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Single-field inflationary models that seek to greatly enhance small-scale power in order to form primordial
black holes predict both a squeezed bispectrum that is enhanced by this small-scale power and a potentially
detectable enhancement of cosmic microwave background (CMB) spectral distortions. Despite this
combination, spectral distortion anisotropy on CMB scales remains small since the squeezed bispectrum
represents an unobservable modulation of the scale rather than local amplitude for the short-wavelength
acoustic power that dissipates and forms the μ spectral distortion. The leading-order amplitude effect comes
from the local modulation of acoustic dissipation at the beginning of the μ epoch at the end of thermalization
by a long-wavelength mode that is correlated with CMB anisotropy itself. Compensating factors from the
suppression by the square of the ratio the comoving horizon at thermalization to the smallest detectable
primary CMB scales (∼0.0005) and maximal allowed enhancement of μ (∼5000) leaves a signal in the μT
cross spectrum that is still well beyond the capabilities of PIXIE or LiteBIRD space missions due to
sensitivity and resolution while remaining much larger than in single-field slow-roll inflation and potentially
observable.
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I. INTRODUCTION

There has been much recent interest in primordial black
holes (PBHs) from an extremely large enhancement of
small-scale fluctuations during inflation (e.g., [1–19])
given their potential to explain dark matter and the binary
black hole mergers detected by LIGO-Virgo [20–25].
Moreover, primordial fluctuations on scales much smaller
than those probed by the cosmic microwave background
(CMB) and large-scale structure are currently relatively
poorly constrained [26–29].
Spectral distortions in the CMB are one way to constrain

primordial power on small scales. After the thermalization
epoch where photon number changing processes in the
plasma drop out of equilibrium, the energy dissipated in
small-scale acoustic waves leaves observable distortions in
the frequency spectrum [30–34]. The amplitude of these
acoustic waves is itself enhanced if the PBH scale is not much
smaller than the dissipation scale at the end of thermalization.
The current bounds for chemical potential or μ distortions
from COBE Far Infrared Absolute Spectrophotometer
(FIRAS) already place strong bounds on such models and
rule out PBHs as a significant fraction of the dark matter
between 104 and 1013 M⊙ [35,36].
While current spectral distortion limits can be greatly

improved with future space-based spectrometers [37,38], an
absolute measurement is limited by contamination from
foregrounds and systematics in addition to instrument

sensitivity. Anisotropy in spectral distortions, if they are
large and correlated with CMB anisotropy in temperature
and polarization, provides a promising complementary
approach that uses cross-correlation and differential meas-
urement to mitigate these issues [39–45].
These correlations can arise if the amplitude of small-scale

power is modulated by long-wavelength fluctuations due to
the squeezed bispectrum. However, in single-field slow-roll
inflation, the squeezed bispectrum obeys the Maldacena
consistency relation [46], where long-wavelength curvature
fluctuations modulate the scale and not the amplitude of the
small-scale power spectrum. Moreover, this scale modula-
tion is unobservable locally since a coordinate system
established using clocks and rulers locally cannot reference
the global coordinate system in which the long-wavelength
mode is embedded [47]. Since spectral distortions depend
only on the amount of power dissipated and not the globally
referenced comoving scale from which it originates, single-
field slow-roll inflation does not produce spectral distortion
anisotropy at leading order [39,43].
Recently it has been suggested that single-field PBH

models may violate the conditions that make the spectral
distortion anisotropy vanish at leading order in the
squeezed bispectrum [48,49]. All such PBH models must
violate the slow-roll assumption in order to enhance small-
scale power sufficiently rapidly [9]. Proposed PBH models
typically have a period of nonattractor behavior which
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causes a violation of the Maldacena consistency relation for
long-wavelength modes that exit the horizon sufficiently
close to or in the nonattractor phase [13,50–52].
In this work we show that for scales relevant for

correlation with CMB anisotropy, which are much, much
larger than the horizon at the onset of the nonattractor
phase, the Maldacena consistency relation holds in this
limit and spectral distortion anisotropy is suppressed by the
square of the ratio between the long-wavelength scale and a
characteristic short-wavelength scale. Nevertheless, these
suppressed effects can still be much larger than they are in
slow-roll inflation [43] and appear mainly due to the
modulation of the dissipation scale at the end of thermal-
ization by the long-wavelength mode.
The outline of this paper is as follows. In Sec. II, we

review a nonattractor “ultraslow-roll” mechanism for
enhancing small-scale power during inflation and discuss
the modulation of short-wavelength modes by long-
wavelength modes in the form of the consistency relation.
For the relevant long-wavelength scales we show that the
usual Maldacena consistency relation holds and, in the
Appendix, we explicitly verify that once combined with
its impact on short-wavelength acoustic evolution, the
zeroth-order effect of the long-wavelength mode is a
dilation of scales that is unobservable locally. In Secs. IV
and V, we calculate the leading-order effect of the long-
wavelength density fluctuation on the local amplitude of
acoustic oscillations and their dissipation at the end of
thermalization, respectively. We discuss the implications
of this modulation on spectral distortion anisotropy in
Sec. V. In Sec. VII, we assess the prospects for detecting
this signal and discuss these results in Sec. VIII.

II. ULTRASLOW-ROLL CONSISTENCY
RELATION

A common, albeit tuned, aspect of many inflationary
models that enhance the small-scale curvature power
spectrum by the orders of magnitude that would be required
to later form PBHs in the radiation-dominated epoch is a
transient period of so-called ultraslow roll (USR) [53].
During USR, the inflaton ϕ rolls faster than can be
sustained by the slope of its potential VðϕÞ,

����
dϕ
dN

���� ≫
����
V 0ðϕÞ
H2

����; ð1Þ

where H ¼ d ln a=dt ¼ dN=dt is the Hubble parameter
andN is the e-fold. This excess kinetic energy can arise, for
example, from a very flat potential around an inflection
point (e.g., Ref. [2]) or from a sudden increase in kinetic
energy due to a downward feature in the potential [18].
In either case, the excess kinetic energy of the field
then redshifts away as ϵM2

Pl ≡ ðdϕ=dNÞ2=2 ∝ a−6 and
the curvature fluctuation in unitary gauge grows as

ζ ¼ −δϕ=ðdϕ=dNÞ ∝ a3 once it crosses the horizon.
Here MPl ¼ ð8πGÞ−1=2 is the reduced Planck mass.
Modes that were already outside the horizon at the

beginning of the USR phase also experience growth to the
extent that they have not completely frozen out. Following
the treatment in Ref. [13], the formal solution for the
evolution of ζ

dζ
dN

¼ −
1

a3ϵH

�Z
dNa3

�
k
aH

�
2

ðϵHÞζ þ const

�
ð2Þ

shows that during the preceding slow-roll (SR) phase where
ϵ is slowly varying superhorizon curvature fluctuations
evolve to a constant as d ln ζ=dN ≈ −ðk=aHÞ2. Once USR
begins the term in brackets becomes constant and dζ=dN ∝
a3 and so the value of ðk=aHÞ2USR, where the subscript
denotes the beginning of the USR epoch, determines the
growth of these modes. Given the opposite sign of
d ln ζ=dN during SR, there is a mode for which this growth
is just sufficient to overcome the initially constant SR piece
and cause a near zero crossing in the curvature power
spectrum at k ¼ kdip where

�
kdip
aH

�
2

USR
∼ e−3ΔNUSR ; ð3Þ

and ΔNUSR is the number of e-folds in the USR phase. For
example, for the∼107 enhancement of power typical to PBH
models ΔNUSR ≈ lnð107Þ=6 and so kdip ∼ 10−2ðaHÞUSR.
Note that these scalings also imply that the enhancement
in power for kdip < k≲ ðaHÞUSR scales as k4 [12]. Thus the
curvature power spectrum for k≲ ðaHÞUSR can be para-
metrized as

Δ2
ζðkÞ≡ k3PζðkÞ

2π2
¼ Δ2

SRðkÞ
�
1 −

�
k
kdip

�
2
�
2

; ð4Þ

where Δ2
SR is the SR power spectrum which we take for

simplicity to be a pure power law

Δ2
SRðkÞ ¼ As

�
k

0.05 Mpc−1

�
ns−1

; ð5Þ

with As ¼ 2.1 × 10−9 and ns ¼ 0.965 consistent with
CMB measurements [54]. Note that this form can be
derived more rigorously in specific models and it holds to
leading order in the downward step PBH model [see
Ref. [19] Eq. (39)]. For k≳ ðaHÞUSR the result becomes
dependent on the specific PBH model but for the modes
relevant for spectral distortions that satisfy current obser-
vational constraints Eq. (4) suffices.
In Fig. 1, we show the power spectrum (4) for

kdip ¼ 681 Mpc−1, which we shall see below in Fig. 2 is
the largest scale allowed by current constraints on spectral
distortions which arise from the power near the dissipation
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scale at end of thermalization kDðzthÞ ≈ 104 Mpc−1. Notice
the large hierarchy of scales between these values and the
smallest scale accessible to measurements of the primary
CMB anisotropy kL ∼ 0.1 Mpc−1 due to the dissipation
scale at recombination.
The wave number kdip separates two very different

regimes for the impact of long-wavelength fluctuations on
much shorter wavelength power or equivalently the
squeezed bispectrum. For a long wavelength kL ≪ kdip
the squeezed bispectrum obeys the usual Maldacena
consistency relation [46]

lim
kL=kS→0

BζðkL; kS; kSÞ ¼ −
�
d lnΔ2

ζðkSÞ
d ln kS

þO
�
kL
kdip

�
2
�

× PζðkLÞPζðkSÞ; ð6Þ

which can be demonstrated by explicit calculations using
the in-in or δN formalisms [13]. The interpretation of this
relation is that the scale of the short-wavelength modes is
dilated by the nearly constant long-wavelength curvature
perturbation, which acts as a spatial fluctuation in the local
scale factor

Δ2
ζðkS; yÞ ≈ Δ2

ζðkSð1 − ζLðyÞÞ

≈ Δ2
ζðkSÞ

�
1 −

d lnΔ2
ζðkSÞ

d ln kS
ζLðyÞ

�
; ð7Þ

where local spatial variations are denoted by the comov-
ing coordinate y. Notice that the amplitude of the power
spectrum does not actually change locally, just the
comoving scale that the power is associated with.
Physically, the long-wavelength mode just changes the
e-fold at which the short-wavelength mode enters into
USR, not any of the dynamics due to the USR growth. As
shown in Ref. [43] this change in scale cannot modulate
spectral distortions, which depend only on the amplitude
of the power dissipated, not the scale. In the Appendix we
explicitly verify that a constant ζL generates a locally
unobservable dilation for both the primordial non-
Gaussianity and the subsequent dynamics of short-wave-
length modes to second order in perturbations.
For kL ≳ kdip, the leading effect of the long-wavelength

mode is not simply a dilation of scales and hence the
consistency relation (6) no longer holds [50,51]. Physically,
the inflaton field fluctuation of the long-wavelength mode
changes the number of e-folds that the short-wavelength
mode experiences USR since there is no longer an attractor
solution that makes it equivalent to a shift along the
background phase space trajectory [13]. For example, a
constant backward fluctuation of the field means that
locally the short-wavelength modes see more e-folds of
USR growth and so the actual amplitude of the small-scale
power spectrum is modulated by the long-wavelength
mode. This then would produce a spatial modulation in
spectral distortions.
We shall see that for modes relevant for correlation with

CMB anisotropy and models that satisfy spectral distortion
constraints, kL ≪ kdip. Even in this regime, there is always
some dynamical effect of short-wavelength growth in the
long-wavelength field to the extent that ζL ≠ const. As we
have seen, here the evolving part of ζL during USR is
suppressed by k2L=k

2
dip. This expectation is consistent with an

explicit calculation of the leading-order correction the
Maldacena consistency relation given in Eq. (6) in an
inflection point PBH model [13]. However, since again

FIG. 1. The PBH curvature power spectrum Δ2
ζðkÞ for a USR

enhancement starting at kdip ¼ 681 Mpc−1 which provides the
largest spectral distortion still allowed (see Fig. 2). Vertical lines
show kL ¼ 0.1 Mpc−1 (of order the largest k mode probed by the
CMB), ðaHÞth the comoving size of the horizon at the end of
thermalization, kdip, and the dissipation wave number at the end
of thermalization kDðzthÞ. The slow-roll power-law extrapolation
Δ2

SR is also shown for reference.

FIG. 2. The average spectral distortion μ̄ for various PBH
enhancement scales kdip [see Eq. (4)]. Values of kdip < kmin are
excluded by the FIRAS bound of μ̄ ≤ 9 × 10−5 whereas allowed
values that lead to enhancement over the slow-roll prediction of
μ̄ ≈ 2 × 10−8 follow μ̄ ∝ k−4dip.
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the relevant kL ≪ kdip this correction produces a very small
μT correlation (see Fig. 1 and Sec. VI).

III. LOCAL EXPANSION

After inflation, there are ðkL=aHÞ2 suppressed modu-
lations of short-wavelength physics by the long-wavelength
curvature fluctuations ζL, analogous to the corrections to
the primordial bispectrum from kdip ∝ ðaHÞUSR in the
previous section. To the local observer, the long-wave-
length mode appears as a change to the background
cosmology induced by the density perturbation that it
carries. Since synchronous observers are freely falling test
particles, we can absorb these synchronous gauge adiabatic
density fluctuations δL [55,56],

δL ¼ 1

3

�
k
aH

�
2

ζL ∝ a2 ð8Þ

during radiation domination into a new background or
“separate universe.”
Following the construction of the separate universe for

the late time growth of structure [57,58], we can define a
local background density ρ̄L as

ρ̄ð1þ δLÞ ¼ ρ̄L; ð9Þ

which implies that the local observer sees a scale factor aL,
such that ρ̄L ∝ a−4L , that is related to the global scale factor
a at equal times as

aL ≈ að1 − δL=4Þ; ð10Þ

where we have chosen the normalization such that aL → a
at early times and made use of the fact that synchronous
gauge observers in the global universe measure time in the
same way as local observers. Notice that this normalization
removes the dilation effect of ζL in Eq. (7) by measuring
scales locally so that they coincide when δL ≪ 1 at the end
of inflation.
By virtue of this normalization and conservation of

particles, at the same numerical value of the scale factors
(or e-folds) from the end of inflation in the local and global
universe, all particle number and energy densities are the
same. However, the scale factors do not coincide at the
same time in the local and global universe.
To extract the cosmological parameters of the separate

universe, we can express the expansion rate as a function of
the local scale factor. With the definition HL ≡ d ln aL=dt
and the radiation-dominated growth of δL ∝ a2 we have at
equal times

H2
L ≈H2ð1 − δLÞ: ð11Þ

In the global universe let us define a reference epoch ar in
the radiation-dominated limit where H2ðaÞ ¼ H2

rðar=aÞ4

so that we can express the local expansion rate in terms of
the local scale factor as

H2
L ¼ H2

r

�
ar
a

�
4

ð1 − δLÞ ≈H2
r

�
ar
aL

�
4

ð1 − 2δLÞ: ð12Þ

In the local universe this takes the form of the Friedmann
equation with δL ∝ a2 ≈ a2L playing the role of spatial
curvature to linear order in δL, specifically

H2
0ΩKL ¼ −2δLðarÞH2

ra2r ; ð13Þ

so that δLðarÞ at the reference epoch defines the comoving
curvature scale in units of the comoving Hubble scale
at that epoch. Finally it is useful to express the local
conformal time as

ηL ¼
Z

d ln aL
aLHL

≈
aL
ar

1

arHr

�
1þ δL

3

�
: ð14Þ

These relations now determine the modulation of all
short-wavelength observables by a long-wavelength cur-
vature fluctuation ζL which to leading-order scales as
ðkL=aHÞ2ζL. The specific size of the modulation will then
depend on the epoch at which it influences the short-
wavelength observable the most. We shall see that, for μ
distortions and PBH models, this is the end of the
thermalization epoch.

IV. MODULATED ACOUSTIC POWER

The first step in understanding the local modulation of
spectral distortions is to determine the impact of the long-
wavelength curvature perturbation ζL on the amplitude of
short-wavelength acoustic oscillations in the CMB during
radiation domination. These oscillations then dissipate via
diffusion damping leaving a spectral distortion after the
thermalization epoch. We shall see that since acoustic
oscillations are generated at horizon crossing of the short-
wavelength mode kS, the impact of the long-wavelength
mode occurs at horizon crossing of the short-wavelength
mode aH ¼ kS and therefore scales as ðkL=kSÞ2ζL. The
impact of CMB scale wave numbers kL is therefore highly
suppressed for the modes that contribute to spectral dis-
tortions (see Fig. 1).
We can analytically understand this scaling in the simple

case where the photons dominate the radiation density, i.e.,
neglecting the effect of neutrinos which only change the
numerical factors and not the overall scaling. In this case
we can solve the perturbation equations in terms of the
continuity and Euler equations for the photon fluid under
self gravity in the photon-dominated local universe as [see
Ref. [59] Eq. (10)]
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Δ0
γ −

y0

y
Δγ ¼ −

4ffiffiffi
3

p 1 − y00=yþ 2ðy0=yÞ2
1þ 6=ðfKy2Þ

Vγ;

V 0
γ þ

y0

y
Vγ ¼

�
1 −

6

fKy2

� ffiffiffi
3

p

4
Δγ; ð15Þ

where Δγ is the comoving gauge photon density perturba-
tion, y ¼ ðΩγH2

0Þ−1=2aLkS, 0 ¼ d=dx with x ¼ kSηL=
ffiffiffi
3

p
,

and fK ¼ 1þ 3ΩKLH2
0=k

2
S. Here we have again made use

of the fact that, at the same value for the scale factor, the
physical density of the photons is the same in the local and
global universe. The synchronous and comoving gauge
differ in their density perturbations outside the horizon due
to radiation pressure so limx→0Δγ ≠ δL but they do
approach each other for x ≫ 1 in the regime relevant for
spectral distortions.
Without the curvature perturbation induced by the long-

wavelength mode, x ¼ y=
ffiffiffi
3

p
during photon domination

and the solution is analytic

lim
y→

ffiffi
3

p
x
Δγ ¼ 4

�
sin x
x

− cos x

�
ζS; ð16Þ

from which we can read off the usual transfer function1 for
acoustic oscillations −4 cos x at x ≫ 1.
We can now solve for the leading-order correction from

the small curvature induced by the long-wavelength mode.
Since we neglect neutrinos H2

r ¼ ΩγH2
0a

−4
r and we have

y ≈
ffiffiffi
3

p
x

�
1 −

δL
3

�
≈

ffiffiffi
3

p
x

�
1 −

x2

3
α

�
; ð17Þ

so that Eq. (15) becomes to leading order

Δ00
γ þ

�
1 −

2

x2
−
4

3
α

�
Δγ ¼ 0 ð18Þ

with

α≡
�
kL
kS

�
2

ζL ð19Þ

and fK ¼ 1 – 2α constant in time.
Notice that at x ≫ 1 this takes the form of an oscillator

equation with a perturbed constant frequency

x̃ ¼
�
1 −

2

3
α

�
x: ð20Þ

We can now iterate to solve Eq. (18) to first order in α using
the zeroth-order solution (16) to determine αΔγ as an
external source,

Δγ ≈ 4ζS

�
1þ 4

3
α

��
sin x̃
x̃

− cos x̃

�
: ð21Þ

We can explicitly verify that this form solves (18) and
satisfies Δγ ≈ 4ζSx2=3 in x ≪ 1 to linear order in α.
Therefore there is an α ¼ ðkL=kSÞ2ζL change in the

amplitude and frequency of the acoustic wave. Since
kL=kS ≪ 1, this is a large suppression factor and produces
a negligible change in the local spectral distortion once the
acoustic modes have dissipated. We can therefore hereafter
assume that the power in acoustic modes at kS is effectively
the same in the global and local universe at the same value
of the scale factors.

V. MODULATED THERMALIZATION

We can now compute the local dissipation of energy
from the acoustic waves into μ spectral distortions in the
separate universe. Changes in thermalization due to
the local background induce larger local variations in
μ for PBH models than the primordial effect from kdip or
the acoustic growth, since we shall see they scale with the
comoving horizon size at the end of thermalization
ðkL=aHÞ2thζL.
Let us now see how thermalization is altered by the

long-wavelength modulation in the local universe. The
thermalization rate for the joint action of double Compton
scattering e− þ γ ↔ e− þ 2γ, which changes photon num-
ber, and Compton scattering e− þ γ ↔ e− þ γ, which
redistributes energy, to establish a blackbody scales as
(see e.g., Refs. [61,62])

Γth ∝ T3=2ne ∝ a−9=2L ; ð22Þ

where ne is the free electron density and T is the plasma
temperature, and recall that at the same numerical value of
the scale factors all particle densities are the same in the
local and global universe.
Let us define the thermalization time by the condition

Z
dtΓth ¼

Z
0

ln ath

d ln aL
Γth

HL
¼ 1: ð23Þ

Using Eq. (12), the change in the e-fold of thermalization is
given by

Δ ln ath ¼ 2δLðathÞ ð24Þ

such that, in an overdensity, thermalization continues to a
later e-fold due to a slower expansion rate.
The energy in acoustic waves is dissipated when the

photon diffusion length crosses the wavelength. If this
occurs after the thermalization epoch but before the
Compton scattering becomes inefficient at redistributing
energy, then this energy is transferred into a μ spectral

1This transfer function is reduced to −4=ð1þ 4Rν=15Þ ∼ −3.61
when neutrinos with Rν ¼ ρν=ðρν þ ργÞ are included [60].
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distortion [see Eq. (31) below]. The diffusion wave number
in the radiation epoch is given by

k−2D ∝
Z

d ln a
aH

1

neσTa
; ð25Þ

where σT is the Thomson cross section [see Eq. (29) below
for the general expression]. Again let us make use of the
fact that the particle densities are the same in the local and
global universe at the same e-fold. We then get the change
in the diffusion wave number as

Δ ln kDðathÞ ¼ −
3

2
Δ ln ath −

3

10
δLðathÞ

¼ −
33

10
δLðathÞ ¼ −

11

10

�
kL
aH

�
2

th
ζL; ð26Þ

where recall that in the global universe kD ∝ a−3=2. Therefore
in an overdensity the diffusion wave number decreases. The
net result is that the maximal wave number that dissipates
into μ distortions given the same small-scale power spectrum
in local coordinates as global coordinates is modulated by
ðkL=aHÞ2thζL. Since the power spectrum is strongly blue
tilted, it is this modulation that changes the local value of μ.
This is in contrast to single-field slow-roll inflation where the
larger horizon size at the end of the μ epoch makes the
modulation at that time the dominant effect [43].

VI. SPECTRAL DISTORTION ANISOTROPY

With the local change in the thermalization and dissipa-
tion scales due to the long-wavelength curvature perturbation
as calculated in the previous section, we can now determine
how it modulates the μ spectral distortion. Because long-
wavelength curvature perturbations also generate CMB
anisotropy, this leads to a potentially observable μT corre-
lation in PBH models.
First we calculate the average spectral distortion in the

global universe with the PBH power spectrum of Eq. (4).
Following [42,43],

μ̄ ¼
Z

d ln kΔ2
ζðkÞWðkÞ; ð27Þ

where to good approximation

WðkÞ ≈ −4.54k2
Z

∞

0

dz
dk−2D
dz

J μðzÞe−2k2=k2DðzÞ: ð28Þ

Here the diffusion wave number kD is given by

k−2D ðzÞ ¼ 1

6

Z
∞

z

dz
H

1

neσTa
R2 þ 16ð1þ RÞ=15

ð1þ RÞ2 ; ð29Þ

where R ¼ 3ρb=4ργ. In the radiation-dominated epoch and
with the best fit cosmological parameters

kD ≈ 4.05 × 10−6ð1þ zÞ3=2 Mpc−1: ð30Þ

The Green’s function J μ for μ distortions is well approxi-
mated by [34]

J μðzÞ ≈
�
1 − exp

�
−
�

1þ z
5.8 × 104

�
1.88

��
Θðz − zrecÞ

× e−ðz=zthÞ5=2 ; ð31Þ

where we have included a Θ step function at recombination
zrec since below this redshift there are no acoustic waves to
dissipate. Here zth ≈ 2 × 106 is the thermalization redshift
in the global universe and the quantity in brackets of
Eq. (31) determines the gradual transition from the μ epoch
to the Compton y epoch. Notice that μ̄ receives contri-
butions from the initial inflationary power spectrum at
wave number k mainly when it crosses kD but these
contributions are sharply cut off by the thermalization
process above kDðzthÞ.
In Fig. 2 we show μ̄ as a function of kdip in Eq. (4). The

COBE-FIRAS constraint μ̄ < 9 × 10−5 (95% CL) [63]
places a limit of

kdip > kmin ≈ 681 Mpc−1 ð32Þ

and

μ̄ ≈ 9 × 10−5
�
kmin

kdip

�
4

ð33Þ

for models with kmin < kdip ≲ 5000 Mpc−1, whereas for
even larger kdip, μ̄ asymptotes to its slow-roll value of μ̄ ≈
2 × 10−8 because enhanced scales have already dissipated
by the thermalization epoch. Notice that even this smallest
allowed value of kdip is much greater than the comoving
horizon at the end of thermalization ðaHÞth ≈ 4.3 Mpc−1.
The modulation of kDðzthÞ due to the long-wavelength

mode therefore modulates the local value of μ from its
background value μ̄. Given that the PBH power spectrum
rises as approximately Δ2

ζ ∝ k4−ð1−nsÞ in the region which
can enhance μ,2 we get the fractional change in the local
value of μ as

δ ln μ ¼ ½4 − ð1 − nsÞ�Δ ln kD ≡ bth

�
kL
aH

�
2

th
ζL; ð34Þ

where from Eq. (26) bth ≈ −22=5þ 11ð1 − nsÞ=10. Note
that this approximation can be improved in the future by
numerically recalibrating the Green’s function J μ in the
separate universe so we parametrize the result as a “bias”

2For consistency with Eq. (4) we have retained 1 − ns here, but
note that any actual Oð1 − nsÞ correction to the local slope will
depend on the details of the model.

DAVID ZEGEYE, KEISUKE INOMATA, and WAYNE HU PHYS. REV. D 105, 103535 (2022)

103535-6



factor bth, similar to the slow-roll calculation of Ref. [43]
but with respect to the horizon scale at the end of
thermalization rather than the end of the μ epoch. For
example, if we assume that the functional form of J μ

remains the same and only zth changes according to
Eq. (24), then bth ≈ −4.1 for kdip ¼ kmin.
Given the level of precision in these estimates, we simply

take

bth ¼ −22=5 ð35Þ

as our fiducial bias.
Following Ref. [43], we can characterize the long-

wavelength correlation between CMB temperature
anisotropy and μ anisotropy with the angular cross power
spectrum

CμT
l ≡ μ̄bthC

μT;bth
l ; ð36Þ

where

CμT;bth
l ¼ 4π

ðaHÞ2th

Z
∞

0

dkkΔ2
ζðkÞΔμ

lðkÞΔT
lðkÞ: ð37Þ

Here ΔT
l is the CMB temperature transfer function which

we take from CAMB
3 and

Δμ
lðkÞ ¼ e−k

2=q2μ;Djlðη0 − ηrecÞ; ð38Þ

where qμ;D ≈ 0.084 Mpc−1 is the dissipation scale of μ
inhomogeneities at recombination [41].4 Notice that this
damping factor is comparable to that of the temperature
transfer function at kDðzrecÞ and in combination they limit
the integral in Eq. (36) to the long-wavelength kL values
of the CMB. It is straightforward to generalize this result
for the cross-correlation with CMB polarization with
the polarization transfer function which we leave to a
future work.
Finally, notice that the primordial deviation from the

dilation or consistency relation and the separate universe
growth of acoustic oscillations takes the same form as
Eq. (36) but are suppressed by factors of ðaH=kdipÞ2th ≲
4 × 10−5 and ðaH=kDÞ2th ≈ 10−7, respectively, and hence
provide a negligible correction to CμT

l as calculated in
Eq. (36) from the thermalization bias.

VII. SIGNAL-TO-NOISE RATIO

The μT cross power spectrum as calculated in the
previous section is enhanced in PBH models by the k4 rise

in the small-scale curvature power spectrum as long as
kdip ≪ kDðzthÞ, but also suppressed by the smallness of the
density perturbation associated with ζL at the thermal-
ization epoch ðkL=aHÞ2thζL. Consequently, unlike μT
correlations from nearly scale invariant perturbations in
multifield inflation [39–43,45], the signal-to-noise ratio is
dominated by the smallest angular scales at which the
correlation can be detected, namely the damping scale of
primary CMB anisotropy kL ∼ 0.1 Mpc−1.
To estimate the signal-to-noise ratio in μT, we take the

Gaussian approximation for μ anisotropy

�
S
N

�
2

¼
Xlmax

l¼2

ð2lþ 1Þ ðCμT
l Þ2

ðCμT
l Þ2 þ Cμμ

l CTT
l

; ð39Þ

where the Cμμ
l and CTT

l terms in the denominator include
both the sample variance of the signal and any instrumental
noise from their measurement.
Given the smallness of the μ anisotropy, Cμμ

l will be
noise dominated for the foreseeable future.5 To assess the
maximal white noise level Cμμ

l ¼ Anoise at which the signal
is barely detectable at S=N ¼ 1, we can drop the CμT

l
sample variance term in the denominator of Eq. (39) and
solve for the white noise term

Anoise ¼
Xlmax

l¼2

ð2lþ 1Þ ðC
μT
l Þ2

CTT
l

¼ b2thμ̄
2
Xlmax

l¼2

ð2lþ 1Þ ðC
μT;bth
l Þ2
CTT
l

: ð40Þ

To estimate the maximal noise level for detection, we
assume that the TT measurement is cosmic variance limited
to lmax. In Fig. 3, we show this maximal noise amplitude as
a function of lmax for the maximal signal μ̄ ¼ 9 × 10−5 and
bth ¼ −22=5. Notice that the result saturates at around
lmax ≈ 103 at a level of ∼10−23 since both T and μ
anisotropies are damped by diffusion. To constrain other
PBH models, this result can be scaled as Anoise ∝ b2thhμi2
using Eq. (33).
As this represents the maximal signal, detecting this

effect will be challenging experimentally. First, to optimize
detection, an experiment would need at least several arc
minute scale resolution since

Cμμ
l ¼ Anoisee

l2θ2
b

8 ln 2 ; ð41Þ

3https://camb.info.
4This approximation can also be refined in the future with the

Green’s function for spectral spatial anisotropy (Chluba, private
communication).

5The ultimate limit comes from the residual fluctuations from
the averaging across CMB scales of the patches that dissipate
[39,41,43], but note that in the PBH context the patches that
contribute most to μ̄ are much smaller in size than the SR
contributions at the end of the μ epoch and do not appreciably
enhance the noise.
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where θb is the full width at half maximum of the beam in
radians.
Second, the required noise level Anoise < 10−23 is quite

stringent even ignoring foregrounds and systematics. For
reference, a PIXIE-like mission [64,65] which aims to
measure μ̄ in single-field slow roll with θb ≈ 1.6°, will at
best achieve Anoise ∼ 10−15 which would suffice to constrain
a squeezed bispectrum signal from multifield inflation to
jfNLj≲ 3000 at 68% CL [39,40]. To constrain the maximal
PBH signal, one would require the equivalent sensitivity to
jfNLj < 0.3 but with a much higher angular resolution.
LiteBIRD can potentially achieve a detector sensitivity of
Anoise ≈ 10−18 but still with only ∼0.5° resolution and
subject to foreground contamination [45].

VIII. DISCUSSION

We have shown that, in spite of the large squeezed
bispectrum due to the enhancement of small-scale power in
single-field inflationary PBH models, the spectral distor-
tion anisotropy is highly suppressed since, for scales
relevant to CMB cross-correlation, it represents an unob-
servable modulation of global scales rather than the local
amplitude of the short-wavelength modes. Nonetheless the
μ anisotropy can be larger than in single-field slow-roll
inflation because of the large enhancement of small-scale
power itself. The largest effect comes from the local
modulation of the expansion rate at a given locally
measured e-fold from the end of inflation and hence the
end of the thermalization epoch. This modulation provides
a spatial variation in the amount of power in acoustic waves
dissipated near thermalization that causes a μ distortion that
is correlated with CMB anisotropy itself.
This leading-order correlation is enhanced by the k4

rise in small-scale power in PBH models but suppressed

by the square of the ratio of the comoving horizon at
end of thermalization to observable CMB scales,
ðkL=aHÞ2th ≲ 0.0005. On the other hand, the enhancement
of the average μ itself can be up to ∼5000 and still satisfy
current COBE-FIRAS bounds. These compensating fac-
tors leave the signal potentially observable but still well
beyond the capability of proposed space-based instru-
ments like PIXIE and LiteBIRD. Moreover, to detect the
correlation at the smallest observable CMB scales, where
the signal peaks, would require a telescope with several
arc minute scale resolution or better.
These properties of the PBH μT correlation suggest that,

in the future, ground-based instruments may provide a
competitive path forward, given the rapid advance in the
scale of detectors deployed on large telescopes into the
CMB-S4 [66] era and beyond. Unlike the absolute meas-
urement of μ̄, systematics and foregrounds can also be
mitigated by differential measurements and cross-correlation
[40]. Furthermore the μT correlation can be supplemented
by polarization cross-correlation [45,67,68]. We leave these
studies to a future work.
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APPENDIX: DILATION CONSISTENCY
RELATION AT SECOND ORDER

In this appendix, we show that at second order in
Newtonian gauge, the response of the short-wavelength
density perturbation to the long wavelength ζL is a pure
dilation and when combined with theMaldacena consistency
relation there is no locally observable effect of a constant ζL.
Since we focus on the μ distortion, mainly produced during
the radiation-dominated epoch, we concretely calculate the
second-order perturbations in that era. Note that the calcu-
lation and notation here, which differs from the main text, is
based on Ref. [69].
First, let us summarize our notation in this appendix.

In Newtonian gauge, we can write the scalar parts of the
metric perturbations as

FIG. 3. Maximum μ white noise level Cμμ
l ¼ Anoise that allows

for a S=N ¼ 1 measurement of the maximal μ̄ ¼ 9 × 10−5 and
fiducial bth ¼ −22=5 PBH signal as a function of largest multi-
pole measured lmax. Anoise saturates at 10−23 around lmax ∼ 103

and other models can be scaled as Anoise ∝ b2thμ̄
2.
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ds2 ¼ gμνdxμdxν ¼ a2f−ð1þ 2Φð1Þ þΦð2ÞÞdη2
þ ½ð1 − 2Ψð1Þ −Ψð2ÞÞδij�dyidyjg; ðA1Þ

where the superscript denotes the order in perturbations.
Here, we assume a perfect fluid for simplicity, which leads
to Φð1Þ ¼ Ψð1Þ, and thus ignore the correction from
neutrinos. Then, we can express the energy-momentum
tensor as

Tμ
ν ¼ ðρþ PÞuμuν þ Pδμν; ðA2Þ

where ρ is the energy density, P is the pressure, and uμ is
the 4-velocity. We take the following notation for their
perturbations up to the second order:

ρ ¼ ρð0Þ þ δρð1Þ þ 1

2
δρð2Þ; ðA3Þ

P ¼ Pð0Þ þ δPð1Þ þ 1

2
δPð2Þ; ðA4Þ

ui ¼ 1

a

�
δvð1Þ;i þ 1

2
δvð2Þ;i þ 1

2
δviV

ð2Þ
�
; ðA5Þ

where δv is the velocity potential and δviV is the vector part
of the velocity perturbation. We define the density
perturbation δðaÞ as

δðaÞ ≡ δρðaÞ

ρð0Þ
: ðA6Þ

At the first order in perturbations, this is related to the
curvature perturbation as

δð1Þk ðηÞ ¼ −
2

3
ζð1Þk TδðxÞ; ðA7Þ

where the subscript k represents the Fourier mode,
whereas perturbations are in real space otherwise in this
appendix, x≡ kη with k≡ jkj, and ζð1Þ ¼ −ð3=2ÞΦð1Þ in
the superhorizon limit. The transfer function is defined as

TδðxÞ≡
6xð−6þ x2Þ cosð xffiffi

3
p Þ − 12

ffiffiffi
3

p ð−3þ x2Þ sinð xffiffi
3

p Þ
x3

:

ðA8Þ

Next, let us calculate the second-order density perturba-
tions. The density perturbation is related to the other
perturbations as [69]

δð2Þ ¼ −2Ψð2Þ þ 2Nj
iBi

j
ð2Þ −

2

H
Ψð2Þ0 þ 2

3H2
Ψð2Þ;i

;i þ
2

H2
ðΦð1Þ0Þ2 þ 16

3H2
Φð1ÞΦð1Þ;i

;i

þ 1

H2

�
2 −

8

9ð1þ wÞ
�
Φð1Þ;iΦð1Þ

;i −
8

9ð1þ wÞH3
ðΦð1Þ;iΦð1Þ

;iÞ0 −
8

9ð1þ wÞH4
Φð1Þ0

;iΦð1Þ;i0; ðA9Þ

where the prime here denotes the derivative with respect to
η, Hð≡a0=aÞ is the conformal Hubble parameter, and w is
the equation of state parameter. Bi

j and Ni
j are defined as

Bi
j
ð2Þ≡

�
4ð5þ 3wÞ
3ð1þwÞ Φð1Þ;iΦð1Þ

;jþ
8

3ð1þwÞH ðΦð1Þ;iΦð1Þ
;jÞ0

þ 8

3ð1þwÞH2
Φð1Þ;i0Φð1Þ

;j
0
�
; ðA10Þ

Nj
iAi

jðxÞ≡ 3

2
∇−2

�∂j∂i

∇2
−
1

3
δji

�
Ai

jðxÞ

¼
Z

d3k
ð2πÞ3

�
−

3

2k2

��
kjki
k2

−
1

3
δji

�
Ak

i
j; ðA11Þ

where Ai
j is an arbitrary tensor. Since δð2Þ depends on Ψð2Þ,

we need to calculate Ψð2Þ first. The equation of motion for
Ψð2Þ is [69]

Ψð2Þ00 þ 3ð1þ c2sÞHΨð2Þ0 þ ½2H0 þ ð3c2s þ 1ÞH2�Ψð2Þ − c2sΨð2Þ;i
;i ¼ Sð2Þ; ðA12Þ

Sð2Þ ≡
�
3c2s −

1

3

�
Φð1Þ;iΦð1Þ

;i þ 8c2sΦð1ÞΦð1Þ;i
;i þ ð3c2s þ 1ÞðΦð1Þ0Þ2 þ ½ð3c2s þ 1ÞH2 þ 2H0�Nj

iBi
j
ð2Þ

þHNj
iðBi

j
ð2ÞÞ0 þ 1

3
Nj

iðBi
j
ð2ÞÞ;k;k þ

�
1

3
− c2s

�
4

3ð1þ wÞH2
ðHΦð1Þ;i þΦð1Þ;i0ÞðHΦð1Þ

;i þΦð1Þ0
;iÞ; ðA13Þ

where cs is the sound speed.
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Here, we focus on the second-order perturbations
induced by a superhorizon mode “L” on the much smaller
mode kL=k ≪ 1. This case corresponds to the μ-distortion
production in the presence of the superhorizon perturba-
tions. In this case, we can approximate Eq. (A12) as

Ψð2Þ00 þ 4HΨð2Þ0 −
1

3
Ψð2Þ;i

;i ≃
8

3
Φð1Þ

L Φð1Þ;i
;i; ðA14Þ

where we have substituted c2s ¼ w ¼ 1=3. The other con-
tributions in Sð2Þ are subleading because they include the
spatial derivative on the superhorizon mode L. In the
Fourier space, the equation becomes

Ψð2Þ00
k þ

4

η
Ψð2Þ0

k þ
k2

3
Ψð2Þ

k ≃ −
8

3
Φð1Þ

L k2Φð1Þ
k ; ðA15Þ

where we have assumed that the superhorizon perturbation
as the constant quantity ΦL because it does not evolve in
the Newtonian gauge. Note thatΦL here and below is still a
function of spatial comoving coordinates but variations are
small locally compared to the short-wavelength mode, so
we have ignored them in the Fourier transform. Then, we

can solve Ψð2Þ
k using the Green’s function method

Ψð2Þ
k ðηÞ ≃Ψð2Þ

k ð0ÞTðxÞ þ
Z

η

0

dη̄

�
aðη̄Þ
aðηÞ

�
2

×Gðk; η; η̄Þ
�
−
8

3
ΦLk2Φ

ð1Þ
k ðη̄Þ

�
; ðA16Þ

where the concrete expression of the Green’s function is
given by

kGðk; η; η̄Þ ¼ −Θðη − η̄Þ xx̄ffiffiffi
3

p
h
j1ðx=

ffiffiffi
3

p
Þy1ðx̄=

ffiffiffi
3

p
Þ

− j1ðx̄=
ffiffiffi
3

p
Þy1ðx=

ffiffiffi
3

p
Þ
i
: ðA17Þ

The initial condition of Ψð2Þ is given by

Ψð2Þ
k ð0Þ ¼ −

16

9
ζð1ÞL ζð1Þk ; ðA18Þ

where we have here assumed a Gaussian distribution of ζ,
which means that the contribution from primordial non-
Gaussianity from the Maldacena consistency relation is not
included in Ψð2Þ (and δð2Þ) in this expression. We will
independently take into account that contribution later.
Then, we obtain Ψð2Þ as

Ψð2Þ
k ðηÞ ≃

�
16

ffiffiffi
3

p

3

sinðx= ffiffiffi
3

p Þ
x

þ 64 cosðx= ffiffiffi
3

p Þ
x2

�
ζð1ÞL ζð1Þk ;

ðA19Þ

where we have neglected the contribution ofOðx−3Þ because
we want to know the evolution of the second-order density
perturbations on subhorizon scales, which is related to the
μ-distortion production. In the large x limit, Eq. (A9) can be
approximated in the Fourier space as

δð2Þk ≃ −
2x2

3
Ψð2Þ

k − 2x
dΨð2Þ

k

dx
−
16x2

3
Φð1Þ

L Φð1Þ
k

≃
�
−
32

ffiffiffi
3

p

9
x sinðx=

ffiffiffi
3

p
Þ − 32 cosðx=

ffiffiffi
3

p
Þ
�
ζð1ÞL ζð1Þk :

ðA20Þ

Then, we finally get the following expression for the total
energy density perturbation:

δkðηÞ ¼ δð1Þk ðηÞ þ 1

2
δð2Þk ðηÞ

≃ −
2

3

�
1þ 4

3
ζð1ÞL

�
Tδ

�
x
�
1 −

4

3
ζð1ÞL

��
ζð1Þk ; ðA21Þ

where the approximate equality is valid in x ≫ 1.
In the following, we relate this result to the dilation

transformation. The dilation consistency relation in the
Newtonian gauge is given by [70]

lim
q→0

hπqδk1 � � � δkN ic
PπðqÞ

ϵðηÞ ¼
XN
a¼1

�
−ϵðηaÞ

�
ρ̄0

ρ̄

����
ηa

þ ∂ηa

�
þ λð3þ ka · ∂kaÞ

�
hδk1 � � � δkN ic; ðA22Þ

where hπqπpi ¼ ð2πÞ3δDðqþ pÞPπðqÞ, π is the velocity potential (π ¼ δv), and the superscript c of the braket means the
connected part. The ϵ and λ are the coordinate transformation parameters to go from a gauge where the effect is a pure
dilation and are given by yμ → y0μ ¼ yμ þ ξμ with ξ0 ¼ ϵ and ξi ¼ λyi. During a radiation-dominated epoch, we can derive
the following relations: λ ¼ −3ϵ=η, ρ̄0=ρ̄ ¼ −4=η, and π ≃ ηζ=3 in the superhorizon limit. Here, we take λ ¼ ζL and N ¼ 2
to determine the modulation of short-wavelength power by ζL, such that the transformation is from comoving gauge to
Newtonian gauge and rewrite the consistency relation as
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lim
q→0

hζqδk1δk2ic
PζðqÞ

ζð1ÞL ¼
X2
a¼1

��
4

3
ζð1ÞL −

1

3
ζð1ÞL η∂η

�
− ζð1ÞL ð3þ ka · ∂kaÞ

�
hδk1δk2ic: ðA23Þ

Note again that ζL is in real space as ζLðyÞ, but its perturbation scale is much larger than the scales of k1 and k2, so that we
can approximately consider it constant except when considering the correlation to the large-scale mode q. Using Eq. (A21),
we can rewrite the left-hand side as

lim
q→0

hζqδk1δk2ic
PζðqÞ

ζð1ÞL ¼ 4

9

��
1þ 8

3
ζð1ÞL

�
T2
δ

�
x1

�
1 −

4

3
ζð1ÞL

��
− T2

δðx1Þ
�
ð2πÞ3δDðk1 þ k2ÞPζðk1Þ

−
4

9
T2
δðx1Þζð1ÞL

d lnΔ2
ζ

d ln k

����
k¼k1

ð2πÞ3δDðk1 þ k2ÞPζðk1Þ; ðA24Þ

where we have used

hζð1Þq ζð1ÞL ðyÞic ¼
Z

d3k
ð2πÞ3 e

ik·yhζð1Þq ζð1Þk ic

¼ PζðqÞe−iq·y: ðA25Þ

The first line of the right-hand side in Eq. (A24) corre-
sponds to the contribution from δð2Þ. On the other hand,
the second line corresponds to the Maldacena consistency
relation [46], that is, it just comes from the contribution
proportional to hζqζk1ζk2i, not related to the evolution of
the second-order scalar perturbations. On the other hand,
once we substitute

hδk1δk2ic ¼
4

9
T2
δðx1Þð2πÞ3δDðk1 þ k2ÞPζðk1Þ ðA26Þ

into the right-hand side of Eq. (A23), we can see that the
right-hand side is the same as Eq. (A24) at least at the lowest
order in the perturbations, OðζLPζÞ. From this, we can see
that the dilation consistency relation is satisfied, once both
the second-order evolution and primordial non-Gaussianity
of the Maldacena relation are included, which indicates that
the constant ζL does not give locally observable effects.
Although our calculation is based on the perfect fluid
assumption, we can expect that the dilation consistency
relation would be satisfied even in imperfect fluid.
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