
General double monodromy inflation

Guido D’Amico ,1,2,* Nemanja Kaloper,3,† and Alexander Westphal4,‡
1Department of Mathematical, Physical and Computer Sciences, University of Parma, 43124 Parma, Italy

2INFN Gruppo Collegato di Parma, 43124 Parma, Italy
3QMAP, Department of Physics and Astronomy, University of California Davis, California 95616, USA

4Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany

(Received 31 January 2022; accepted 8 April 2022; published 19 May 2022)

We revisit the roller-coaster cosmology based on multiple stages of monodromy inflation. Working
within the framework of effective flux monodromy field theory, we include the full range of strong
coupling corrections to the inflaton sector. We find that flattened potentials V ∼ ϕp þ � � � with p≲ 1=2,
limited to N ≲ 25 − 40 e-folds in the first stage of inflation, continue to fit the cosmic microwave
background. They yield 0.96≲ ns ≲ 0.97 and produce relic gravity waves with 0.006≲ r≲ 0.035, in full
agreement with the most recent bounds from BICEP/Keck. The nonlinear derivative corrections generated
by strong dynamics in effective field theory (EFT) also lead to equilateral non-Gaussianity
feqNL ≃Oð1Þ −Oð10Þ, close to the current observational bounds. Finally, in the multistage roller coaster,
an inflaton–hidden sectorUð1Þ coupling can produce a tachyonic chiral vector background, which converts
rapidly into tensors during the short interruption by matter domination. The produced stochastic gravity
waves are chiral, and so they may be clearly identifiable by gravity wave instruments like LISA, Big Bang
Observer, Einstein Telescope, NANOgrav, or SKA, depending on the precise model realization. We also
point out that the current attempts to resolve the H0 tension using early dark energy generically raise ns.
This might significantly alter the impact of BICEP/Keck data on models of inflation.
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I. INTRODUCTION

In this article, we complete the analysis of the observable
predictions of interrupted monodromy inflation models
which we initiated in Ref. [1]. Our goal is to obtain the
complete set of observables for monodromy models in
strong coupling limit, which in addition to flattened
inflaton potentials also include higher derivative operators
which renormalize the inflaton’s (inflatons’) kinetic terms.
While these corrections yield additional suppression of the
tensor-to-scalar ratio r, they tend to push the scalar spectral
index ns closer to unity [1–3]. That might tempt one to
interpret the data as a serious obstacle for monodromy
models, due to quite tight bounds on r and ns, r≲ 0.035,
and 0.96 < ns ≲ 0.97 [4]. However, as we will show
explicitly in this work, such conclusions would be far
too premature. On the contrary, when combined with the
idea of roller-coaster cosmology [5], monodromy models

which include flattened potentials—possibly due to first-
principle constructions [6,7] or generated by field theory
strong coupling corrections [8–10], or even in the multifield
models—remain perfectly viable candidates to explain all
the cosmological observations to date, while simultane-
ously generating new signatures that can be tested by the
next generation of instruments. We should also stress that
the spectral index will be lower when many fields move in
unison, simulating a single composite inflaton [11–13].
This is because different fields with nearly degenerate
masses fall out of slow roll at different times, inducing a
small but potentially relevant correction to ns.
In the present work, the key input will be interrupting

inflation at around 20–35 e-folds before the end, by the
choice of the multifield potential. The interruption resets
the pivot at which the observables are generated and
normalized. In turn, this pushes ns back to lower values
and restores consistency with the observations, while
simultaneously keeping r≲ 0.035 thanks to the potential
flattening. Even if the first principles constructions generate
steeper potentials, the potential flattening induced by
strongly coupled physics could be very efficient by itself,
thanks to both the “seizing” effect induced by wave-
function renormalization [8–10,14] and to the higher
derivatives which further assist by reducing the speed of
sound of the perturbations [10]. However, in the latter case,
the nonlinear derivative operators simultaneously generate
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non-Gaussianities that could disrupt the cosmic microwave
background (CMB) if they are too large (such phenomena
are automatically very suppressed at weak coupling).
Suppressing non-Gaussianities yields a lower bound on
r, about r≳ 0.006, for the models with the flattened
potentials V ∼ ϕp þ � � �, 0.1 ≤ p≲ 1=2, which are at the
edge of the “penumbra around the lamppost” of the string
theory motivated constructions at this time.
Moreover, if the interrupted inflaton, which is an axionlike

field, also couples to a dark photon with the decay constant
near the scale of inflation, it will generate very large dark
photon chiral fields. These in turn source chiral gravity
waves, that are frozen out at superhorizon scales during the
second stage of inflation, lasting another 20–35 e-folds [1].
These gravitywaves present a very strong signal which could
be detected by future instruments like, for example, LISA,
Big Bang Observer, Einstein Telescope, NANOgrav, or
SKA, depending on the precise details of the models and
the scales which they require, or rather where the stages of
inflation are interrupted. This makes our specific subclass of
strongly coupled EFT monodromy models particularly
interesting, since their signatures are within reach of the
multiple near-future observations.
To proceed, in the next section, we will discuss how to

include the higher derivative corrections induced at strong
coupling and reanalyze their effects on the background
dynamics of inflation and on perturbations. Solving the
equations numerically, we will fit the results against the
most recent BICEP/Keck data [4], confirming the assertions
above that they fit CMB, interpreted within the ΛCDM
“concordance model” of late cosmology, perfectly, with
0.96≲ ns ≲ 0.97 and 0.006≲ r≲ 0.035, when the first
stage of inflation is interrupted a few decades of e-folds
before the end.
We will then show how the lower bound on r comes

about due to the combination of non-Gaussianities induced
by the higher derivatives terms and the assumption that
p ≥ 0.1. We impose this condition to stay near the range of
parameters that can be related to explicit string theory
motivated corrections. We will also use a toy model of a
theory with higher derivative operators to illustrate just how
significant these effects can be.
In Sec. III, wewill revisit themechanism for chiral gravity

wave production, described in Ref. [1]. We will explain that
the results transfer straightforwardly from the previous case,
where we neglected the higher derivatives, because by the
time the first stage of inflation ends the inflaton sector is in
weak coupling.Wewill see that for powers 1=2 ≥ p ≥ 0.25,
the interruption pivot occurs at ∼20–35 e-folds of inflation
before the end. Hence, for those cases, the produced
primordial gravity waves are in the range of LISA or
DECIGO. If powers are lower, 0.25 ≥ p ≥ 0.1, inflation
may need to end sooner, implying that the produced chiral
gravity waves could have larger wavelength, andmight be in
the range of SKA or NANOgrav, or other instruments.

Finally, we will also stress a rather curious and unex-
pected connection between the problem of constraining the
early Universe cosmology and inflation and the determi-
nation of the late Universe value of the Hubble parameter
H0. The ΛCDM “concordance cosmology”may be facing a
serious challenge from the intriguing discrepancy in deter-
mining H0 using CMB from that one using supernovae
[15–23]. The two values are H0 ≃ 68 km=sec=Mpc and
H0 ≃ 73.3 km=sec=Mpc, and according to the latest analy-
ses, this leads to a 5σ disagreement between the two [24].
An interesting interpretation of this problem is that plain
vanilla ΛCDM may not be right, and a leading contender
which might reconcile the two values of H0 might be the
introduction of a new material in the Universe commonly
dubbed “early dark energy” [18,20,21]. Refitting the CMB
to the late data, however, seems to require raising the
primordial value of ns. This therefore directly influences the
bounds on the early inflation, despite naive expectations that
the two regimens, the early and the late Universe, should be
“decoupled.” This is not a deep conceptual issue, however,
but is a potentially serious practical aspect of early Universe
imprint contamination by late Universe evolution and is a
familiar issue from early forays into CMB fits [25–28]. We
will not dwell on possible resolutions of theH0 tension here
beyond pointing out that the implications for the r versus ns
bounds may be quite dramatic, broadening the range of
values for ns, and ruling “in” models of inflation alleged to
have been excluded and severely constraining other models
currently touted to be “in good standing.”
Either way, the jury is still out, and we are looking

forward to whatever exciting news comes our way.

II. FLEXING THE BICEP OF THE
DOUBLE-COASTER

As in Ref. [1], we will work here with a simple two-field
model which supports a two-stage inflation that is inter-
rupted before it realizes 60 e-folds. We note that in more
general cases, the early Universe could involve more than
just two stages of inflation, with multiple inflatons which
can leave signatures at many different scales [5]. Wewill set
the details of this more general and interesting possibility
aside in this work for the sake of simplicity. However, we
will invoke them later, when outlining a range of predic-
tions. It would be interesting to explore such scenarios in
further detail. In the two-field case, during the interruption,
the first inflaton field oscillates, such that the effective
equation of state of the Universe in this epoch is w ≃ 0. This
reproduces the dynamics considered in the past in
Refs. [29–38], albeit at a different pivot relative to the
beginning of inflation. Models like this are readily found in
monodromy constructions [6,8,39–42], which typically
involve more than one field, where the fields are separated
by small mass hierarchies.
We recall that there is a range of possible effects which

can flatten the potentials without and with strong coupling.
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For example, at weak coupling [6,7], integrating out fields
heavier than the inflatonmay lead to potential flattening as in
Ref. [14], and the theory may be under control even in weak
coupling. In strong coupling, such effects may be ubiquitous
in flux monodromy models [1,10], where the fact that the
inflaton is a magnetic dual of a longitudinal helicity of a
massive 3-form potential gauge theory [8,41,43] allows
gauge symmetry to “cherry-pick” the right kinds of
higher-dimension operator corrections, which, while pre-
serving gauge symmetry, generically flatten the potential. In
fact, just allowing several fields simultaneously in slow roll,
as in assisted inflation/N-flation [44–46], could push the
spectral index down [11–13].
Bearing all of the previous elaboration in mind, we will

take an “ignoble” approach and develop a model based only
on EFTþ gauge symmetries. This means we will take each
inflaton to be an axionlike field, which is a magnetic dual of
a massive 3-form potential gauge theory. For the most part,
we will forego the details of the UV completion which we
do not have and using gauge symmetries and naturalness
push forward to show that the EFT, when allowed to
employ strong coupling effects (just) below its cutoff, may
yield a successful model of inflation [10,43]. The low
energy theory, in effect, is really a theory of gravitating
superconductor, advocated in Ref. [43]. With this in mind,
we proceed with retaining the potential we used in Ref. [1],

Vðϕ1;ϕ2Þ¼M4
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As before, the scales μ1, μ2 normalizing the fields are both
Oð0.1MPlÞ. We take M2 ≲M1 ≃M=

ffiffiffiffiffiffi
4π

p
, where M=

ffiffiffiffiffiffi
4π

p
is the strong coupling scale of the theory and M is the UV
cutoff. We imagine that it is set by the mass of the lightest
heavy field which was integrated out to obtain the effective
potential (1).
Both ϕi are axions arising from truncating p-form gauge

potentials in string theory constructions, either as directly
p-form components in compact directions or as the
magnetic duals of the residual 4-forms.1 This immediately
connects masses and axion decay constants, μi ∼ fi. The
latter are further bounded by f ∼MPl=ðMsLÞq ≲MPl
where L is the size of the compactification cycle giving
rise to the relevant axion andMs is the string scale [47,48].
As a result, fi is typically of the order of 10−2MPl ≲
f ≲MPl, justifying our choice of μi. The scales Mi
typically arise from warping effects or dilution of energy
densities with inverse powers of extra dimension volumes
(see, e.g., Sec. IV 1 in Ref. [49] for a summary), which
are either power law or exponentially sensitive to the

microscopic parameters in a string compactification.
Finally, the axions ϕi arise from two mutually sequestered
sectors of a given model, only interacting via gravity, and
so generically M1 ≠ M2. This also explains why we ignore
the mixing between the two axions. Without loss of
generality, we take M2 ≲M1.
Next, in this work, we will also include the higher

derivative operators which correct the kinetic terms, which
as we stressed are unavoidable in the strong coupling
regime by naturalness of the perturbation theory [10]. In
this regime of the theory, the only way to avoid some of
these operators, short of fine-tuning, is if there is some
symmetry prohibiting them. Note that in weak coupling,
below the cutoff, in explicit constructions, such operators
need not play a significant role, while the potential may
nevertheless be flattened [6,7], due to the features of the
UV completion of the direct string construction. Our point
here is that, even without knowing the full details of the
string construction and the precise realization of the UV
completion, as long as the low energy EFT has gauge
symmetries as in flux monodromy [43], some flattening
of the potential will happen in strong coupling when the
gauge invariant higher-dimension operators are included.
As we already stated, this may well be the most
conservative approach to the realization of models with
flattened potentials, and more efficient means may be
found. However, in our view, the merit of our approach
is that it accommodates the inflationary evolution—just
like the London theory of superconductivity accommo-
dated superconducting phenomena decades before
Bardeen-Cooper-Schrieffer (BCS). The higher-dimension
operators of interest take the form [10]

L ∋
X

k≥1;l≥1
ck;l

ðmjϕjÞl
2kk!l!ðM2

4π Þ2kþl−2
ð∂μϕjÞ2k; ð2Þ

where m2
i ≃ p2

i M
4
i =μ

2
i < M2 are the effective inflaton

masses in the flattened regime.
We take the powers pi to be small, 0.1≲ pi ≤ 1,

reflecting the flattening of the potentials due to the
interactions with heavy fields which are integrated out
[1,7,10]. In the strong coupling regime, we can see how
such terms arise by imagining higher-dimension operators
∼ð4πϕi

M Þqð∂ϕiÞ2 renormalizing the kinetic terms in the strong
coupling regime 1 > ϕi=M ≥ 1=4π, and canonically nor-
malizing the fields. Such powers can be realized in string
constructions “under the lamppost,” which therefore may
be under control.2

1The distinction is important in understanding the origin of
higher derivative operators later on.

2To have a valid EFT, we must have a good description of its
vacuum. As field values change, and couplings run, the pertur-
bative vacuum itself will evolve. In UV complete frameworks,
one may have a full view of this evolution. In perturbative EFT,
we do not always have the benefit of such insight.
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The effective action for monodromy composed of (1)
and (2) can be symbolically “resummed,”3 yielding for each
inflaton

Li ¼ Kðϕi; XiÞ − VeffðϕiÞ ¼
M4

16π2
K
�
4πmiϕi

M2
;
16π2Xi

M4

�

−
M4

16π2
Veff

�
4πmiϕi

M2

�
; ð3Þ

whereXi ≡ −ð∂μϕiÞ2, the functionsK;Veff ¼ 16π2Veff=M4

have Taylor coefficients ∼Oð1Þ, and we normalized the
expansion using the strong coupling scale M (which can
be thought of as the mass of the lightest particle coupled
to ϕi which was integrated out). The K is the kinetic func-
tion of the theory, which in the weak coupling reduces
to ð−1þ…Þð∂ϕÞ2=2.
We have chosen to decouple the two axion sectors

from each other for simplicity, and as a result, the early
inflationary trajectory and the late inflationary dynamics
become two separate stages. Thus, in this limit, we can
study the dynamics of inflation as a sequence of two
consecutive single-field stages. As noted above, this could
happen as a leading approximation in the case when the two
sectors mix only gravitationally. As in Ref. [1], we view
this as an interrupted N-flation [46], with a larger mass gap
between the two inflatons, where one dominates early on
and drops out of slow roll well before the other one. Each
effective action Li is precisely the action of the k-inflation
model of Refs. [50,51], with a single-dimensional normal-
izing scale, and the dimensionless coefficients of Oð1Þ up
to combinatorial factors set by normalizing Feynman
diagrams. At strong coupling, where the theory (3) is
driven by observations, it is this action which should be
deployed to compute inflationary background and observ-
ables [10]. In Fig. 1, we illustrate the inflationary trajectory
on the potential (1). In the present case, the segments of the
trajectory are also affected by the higher derivative oper-
ators (2) which we retained.
We also note that an evenmore extreme reduction of r can

occur if the potential Veff at large ϕ plateaus. In a sense, the
change of the potential from convex to concave as the strong
coupling regime sets inmay beviewed as a beginning of such
plateauing. In some cases where additional control tools are
present, namely AdS=CFT, and the corrections are enhanced
by the presence of many flavors, such potentials could be
constructed [9,52]. In the example [9], the resulting effective
potential is Veff ∼ ð1 − 1

1þð4πcmφ=M2ÞpÞ. In this case, the

tensor-to-scalar ratio is very small, r ∼ few × 10−4 [9,10].
We will, however, not explore the detailed dynamics of such
models here.

The next step is to recalculate the spectrum of perturba-
tions on large scales. As before, we solve the equations of
motion for the inflaton and calculate the scalar spectral
index ns and the tensor-to-scalar ratio r atNe e-folds before
the end of the first stage, but now we include the effect of
the higher derivative operators. This forces us to resort to
numerical integration, and we will only present the result
for the first stage of inflation since this is when the
fluctuations distorting the CMB are generated. At this
stage, we can approximate the dominant contribution to the
effective potential during the first stage by

Veffðϕ1Þ¼M4
1

��
1þϕ2

1

μ21

�p1
2

−1

�
≃M4

1

��
ϕ1
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�
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−1

�
; ð4Þ

which in the plot of Fig. 1 corresponds to fixing ϕ2 at some
value and rolling down the hill toward the ridge at a ϕ2 ≃
const:, thanks to ϕ2 ≫ μ2. Here, clearly, M1 ≃M=

ffiffiffiffiffiffi
4π

p
.

In the absence of higher derivative operators in Ref. [1],
we could then use the slow-roll parameters ϵV ¼
∂ϕVeffðϕ1Þ2=ð2Veffðϕ1Þ2Þ to both control the numerical
integration of the dynamics based on (4) in slow-roll regime
and to compute the observables ns − 1 ¼ 2ηV − 6ϵV , r ¼
16ϵV at a value of ϕ1 when the first stage of inflation ends,
which gives

Ne¼
Z

ϕ1ðendÞ

ϕ1

dϕ
H
_ϕ
≃
�

ϕ2
1

2p1M2
Pl

��
1−

2

2−p1

�
μ1
ϕ1

�
p1

�
ð5Þ

FIG. 1. Two-field potential Vðϕ1;ϕ2Þ for the model in Eq. (1).
Here, M1 ¼ 0.5MPl, M2=M1 ¼ 0.1, p1 ¼ 2=5, p2 ¼ 1, and
μ1 ¼ μ2 ¼ 0.5. The blue curve depicts a typical two-stage
inflationary trajectory, where the field ϕ1 slides down the slope
first and oscillates while decaying near the bottom of the “gutter”
and then ϕ2 starts to move along the gutter.

3We set aside the convergence issues and take the “sum” to be
an asymptotic series.
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e-folds before the end of the first inflationary stage. That
generated the primordial tensor modes with r in the range
0.02≲ r≲ 0.06 [1].
As noted [10,53], higher derivative operators help reduce

r further. In this regime, it is convenient to compute the
cosmological observables using the k-inflation approach of
Refs. [51,54,55]. Importantly, the speed of sound of the
scalar perturbations cs is different from unity, so that the
tensor-to-scalar ratio is r ¼ 16csϵ, and ϵ is the usual slow-
roll parameter. In this case, the inflationary consistency
relation is r¼−8csnT , where nT is the tensor spectral index.
What happens is that the higher derivatives improve the slow
roll in the scalar field equation, without affecting the
gravitational field equations. As a result, the noted modifi-
cation of the consistency condition follows. Furthermore, the
nonlinear terms in the fluctuations [54,55] may yield non-
negligible equilateral non-Gaussianities. We will also com-
pute those numerically to show how the non-Gaussianities
limit r from below.
To do this, using the calculational framework of

k-inflation, we restrict to the subcase when inflation
is slow-roll potential driven and require that higher deriva-
tive terms dominate over the quadratic ones both in
controlling the background and the perturbations. For
simplicity, we will present below only the equations for
the truncation of the kinetic energy function to only quartic

terms, K ¼ ZX1 þ Z̃ 16π2X2
1

M4 . We will also consider the
sextic derivative terms as an additional example, motivated
by direct string theory constructions. Both of these “trans-
quartic” cases suppress r more than the quartic truncations.
But in weak coupling, they can go only so far.

III. INTERLUDE WITH HIGH HARMONICS,
FOR STRINGS

Before we proceed with computing the observables for
the nonlinear theory we have set up so far, let us pause
and consider in more detail the origin of the nonlinearities,
and in particular the higher derivative terms. The higher
derivative operators may arise in the weak coupling limit, in
which case their coefficients may be calculable in pertur-
bation theory. Generically, this means the derivative-
dependent part of the effective action will be truncated
to a few leading terms (as noted in the perturbative analysis
in Ref. [53], for example). The leading-order terms are
∝ ð∂Þ4. However, although such terms can indeed arise
already at weak coupling in string theory, their impact is
limited. In this section, we stipulate what one may expect in
the controlled regime under the lamppost, below the strong
coupling scale. Our aim is to outline a “perturbative”
boundary in the observable phase space and to show by
example how strong coupling effects can enhance the
observable signals.
Which of the two transquartic cases mentioned above

depends on the nature of the underlying monodromy
inflaton candidate. If the inflaton scalar arises as a position

modulus of a mobile D-brane acquiring monodromy, e.g.,
via moving along a nontrivial fibration of the compactifi-
cation space, its kinetic term may pick up higher-derivative
corrections to all orders from the Dirac-Born-Infeld (DBI)
action of the moving D-brane generating the inflaton scalar
potential as well. As a guiding example, we look, e.g., at
the D7-brane monodromy inflation model in Ref. [56] in
which the D7-brane position in the transverse extra
dimensions is the inflaton candidate. F-theory there allows
the authors to describe the D7-brane position as part of the
elliptic Calabi-Yau 4-fold complex structure moduli.
Therefore, the 7-brane position acquires its two-derivative
kinetic term from a Kahler potential in the effective four-
dimensional (4D) supergravity.
However, at least in the perturbative type IIB string

theory limit of F-theory, this two-derivative kinetic for the
D7-brane position is ultimately obtained via matching the
expansion of the full DBI action of the D7-brane effective
action in Ref. [57] up to two-derivative order. Hence, in the
type IIB limit, we expect the full kinetic term of the D7-
brane position scalar inflaton candidate for the model of
Ref. [56] to take the complete DBI form. We leave a full
discussion of these arguments for future work but note that
they provide plausibility for the appearance of the full
infinite higher-derivative kinetic term series of DBI infla-
tion in brane monodromy inflation setups of schematic typeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α0 _x2⊥

p
such as seen, e.g., in Ref. [39], as they rely just

on the structure of the DBI action as the universal part of
the perturbative effective description of D-branes.
In contrast, if inflation arises as axion monodromy from

a bulk p-form string axion, this will not acquire contribu-
tions to its kinetic term from branes and thus no DBI-type
kinetic term. Instead, the supersymmetric completion of the
leading higher-order α03R4 [58] curvature correction is
expected to generate corrections to the kinetic term of
bulk closed string axions up to sextic order from terms
containing at least one power of curvature. This expectation
arises from considering the supersymmetry (SUSY) com-
pletion of the type II α03R4 correction. While this com-
pletion in its full form is unknown as of today, the bosonic
sector of the completion, as sketched in, e.g., Ref. [59], is
expected to contain terms reading schematically as

ΔLSUSY;bos:
α03R4 ⊃ R3F2

p;R3jFpj2;R2F4
p;R2jFpj4;RF6

p;RjFpj6:
ð6Þ

The nonvanishing invariant tensor contractions among
them clearly generate axion kinetic term corrections up
to sextic order arising from the powers of jFpj2. Moreover,
the possible invariants generating these higher-order axion
kinetic terms may involve topological invariants of the
compactification space arising from integrating over
powers of curvature on the internal space. These topologi-
cal invariants, like, e.g., the Euler characteristic, may lead
to sizable numerical enhancements of the higher-order
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axion kinetic terms, providing a rationale for their mass
scales to scan a range of values relative to the Planck scale.
The higher-derivative axion kinetic term series inferred

from the SUSY completion of the α03R4 terminates at a
finite order of derivatives at this order in α0. String theory
is expected to generate corrections beyond Oðα03Þ in an
infinite series. This is of course a string theory avatar of our
strong coupling EFT argument. Hence, at higher orders in
α0, there will potentially exist invariants involving powers
of the p-form field strengths producing higher-derivative
axion kinetic terms beyond the maximal order generated at
Oðα03Þ.4 But in weak coupling, these terms will be small.
The closed string sector higher-order α0-corrections appear
after reduction to four dimensions suppressed by powers of
the inverse compactification volume [59].
Hence, barring an appearance of numerically very

large topological numbers governing these higher-order
α0-corrections, the higher-derivative axion kinetic terms
potentially produced by them will have volume suppressed
small coefficients relative to the higher-derivative axion
kinetic terms appearing atOðα03Þ. In this sense, the series of
higher-derivative axion kinetic terms with potentially
sizable coefficients appearing via dimensional reduction
from the ten-dimensional (10D) closed string sector will
effectively terminate at sextic order. In other words, to get
larger effects, one must approach the limits of the validity
of the compactified theory, as expected from the generic
EFT consideration.
Again, we stress that the above observations about (ir)

relevance of higher-derivative terms are features of the
weak coupling limit of the theory, well below the relevant
cutoff of the inflationary EFT, and under the assumption
that the Hilbert space of states is largely unaffected by the
background evolution of fields and couplings. As we
approach the limits of the inflationary EFT, by cranking
up the field values and couplings, the irrelevant operators,
including the higher-derivative ones, will become more
influential. To account for those effects, we must be careful
when comparing the higher-derivative axion kinetic terms
arising from dimensional reduction of the 10D higher-
derivative p-form field strength powers to the higher-
derivative axion kinetic terms outlined in Ref. [10]. It is
here where the origin of the low energy axions is important.
The point is that simple “derivative accounting” may be
misleading, which can be seen as follows. Consider a low
energy EFT axion, which acquires its quadratic potential
via mixing with the 4-form field strength in the 4D effective
flux monodromy description of Ref. [41] and is a pseu-
doscalar magnetic dual of a perturbative p-form string
axion, that comes from dimensional reduction. At two-
derivative level, all the known string axion and brane
monodromy inflation mechanisms can be dualized into this

4D effective 4-form description [60]. This procedure is
useful since it makes the hidden gauge symmetries of
the theory manifest, providing the tools to control the
strong coupling regime. However, it also shows that once
the dimensionally reduced p-form string axions acquire
higher-derivative kinetic terms, it becomes quite nontrivial
to match these to the description of the higher-derivative
kinetic terms of the dual axion of the 4D effective 4-form
theory, as encoded in couplings of the type ðA3 − dB2Þ ∧⋆F4 with B2 being the 4D dual 2-form gauge potential des-
cribing the axion degree of freedom from the compactified
string model. In a nutshell, dualization is a canonical trans-
formation [43,61], and so in perturbation theory, the deri-
vatives of the axion are mapped to the powers of the 3-form
mass term and vice versa. This is simply the consequence
of the fact that a canonical transformation exchanges gen-
eralized coordinates and momenta, ðq;pÞ↔ ð−P;QÞ, while
preserving the commutation relations and the Hamiltonian
[43,61]. The full “resummation” of the perturbative duality
maps also “dresses” up the Hilbert space vacuum, very
similarly to what happens with the BCS vacuum below the
critical temperature, when the condensate forms. Thus, it is
perfectly plausible that a theory with higher derivatives on
one side may appear as a totally nonderivative theory on the
other side.
A flavor of the nontrivial duality matching is already

visible in the 4-form description of hybrid axionmonodromy
in Ref. [62], in which the nontrivial issues concerning the
selection of the vacuum are noted. Here, we set such a full
duality matching at higher-derivative order aside, given the
uncertainties with the perturbative dimensionally reduced
p-form string axion sector at higher derivatives. We do
expect that upon performing the duality match, the finite
order of the higher-derivative axion kinetic terms expected
for a closed string axion atOðα03Þwill translate to amatching
finite higher-derivative order of the kinetic terms for the dual
4D effective axion of the 4-form EFT, which suffices for our
purposes. We should also note that even when the strong
coupling effects induce large higher-derivative operators,
there are still regimes where initial conditions for classical
evolution allow flattened potentials to dominate, thus “deac-
tivating” the higher-derivative terms [10]. This regime is also
illustrated by our truncation of the derivative expansion.
Obviously, this means there could be other branches of
solutions which we ignore here.

IV. VARIATIONS FOR BICEP3

Having set up the stage for the EFT of double mono-
dromy, with or without strong coupling effects included,
and highlighted its relationship to the UV completions in
models where inflatons are axions or brane positions, we
can now leverage the universality of the 4D EFT to study
the axion inflation dynamics at strong coupling. The
homogeneous field configurations satisfy 16π2X1=M4≳1

and 16π2Veff=M4 ≳ 1. Truncating to the quartic time
4We thank Timo Weigand for discussions concerning this

point.
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derivative terms for simplicity, as outlined above, the slow-
roll field equations are5

3M2
PlH

2 ¼ Veff ; 6H _ϕ1Z̃X1 ¼ −4πM2mV 0
eff : ð7Þ

There are evolutionary regimes for the fields depending
on the relevance of the derivative terms relative to the
potential. A discussion of options was given in Ref. [10].
A case of interest to us here is where the higher-derivative
operators are both large in the EFT and are excited,
contributing to the background during slow-roll inflation.6

In this case, the tensor power is suppressed thanks to both
the flattened potential and the subluminal speed of sound
of the perturbations, induced by the higher derivatives.
An important additional consideration is that the higher-
derivative terms induce nonlinearities which yield non-
Gaussianities. The bounds on non-Gaussianities, fNL ≲
Oð10Þ imply a lower bound on r.
To compute the perturbations on the background con-

trolled by the slow-roll equations (7), we deploy the
formalism of the inflaton EFT [63], ignoring the mixing
with gravity. This approximation is good at energy scales
E ≫

ffiffiffi
ϵ

p
H and c2s ≫ ϵ, which apply in our case. The spec-

trum of perturbations is almost scale invariant and has small
non-Gaussianities, as observations require. In the gauge
where the spatialmetric is unperturbed, the field perturbation
is ϕ1ðt; x⃗Þ ¼ φ0ðtþ πðt; x⃗ÞÞ, whereas the spatial curvature
perturbation is R ¼ −Hπ. Expanding Eq. (3) up to third
order, and keeping only the terms lowest in derivatives,

S ¼ −
Z

dtd3x⃗a3M2
Pl
_H

�
1

c2s
_π2 −

ð∂iπÞ2
a2

þ
�
1

c2s
− 1

�

×

�
_π3 þ 2

3
c3 _π3 − _π

ð∂iπÞ2
a2

��
: ð8Þ

Dropping the subscript 1 from here on, and using our
monodromy EFT (3), the speed of sound is c2s ¼ ∂XK=
ð∂XKþ 2X∂2

XKÞ, and c3ð1=c2s − 1Þ ¼ 2X2∂3
XK=∂XK. So,

when X > M4

16π2
, we find c2s ∼ M4

32π2X
K00
K0 and c3ð1=c2s − 1Þ ¼

512π4X2

M8
K000
K0 , or c3 ¼ 16π2X

M4
K000
K00. The exact details of the theory

when y ¼ 16π2X=M4 > 1, which set the magnitude of K
and its derivatives, depend on the UV theory governing the
large-y asymptotia.
As in weak coupling, the amplitude perturbation is

controlled by horizon scale when λ−1 ≃H. The Gaussian
curvature perturbation is determined by folding this scale
with the time translation breaking scale. In contrast to
the weak coupling regime, where

ffiffiffi
_φ

p ¼ ð2M2
Pl
_HÞ1=4 ¼

ϵ1=4H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MPlH

p
≫ H, in the strong coupling regime with

large derivative terms, one finds that this scale is
f4π ¼ 2M2

Pl
_Hcs. Note, that by Eq. (3) in this regime,

M2
PlH

2 ≃ M4

16π2
. The Gaussian scalar power spectrum is

Δ2
R ∝ ðH=fπÞ2.
The leading non-Gaussianities in this regime come from

the three-point function. There are two operators in (8)
which source them. However, since by naturalness and
naive dimensional analysis arguments all the derivatives are
comparable, c3 ≃ c2s < 1, and so the non-Gaussianities
generated by the ∼c3 term are subleading. Thus, the
amplitude of the cubic non-Gaussianities reduces to a
single narrow strip [10]. Using the perturbation potential

hΦk⃗1
Φk⃗2

Φk⃗3
i ¼ ð2πÞ3δDðk⃗1 þ k⃗2 þ k⃗3Þ

6Δ2
Φ

ðk1 þ k2 þ k3Þ3
× ½fð1ÞNLF1ðk1; k2; k3Þ þ fð2ÞNLF2ðk1; k2; k3Þ�;

ð9Þ
we find that the F1 and F2 are induced by the _πð∂πÞ2 and _π3

operators, respectively [55,64,65]. Explicitly, we define

K1 ¼ k1 þ k2 þ k3; K2 ¼ ðk1k2 þ k2k3 þ k3k1Þ1=2;
K3 ¼ ðk1k2k3Þ1=3; ð10Þ
in terms of which

F1 ¼ −
9

17

12K6
3 − 4K1K2

2K
3
3 − 4K4

1K
2
2 þ 11K3

1K
3
3 − 3K4

1K
2
2 þ K6

1

K9
3

;

F2 ¼
27

k1k2k3
: ð11Þ

The term ∝ F1 describes equilateral non-Gaussianities,
since the momentum dependence is such that it is maxi-
mized when all three momenta are equal, while the term
∝ F2 shows an important contribution also on flattened
triangles. CMB analyses [64,65] are commonly done in
terms of two templates, the equilateral one which is very
similar to F1 and an orthogonal one which is a linear
combination of F1 and F2. In terms of the Lagrangian
parameters, the fNL coefficients are

5When solving numerically, we work with the full KðXÞ
function in Eq. (7) in the slow-roll approximation.

6As we explained above, it is possible that large higher-
derivative operators are present in the effective action but that the
initial conditions at the observable stage of inflation are such that
these are subleading to the quadratic derivatives and remain so in
slow roll. We ignore this here.
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fð1ÞNL ¼ −
85

324

�
1

c2s
− 1

�
; fð2ÞNL ¼ −

10

243
ð1− c2sÞ

�
3

2
þ c3

�
:

ð12Þ

For our quartic and sexticmodels, c3 in Eq. (12) is−3 and−4,
respectively, so fð2ÞNL is very small with respect to fð1ÞNL, by a

factor 1=c2s ; for DBI, f
ð1Þ
NL ¼ −ð17=4Þfð2ÞNL, and they have the

same dependence on c2s . For definiteness, we show fð1ÞNL in
Figs. 3 and 4. The experiments are already constraining the
phase space of even the strongly coupled theory. FromPlanck
[66], marginalizing over c3, one gets the bound cs ≳ 0.21.
This yields X ≲M4=10. Thus, the theory should be in strong
coupling to prevent too large r, but it cannot be arbitrarily
strongly coupled to satisfy the bound on non-Gaussianities.
Hence, the tensor power cannot be arbitrarily weak.

FIG. 2. Tensor-to-scalar ratio vs spectral index for double monodromy with quartic (left) and sextic (right) kinetic terms, compared to
the data of Ref. [4]. In the left panel, KðXÞ ¼ X þ X2=M4

4, with M4 ¼ 0.05, while in the right panel, KðXÞ ¼ X þ X3=M8
6, fixing

M6 ¼ 0.05. We take μ1 ¼ 0.01 and vary 0.1 ≤ p1 ≤ 0.5. The triangles depict the quadratic kinetic term case ðcs ¼ 1Þ, while dots are the
predictions for the higher derivatives. A finite M4 or M6 will give a redder spectrum [67] and a lower r.

FIG. 3. Tensor-to-scalar ratio r vs equilateral non-Gaussianity fNL for double monodromy with quartic (left) and sextic (right) kinetic
terms. The parameters are the same as in Fig. 2. Because of the lower bound on cs in either model (c2s > 1=3 for quartic, c2s > 1=5 for
sextic), the non-Gaussianity is very small.
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In Figs. 2 and 3, we show the predictions for the
observables r, ns, and fNL, for our potential Eq. (4) and
kinetic terms with either quartic or sextic higher-derivative
terms, in a regime in which these higher-derivative cor-
rections are important. In Fig. 4, we show the predictions
for our double monodromy potential with a DBI kinetic
term, KðXÞ ¼ M4ð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2X=M4

p
Þ, which produces an

infinite series of higher-derivative corrections. In compar-
ing to the results of Ref. [67], it is important to note
that there the higher derivatives arise from integrating out
a heavy scalar generating an infinite series of higher-
derivative operators. In the particular example displayed
in Fig. 5 in Ref. [67], this infinite series resums into
a cosine potential in V and a cosine dependence in cs.
This produces the strong reddening of ns with decreasing cs
visible in the blue down-left curving band of Fig. 5 of
Ref. [67]. In our first example, we only keep a quartic and/
or sextic higher derivatives in the kinetic term; hence, the
reddening of ns remains much milder for our case.
Moreover, with decreasing cs and thus increasing effects
of the higher-derivative operators, we get pushed out of the
quadratic part of the scalar potential onto the flatter-
monomial “wings,” which causes a blueshift of ns partially
offsetting the reddening effects of the higher derivatives
themselves. Meanwhile, in the example of Fig. 5 in
Ref. [67], decreasing cs and thus increasing effects of
the higher derivatives pushes one toward the hilltop of a
cosine potential which by itself causes additional reddening
of ns.

For the quartic and sextic kinetic terms, we observe that
for powers p≳ 0.1, we get small non-Gaussianities, tensor-
to-scalar ratio in the range r≳ 0.015, and 0.96≲ ns ≲ 0.97
for the first stage of inflation which ends after 35–45
e-folds. For the DBI kinetic term, we get r≳ 0.006 and
larger fNL for the first stage of inflation ending after 20–30
e-folds. Summarizing, with nonstandard kinetic terms, the
model remains a fully viable fit of the sky at the CMB
scales, but with predictions in the reach of the near-future
cosmological observations, such as the next installment of
BICEP or LiteBIRD. This makes our natural monodromy
models an excellent benchmark for future observations.
Further, the mechanism of nonperturbative generation of
chiral tensors, using vector tachyon instability [1,68,69],
which we review below in this new context, remains
operational and can yield additional gravity wave signals
at shorter scales.

V. FÜR LISA, AN ENCORE, WITH OTHER
INSTRUMENTS, TOO

We noted in Ref. [1] that axionlike inflatons often couple
toUð1Þ gauge fields via the standard dimension-5 operators
∝ ϕ1FμνF̃μν=2. A simple example is to start with a 4-form
field strength in 11D supergravity, with Chern-Simons self-
couplings and dimensionally reduce it on some toroidal
compactification. Ignoring the moduli fields, the resulting
4D effective action will include light axions coupled to dark
Uð1Þ s since

FIG. 4. Tensor-to-scalar ratio r vs spectral index ns (left) and r vs equilateral non-Gaussianity fNL (right) for double monodromy with
DBI kinetic terms. We take μ1 ¼ 0.01 for the potential, vary 0.1 ≤ p ≤ 0.5, and fix M ¼ 0.23. In the left panel, the triangles denote
solutions with the canonical kinetic term, while the dots are solutions for the DBI kinetic term. We note that, since cs is not bounded
from below, r can be much lower in the DBI model with respect to quartic and sextic kinetic terms. Equilateral non-Gaussianity shows
the expected inverse correlation with r, but it is within the current experimental bounds.
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− F2
abcd þ ϵa1…a11A

a1…Fa4…Fa8…a11

∋ −F2
μνλσ − ð∂ϕ1Þ2 − μϕ1ϵμνλσFμνλσ

−
X
k

F2
μνðkÞ −

ϕ1

fϕ

X
k;l

ϵμνλσFμνðkÞFλσðlÞ: ð13Þ

Here, the first line lists the 4-form-axion sector, which
thanks to the monodromy coupling is massive but light, and
the second describes the mixing of the axion with dark
Uð1Þ s. If for simplicity we take only one coupling to be
nonzero, we can model it with the canonically normalized
4D dimension-5 operator

Lint ¼ −
ffiffiffiffiffiffi
−g

p ϕ1

4fϕ
FμνF̃μν; ð14Þ

where fϕ is sub-Planckian. This scale is generically
≃MGUT (see, e.g., Refs. [47,48]). A rolling axion triggers
the tachyonic instability of one circular polarization of the
gauge field [70], whose exponential production both back-
reacts on the inflaton and produces scalar and tensor
perturbations [68,69]. Details of the backreaction were
examined in Refs. [71,72], and a very comprehensive
analysis of these effects was provided recently in
Ref. [73], with the results of the nonperturbative treatment
recently cross-verified in Ref. [74] using a completely
different gradient expansion formalism down to numeri-
cally identical predictions of the GW signal including
resonance-induced peaked fine structure. The details of
the dynamics are given in Refs. [1,73], and we will not
repeat them here. We should mention the other works
which have recently explored bumpy early Universe
dynamics to generate relic gravity waves [75–81].
We imagine this axion to be the inflaton dominating the

first stage of inflation in the double monodromy inflation of
the previous section, which in addition to the simple
quadratic potential [given in the dual 4-form frame by
the first line of Eq. (13)] also includes additional correc-
tions, that combine into the potential (1) and the higher-
derivative operators (2). Thus, early on during the first stage
of inflation, the dynamics described in the previous section
yields a suppressed tensor-to-scalar ratio and weak non-
Gaussianities, while matching the scalar CMB spectrum.
By the end of this stage, however, the inflaton drops out of
the strong coupling, and inflation continues for a few more
e-folds in weak coupling. This last epoch of the first stage
of inflation is described by the terms of Eq. (13). Hence, the
analysis of sub-CMB gravity wave generation of Ref. [1],
describing how the tachyonic instability in the dark Uð1Þ is
triggered by (14), goes through unabated. Hence, a Uð1Þ
chirality is cranked up, and it in turn sources chiral gravity
waves. The amplification is quite efficient, although it is
bounded by inflaton kinetic energy and scale of the first
stage of inflation near its end. Assuming that the potential
(4) remains valid all the way to the end of the weakly

coupled epoch of the first stage of inflation, the energy
density transferred to the tachyonic chirality of the dark
Uð1Þ can be calculated numerically, as presented in Fig. 5.
We should stress that some of these modes will reenter

the horizon during the intermediate matter-dominated
stage, interrupting the two stages of inflation. Hence, they
would dilute by expansion during that epoch. However, as
long as the interruption is short, the dilution is weak. We
can estimate it as follows: for subhorizon wavelength
modes, the amplitude goes as 1=λ ∼ 1=a, where a is the
scale factor. Since these modes are harmonic oscillators,
their power, by the virial theorem, is given by the square of
frequency × the amplitude. Hence, the suppression factor
will be at most ða1=a2Þ4, where a1 is the scale factor at the
end of stage 1 of inflation and a2 is the scale factor at the
mode refreezing after the start of the next stage inflation.
This factor is largest for the shortest wavelength mode at
the end of stage 1, for which k=a1 ∼H1. Because the mode
freeze-out yields k=a2 ≃H2, this yields a1=a2 ≲H2=H1,
and so for a short interruption, the power suppression
would be no more than a factor of 100 to 1000, which is
why we ignored it here. A more precise calculation is
warranted here, both for the computation of the proper
signal benchmarks and, crucially, since this also evades
violations of the big bang nucleosynthesis (BBN) bound on
gravity waves, ΩGWh2 ≲ 10−6 [82]. For this reason, we
sketch these uncertainties in the prediction, plotting a gray
band, spanning 2 orders of magnitude, around the idealized
prediction of the power emitted in GWs in Figs. 6 and 7.

FIG. 5. Evolution at the end of the first inflationary stage of the
energy density in gauge fields. We denote by Ne the number of
e-folds before the end of the first stage of inflation, and we
normalize the energy density to M4

Pl. The parameters of the
potential are fixed for convenience to M4

1 ¼ 2 × 10−9M4
Pl,

μ1 ¼ MPl, p ¼ 0.2; at the CMB scales, they lead to similar
results as μ1 ¼ 0.1MPl, which fit CMB perfectly. We show results
for different couplings fϕ as shown in the legend. The vertical
line denotes the end of inflation, and the solutions we show are
not completely reliable there. Note that the contributions of the
vector field are very small until the very end of inflation, when ϕ1

moves the fastest. As a result, the U(1) production does not affect
CMB significantly.
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In turn, the tachyonic dark Uð1Þ modes source the
stochastic gravity waves which are chiral, with the total
abundance which can be estimated by [86]

ΩGW ≡ Ωr;0

24
Δ2

T ≃
Ωr;0

12

�
H

πMPl

�
2

×

�
1þ 4.3 × 10−7

H2

M2
Plξ

6
e4πξ

�
; ð15Þ

where Ωr;0 ¼ 8.6 × 10−5 is the radiation abundance today,

ξ ¼ _ϕ
2Hfϕ

, and the terms are evaluated at horizon crossing.

The equation is valid for ξ≳ 3. This is the sum of the two
polarization of gravitational waves: the 1 term in the
parentheses arises due to the usual metric fluctuations in
de Sitter space and includes the contributions from both
graviton helicities. The second term in parentheses, involv-
ing the exponential amplification, receives contribution
only from the helicity sourced by the “tachyonic” gauge
field source, as evidenced by its dependence on ξ. By mode
orthogonality in the linearized limit, the other graviton
helicity is not enhanced.
It is clear that a favorable realization of the scales can

enhance the primordial GW spectrum dramatically. To fix
the physical wavelength of these modes, which allows us to
see by which instrument they might be searched for, and
what their amplitude at the relevant wavelength is, we can
rewrite ΩGW as a function of the frequency observed at the
present time. Since the comoving frequency is ν ¼ k=ð2πÞ,
the frequency of the modes in terms of the number of
e-folds before the end of inflation is given by

N ¼ NCMB þ ln
kCMB

0.002 Mpc−1
− 44.9 − ln

ν

102 Hz
; ð16Þ

where kCMB ¼ 0.002 Mpc−1 is the CMB pivot scale and
NCMB is the number of e-folds before the end of the first
stage of inflation where the CMB scales froze out. With
this, we can regraph the results of Fig. 5 in terms of the new
independent variable ν and the GW amplitude ΩGW. The
results are presented in Fig. 6. Again, the approximations
which we employ are not completely reliable beyond the
end of inflation, and noted above and in Ref. [1]. However,
they remain a good indicator of the signal’s power.
Of course, as we have seen from the previous discussion,

and showed manifestly in, e.g., Fig. 2, we can automatically
satisfy the CMB bounds on ns and r for a range of NCMB.
This means that there are degeneracies in the evolution
allowing for a good fit the CMB for a range of models, with
different values of the pivot point NCMB—i.e., with the
“CMB epoch” of multistage inflation of varying duration.
Therefore, we find it interesting to fix fϕ and plot ΩGWðνÞ
for different values of NCMB, which generates a horizontal
shift of the curves of Fig. 6. This plot is in Fig. 7, from
which it is apparent that several experiments in the near
future can explore the parameter space of our model. What
is more is that such a mechanism might occur at the end of
every accelerated stage of roller coaster, due to the inflatons
being axionlike and possibly coupling to many different
dark Uð1Þ s, thus producing what we might dub a “char-
acteristic spectrum” of roller-coaster models. If so, then
each spike, a different range of scales, might be simulta-
neously probed by one of the planned instruments.

FIG. 6. Abundance of gravitational waves as a function of
frequency, setting NCMB ¼ 35. The dashed gray line is the
sensitivity of LISA [83], and the dotted blue line is the sen-
sitivity of Big Bang Observer (BBO) [84]. Again, we use
M4

1 ¼ 2 × 10−9MPl, μ1 ¼ MPl, p ¼ 0.2 for convenience, and
as before scan fϕ as shown in the legend. The vertical line
again designates the end of inflation, beyond which a different
approximation is needed. We plot maximal power here, ignoring
the suppression during the interruption. The gray band outlines
the uncertainties due to this suppression, which when accounted
for evade violations of the BBN bound on gravity waves.

FIG. 7. Abundance of gravitational waves as a function of
frequency, setting for different NCMB ¼ 35; 40; 45. We show the
predicted bounds as a function of frequency for LISA [83], Big
Bang Observer (BBO) [84], and Einstein Telescope (ET) [85].
We use M4

1 ¼ 2 × 10−9MPl, μ1 ¼ MPl, p ¼ 0.2, and fϕ ¼ 0.08.
If ns is bluer, for monodromy models, this means longer (first
stage of) inflation. If at the end of this stage chiral tensors are
generated, their frequency will be higher. The vertical line
designates the end of inflation for each curve, beyond which a
different approximation is needed. Again, the gray band outlines
the uncertainties in the prediction of the power due to the
suppression at the interruption between the stages of roller-
coaster inflation.
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The bottom line is that these modes may very well be
out there for the GW instruments to discover. Depending on
the specifics of the earliest stage of inflation and its
duration, their wavelength might be in the sweet spot of
LISA [83] or DECIGO/BBO [84] or, if the wavelength is
longer (and the earlier stage of inflation shorter), SKA or
NANOgrav (for a recent study of the measurement of the
spectrum of primordial gravitational waves, see Ref. [87]).
In either case, combining this with the bounds on r at the
CMB scales makes our double-coaster, and more generally
multistage roller coaster, extremely predictive and easy to
confirm.

VI. CONCLUSION

We have updated here our earlier model of double
monodromy inflation with the inclusion of the general
strong coupling-induced irrelevant operators, which lead
to additional suppression of the tensor-to-scalar ratio in
inflation. As a result, the predictions of the model, which
involves an early stage of inflation which is interrupted
by the first inflaton decay 25–40 e-folds after the begin-
ning, are fully consistent with the most recent BICEP/Keck
bounds. The observables are 0.006≲ r≲ 0.035 with
0.96≲ ns ≲ 0.97 with fNL ≲Oð10Þ. This makes the mod-
els very predictive since they can be constrained—and
possibly confirmed and ruled out—by the very near-future
observations. In addition, the first inflaton could couple
to a hidden sectorUð1Þ and lead to an enhanced production
of vectors near the end of the first stage of inflation. These
vectors in turn would source tensors at shorter wavelengths,
leading to additional signatures of the model that would
correlate with the signatures in the CMB.
In closing, we should finally mention that at this point,

however, it may still be premature to take the ns − r bounds
as very strong obstructions to inflationary models. Namely,
although the bounds on r are strong, the correlation of ns
and r might be weaker than it seems. We believe the
situation warrants a warning of sorts since the ns − r
correlation is commonly used to assess the likelihood of
popular inflationary models (nice reviews of the observa-
tional constraints on theoretical models can be found in,
e.g., Refs. [2,3]). For example, one commonly encounters
the “potato plots” such as in Fig. 5 in Ref. [4] or Fig. 4 in
the subsequent paper [88] as well as our own Figs. 2–4,
which one may take to suggest there is very small
remaining parameter space for inflationary models to
“squeeze in.” Such reasoning might be too quick, since
there is another interesting possibility that can open up the
space in the ns − r plane, which is quite curious although it
might seem somewhat extreme.
The issue is that in all the figures plotting r versus ns

which we have shown so far we have relied on the
constraints on ns based on the CMB data analysis assuming
the ΛCDM model of the late Universe. However, for some
years now, the measurements of the Hubble parameter

using standard candles [15,16,19,24] have shown discrep-
ancy with the value of H0 determined by Planck experi-
ment, which is based on fitting the CMB data to the late
ΛCDM cosmology [89]. To resolve the Hubble tension,
many models have been proposed to date (for reviews,
see Refs. [22,23]). Among the most successful models
are the so-called early dark energy proposals, which
involve additional degrees of freedom before recombina-
tion [20,21,90,91]. Analyzing the CMB data in terms of
these new models, a common feature is that the spectral
index is bluer with respect to the ΛCDM value (see
Refs. [17,92–95]). If it indeed turns out that the Hubble
tension is real, and the most recent examinations indicate
support for this option, assessing the discrepancy to be at
5σ at this time [24], the shift of ns will have very important
implications for inflationary model constraints.
We illustrate this in Fig. 8, in which we plot the contours

obtained from the ΛCDM model and the one we infer
from the constraints on ns in the so-called new early dark
energy (NEDE) model, presented in Refs. [20,21]. This
plot clearly shows how—all of a sudden—flattened mono-
dromy models, with a long stage of inflation, and the power
law behavior of, for example, ∼ϕ1=2 at large ϕ, which were
supposedly excluded by having too large an ns, may end up
being better candidates than, for example, the Starobinsky
R2. Of course, it is too soon to claim this. But until the H0

FIG. 8. Tensor-to-scalar ratio r vs spectral index ns, for the
ΛCDM model (blue) and for the NEDE model (gold). To get the
NEDE model constraint, we approximate the ΛCDM contour as a
bivariate Gaussian and substitute the mean and error on ns by the
ones gotten in the NEDE model. This approximate procedure
reproduces well a full analysis [93]. The round dots are predic-
tions of potentials (1) with 0.1 ≤ p1 ≤ 0.5, as before. The square
dots are the predictions of the Starobinsky R2 inflation [96].
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tension is resolved, it may also be too soon to claim the
opposite. The point is that we need to resolve the issues
which arose in the late Universe cosmology before we can
get into the precision data confirming or ruling out infla-
tionary models. With the ever better quality of data and an
array of planned searches and tests in the very near future,
this seems to be within reach.
We therefore remain quite curious about what the future

observations may yield.
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