings

Finally, we consider the case with the scalar field linearly
coupled to the Gauss-Bonnet curvature invariant R2

GB ≡
R2 − 4RαβRαβ þ RαβμνRαβμν, which is described by the
action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
Rþ ηX þ αGBϕR2

GB

�
; ð6:38Þ

where αGB is a coupling constant. This theory can be
accommodated in the framework of shift-symmetric
Horndeski theories with the following choice of the
coupling functions [19]:

G2 ¼ ηX; G3 ¼ 0;

G4 ¼
M2

Pl

2
; G5 ¼ −4αGB ln jXj: ð6:39Þ

In this theory, the background equations (2.5) and (2.6)
yield

2M2
Pl−2h0ðM2

Plrþ4αGBϕ
0Þþ16αGBh2ϕ00

−hð2M2
Pl−24αGBh0ϕ0 þηr2ϕ02þ16αGBϕ

00Þ ¼ 0; ð6:40Þ

2hf0½M2
Plrþ 4αGBð1 − 3hÞϕ0�

− f½2M2
Pl − hð2M2

Pl − ηr2ϕ02Þ� ¼ 0: ð6:41Þ

The radial component of the current Jμ reduces to

Jr ¼ h

�
ηϕ0 þ 4αGB

ðh − 1Þf0
r2f

�
; ð6:42Þ
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which obeys Eq. (2.9). The general solution to Eq. (2.9) is
given by Eq. (2.12), so that

h

�
ηϕ0 þ 4αGB

ðh − 1Þf0
r2f

�
¼ Q

r2

ffiffiffi
h
f

s
: ð6:43Þ

As we discussed in Sec. II, the finiteness of the current
squared J2 requires that Q ¼ 0, in which case Jr ¼ 0. For
Q ≠ 0, J2 diverges on the horizon. In this latter case, it was
argued that hairy BH solutions with a nonvanishing scalar-
field derivative are present. In spite of the divergence of J2,
the components of the energy-momentum tensor and
curvature invariants remain finite. In Ref. [60], it was
argued that asymptotically flat BHs in shift-symmetric
scalar-tensor theories without ghost degrees of freedom
can have nontrivial scalar hair only in the presence of the
Gauss-Bonnet coupling αGBϕR2

GB.
In the following, we will consider the two cases Q ¼ 0

and Q ≠ 0 in turn.

1. Q= 0

When Q ¼ 0, Eq. (6.43) gives

ϕ0 ¼ −
4αGBðh − 1Þf0

ηr2f
: ð6:44Þ

On using the expansions (5.9) and (5.10) around the BH
horizon r ¼ rs, the scalar-field derivative has the following
dependence:

ϕ0 ¼ 4αGB
ηr2sðr − rsÞ

þOððr − rsÞ0Þ: ð6:45Þ

This means that, in the vicinity of the BH horizon, the left-
hand side of Eq. (6.40) behaves as

16h1α2GB
ηr2sðr − rsÞ

þOððr − rsÞ0Þ; ð6:46Þ

which does not vanish. Hence, for Q ¼ 0, we do not have a
BH solution endowed with scalar hair. This conclusion
agrees with the one reached in Ref. [44].

2. Q ≠ 0

ForQ ≠ 0, it is possible to realize a solution with a finite
value of ϕ0 on the BH horizon. Applying the expansions
(5.9) and (5.10) of f and h to Eq. (6.43), the divergence of
ϕ0 can be avoided for

Q ¼ −4αGB
ffiffiffiffiffiffiffiffiffiffi
f1h1

p
: ð6:47Þ

Then, the scalar-field derivative at r ¼ rs takes a finite
constant value,

ϕ0ðrsÞ ¼ −
2αGB½ð2h21 − h2Þf1 − 3h1f2�

ηf1h1r2s
; ð6:48Þ

so that XðrsÞ ¼ 0. The hairy BH solution in Refs. [36,37],
whose existence was studied in both perturbative and
numerical approaches, corresponds to the nonvanishing
value of Q given by Eq. (6.47). Here, we follow the
perturbative approach valid in the regime of small Gauss-
Bonnet couplings. Substituting Eq. (6.47) into Eq. (6.43)
and taking the limit αGB → 0, we obtain the no-hair
solution ϕ0 ¼ 0. In this limit, Eqs. (6.40) and (6.41) show
that the corresponding background geometry is the
Schwarzschild spacetime. For small Gauss-Bonnet cou-
plings, we expand f, h, and ϕ0 in terms of the dimension-
less constant α̂GB ≡ αGB=ðm2MPlÞ, as

fðrÞ ¼
�
1 −

2m
r

��
1þ

X∞
j¼1

f̂jðrÞðα̂GBÞj
�
2

;

hðrÞ ¼
�
1 −

2m
r

��
1þ

X∞
j¼1

ĥjðrÞðα̂GBÞj
�−2

;

ϕ0ðrÞ ¼
X∞
j¼1

ϕ0
jðrÞðα̂GBÞj; ð6:49Þ

where m is constant and f̂j, ĥj, ϕ0
j are functions of r. We

substitute the ansatz (6.49) into Eqs. (6.40), (6.41), (2.9)
with (6.42) and solve them at each order of α̂GB up to the
second order (j ¼ 2). Although the position of the BH
horizon corresponds to r ¼ 2m, as we will see below, the
Arnowitt-Deser-Misner (ADM) mass is different from 2m
due to the contribution of Gauss-Bonnet couplings.
At first order in α̂GB, the resulting solutions are expressed

in the forms

f̂1ðrÞ ¼ −
C2

r − 2m
þ C3; ĥ1ðrÞ ¼

C2

r − 2m
;

ϕ0
1ðrÞ ¼

16m4MPl þ r3ηC4

r4ðr − 2mÞη ; ð6:50Þ

where C2, C3, and C4 are integration constants. We set
C3 ¼ 0 by a suitable time reparametrization. We also
impose the regularity of perturbative solutions at
r ¼ 2m, which yields C2 ¼ 0 and C4 ¼ −2mMPl=η.
Thus, the first-order solutions are given by

f̂1ðrÞ ¼ ĥ1ðrÞ ¼ 0;

ϕ0
1ðrÞ ¼ −

2mMPlðr2 þ 2mrþ 4m2Þ
ηr4

: ð6:51Þ

Up to this order, the field derivative on the horizon
is ϕ0ðrsÞ ¼ −3αGB=ð2ηm3Þ. Indeed, substituting the
zeroth-order metric components f1 ¼ h1 ¼ 1=ð2mÞ and
f2 ¼ h2 ¼ −1=ð4m2Þ with rs ¼ 2m into Eq. (6.48), we
obtain the same value of ϕ0ðrsÞ at first order in αGB.

MINAMITSUJI, TAKAHASHI, and TSUJIKAWA PHYS. REV. D 105, 104001 (2022)

104001-14



At the second order in αGB, the solution is given by

f̂2ðrÞ ¼
mð1600m5 þ 416m4r − 56m3r2 − 548m2r3 − 294mr4 − 147r5Þ

120ηr6
;

ĥ2ðrÞ ¼ −
mð7360m5 þ 3488m4rþ 1624m3r2 − 228m2r3 − 174mr4 − 147r5Þ

120ηr6
;

ϕ0
2ðrÞ ¼ 0; ð6:52Þ

where the integration constants have been fixed by using
the time reparametrization invariance for f̂2ðrÞ and by
imposing the regularities of ĥ2ðrÞ and ϕ0

2ðrÞ at r ¼ 2m. At
large distances (r ≫ 2m), f, h, and ϕ0 up to Oðα2GBÞ are
expressed in the forms

fðrÞ ¼ 1 −
2M
r

þOðr−2Þ;

hðrÞ ¼ 1 −
2M
r

þOðr−2Þ;

ϕ0ðrÞ ¼ −
C
r2

þOðr−3Þ; ð6:53Þ

where

M ¼ mþ 49α2GB
40m3M2

Plη
; C ¼ 2αGB

mη
: ð6:54Þ

Here, M and C correspond to the ADM mass and scalar
charge, respectively [36,37]. Since both M and C are
determined solely bym, the scalar charge C is of secondary
type. Substituting the leading-order metric components
f1 ¼ h1 ¼ 1=ð2mÞ into Eq. (6.47), we obtain Q ¼
−2αGB=m and hence Q ¼ −ηC.
In Ref. [37], it was shown that the perturbative solutions

(6.49) with Eqs. (6.51) and (6.52) exhibit very good
agreement with full numerical results. Moreover, since
the numerical BH solution could be constructed only for
smaller couplings jα̂GBj ≪ Oð0.1Þ [36,37], the perturbative
solutions (6.49) with Eqs. (6.51) and (6.52) should be valid
for all the coupling regimes in which the BH solutions
exist. Also, by repeating the above procedure, one can
compute the perturbative expansion of the solution to an
arbitrary order. One can verify that only the even-order
terms (j ¼ 2; 4; 6;…) of metric components and the odd-
order (j ¼ 1; 3; 5;…) terms of scalar field are nontrivial.
On using these solutions, the radial component of Jμ, up to
the order of α̂GB, is given by

r2
ffiffiffi
f
h

r
Jr ¼ −2mMPlα̂GB þOðα̂3GBÞ: ð6:55Þ

Indeed, the leading-order term on the right-hand side of
Eq. (6.55) also follows by substituting Q ¼ −2αGB=m into

Eq. (2.12). The nonvanishing value of Jr gives rise to a
divergent norm of the Noether current J2 ¼ ðJrÞ2=h on the
horizon (h ¼ 0). As we already mentioned, the components
of the energy-momentum tensor and curvature invariants
remain finite. As stated in Ref. [60], the divergence of J2

does not give rise to pathologies on the BH properties at
least in this case. According to these arguments, the hairy
BHs discussed above should be dealt as physical solutions.
We then study stability of the hairy solution (6.49) with

Eqs. (6.51) and (6.52) against odd- and even-parity
perturbations. The quantities relevant to stability in the
odd-parity sector yield

F ¼ M2
Pl þM2

Pl
16ð36 − 2r̂ − r̂2 − 2r̂3Þ

ηr̂6
α̂2GB

þOðα̂4GBÞ; ð6:56Þ

G ¼ M2
Pl þM2

Pl
16ð4þ 2r̂þ r̂2Þ

ηr̂6
α̂2GB þOðα̂4GBÞ; ð6:57Þ

H ¼ M2
Pl þM2

Pl
16ðr̂3 − 8Þ

ηr̂6
α̂2GB þOðα̂4GBÞ; ð6:58Þ

where we have introduced the dimensionless radial coor-
dinate r̂≡ r=m. Provided that jα̂GBj=

ffiffiffiffiffijηjp
≪ 1, the terms

of order α̂2GB in F , G, and H are suppressed relative to the
leading-order contribution M2

Pl throughout the horizon
exterior (2 < r̂ < ∞). This means that, under the validity
of the expansion with respect to α̂GB, i.e.,

jαGBj
m2MPl

ffiffiffiffiffijηjp ≪ 1; ð6:59Þ

the stability conditions against odd-parity perturbations
(F > 0, G > 0, and H > 0) are satisfied.
The quantity associated with the no-ghost condition of

even-parity perturbations yields

K ¼ M2
Pl
2ð4þ 2r̂þ r̂2Þ2

ηr̂6
α̂2GB þOðα̂4GBÞ: ð6:60Þ

Thus, K > 0 is satisfied as long as
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η > 0: ð6:61Þ

The squared sound speeds of even-parity perturbations
along the radial direction are given by

c2r1;even ¼ 1þ 32ðr̂ − 2Þðr̂2 þ 3r̂þ 8Þ
ηr̂6

α̂2GB

þOðα̂4GBÞ; ð6:62Þ

c2r2;even ¼ 1þOðα̂4GBÞ: ð6:63Þ

We note that, in order to obtain Eq. (6.62), one has to solve
the background metric components and scalar field (6.49)
up to the quartic and cubic orders of α̂GB (i.e., j ¼ 4 and
j ¼ 3) respectively, though we do not show the explicit
forms of these higher-order corrections. The squared sound
speeds of even-parity perturbations along the angular
directions are

c2Ω;� ¼ 1� 24

r̂3

ffiffiffi
2

η

s
jα̂GBj þ

8ð84þ 2r̂þ r̂2 − r̂3Þ
ηr̂6

α̂2GB

þOðα̂3GBÞ: ð6:64Þ

Under the condition (6.59), the corrections to the sound
speeds arising from the Gauss-Bonnet coupling are much
smaller than unity throughout the horizon exterior, so that
c2r1;even ≃ 1, c2r2;even ≃ 1, and c2Ω;� ≃ 1. Thus, in the small-
coupling regime, the hairy BH solutions discussed above
suffer from neither ghost nor Laplacian instabilities.

VII. CONCLUSIONS

In this paper, we addressed the stability of hairy BHs in
shift-symmetric Horndeski theories against linear pertur-
bations on a static and spherically symmetric background.
We assumed that the background scalar field is time
independent, but did not necessarily impose the asymptotic
flatness at spatial infinity. Moreover, we allowed the
possibility that the coupling functions are nonanalytic
functions of X. In such cases, the no-hair theorem of
BHs in shift-symmetric Horndeski theories established in
Ref. [21] can be avoided, so that there are several classes of
hairy BH solutions. If we require that the norm of the
Noether current Jμ associated with the shift symmetry of
the scalar field is finite on the horizon, the radial current
component Jr ¼ hϕ0J vanishes everywhere. Provided J is
finite in the limit of ϕ0 → 0, there is a branch of non-
vanishing field derivative (ϕ0 ≠ 0) besides a trivial GR
solution (ϕ0 ¼ 0).
The linear perturbations about the static and spherically

symmetric background can be decomposed into those of
the odd- and even-parity sectors. We clarified the con-
ditions for the absence of ghosts and Laplacian instabilities
along the radial and angular directions, which are

summarized in Table I at the end of Sec. III. In Sec. IV,
we applied these conditions to the GR branch ϕ0 ¼ 0 and
showed that there are no ghost/Laplacian instabilities under
the conditions (4.6) and (4.9).
In Sec. V, we studied the linear stability of hairy BH

solutions in reflection-symmetric theories containing two
arbitrary functions G2ðXÞ and G4ðXÞ. We employed the
expansions (5.9)–(5.11) around the BH horizon to see
whether all the conditions in Table I can be consistently
satisfied. As we see in Eq. (5.13), the product of three
quantities F , K, and B2 is negative around the horizon so
long as the conditions in Eq. (5.14) are satisfied. Therefore,
three of the stability conditions, i.e., F > 0, K > 0, and
B2 > 0 cannot be satisfied at the same time in general. For
instance, even if we require the absence of Laplacian
instabilities along the radial direction in the odd modes
(F > 0) and of ghosts in the even modes (K > 0), we have
B2 < 0, and correspondingly there would be Laplacian
instabilities along the angular directions in the even modes.
In this sense, the instability found here is generic and
almost all hairy BHs in the shift- and reflection-symmetric
Horndeski theories are shown to be linearly unstable. We
note that a BH solution with X < 0 at the BH horizon
cannot be extended to the interior of the BH horizon and
can be defined only in the domain outside the horizon
where the character of the scalar field is spacelike, as
otherwise the coordinate invariant X would have an
unphysical jump across the horizon. Thus, BH solutions
with X ≠ 0 at the horizon suffer from instabilities only in
the domain outside the BH horizon where the character of
the scalar field is spacelike. Similarly, a static and spheri-
cally symmetric solution with X < 0 at the cosmological
horizon (if it exists) could not be extended to the exterior of
the cosmological horizon. As specific examples, this
generic instability is present for exact BH solutions in
theories with G4 ⊃ X and in those with G4 ⊃ ð−XÞ1=2. We
also showed that, in k-essence theories given by the
Lagrangian L ¼ G2ðXÞ þ ðM2

Pl=2ÞR, the corresponding
BH solution is plagued by a strong coupling problem.
In Sec. VI, we investigated the linear stability of BH

solutions in nonreflection-symmetric theories containing
either G3ðXÞ or G5ðXÞ. For cubic Galileons characterized
by the function G3 ∝ X, we found the existence of non-
asymptotically flat solutions satisfying all the conditions
for the absence of ghosts/Laplacian instabilities. In this
case, the angular propagation speed squared of scalar-field
perturbations is vanishing at spatial infinity. In order to see
whether this induces a strong coupling problem or not, the
analysis of nonlinear perturbations is required. For quintic
power-law couplings G5 ∝ ð−XÞp with p ≥ 1, it turned out
to be difficult to realize stable BH solutions with nontrivial
scalar hair. In the case of the scalar field linearly coupled to
the Gauss-Bonnet curvature invariant, which is described
by the coupling G5 ∝ αGB ln jXj, we showed that asymp-
totically flat BH solutions constructed perturbatively with
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respect to a small coupling αGB are free of ghosts/Laplacian
instabilities. This is a specific example in which asymp-
totically flat BH solutions with nontrivial scalar hair can be
realized in the framework of shift-symmetric Horndeski
theories.
We thus narrowed down the range of viable BH solutions

by scrutinizing the linear stability conditions including the
angular propagation of even-parity perturbations. It will be
of interest to study further whether what kinds of hairy BHs
survive as stable solutions in full Horndeski theories or in a
broader framework of degenerate higher-order scalar-tensor
theories [75–80]. This issue is left for future work.
While we have focused on the linear stability of static

and spherically symmetric solutions, we expect that our
results should still be valid for more general BH solutions
in Horndeski theories where the deviation from staticity
and/or spherical symmetry is small, for instance for slowly
rotating solutions (see e.g., [32,36,81–84]) or for static BHs
with the small deviation from spherical symmetry (if they
exist). In such cases, we can treat the deviation from
staticity and/or spherical symmetry as small perturbations
to our case, which would not modify our main results
significantly. On the other hand, the perturbative treatment
no longer applies to BH solutions with the large deviation
from staticity and/or spherical symmetry, e.g., rapidly
rotating BHs which have been explored in the context of
Einstein-scalar-Gauss-Bonnet theory (see e.g., [85–90]) but
(to our knowledge) not fully yet in other Horndeski classes.
In this case, we have to develop a new theoretical scheme of
BH perturbations to clarify whether results similar to the
case of static and spherically symmetric BHs hold.
Nevertheless, we speculate that, irrespective of the presence
of rotation and/or deviation from the spherical symmetry,
BH solutions with the nonvanishing constant kinetic term
on the (either BH or cosmological) horizon cannot be
extended across the horizon, as otherwise they admit an
unphysical jump of X and suffer from similar ghost/
Laplacian instabilities discussed in this paper. We hope
to come back to these issues in future.
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APPENDIX: EXPLICIT FORM
OF THE COEFFICIENTS

Here, we define the functions appearing in the main
text. For the background, the quantities A1;…; A5 in
Eqs. (2.5)–(2.7) are given by

A1 ¼ −h2G3;Xϕ
02;

A2 ¼ 4h2ϕ0ðhG4;XXϕ
02 −G4;XÞ;

A3 ¼ h2G5;Xð3h − 1Þϕ02 − h4G5;XXϕ
04;

A4 ¼ 2h2G4;XXϕ
04 − 4hG4;Xϕ

02 − 2G4;

A5 ¼ −
1

2
½G5;XXh3ϕ05 − hð5h − 1ÞG5;Xϕ

03�: ðA1Þ

For the perturbations, the quantity a1 in Eq. (3.11) is
defined by

a1 ¼
ffiffiffiffiffiffi
fh

p
2

½G3;Xhϕ02r2 þ 4ðG4;X −G4;XXhϕ02Þhϕ0r

þG5;XXh3ϕ04 −G5;Xhð3h − 1Þϕ02�: ðA2Þ

The definitions of c2 and c4 in Eq. (3.14) are

c2 ¼ ϕ0 ffiffiffiffiffiffi
fh

p �
1

2
ðG2;X −G2;XXhϕ02Þr2 − ðrf0 þ 4fÞhrϕ0

4f
ð3G3;X − G3;XXhϕ02Þ

−
hðrf0 þ fÞ

f
ð3G4;X − 6G4;XXhϕ02 þ G4;XXXh2ϕ04Þ þG4;X −G4;XXhϕ02

þ f0hϕ0

4f
½3G5;Xð5h − 1Þ − G5;XXhð10h − 1Þϕ02 þ G5;XXXh3ϕ04�

�
; ðA3Þ

c4 ¼
ϕ0

4

ffiffiffi
h
f

s �
2G3;Xfϕ0 þ 2ðrf0 þ 2fÞ

r
ðG4;X −G4;XXhϕ02Þ − f0hϕ0

r
ð3G5;X −G5;XXhϕ02Þ

�
: ðA4Þ

The functions B1 and B2 in Eq. (3.18) are given by
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B1¼
r3

ffiffiffiffiffiffi
fh

p
H½4hðϕ0a1þ r

ffiffiffiffiffiffi
fh

p
HÞβ1þβ2−4ϕ0a1β3�−2fhG½r ffiffiffiffiffiffi

fh
p ð2P1−F ÞHð2ϕ0a1þ r

ffiffiffiffiffiffi
fh

p
HÞþ2ϕ02a21P1�

4fhð2P1−F ÞHðϕ0a1þ r
ffiffiffiffiffiffi
fh

p
HÞ2 ; ðA5Þ

B2 ¼ −r2
r2hβ1½2fhFGðϕ0a1 þ r

ffiffiffiffiffiffi
fh

p
HÞ þ r2β2� − r4β2β3 − fhFGðϕ0fhFGa1 þ 2r3

ffiffiffiffiffiffi
fh

p
Hβ3Þ

fhϕ0a1ð2P1 − F ÞF ðϕ0a1 þ r
ffiffiffiffiffiffi
fh

p
HÞ2 ; ðA6Þ

with

β1 ¼
1

2
ϕ02 ffiffiffiffiffiffi

fh
p

He4 − ϕ0ð
ffiffiffiffiffiffi
fh

p
HÞ0c4 þ

ffiffiffiffiffiffi
fh

p
2

��
f0

f
þ h0

h
−
2

r

�
Hþ 2F

r

�
ϕ0c4 þ

fFG
2r2

; ðA7Þ

β2 ¼
� ffiffiffiffiffiffi

fh
p

F
r2

�
2hrϕ02c4 þ

rϕ0f0
ffiffiffi
h

p

2
ffiffiffi
f

p H − ϕ0 ffiffiffiffiffiffi
fh

p
G
�
−
ϕ0fhGH

r

�
G0

G
−
H0

H
þ f0

2f
−
1

r

��
a1 −

2

r
ðfhÞ3=2FGH; ðA8Þ

β3 ¼
ffiffiffiffiffiffi
fh

p
H

2
ϕ0
�
hc04 þ

1

2
h0c4 −

d3
2

�
−

ffiffiffiffiffiffi
fh

p
2

�
H
r
þH0

��
2hϕ0c4 þ

ffiffiffiffiffiffi
fh

p
G

2r
þ f0

ffiffiffi
h

p
H

4
ffiffiffi
f

p
�

þ
ffiffiffiffiffiffi
fh

p
F

4r

�
2hϕ0c4 þ

3
ffiffiffiffiffiffi
fh

p
G

r
þ f0

ffiffiffi
h

p
H

2
ffiffiffi
f

p
�
; ðA9Þ

and

e4 ¼
1

ϕ0 c
0
4 −

f0

4fhϕ02 ð
ffiffiffiffiffiffi
fh

p
HÞ0 −

ffiffiffi
f

p

2ϕ02 ffiffiffi
h

p
r
G0 þ 1

hϕ0r2

�
ϕ00

ϕ0 þ
1

2

h0

h

�
a1

þ
ffiffiffi
f

p

8
ffiffiffi
h

p
ϕ02

�ðf0r − 6fÞf0
f2r

þ h0ðf0rþ 4fÞ
fhr

−
4fð2ϕ00hþ h0ϕ0Þ
ϕ0h2rðf0r − 2fÞ

�
Hþ h0

2hϕ0 c4

þ f0hr − f

2r2
ffiffiffi
f

p
h3=2ϕ02 F þ

ffiffiffi
f

p
2rϕ02h3=2

�
fð2ϕ00hþ h0ϕ0Þ
hϕ0ðf0r − 2fÞ þ 2f − f0hr

2fr

�
G; ðA10Þ

d3 ¼ −
1

r2

�
2ϕ00

ϕ0 þ h0

h

�
a1 þ

f3=2h1=2

ðf0r − 2fÞϕ0

�
2ϕ00

hϕ0r
þ f02

f2
−
f0h0

fh
−
2f0

fr
þ 2h0

hr
þ h0

h2r

�
H

þ
ffiffiffi
f

p

ϕ0 ffiffiffi
h

p
r2
F −

f3=2ffiffiffi
h

p ðf0r − 2fÞϕ0

�
f0

fr
þ 2ϕ00

ϕ0r
þ h0

hr
−

2

r2

�
G: ðA11Þ
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