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We establish a new self-consistent model of coupling between the cosmic dark energy and dark matter in
the framework of the rheological approach, which is based on the representation of the equations of state in
terms of integral operators of the Volterra type. We elaborate on the so-called four-kernel model, in the
framework of which both the dark energy and dark matter pressures are presented by two integrals
containing the energy densities of the dark energy and dark matter. For the Volterra operators, the kernels of
which are associated with the effects of fading memory, the corresponding isotropic homogeneous
cosmological model is shown to be exactly integrable. We consider the classification of the model exact
solutions, based on the analysis of roots of the characteristic polynomial associated with the key equation of
the presented model. The scalars of the pressure and energy density of the dark energy and dark matter, the
Hubble function and acceleration parameter are presented explicitly as the functions of the dimensionless
scale factor. The scale factor as the function of the cosmological time is found in quadratures and is
described analytically, qualitatively, and numerically. Asymptotic analysis allows us to classify the models
with respect to behavior typical for the big rip, little rip, and pseudorip (de Sitter type). Two intriguing exact
cosmological solutions are discussed, which describe the superexponential expansion and the symmetric
bounce. New solutions are presented, which correspond to the quasiperiodic behavior of the state functions
of the dark fluid and of the geometric characteristics of the Universe.
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I. INTRODUCTION

A. On the problem of internal interactions
in the cosmic dark fluid

The cosmic dark fluid, which consists of dark matter and
dark energy, plays the key role in all modern cosmological
scenaria [1–17]. The dark matter and dark energy interact
by the gravitational field, thus creating the spacetime
background for various astrophysical and cosmological
events. Observational data, obtained recently, show that the
direct (nongravitational) interaction between dark matter
and dark energy cannot be excluded [18–21]. The concept
of nongravitational interaction in the dark sector, precisely
between dark matter (DM) and dark energy (DE), was
phenomenologically introduced to explain, in particular,
the cosmic coincidence problem [22–24]. There are few
models of interactions in the dark sector. The most well-
known phenomenological model operates with the so-
called kernel of interaction, the function QðtÞ, which
appears in the individual balance equations for the DE
and DM energy densities with opposite signs,þQ and −Q,
thus providing the conservation of the total (DEþ DM)

energy density (see, e.g., [25–29]). In the series of works
[30–33] the DE/DM interaction is modeled on the base of
relativistic kinetic theory with an assumption that DE acts
on the DM particles by the gradient force of the
Archimedean type. In [34,35] the DE/DM interactions
are considered in terms of extended electrodynamics of
continua. In [36] the kernel of nongravitational interaction
between DE and DM is presented by the integral Volterra-
type operator. The main idea of both differential and
integral extensions of the interaction terms is based on
the concept that the response of the DM on the DE action
(and vice versa) occurs with a time delay, not instantly. This
approach is supported by various physical models for the
classical matter with rheologic properties, and we hope that
the behavior of the dark constituents of the cosmic dark
fluid is similar in this sense. As for the self-interaction
inside the DE and DM, there are models (see, e.g., [30,37]),
in which the equations of state of the DE are extended by
the terms with the first derivative of the DE pressure. The
extension of this type was inspired by the results of the
relativistic causal thermodynamics, elaborated on by Israel
and Stewart [38]. In fact, the appearance of the differential
and/or integral terms in the equations of state for DM and
DE reveals the intention to describe the simplest effects of
nonlocality in time. One can mention two classical theories
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which have realized this paradigm; the theory of visco-
elasticity and rheology (see, e.g., [39–43]). In these theories
the concept of fading memory is used, and the correspond-
ing mathematical formalism is based on the theory of linear
Volterra operators [44], which considers the value of the
pressure at the moment to be predetermined by whole
prehistory of the material evolution. Generally, the problem
of theoretical description of nonlocal interactions is well
known in physics, and particularly, in cosmology and
theories of gravity (see, e.g., [45–50]. We intend to involve
the formalism of the nonlocal theory to the problem of
internal interactions in the cosmic dark fluid, using the
isotropic homogeneous spacetime platform.

B. Prolog

Classical theory of viscoelasticity [39] operates with two
local constitutive laws; first, with Hooke’s law which states
that the stress σ is proportional to the strain ϵ, and second
with Newton’s law which claims that the stress is propor-
tional to the time derivative of the strain _ϵ. Symbolically,
these laws can be written as follows:

σ ¼ E0ϵ; σ ¼ η_ϵ; ð1Þ

where the parameter E0 describes the elastic modulus, and
η relates to the viscosity coefficient. For the schematic
illustration of the material properties one uses combination
of springs, which symbolize the Hooke’s properties, and of
the dashpots, when one deals with the behavior of the
Newton type. Serial connection of one spring and one
dashpot symbolizes the Maxwell model of viscoelasticity,
which can be described by the constitutive equation

_σ þ E0

η
σ ¼ E0 _ϵ: ð2Þ

This constitutive equation can be rewritten in the integral
form

σðtÞ ¼ σð0Þe−E0
η t þ E0

Z
t

0

dτ_ϵðτÞe−E0
η ðt−τÞ: ð3Þ

The right-hand side of this formula contains the so-called
Volterra integral with the difference multiplicative kernel

Kðt − τÞ ¼ e−
E0
η ðt−τÞ ¼ e−

E0
η t · e

E0
η τ ð4Þ

which describes the fading memory [39,41].
When one depicts two springs and two dashpots con-

nected as two parallel Maxwell details, one obtains the
Burgers model with the constitutive equation of the second-
order time derivative,

σ̈ þ _σ

�
E1

η1
þ E2

η2

�
þ σ

E1E2

η1η2
¼ fðϵÞ;

fðtÞ≡ _ϵE1E2

�
1

η1
þ 1

η2

�
þ ̈ϵðE1 þ E2Þ: ð5Þ

This differential relationship is equivalent to the integral
one

σðtÞ ¼
�
σð0Þ cosh Γ̃tþ γσð0Þ þ _σð0Þ

Γ̃
sinh Γ̃t

�
e−γ̃t

þ 1

2Γ̃

Z
t

0

dτfðτÞ½e−
E2
η2
ðt−τÞ − e−

E1
η1
ðt−τÞ�; ð6Þ

where the parameters γ̃ and Γ̃ are given by

Γ̃≡ 1

2

�
E1

η1
−
E2

η2

�
; γ̃ ≡ 1

2

�
E1

η1
þ E2

η2

�
: ð7Þ

When σð0Þ ¼ 0 and _σð0Þ ¼ 0, we obtain from (6) the
integral form of the constitutive equation for the Burgers
model. Clearly, the Burgers model of viscoelasticity deals
with the multiplicative kernels of the Volterra type, which is
given by the difference of two Maxwell kernels (4). This
illustration gives us the analog and motivation for the four-
kernel extension of the model of interaction between the
dark energy and dark matter.

C. Structure of the work

In the presented work we deal with the dark fluid
consisting of two dark constituents, and we consider two
equations of state (EoS). In the EoS for the dark energy the
DE pressure is presented by two Volterra integrals con-
taining the DE energy density scalar and DM energy
density scalar, respectively. Similarly, the EoS for the dark
matter contains two Volterra integrals. Thus, the model
requires to introduce four kernels; our ansatz is that all four
kernels describe the fading memory and have the multi-
plicative form.
The paper is organized as follows. In Sec. II we describe

the formalism. i.e., we present the equations of the gravity
field, the equations of state for the DE and DM, and the
balance equations. In Sec. III we derive the integro-differ-
ential equations describing the evolution of the isotropic
homogeneous Universe, and obtain the so-called key
equation, which is the linear differential equation of the
Euler type in ordinary derivatives for the DE energy
density. Depending on the completeness of the set of
phenomenologically introduced coupling parameters, the
key equation can be the sixth, fifth, fourth, third, and
second-order derivative; we describe all the corresponding
schemes of derivation and present the sets of auxiliary
coefficients in Appendices I and II. In Sec. IV we give the
classification of the exact solutions to the key equation
based on the analysis of solutions to the characteristic
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equation associated with the Euler equation; using the
asymptotic analysis of the obtained solutions we indicate
the cases which correspond to the Universe behavior
typical for big rip, little rip, and pseudorip. Section V
contains explicit examples of analytic solutions for the
model, which describes the pressureless dark matter and
nonlocally self-interacting dark energy coupled by the local
link. In Sec. VI we consider exact explicit solutions of the
model of the nonlocal cross action of DE on DM.
Section VII contains discussion and conclusions.

II. THE FORMALISM

A. Two-fluid representation of the isotropic
homogeneous cosmological model

The master equations for the gravity field obtained from
the Hilbert-Einstein action functional have the form

Rik −
1

2
gikR − Λgik ¼ κ½Tik

ðDEÞ þ Tik
ðDMÞ�; ð8Þ

where Rik is the Ricci tensor, R is the Ricci scalar, Λ is the
cosmological constant. The quantities Tik

ðDEÞ and Tik
ðDMÞ are

the stress-energy tensors of the dark energy and dark
matter, respectively. We assume that the spacetime is
described by the line element

ds2 ¼ dt2 − a2ðtÞ½dx2 þ dy2 þ dz2�: ð9Þ

Our ansatz is that the DE and DM stress-energy tensors
have the form

Tik
ðDEÞ ¼WUiUk−PΔik; Tik

ðDMÞ ¼EUiUk−ΠΔik: ð10Þ

Here Ui ¼ δi0 is the timelike unit velocity four-vector and
Δik ≡ gik −UiUk is the projector. W and E are the
energy density scalars of DE and DM, respectively, and
P and Π describe the corresponding pressure scalars. All
the state functions are assumed to be the functions of
time only.
The Bianchi identity provides the sum of the DE and DM

stress-energy tensors to be divergence free,

∇k½Tik
ðDEÞ þ Tik

ðDMÞ� ¼ 0: ð11Þ

In the isotropic homogeneous spacetime with the metric (9)
this equality can be rewritten via two balance equations

_W þ 3HðW þ PÞ ¼ Q; ð12Þ

_Eþ 3HðEþ ΠÞ ¼ −Q; ð13Þ

where HðtÞ ¼ _aðtÞ
aðtÞ is the Hubble function, the dot denotes

the derivative with respect to time. The quantity QðtÞ is
some auxiliary function of time indicated as the kernel of

interaction between the DE and DM. We assume that the
kernel of DE/DM interaction is of linear form,

QðtÞ ¼ ω0HðtÞ½EðtÞ −WðtÞ�; ð14Þ

where ω0 is a dimensionless phenomenological constant.
Due to the symmetry of the model we have only one
independent equation describing the gravity field, it has the
form

3H2 − Λ ¼ κ½WðtÞ þ EðtÞ�: ð15Þ
To solve the set of master equations (15), (12), (13), with
(14) we have to add two equations of state for the DE and
DM, respectively,

P ¼ PðW;EÞ; Π ¼ ΠðW;EÞ: ð16Þ

B. Reconstruction of the constitutive equations

We suggest to formulate the equations of state for the
dark energy in the following integral form,

PðtÞ ¼ ðΓ − 1ÞWðtÞ þ
Z

t

t0

dξK11ðt; ξÞWðξÞ

þ
Z

t

t0

dξK12ðt; ξÞEðξÞ; ð17Þ

using two Volterra type operators. Similarly, the equation of
state for the dark matter is presented in the form

ΠðtÞ ¼ ðγ − 1ÞEðtÞ þ
Z

t

t0

dξK21ðt; ξÞWðξÞ

þ
Z

t

t0

dξK22ðt; ξÞEðξÞ: ð18Þ

These constitutive laws require the following comments.
(1) When K11 ¼ K12 ¼ K21 ¼ K22 ¼ 0 the constitutive

laws (17) and (18) give the standard barotropic
equations of state PðtÞ ¼ ðΓ − 1ÞWðtÞ and
ΠðtÞ ¼ ðγ − 1ÞEðtÞ; thus, the constants Γ and γ play
the roles of the adiabatic parameters for the DE and
DM, respectively.

(2) When the cross terms vanish, i.e., K12 ¼ K21 ¼ 0,
we deal with two integral type equations of state,
which are independent for DE and DM; there are no
internal cross interactions in the dark fluid, but there
exist self-interactions in DE and DM individually.

(3) Generally, K12 ≠ K21, though the symmetric case
K12 ¼ K21 is also interesting.

(4) The constitutive equations (17) and (18) belong to
the class of nonlocal laws, i.e., the value of the DE
and DM pressures at the time moment t are
predetermined by all prehistory of the dark fluid
evolution.
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C. The Volterra kernels describing the fading memory

Keeping in mind the classical analogs from the Maxwell
and Burgers models of viscoelasticity, we suggest to use the
multiplicative Volterra kernels of the following form

Kijðt; ξÞ ¼ K0
ijHðξÞ

�
aðξÞ
aðtÞ

�
νij
; ð19Þ

where i, j ¼ 1, 2. As for the quantities K0
ij and νij, they are

some dimensionless phenomenological constants. The
signs of the parameters νij (for the case of fading memory)
can be fixed as follows. When we deal with the de Sitter
model, and aðtÞ ¼ aðt0ÞeH0t, the term Kijðt; ξÞ in (19)
takes the form

Kijðt; ξÞ ¼ K0
ijH0e−H0νijðt−ξÞ: ð20Þ

Comparing (20) with (3) we conclude that it is reasonable
to assume that the parameters νij are positive.

III. KEY EQUATION OF THE MODEL

A. General strategy

1. Balance equations for DE and DM energy densities

The first step towards resolving the set of equations (15),
(12), (13), (14), with (17) and (18) is to obtain the key
equation, which contains only one unknown function;
namely, the DE energy density scalar W. We mention that
in the presented model one can consider the functions W
and E to depend on cosmological time through the scale
factor, i.e., W ¼ WðaðtÞÞ and E ¼ EðaðtÞÞ. This allows us
to use the well-known approach based on the introduction
of the following dimensionless variable instead of the
cosmological time,

x≡ aðtÞ
aðt0Þ

;
d
dt

¼ xHðxÞ d
dx

: ð21Þ

When the Hubble function HðxÞ is found, the relation
between cosmological time and this new variable can be
obtained in quadrature as follows:

t − t0 ¼
Z aðtÞ

aðt0Þ

1

dx
xHðxÞ : ð22Þ

In these terms the balance equations (12) and (13) convert
into

x
dW
dx

þ 3ðW þ PÞ ¼ ω0ðE −WÞ; ð23Þ

x
dE
dx

þ 3ðEþ ΠÞ ¼ ω0ðW − EÞ: ð24Þ

2. Integral form of the DE and DM equations of state

In this context, the main interest is connected with the
constitutive equations (17) and (18), which can be now
presented in the integral and differential forms. The integral
representations are

PðxÞ ¼ ðΓ − 1ÞWðxÞ þ x−ν11K0
11

Z
x

1

dyyν11−1WðyÞ

þ x−ν12K0
12

Z
x

1

dyyν12−1EðyÞ; ð25Þ

ΠðxÞ ¼ ðγ − 1ÞEðxÞ þ x−ν21K0
21

Z
x

1

dyyν21−1WðyÞ

þ x−ν22K0
22

Z
x

1

dyyν22−1EðyÞ: ð26Þ

3. General differential form of the
DE and DM equations of state

It is well known that the integral equations with the
multiplicative kernels can be reduced to the differential
equations; in our case we obtain the equations of state for
the DE (25) and for the DM (26) in the following form,

x2P00 þ ðν11 þ ν12 þ 1ÞxP0 þ ν11ν12P

¼ ðΓ − 1Þx2W00 þ ½ðΓ − 1Þðν11 þ ν12 þ 1Þ þ K0
11�xW0

þ ½ν11ν12ðΓ − 1Þ þ K0
11ν12�W þ K0

12xE
0 þ ν11K0

12E;

ð27Þ

x2Π00 þ ðν22 þ ν21 þ 1ÞxΠ0 þ ν22ν21Π

¼ ðγ − 1Þx2E00 þ ½ðγ − 1Þðν22 þ ν21 þ 1Þ þ K0
22�xE0

þ ½ν22ν21ðγ − 1Þ þ K0
22ν21�Eþ K0

21xW
0 þ ν22K0

21W:

ð28Þ

Here and below the prime denotes the derivative with
respect to variable x. Clearly, the Eqs. (23)–(26) do not
contain the Hubble function, thus the equation

3H2ðxÞ ¼ Λþ κ½WðxÞ þ EðxÞ� ð29Þ

gives us the unknown function HðxÞ, whenWðxÞ and EðxÞ
are found.

4. Initial data problem

When we convert the integral relationships into the
differential equations, we have to keep in mind that the
initial data for the quantities participating in these pro-
cedure have to satisfy the conditions
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Pð1Þ ¼ ðΓ − 1ÞWð1Þ; Πð1Þ ¼ ðγ − 1ÞEð1Þ;
P0ð1Þ ¼ ðΓ − 1ÞW0ð1Þ þ K0

11Wð1Þ þ K0
12Eð1Þ;

Π0ð1Þ ¼ ðγ − 1ÞE0ð1Þ þ K0
21Wð1Þ þ K0

22Eð1Þ;…: ð30Þ

Additionally, keeping in mind (23) and (24) for the starting
point x ¼ 1, we obtain

W0ð1Þ ¼ ω0Eð1Þ −Wð1Þð3Γþ ω0Þ; ð31Þ
E0ð1Þ ¼ ω0Wð1Þ − Eð1Þð3γ þ ω0Þ: ð32Þ

W0ð1Þ þ E0ð1Þ ¼ −3½ΓWð1Þ þ γEð1Þ�: ð33Þ

Below we will keep in mind these relationships if we intend
to simplify a model and to link some guiding parameters
and initial data.

5. First particular case: The DM (or DE)
self-interaction is absent

When K22 ¼ 0 and ν22 ¼ 0, i.e., when there is no the
DM nonlocal self-interaction, the differential version of the
equation of state for the dark matter becomes the equation
of the first-order derivative

xΠ0 þ ν21Π ¼ ðγ − 1ÞðxE0 þ ν21EÞ þ K0
21W; ð34Þ

linking the state functions Π, E, and W. Similarly, when
K11 ¼ 0 and ν11 ¼ 0, we deal with the first-order differ-
ential equation of instead of (27).

6. Second particular case: The DM/DE
cross-interaction is absent

When K12 ¼ 0 and ν12 ¼ 0, i.e., when there is no action
of the DM on the DE substratum, the corresponding
differential version of the equation of state for the dark
energy takes the form

xP0 þ ν11P ¼ ðΓ − 1ÞðxW0 þ ν11WÞ þ K0
11W: ð35Þ

Again we deal with the first-order derivative equation, but
now the DM energy density scalar E disappears from this
equation, i.e., the DE constitutive equation can be
decoupled from the set of the DE/DM equations of state.
Similarly, when K21 ¼ 0 and ν21 ¼ 0, the DM constitutive
equation happens to be decoupled.

B. The scheme of reconstruction of the key equation

1. General case: ω0 ≠ 0, K0
ij ≠ 0, νij ≠ 0

When ω0 ≠ 0, we extract the DM energy density EðxÞ
from (23)

EðxÞ ¼ 1

ω0

½xW0ðxÞ þ ð3þ ω0ÞW þ 3P�; ð36Þ

and extract the DM pressure ΠðxÞ from (24),

ΠðxÞ ¼ −
1

3ω0

½x2W00 þ ð7þ 2ω0ÞxW0 þ ð9þ 6ω0ÞW

þ 3xP0 þ ð9þ 3ω0ÞP�: ð37Þ

Then we put EðxÞ from (36) and ΠðxÞ from (37) to
Eqs. (27) and (28), thus excluding the state functions of
the dark matter. The last step of this procedure is the
following: We exclude the DE pressure PðxÞ and obtain the
key equation for the DE energy density

x6WðVIÞ þ ω1x5WðVÞ þ ω2x4WðIVÞ þ ω3x3W000

þ ω4x2W00 þ ω5xW0 þ ω6W ¼ 0: ð38Þ

In Appendix A this procedure is described in detail, and the
coefficients ωj are presented. The main feature of the key
equation (38) is that it is the linear sixth-order ordinary
differential Euler equation and thus, its general solution can
be presented in standard elementary functions. When the
solution to the Euler equation (38) is written and WðxÞ is
presented, we find PðxÞ using (A7); then we find EðxÞ from
(36) and ΠðxÞ from (37). The last step is to find HðxÞ from
(15) and then aðtÞ from (22).

2. The special case ω0 = 0, but K0
12 ≠ 0 and K0

21 ≠ 0

The condition ω0 ¼ 0 means that the coupled balance
equations (23) and (24) convert into the conservation laws
for the DE and DM individually, however, there exists the
nonlocal cross interaction between DE and DM. When the
parameter ω0 vanishes, we have to change the strategy of
the derivation of the key equation. Now we extract the DE
pressure P from (23) and the DM pressure Π from (24)

P ¼ −
1

3
xW0 −W; Π ¼ −

1

3
xE0 − E: ð39Þ

Then we put these P and Π into the Eqs. (27) and (28)
obtaining two equations, which link now the DE and DM
energy densitiesW and E. At the last step we exclude EðxÞ
and obtain the key equation for the DE energy density of
the form (38), but all the coefficients ωj should be replaced
by Ωj (they are presented in the Appendix B). We deal
again with the sixth-order Euler equation derivative; when
WðxÞ is written, we obtain EðxÞ from (B5), then find PðxÞ
and ΠðxÞ from (39), HðxÞ from (15) and aðtÞ from (22).

3. The special case ω0 = 0 and K0
12 = 0

As an example, we discuss now the case, when the DM
action on the dark energy is assumed to be negligible. Now
we obtain that the equation for the DE energy density W
happens to be decoupled

x3W000 þ α1x2W00 þ α2xW0 þ α3W ¼ 0; ð40Þ
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where the coefficients α1, α2, α3 are presented in
Appendix B. We deal now with the third-order Euler
equation for the unknown function W. When WðxÞ is
found, we solve the third-order Euler equation (B3) for
EðxÞ and then follow the logics of the previous
subsubsection.

4. The special case ω0 ≠ 0, but K0
12 = 0 and ν12 = 0

Now we find that the coefficient ω6 vanishes and ω6 ¼ 0
(see Appendix A); this means that the key equation
becomes a fifth-order derivative. The same result appears
if K0

21 ¼ 0 and ν21 ¼ 0. When the pairs of the coefficients
K0

ij and the corresponding pairs of νij vanish, one can
reduce the key equation (38) to a fourth-order differential
equation.

IV. ANALYSIS OF THE SOLUTIONS TO
THE KEY EQUATION

A. Characteristic equation and the structure of the
general solution

The general solution to the Euler equation (38) can be
reconstructed by the standard method; we search for the
particular solutions in the form WðxÞ → xσ , and obtain a
sixth-order characteristic equation for σ,

σ6 þ ðω1 − 15Þσ5 þ ð85 − 10ω1 þ ω2Þσ4
þ σ3ð−225þ 35ω1 − 6ω2 þ ω3Þ
þ ð274 − 50ω1 þ 11ω2 − 3ω3 þ ω4Þσ2
þ ð−120þ 24ω1 − 6ω2 þ 2ω3 − ω4 þ ω5Þσ þ ω6 ¼ 0:

ð41Þ

Clearly, the sixth-order algebraic polynomial with real
coefficients can have the following sets of roots; six real
roots, four real roots and a pair of complex conjugated
ones, two real roots and two pairs of complex conjugated
ones, and three pairs of complex conjugated roots. The
general solution to the Euler equation (38) is known to be
the linear combination of six fundamental solutions. For the
simple real root σ1 the basic solution is xσ1 ; when k real
roots coincide the corresponding basic solutions are
xσ1 ; xσ1 log x; ...; xσ1ðlog xÞk−1. When there is a complex-
conjugated pair σ ¼ α� iβ among the roots of the char-
acteristic equation, one has to choose two basic solutions in
the form xσ1 cos ðβ log xÞ and xσ1 sin ðβ log xÞ; when there
are coinciding pairs of the complex conjugated roots, one
has to use the products of the corresponding basic functions
with ðlog xÞs, as in the case of the real roots. This procedure
is standard, and below we present the classification of the
mentioned six roots and consider the corresponding sol-
utions to the key equation (38) in the asymptotic regime
x → ∞ in order to select the appropriate models, which
seem to be physically motivated.

B. Real roots

Let us start with the case when all six roots of the
characteristic equation (41), σðaÞ are real. One can distin-
guish eleven different subcases; there is one (the so-called
completely nondegenerated) set of real roots (there are no
coinciding pairs); also, there are ten degenerated sets (two,
three, four, five, or six roots coincide, etc.).

1. Completely nondegenerate set of roots

When all six roots do not coincide, the general solution
to the key equation (38) can be written as follows:

WðxÞ ¼
X6
ðaÞ¼1

CðaÞxσðaÞ ; ð42Þ

where CðaÞ are integration constants. According to the
scheme of analysis proposed above we obtain now that
the solutions for EðxÞ, PðxÞ, ΠðxÞ, and H2 have exactly the
same structure as WðxÞ (42), we just have to specify
the corresponding coefficients. Also, the acceleration
parameter

−q≡ ä
aH2

¼ 1þ xðH2ðxÞÞ0
2H2ðxÞ

¼
1þ 3

Λ
P

6
ðaÞ¼1

C̄ðaÞð1þ 1
2
σðaÞÞxσðaÞ

1þ 3
Λ
P

6
ðaÞ¼1

C̄ðaÞxσðaÞ
; ð43Þ

happens to be presented in the elementary functions.
The scale factor aðtÞ is the function, which generally can

be found in quadratures only

t − t0 ¼
Z aðtÞ

aðt0Þ

1

dx

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ
3
þP

6
ðaÞ¼1

C̄ðaÞxσðaÞ
q : ð44Þ

Clearly, in general, the scale factor can be obtained only
numerically. However, one can analyze the asymptotic
behavior of the Universe geometric characteristics as
follows. Let the root of the characteristic equation σðmÞ
be the maximal among the six real roots σðaÞ. The root σðmÞ
can be positive, zero, or negative.
1. σðmÞ > 0.
In this case the scale factor behaves asymptotically as

x ¼ aðtÞ
aðt0Þ

∝
�

1

ðt� − tÞ
� 2

σðmÞ : ð45Þ

When t → t�, the functionsWðtÞ, EðtÞ, PðtÞ, and ΠðtÞ tend
to infinity, and we deal with the big rip (for the classi-
fication of future singularities see, e.g., [51–54]).
2. σðmÞ ¼ 0.
Now we deal with the behavior, which is characterized

by the asymptotically constant DE and DM state functions,
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WðtÞ → W∞, EðtÞ → E∞, PðtÞ → P∞, ΠðtÞ → Π∞ and
HðtÞ → H∞; as for the scale factor, it behaves as

aðtÞ ∝ eH∞t; H∞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λþ κðW∞ þ E∞Þ

3

r
: ð46Þ

We follow the works [51–54] and prefer to indicate this
final state as pseudorip.
3. σðmÞ < 0.
For this case all the DE and DM state functions tend

asymptotically to zero, and we deal with the standard de
Sitter asymptote with H∞ ¼

ffiffiffi
Λ
3

q
.

Illustration of the mentioned regimes is presented
in Fig. 1.

2. Degenerated sets of roots

When all the roots of the characteristic equations are real,
there exists ten specific cases, which describe the situations
with coinciding roots:
(1) Two roots coincide, say, σð1Þ ¼ σð2Þ, and other roots

are different;
(2) Three roots coincide, say, σð1Þ ¼ σð2Þ ¼ σð3Þ, and

other roots are different;
(3) Four roots coincide, say, σð1Þ ¼ σð2Þ ¼ σð3Þ ¼ σð4Þ,

and other roots are different;
(4) Five roots coincide, say, σð1Þ ¼ σð2Þ ¼ σð3Þ ¼

σð4Þ ¼ σð5Þ, and the last one differs from them;

(5) All six roots coincide;
(6) There are two pairs of coinciding roots, say, σð1Þ ¼

σð2Þ ≠ σð3Þ ¼ σð4Þ and other two roots are different;
(7) There are three pairs of coinciding roots,

say, σð1Þ ¼ σð2Þ ≠ σð3Þ ¼ σð4Þ ≠ σð5Þ ¼ σð6Þ;
(8) There is the set of roots, satisfying the condi-

tions σð1Þ ¼ σð2Þ ¼ σð3Þ ≠ σð4Þ ¼ σð5Þ ≠ σð6Þ;
(9) There is the set of roots, satisfying the condi-

tions σð1Þ ¼ σð2Þ ¼ σð3Þ ¼ σð4Þ ≠ σð5Þ ¼ σð6Þ;
(10) There are two trio of coinciding roots,

σð1Þ ¼ σð2Þ ¼ σð3Þ ≠ σð4Þ ¼ σð5Þ ¼ σð6Þ;
The procedure of representation of the general solution

to the key equation in all ten cases is well documented.
For instance, let k real roots coincide (2 ≤ k ≤ 6),
say, σð1Þ ¼ σð2Þ ¼ … ¼ σðkÞ ≡ σ0, and other roots be differ-
ent. The corresponding general solution to the key equation
reads

WðxÞ ¼ xσ0 ½C̃1 þ C̃2 log xþ � � � þ C̃klogk−1x�

þ
Xð6Þ
j¼kþ1

C̃jx
σðjÞ : ð47Þ

This structure is also typical for the functions EðxÞ, PðxÞ,
ΠðxÞ, and H2ðxÞ.
The asymptotic behavior of the solutions can be

estimated keeping in mind two principal cases; what is
bigger—σ0 or one of the roots σðjÞ, j > k? When σðjÞ > σ0,
the asymptotic behavior of the system is described in the
previous subsubsection. Now we assume that the root σ0 is
the biggest one among the roots of the set under discussion.
Then the biggest term in (47) is

Wðx → ∞Þ → C̃kxσ0ðlog xÞk−1: ð48Þ

The solution for the scale factor aðtÞ depends on the sign of
the root σ0.
(1) When σ0 < 0, HðxÞ →

ffiffiffi
Λ
3

q
and we deal with the de

Sitter type behavior of the model.
(2) When σ0 ¼ 0, and thus HðxÞ → Kðlog xÞk−12 , we

obtain three interesting cases.
(2.1) If k ¼ 2, aðt → ∞Þ ∝ e

1
4
K2t2 ; we deal with the

solution indicated as anti-Gaussian solution in
[30]. It is an example of the little rip-type
behavior.

(2.2) If k ¼ 3, aðt → ∞Þ ∝ ee
Kt
; we deal with the solution

indicated as superexponential solution in [30].
Again, it is an example of the little rip behavior.

(2.3) If 3 < k ≤ 6, the integral (22) converges when the
upper limit tends to infinity. This means that the
scale factor a reaches the infinite value during the
finite interval of the cosmological time. We deal now
with the big rip-type solution.

(3) When σ0 > 0, and thus HðxÞ → Kx
1
2
σ0ðlog xÞk−12 , we

can rewrite (44) as follows:

0
1

0

1

2

3

4

FIG. 1. This figure illustrates the behavior of dimensionless
scale factor aðtÞ=aðt0Þ (upper panel) and Hubble function
HðtÞ=Hðt0Þ (bottom panel) as functions of cosmological time
t − t0; five values of the maxðσðαÞÞ are fixed in the right side of the
figure. CðmÞ corresponding to the maximal root σm is considered
to be positive; other integration constants CðiÞ are negative.
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�
σ0
2

�3−k
2

Kt → γðs; uÞ≡
Z

u

0

dξe−ξξs−1; ð49Þ

where γðs; uÞ is the incomplete lower Gamma function with
the arguments

s ¼ 3 − k
2

; u ¼ σ0
2
log

�
aðtÞ
aðt0Þ

�
: ð50Þ

This function links with the complete Gamma function
ΓðsÞ and with incomplete upper gamma function Γðs; uÞ ¼R
∞
u dξe−ξξs−1 by the simple condition γðs; uÞ ¼ ΓðsÞ−
Γðs; uÞ. For large argument u we can use the relationship
γðs; uÞ ≈ ΓðsÞ − e−uus−1. In other words, the integral (49)
converges at a → ∞, and the scale factor reaches the
infinite value during the finite interval of time; again we
deal with the big rip scenario.
In summary, we assume that the big rip scenario is not

physically motivated, thus, the models with real character-
istic roots have to correspond to two cases; first, σðaÞ < 0,
and second, σðaÞ ¼ 0 and k ≤ 3.

C. Complex roots

1. Preliminary classification

When not all the roots are real, we obtain six intrin-
sic cases.
(1) There is one pair of complex conjugated roots

σðaÞ ¼ αðaÞ � iβðaÞ, and other four roots are real
(there are five internal cases with and without
degeneracy of the real roots).

(2) There are two different pairs of complex conjugated
roots, and two roots are real (there are two inter-
nal cases).

(3) There are three different pairs of complex conju-
gated roots.

(4) There are two coinciding pairs of complex conju-
gated roots, and two roots are real (there are two
internal cases).

(5) There are three pairs of complex conjugated roots,
and two of them coincide.

(6) There are three coinciding pairs of complex con-
jugated roots.

2. First case: there is one pair of
complex conjugated roots

Now the solution to the key equation (38) can be written
as follows:

WðxÞ ¼ xα½C1 cos ðβ log xÞ þ C2 sin ðβ log xÞ� þWðrealÞ;

ð51Þ

where the decomposition WðrealÞ is given in the previous
subsection. Again we see that the DE and DM state
functions EðxÞ, PðxÞ, ΠðxÞ, as well as, the square of the
Hubble function H2 have the same form, but the coef-
ficients of decomposition are specific. New details of
solution appear when the real part α of the complex root
happens to be bigger than the real roots σðaÞ encoded in the
term WðrealÞ. Then in the asymptotic regime x → ∞ we
obtain the following integral for searching for the scale
factor,

t− t0¼
Z aðtÞ

aðt0Þ

1

d logxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ
3
þxα½C̃1cosðβ logxÞþ C̃2 sinðβ logxÞ�

q :

ð52Þ

For illustration, we consider α ¼ 0 and C̃2 ¼ 0, C̃1 ¼ C,
obtaining

t − t0 ¼
Z aðtÞ

aðt0Þ

1

d log xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ
3
þ C cos ðβ log xÞ

q : ð53Þ

Our goal is to obtain the formula

βk

ffiffiffiffi
C
2

r
ðt − t0Þ ¼

Z
φ

0

dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2 sin2 θ

p ; ð54Þ

which appears from (53) after the following redefinitions,

θ≡1

2
β logx; φ¼1

2
β log

�
aðtÞ
aðt0Þ

�
; k2¼ 6C

Λþ3C
: ð55Þ

This interest is predetermined by the fact that the right-hand
side of (54) presents the definition of the incomplete elliptic
integral of the first kind Fðφjk2Þ, and that the functions
reciprocal to u ¼ Fðφjk2Þ are connected with the Jacobi
elliptic sine and cosine functions

snðu; k2Þ ¼ sinφ; cnðu; k2Þ ¼ cosφ; ð56Þ

and two auxiliary functions

dnðu; k2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2sin2φ

q
; amðu; k2Þ ¼ φ: ð57Þ

The abbreviation am is used for the so-called Jacobi
amplitude function.
Now we see that the cosmological time can be expressed

via the incomplete elliptic integral

t − t0 ¼
2

ffiffiffi
3

p

β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λþ 3C

p F

�
1

2
β log x

���� 6C
Λþ 3C

�
; ð58Þ

and the scale factor is of the form
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aðtÞ
aðt0Þ

¼ exp
�
2

β
am

�
β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λþ 3C

p

2
ffiffiffi
3

p ðt − t0Þ;
6C

Λþ 3C

��
: ð59Þ

There are two special regimes of behavior of the presented
solution, when k2 ¼ 1 and k2 ¼ 0.
(i) When C ¼ Λ

3
and thus k2 ¼ 1, the elliptic functions

are known to be converted into the hyperbolic functions

sinφ ¼ snðu; 1Þ ¼ tanh u; cosφ ¼ 1

cosh u
;

amðu; 1Þ ¼ φ ¼ arcsin ðtanh uÞ: ð60Þ

In this case (59) gives

aðtÞ
aðt0Þ

¼ exp

�
2

β
arcsin

�
tanh

�
β

ffiffiffiffi
Λ
6

r
ðt − t0Þ

��	
: ð61Þ

In the asymptotic regime, when t → ∞, we obtain that the
scale factor tends to the constant value aðt0Þe

π
β, and the

Hubble function tends to zero, H → 0.
(ii) When C ¼ 0 and thus k2 ¼ 0, we obtain from (53)

that aðtÞ ¼ aðt0Þe
ffiffi
Λ
3

p
ðt−t0Þ, i.e., we deal with the de Sitter

regime.
When the parameter k2 belongs to the interval

0 < k2 < 1, i.e., 0 < C < Λ
3
, we see that t → ∞ at

aðtÞ → ∞; as for the Hubble function HðtÞ, it remains

bounded,
ffiffiffiffiffiffiffiffiffiffiffiffi
Λ
3
− C

q
< H <

ffiffiffiffiffiffiffiffiffiffiffiffi
Λ
3
þ C

q
.

The regime is illustrated in Fig. 2.

3. Second case: two complex conjugated pairs coincide

In order to illustrate the novelty, which appears in the
asymptotic behavior of the system in this case, we consider
the model, in which the real parts of two coinciding pairs of
roots are equal to zero σ1 ¼ σ2 ¼ �iβ, and the real parts of
all other roots are nonpositive ReσðaÞ ≤ 0. Then in the
asymptotic regime x → ∞

WðxÞ → log xðC1 cos β log xþ C2 sin β log xÞ: ð62Þ

The state functions EðxÞ, PðxÞ, ΠðxÞ, as well as, the square
of the Hubble function H2ðxÞ have the same structure.
Searching for the scale factor for the late-time Universe
evolution we have to calculate the following integral,

t− t0¼2

Z aðtÞ
aðt0Þ

1

d
ffiffiffiffiffiffiffiffiffi
logx

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1cosðβ logxÞþC2 sinðβ logxÞ

p : ð63Þ

Clearly, the term in the square root takes zero value at
x ¼ x�, where tan ðβ log x�Þ ¼ − C1

C2
, and then changes the

sign. This means that the Hubble function becomes
imaginary and the model happens to be inappropriate.

4. Third case: three complex conjugated pairs coincide

When three complex conjugated pairs coincide and
have the form α� iβ, the square of the Hubble function
at x → ∞ can be approximated as

H2ðxÞ→xα log2x½C̃1cosðβ logxÞþ C̃2 sinðβ logxÞ�: ð64Þ

Again, there exists a value of the scale factor x�, when the
Hubble function takes zero value and then becomes the
imaginary one; this model is not appropriate.
In summary, we assume that physically motivated

models with complex conjugated pairs of the characteristic
roots correspond to the case, when there are no coincid-
ing pairs.

V. FIRST EXAMPLE OF EXACTLY INTEGRABLE
MODELS: PRESSURELESS DARK MATTER AND

NONLOCALLY SELF-INTERACTING DARK
ENERGY ARE COUPLED BY THE LOCAL LINK

A. Truncated model

In this first model we assume that γ ¼ 1 and
K0

21 ¼ K0
22 ¼ 0, ν21 ¼ ν22 ¼ 0. In this case according to

(26) the dark matter is pressureless, i.e., ΠðxÞ ¼ 0. The
interaction with the DE is considered to be local, i.e.,
ω0 ≠ 0, and the dark energy to be characterized by Γ ¼ 0

and K0
12 ¼ 0, ν12 ¼ 0—the DE self-interaction is nonlocal.

The scheme of derivation of the key equation is now
simplified; we obtain the DE pressure and the DM energy
density in the form

1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

0
1

1.5

2

2.5

3

3.5

0

0.5

1

1.5

FIG. 2. Upper panel: Illustration of the behavior of the Hubble

function HðxÞffiffiffiffiffiffi
Λ=3

p . Here x ¼ aðtÞ
aðt0Þ is the dimensionless scale factor, Λ

is cosmological constant, t is cosmological time. Bottom panels:
Dimensionless scale factor aðtÞ=aðt0Þ (left panel) and Hubble

function HðtÞffiffiffiffiffiffi
Λ=3

p (right panel). Blue line corresponds to the case

k2 ¼ 1 or C ¼ Λ
3
; red line to C ¼ Λ

4
; orange line to C ¼ Λ

5
; purple

line to C ¼ 0.
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PðxÞ¼x2W00 þ2xW0ð2þω0Þþ3Wð3þ2ω0−ν11þK0
11Þ

3ðν11−3−ω0Þ
;

ð65Þ

EðxÞ¼x2W00 þxW0ð1þω0þν11ÞþWð3K0
11þω0ν11−ω2

0Þ
ω0ðν11−3−ω0Þ

;

ð66Þ

where the DE energy density WðxÞ satisfies the third-order
Euler equation

x3W000 þ x2W00ð6þ 2ω0 þ ν11Þ
þ xW0ð4þ 5ω0 þ 4ν11 þ 3K0

11 þ 2ν11ω0Þ
þ 3W½ν11ω0 þ K0

11ð3þ ω0Þ� ¼ 0: ð67Þ

If we calculate the third-order derivative of this equation we
obtain (38) with ω6 ¼ ω5 ¼ ω4 ¼ 0.
The corresponding third-order characteristic equation,

σ3þσ2ð3þ2ω0þν11Þþσð3ω0þ3ν11þ3K0
11þ2ν11ω0Þ

þ3½K0
11ð3þω0Þþν11ω0�¼0; ð68Þ

can have three real root or a pair of complex conjugated
roots plus one real root. In order to simplify the illustration
of general scheme of the solution classification, we con-
sider the following choice of the parameter K0

11,

K0
11 ¼ −

ν11ω0

3þ ω0

; ð69Þ

thus providing that the first root, σ1 ¼ 0, is real and the
roots σ2, σ3 satisfy the quadratic equation

σ2þσð3þ2ω0þν11Þþ
�
3ðω0þν11Þþ

ð3þ2ω0Þν11ω0

3þω0

�
¼0:

ð70Þ

B. Three coinciding real roots

We start the illustration with the model, which admits
three coinciding roots; now they are σ1 ¼ σ2 ¼ σ3 ¼ 0. It is
possible, when

ν11 ¼ −ð3þ 2ω0Þ; K0
11 ¼

ω0ð3þ 2ω0Þ
3þ ω0

; ð71Þ

and the parameter ω0 is the solution to the equation

ω0ð3þ 2ω0Þ2 þ 3ð3þ ω0Þ2 ¼ 0: ð72Þ

Equation (72) has only one real root, ω0 ≈ −2.06. The
solution to the key equation is

WðxÞ ¼ Wð1Þ þ C2 log xþ C3 log2 x; ð73Þ

whereC2 andC3 are the integration constants, which can be
found from the initial conditions as follows:

C2¼W0ð1Þ; C3¼
3ω0ð2þω0Þ
2ð3þω0Þ2

½E0ð1Þð3þω0Þ−W0ð1Þω0�:

ð74Þ

The DE pressure PðxÞ and the DM energy density can be
presented as follows:

PðxÞ ¼ Pð1Þ − C3

ð3þ 2ω0Þ
ð3þ ω0Þ

log2x

−
ð3þ 2ω0Þ½2C3ð3þ ω0Þ þ 9C2ð2þ ω0Þ�

9ð2þ ω0Þð3þ ω0Þ
log x;

ð75Þ

EðxÞ ¼ Eð1Þ þ C3

ω0

ð3þ ω0Þ
log2x

þ ½2C3ð3þ ω0Þ2 þ 3C2ð2þ ω0Þω2
0�

3ω0ð2þ ω0Þð3þ ω0Þ
log x: ð76Þ

The Hubble function HðxÞ can be written as

HðxÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2ð1Þ þ h2 log2 xþ h3 log x

q
; ð77Þ

where the following guiding parameters are introduced

H2ð1Þ ¼ Λ
3
þ κ

3
½Wð1Þ þ Eð1Þ�; ð78Þ

h2 ¼
κω0ð3þ 2ω0Þð2þ ω0Þ

2ð3þ ω0Þ2
�
E0ð1Þ − ω0

ð3þ ω0Þ
W0ð1Þ

�
;

ð79Þ

h3 ¼
κ

3
½E0ð1Þ þW0ð1Þ�: ð80Þ

Further results depend essentially on the sign of the
parameter h2, or equivalently, on the relationships between
initial values of the derivatives of the DE and DM energy
densities.

1. h2 > 0, little rip models

This is possible, when E0ð1Þ < − jω0j
ð3−jω0jÞW

0ð1Þ. The

result depends now on the relationship between Wð1Þ,
Eð1Þ,W0ð1Þ, E0ð1Þ, and Λ, but for the sake of compactness
we formulate the corresponding conditions using the
parameters Hð1Þ, h2, h3 and their combinations.
(i) The first case H2ð1Þ > h2

3

4h2
.
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We obtain for the scale factor the following formula,

aðtÞ ¼ aðt×Þ exp fh× sinh ½
ffiffiffiffiffi
h2

p
ðt − t×Þ�g; ð81Þ

where the auxiliary quantities are

aðt×Þ ¼ aðt0Þ exp
�
−

h3
2h2

�
; ð82Þ

h× ¼ 1ffiffiffiffiffi
h2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2ð1Þ − h23

4h2

s
; ð83Þ

t× ¼ t0 −
1ffiffiffiffiffi
h2

p Arsh

�
h3

2
ffiffiffiffiffi
h2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2ð1Þ − h2

3

4h2

q �
< t0: ð84Þ

The presented solution for the scale factor is regular; its
asymptotic behavior can be indicated as superexponential.
In terms of the cosmological time the Hubble function can
be presented as

HðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2ð1Þ − h23

4h2

s
cosh ½

ffiffiffiffiffi
h2

p
ðt − t×Þ�; ð85Þ

and the acceleration parameter is

−q ¼ 1þ
_H
H2

¼ 1þ 1

h×

�
sinh ½ ffiffiffiffiffi

h2
p ðt − t×Þ�

cosh2 ½ ffiffiffiffiffi
h2

p ðt − t×Þ�
	
: ð86Þ

Asymptotically, Hðt → ∞Þ → ∞, and −qðt → ∞Þ → 1.
(ii) The second case H2ð1Þ < h2

3

4h2
.

Formally speaking, now, in order to obtain the scale
factor we have to replace the function sinh with cosh, andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2ð1Þ − h2

3

4h2

q
with

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2
3

4h2
−H2ð1Þ

q
. We do not discuss the

details of this exact solutions, since they are similar to the
previous case.
(iii) The third case H2ð1Þ ¼ h2

3

4h2
.

We obtain the following solutions for the scale factor,
Hubble function and acceleration parameter, respectively,

aðtÞ ¼ aðt0Þ exp
�
h3
2h2

½e
ffiffiffiffi
h2

p
ðt−t0Þ − 1�

	
; ð87Þ

HðtÞ ¼ Hðt0Þe
ffiffiffiffi
h2

p
ðt−t0Þ; ð88Þ

−q ¼ 1þ
_H
H2

¼ 1þ
ffiffiffiffiffi
h2

p
Hðt0Þ

e−
ffiffiffiffi
h2

p
ðt−t0Þ: ð89Þ

To summarize, the three submodels discussed above are
regular, and are characterized by the superexponential
asymptotes for the scale factor, exponential asymptotes
for the Hubble function, DM and DE energy density scalars
and DE pressure. We deal with variants of the little rip, for

which the infinite values of the state functions can be
reached during infinite time interval.

2. h2 < 0, quasiperiodic models

Such a situation can be realized, when

E0ð1Þ > − jω0j
ð3−jω0jÞW

0ð1Þ. In this situation we obtain the

exact solution for the scale factor of the periodic type

aðtÞ ¼ aðtþÞ exp fhþ sin ½
ffiffiffiffiffiffiffiffi
jh2j

p
ðt − tþÞ�g; ð90Þ

aðtþÞ ¼ aðt0Þ exp
�
−

h3
2jh2j

�
; ð91Þ

hþ ¼ 1ffiffiffiffiffiffiffiffijh2j
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2ð1Þ þ h23

4jh2j

s
; ð92Þ

tþ ¼ t0 −
1ffiffiffiffiffiffiffiffijh2j

p arcsin

2
64 h3

2
ffiffiffiffiffiffiffiffijh2j

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2ð1Þ þ h2

3

4jh2j

q
3
75: ð93Þ

The parameter
ffiffiffiffiffiffiffiffijh2j

p
plays the role of the frequency of the

oscillations, and the parameter aðtþÞ describes the mean
value of the Universe radius. The Hubble function

HðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2ð1Þ þ h23

4jh2j

s
cos ½

ffiffiffiffiffiffiffiffi
jh2j

p
ðt − tþÞ�; ð94Þ

has an infinite number of nulls, and changes the sign with
the frequency

ffiffiffiffiffiffiffiffijh2j
p

. The periodic acceleration parameter

−q ¼ 1 −
1

hþ

�
sin ½ ffiffiffiffiffiffiffiffijh2j

p ðt − tþÞ�
cos2½ ffiffiffiffiffiffiffiffijh2j

p ðt − tþÞ�

	
ð95Þ

signals that there are infinite number of epochs of decel-
eration and acceleration in the Universe evolution, and this
parameter becomes infinite, when the Hubble function
takes zero values.
The regime is illustrated in Fig. 3.

3. h2 = 0, the symmetric bounce

In this particular case the state parameters of the system
are linked by the relationship

E0ð1Þ ¼ −
jω0j

ð3 − jω0jÞ
W0ð1Þ; ð96Þ

and thus, the sign of the parameter

h3 ¼ −κW0ð1Þ
�
2jω0j − 3

3 − jω0j
�
≈ −1.16κW0ð1Þ ð97Þ
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is predetermined by the sign of the initial value of the
derivative W0ð1Þ. We obtain now that the scale factor has
the Gaussian form

aðtÞ ¼ aðt�Þ exp
�
1

4
h3ðt − t�Þ2

�
; ð98Þ

where the auxiliary parameters are

t� ¼ t0 − 2
jHð1Þj
h3

< t0; ð99Þ

aðt�Þ ¼ aðt0Þ exp
�
−
H2ð1Þ
h3

�
: ð100Þ

Clearly, the Universe expands, when h3 > 0, i.e.,
W0ð1Þ < 0 and E0ð1Þ > 0. For this solution the Hubble
function is the linear function of the cosmological time

HðtÞ ¼ 1

2
h3ðt − t�Þ; ð101Þ

and we deal with the solution, which at h3 > 0 can be
indicated as the symmetric bounce (see, e.g., [55]). The
acceleration parameter

−q ¼ 1þ 2

h3ðt − t�Þ2
ð102Þ

is presented by the monotonic function at h3 > 0, it tends to
one asymptotically.

C. Complex conjugated pair of roots

1. Solution to the key equation

Let us consider the model, in which the characteristic
equation is of third order; one of the root is equal to zero,
and two roots are complex conjugated with vanishing real
parts. For this model we obtain from (70)

ν11 ¼ −ð3þ 2ω0Þ; K0
11 ¼

ω0ð3þ 2ω0Þ
3þ ω0

: ð103Þ

The characteristic equation reduces now to

σ2 þ β2 ¼ 0; ð104Þ

where the quantity

β2 ¼ −
3ð3þ ω0Þ2 þ ω0ð3þ 2ω0Þ2

3þ ω0

ð105Þ

is considered to be positive due to a special choice of the
parameter ω0. (For instance, when ω0 ¼ − 5

2
and thus

ν11 ¼ 2, K0
11 ¼ 10, we obtain that β2 ¼ 37

2
> 0). For the

presented model we reconstruct the solution for the DE
energy density in the form

WðxÞ ¼ Wð1Þ þW0ð1Þ
β

sin ðβ log xÞ

þ 1

β2
½W00ð1Þ þW0ð1Þ�½1 − cos ðβ log xÞ�: ð106Þ

According to (66) the DM energy density can be recovered
as

EðxÞ ¼ 1

3ω0

�
−
x2W00ðxÞ
ð2þ ω0Þ

þ xW0ðxÞ
�
þ ω0WðxÞ

3þ ω0

; ð107Þ

and can be rewritten in the form similar to (106)

EðxÞ ¼ Eð1Þ þ E0ð1Þ
β

sin ðβ log xÞ

þ 1

β2
½E00ð1Þ þ E0ð1Þ�½1 − cos ðβ log xÞ�; ð108Þ

where the initial values Eð1Þ, E0ð1Þ, and E00ð1Þ are linked
with Wð1Þ, W0ð1Þ and W00ð1Þ as follows:

Eð1Þ ¼ 1

3ω0

�
−

W00ð1Þ
ð2þ ω0Þ

þW0ð1Þ
�
þ ω0Wð1Þ

3þ ω0

; ð109Þ

E0ð1Þ ¼ −
ð3þ ω0Þ
3ω0

�
−

W00ð1Þ
ð2þ ω0Þ

þW0ð1Þ
�

¼ ω0Wð1Þ − ð3þ ω0ÞEð1Þ; ð110Þ

FIG. 3. Illustration of the behavior of dimensionless scale factor
aðtÞ=aðt0Þ (upper panel), Hubble functon HðtÞ=Hðt0Þ (middle
panel) and acceleration parameter qðtÞ (bottom panel) as func-
tions of cosmological time t for the set of h3 presented in the
upper right corner of the figure; for all plots here we assume for
simplicity h2 ¼ −1.
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E00ð1Þ ¼ −
ð3þ ω0Þ

3ω0ð2þ ω0Þ
½W00ð1Þð4þ ω0Þ þW0ð1Þð1þ β2Þ�:

ð111Þ

2. Geometric characteristics of the model

The next step is to calculate the square of the Hubble
function; again it can be represented in the form,

H2ðxÞ ¼ H2ð1Þ þA½1 − cos ðβ log xÞ� þ B sin ðβ log xÞ;
ð112Þ

where

H2ð1Þ ¼ Λ
3
þ κ

3
½Wð1Þ þ Eð1Þ�; ð113Þ

A ¼ κ

3β2
½W00ð1Þ þ E00ð1Þ þW0ð1Þ þ E0ð1Þ�; ð114Þ

B ¼ κ

3β
½W0ð1Þ þ E0ð1Þ�: ð115Þ

Now the scale factor aðtÞ can be found from the integral

βðt − t0Þ ¼ �
Z

β log aðtÞ
aðt0Þ

0

dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F −A cos zþ B sin z

p ; ð116Þ

where we introduced the following auxiliary quantities

F ¼ H2ð1Þ þA; z ¼ β log x: ð117Þ

If we introduce the notations

θ ¼ 1

2
ðz − z�Þ; tan z� ¼ −

B
A
; ð118Þ

and assume that F þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
> 0, we obtain

� 1

2
β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

pq
ðt − t0Þ

¼
Z 1

2
ðβ log aðtÞ

aðt0Þ−z�Þ

−1
2
z�

dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −K2sin2θ

p ; ð119Þ

where

K2 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p

F þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p : ð120Þ

Clearly, we deal again with the incomplete elliptic integrals
of the first kind and obtain

F

�
1

2
β log

aðtÞ
aðt0Þ

−
1

2
z�jK2

�
¼ J ðtÞ;

J ðtÞ ¼ F

�
−
1

2
z�jK2

�
� 1

2
β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

pq
ðt − t0Þ:

ð121Þ

The scale factor can be expressed in terms of the inverse
elliptic functions

aðtÞ ¼ aðt0Þ exp
�
1

β
½z� þ 2amðJ ðtÞjK2Þ�

	
: ð122Þ

The Hubble function is now quasiperiodic (see (112)); its
maximal and minimal values are predetermined by the
inequalities

A −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
≤ H2ðtÞ −H2ð1Þ ≤ Aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
:

ð123Þ

The acceleration parameter

−qðxÞ ¼ 1þ β

2H2ðxÞ ½A sin ðβ log xÞ þ B cos ðβ log xÞ�

ð124Þ

is also quasiperiodic. Formally speaking, the function qðtÞ
can change the sign for special choice of the guiding
parameters of the model and initial values of the DE and
DM energy density scalars.

VI. NONLOCAL CROSS ACTION OF DE ON DM:
EXAMPLES OF EXPLICIT REPRESENTATION OF
THE SOLUTIONS TO THE MASTER EQUATIONS

A. Exact solutions for the state functions

We consider the model for which three simplifications
are assumed. First of all, we assume that ω0 ¼ 0, i.e., the
local link between DE and DM is absent. Second, we
assume that DM does not act on DE, and thus, K0

12 ¼ 0 and
ν12 ¼ 0. Third, there exists the nonlocal cross action of DE
on DM, but the self-interaction in the DM itself is absent,
i.e., K0

22 ¼ 0, ν22 ¼ 0. For this case the scheme of deriva-
tion of the key equation is the following. We extract the
pressure PðxÞ from the conservation law for the DE

PðxÞ ¼ −
1

3
½xW0 þ 3W�; ð125Þ

and put it into the modified equation of state

xW0 þ 3ΓW ¼ −3x−ν11K0
11

Z
x

1

dyyν11−1WðyÞ: ð126Þ
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The differential version of this integral equation

x2W00 þxW0ð1þν11þ3ΓÞþ3WðΓν11þK0
11Þ¼0 ð127Þ

presents the second-order Euler equation; the correspond-
ing characteristic equation

σ2 þ σðν11 þ 3ΓÞ þ 3ðΓν11 þ K0
11Þ ¼ 0 ð128Þ

gives the roots

σ1;2 ¼ −
1

2
ðν11 þ 3ΓÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
ðν11 − 3ΓÞ2 − 3K0

11

r
: ð129Þ

Now one can obtain three different situations; there are two
different real roots (σ1 ≠ σ2), two coinciding real roots
(σ1 ¼ σ2), and there is the pair of complex conjugated toots
(σ1;2 ¼ α� iβ). In all these cases the methods of the
presentation of the solutions for WðxÞ is well documented.
Then we extract the pressure ΠðxÞ from the conservation

law for the DM

ΠðxÞ ¼ −
1

3
ðxE0 þ 3EÞ; ð130Þ

and put it into the equation of state for DM; as the result we
obtain the solution for EðxÞ in quadratures

EðxÞ ¼ Eð1Þx−3γ − 3K0
21x

−3γ
Z

x

1

dzz3γ−ν21−1

×
Z

z

1

dyyν21−1WðyÞ: ð131Þ

For all three variants of the structure of the function WðxÞ
the integral in (131) gives the solution for EðxÞ in terms of
elementary functions.

B. Two real roots σ1 ≠ σ2

1. The explicit solution

This situation corresponds to the case, when the guiding
parameters ν11, Γ, and K0

11 satisfy the inequality

1

4
ðν11 − 3ΓÞ2 > 3K0

11: ð132Þ

Respectively, we obtain for the DE energy density

WðxÞ ¼ C1xσ1 þ C2xσ2 ; ð133Þ

where the constants of integration are connected with the
initial data as follows:

C1¼
W0ð1Þ−σ2Wð1Þ

σ1−σ2
; C2¼

−W0ð1Þþσ1Wð1Þ
σ1−σ2

: ð134Þ

If we put WðxÞ from (133) into (131) the integration
procedure gives the DM energy density in the form

EðxÞ¼x−3γ
�
Eð1Þþ 3K0

21

ðν21−3γÞ
�

C1

ðσ1þ3γÞþ
C2

ðσ2þ3γÞ
�	

−3K0
21

�
C1xσ1

ðσ1þν21Þðσ1þ3γÞþ
C2xσ2

ðσ2þν21Þðσ2þ3γÞ

þ x−ν21

ν21−3γ

�
C1

ðσ1þν21Þ
þ C2

ðσ2þν21Þ
�	

: ð135Þ

The square of the Hubble function can be now found as

H2ðxÞ ¼ Λ
3
þ κ

3
½Θ1xσ1 þ Θ2xσ2 þ Θ3x−ν21 þ Θ4x−3γ�;

ð136Þ

where the following auxiliary parameters are introduced,

Θ1 ¼ C1

�
1 −

3K0
21

ðσ1 þ ν21Þðσ1 þ 3γÞ
�
; ð137Þ

Θ2 ¼ C2

�
1 −

3K0
21

ðσ2 þ ν21Þðσ2 þ 3γÞ
�
; ð138Þ

Θ3 ¼ −
3K0

21

ðν21 − 3γÞ
�

C1

ðσ1 þ ν21Þ
þ C2

ðσ2 þ ν21Þ
�
; ð139Þ

Θ4 ¼ Eð1Þ þ 3K0
21

ðν21 − 3γÞ
�

C1

ðσ1 þ 3γÞ þ
C2

ðσ2 þ 3γÞ
�
: ð140Þ

The acceleration parameter can be represented in terms of x
as follows:

−qðxÞ ¼ 1þ κ

6H2
½σ1Θ1xσ1 þ σ2Θ2xσ2

−ν21Θ3x−ν21 − 3γΘ4x−3γ�: ð141Þ

2. The example of exact analysis

One can see from (128) that σ1 and σ2 have opposite
sings, if K0

11 < −Γν11. Since one of the roots happens to be
positive in this case, the DE energy density, the DM energy
density and the square of the Hubble function infinitely
grow at x → ∞; we omit this version of the theory.
When K0

11 > −Γν11, the parameters σ1 and σ2 are of the
same sign; we assume that they are negative, obtaining the
supplementary inequality ν11 > −3Γ. Now the functions
WðxÞ and EðxÞ vanishes asymptotically, the Hubble func-

tion tends to the de Sitter value H →
ffiffiffi
Λ
3

q
, and −qðxÞ → 1.

In case when K0
11 ¼ −Γν11, one of the roots takes zero

value, say, σ1 ¼ 0, and the second root σ2 ¼ −ðν11 þ 3ΓÞ is
again negative, if ν11 > −3Γ. For this submodel the state
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functions WðxÞ and EðxÞ tend asymptotically to their
constant values

WðxÞ → W∞ ¼ Wð1Þ þ W0ð1Þ
ðν11 þ 3ΓÞ ; ð142Þ

EðxÞ → E∞ ¼ −
K0

21W∞

ν21γ
: ð143Þ

We require that E∞ is positive and assume that K0
21 < 0,

ν21 > 0. As for the Hubble function, it tends to the constant
value

HðxÞ → H∞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ
3
þ κ

3
ðW∞ þ E∞Þ

r
; ð144Þ

providing the asymptotic regime to be of the de Sitter type.
Finally, in order to represent analytically the scale factor

as the function of the cosmological time we consider the
following simple illustration. Let the parameters of the
model and the initial data be chosen specifically as follows:

σ1 ¼ 0; 3K0
21 ¼ ðσ2 þ ν21Þðσ2 þ 3γÞ; ð145Þ

Eð1Þ ¼ W0ð1Þ
3γ

; W0ð1Þ ¼ Wð1Þðσ2 þ ν21Þ: ð146Þ

For this specific choice Θ2 ¼ Θ3 ¼ Θ4 ¼ 0 and thus we
obtain the constant Hubble function

HðxÞ¼H∞¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ
3
þκWð1Þ

9γ
½ν21−ν11þ3ðγ−ΓÞ�

s
: ð147Þ

We deal with the example of solution describing the de
Sitter-type Universe.

C. Two coinciding real roots σ1 = σ2 ≡ σ

This situation corresponds to the case, when

1

4
ðν11 − 3ΓÞ2 ¼ 3K0

11; σ ¼ −
1

2
ðν11 þ 3ΓÞ: ð148Þ

Now we obtain for the DE energy density

WðxÞ ¼ xσ½C1 þ C2 log x�; ð149Þ

where

C1 ¼ Wð1Þ; C2 ¼ W0ð1Þ − σWð1Þ: ð150Þ

The DM energy density can be represented as

EðxÞ¼x−3γ
�
Eð1Þþ 3K0

21

ðν21−3γÞðσþ3γÞ
�
C1−

C2

σþ3γ

��

−3K0
21

�½C1ðσþν21Þ−C2�
ðσþν21Þ2

�
xσ

ðσþ3γÞþ
x−ν21

ðν21−3γÞ
�

þC2xσ½ðσþ3γÞ logx−1�
ðσþν21Þðσþ3γÞ2

	
: ð151Þ

The square of the Hubble function includes now the
logarithm

H2ðxÞ ¼ Λ
3
þ κ

3
½xσðΘ̃1 þ Θ̃2 log xÞ þ Θ̃3x−ν21 þ Θ̃4x−3γ�:

ð152Þ

The new auxiliary functions are introduced as follows:

Θ̃1¼C1

�
1−

3K0
21

ðσþν21Þðσþ3γÞ
�
þC2

3K21ð2σþ3γþν21Þ
ðσþν21Þ2ðσþ3γÞ2 ;

ð153Þ

Θ̃2 ¼ C2

�
1 −

3K0
21

ðσ þ ν21Þðσ þ 3γÞ
�
; ð154Þ

Θ̃3 ¼
3K0

21

ðν21 − 3γÞðσ þ ν21Þ2
½C2 − C1ðσ þ ν21Þ�; ð155Þ

Θ̃4 ¼ Eð1Þ þ 3K0
21

ðν21 − 3γÞðσ þ 3γÞ
�
C1 −

C2

σ þ 3γ

�
: ð156Þ

The acceleration parameter is modified respectively as

−qðxÞ ¼ 1þ κ

6H2
fxσ½σΘ̃1 þ Θ̃2ðσ log xþ 1Þ�

−ν21Θ̃3x−ν21 − 3γΘ̃4x−3γg: ð157Þ

Taking into account physical motives we assume that the
parameter σ is nonpositive, i.e., ν11 þ 3Γ ≥ 0.

1. Illustration for the case σ = 0

For illustration of an analytical result we assume that

W0ð1Þ ¼ ν21Wð1Þ; Eð1Þ ¼ Wð1ÞK
0
21

3γ2
; ð158Þ

providing the square of the Hubble function takes the
simplified form

H2ðxÞ ¼ Λ
3
þ κ

3
ðΘ̃1 þ Θ̃2 log xÞ; ð159Þ

where
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Θ̃1¼Wð1Þ
�
1þK21

3γ2

�
; Θ̃2¼Wð1Þ

�
ν21−

K21

γ

�
: ð160Þ

For this Hubble function the scale factor is of the
symmetric-bounce type [55]

aðtÞ ¼ aðt�ÞeQðt−t�Þ2 ; ð161Þ
where

aðt�Þ ¼ aðt0ÞÞe−
3H2ð1Þ
κΘ̃2 ; Q ¼ κΘ̃2

12
: ð162Þ

D. Complex conjugated roots σ1;2 =α� iβ

This situation corresponds to the case, when

1

4
ðν11−3ΓÞ2<3K0

11;

α¼−
1

2
ðν11þ3ΓÞ; β¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3K0

11−
1

4
ðν11−3ΓÞ2

r
: ð163Þ

We obtain now

WðxÞ ¼ xα
�
Wð1Þ cos ðβ log xÞ

þW0ð1Þ − αWð1Þ
β

sin ðβ log xÞ
	
: ð164Þ

Clearly, the DE energy density changes the sign inevitably,
so that the model seem to be nonphysical.

VII. DISCUSSION AND CONCLUSIONS

(1) The main result of the presented work is the analysis
of one specific rheologic-type model of interaction
between the dark energy and dark matter. We
introduce into the DE and DM equations of state
four integral operators of the Volterra type; two of
them describe the DE/DM cross-coupling, and two
operators relate to the self-interactions in the DE and
DM individually. The Volterra operators are chosen
to correspond to the paradigm of fading memory,
i.e., the kernels of these operators are of the differ-
ence type and multiplicative.

(2) The established model belongs to the class of exactly
integrable models, i.e., the DE and DM state func-
tions (energy densities and pressures), as well as, the
Hubble function and the acceleration para-
meter are presented in the elementary functions. It
has become possible since the key equation of the
model is the linear sixth-order Euler equation in
ordinary derivatives. The scale factor as the function
of the cosmological time is found in quadratures
and is studied analytically, qualitatively, and nu-
merically.

(3) The four-kernel model of the DE/DM interactions
contains eight new guiding parameters; four of them,
νij, describe the rates of memory fading, and other
four K0

ij describe the effectiveness of the cross-
coupling and self-interactions, respectively [see
(19)]. On the one hand, such a multiparametricity
extends the analytic possibilities for modeling of the
Universe expansion. On the other hand, we use two
instruments to constrain the set of these parameters.
The first instrument is connected with the asymptotic
analysis of the model; we assume that the big rip
scenarios have to be avoided and require that the late-
time Universe expansion is accelerated. As the result,
we claim, for instance, that all the exact solutions
corresponding to the roots of the characteristic
equation, which have positive real parts, are non-
physical. The second instrument relates to the re-
quirement that the DE and DM energy densities
scalars have to be positive during all the interval of the
Universe evolution, thus imposing taboo for a few
quasiperiodic regimes corresponding to the complex
conjugated roots of the characteristic equation.

(4) In order to illustrate the general conclusions, we
considered four examples of exact explicit solutions,
which already appeared, e.g., in the framework of
modified theories of gravity. The first example de-
scribes the superexponential (or superinflationary)
growth of the scale factor and exponential laws for
the DE/DM state functions [see, (81), (87)]; this
example belongs to the class of solutions of the little
rip type. The second example relates to the solution
known as the symmetric bounce [see (98) and (161)].
The solutions of this type also belong to the class of the
little rip from the point of viewof asymptotic behavior;
as for the global point of view, this solution is non-
singular, and the Hubble function is the linear function
of time. The third example can be indicated as
pseudorip; the corresponding Hubble function tends
asymptotically to constantH∞ ≠

ffiffiffi
Λ
3

q
[see (144)]; the

interesting feature of this solution is that the DE and
DM energy densities tend asymptotically to nonvan-
ishing constants (142), (143), and it is the explicit
result of the nonlocal interactions. The fourth example
relates to the solution with constant Hubble function

H ¼ const ≠
ffiffiffi
Λ
3

q
[see (147)]. One can indicate this

solution as the de Sitter type one; the Hubble constant
includes now the rheological parameters.

(5) We presented two exact explicit quasiperiodic sol-
utions. For the first solution the scale factor is of the
form (90), the Hubble function is presented by the
formula (94), the behavior of the DE energy density
can be reconstructed using (73). The frequency of
oscillations is associated with the parameter

ffiffiffiffiffiffiffiffijh2j
p

(79), which is linked, formally speaking, with the
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parameter of the local DE/DM interaction, ω0;
however, the corresponding truncated model is
obtained with the conditions (71), which include
the parameters of the nonlocal interaction. The
second quasiperiodic solution is presented in terms
of the incomplete elliptic integrals; the scale factor is
presented by the formula (122) and the Hubble
function can be correspondingly extracted
from (112).
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APPENDIX A: KEY EQUATION
FOR THE CASE ω0 ≠ 0

Starting from the formulas

EðxÞ ¼ 1

ω0

½xW0ðxÞ þ ð3þ ω0ÞW þ 3P�; ðA1Þ

ΠðxÞ ¼ −
1

3ω0

fx2W00 þ ð7þ 2ω0ÞxW0 þ ð9þ 6ω0ÞW

þ3xP0 þ ð9þ 3ω0ÞPg; ðA2Þ

we obtain a pair of equations containing only the DE state
functions, the pressure P and the energy density W,

x2P00 þ exP0 þ fP ¼ bx2W00 þ cxW0 þ dW; ðA3Þ

ExP0 þ FP ¼ x4WðIVÞ þ Ax3WðIIIÞ þ Bx2W00

þ CxW0 þDW: ðA4Þ

The auxiliary parameters e, f, b, c, d are written as follows:

b ¼ Γ − 1þ K0
12

ω0

;

c ¼ ðΓ − 1Þðν11 þ ν12 þ 1Þ þ K0
11 þ

K0
12

ω0

ð4þ ω0 þ ν11Þ;

d ¼ ν11ν12ðΓ − 1Þ þ K0
11ν12 þ

ν11K0
12

ω0

ð3þ ω0Þ;

e ¼ ν11 þ ν12 þ 1 − 3
K0

12

ω0

; f ¼ ν11ν12 − 3
ν11K0

12

ω0

:

ðA5Þ

Similarly we can represent the parameters E; F; A; B; C;D,

A¼ ν22 þ ν21 þ 6þ 2ω0 þ 3γþ 3Γþ 3K0
12

ω0

;

B¼ 34þ 12ω0 þ ðν22 þ ν21Þð9þ 2ω0Þ þ ν22ν21 þ 3ðγ − 1Þðν22 þ ν21 þ 6þω0Þ þ 3K0
22 þ 3ðΓ− 1Þðν11 þ ν12 þ 3Þ

þ 3K0
11 þ

3K0
12

ω0

ð6þω0 þ ν11Þ þ 3

�
ω0 þ ðν22 þ ν21Þ þ 3γ −

�
ν11 þ ν12 − 3

K0
12

ω0

���
Γ− 1þK0

12

ω0

�
;

C¼ ðν22 þ ν21 þ 1Þð16þ 8ω0Þ þ ν22ν21ð7þ 2ω0Þ þ 3½ðγ − 1Þðν22 þ ν21 þ 1Þ þK0
22�ð4þω0Þ þ 3½ν22ν21ðγ − 1Þ þK0

22ν21�

þ 3ω0K0
21 þ 3ðΓ− 1Þðν11 þ ν12 þ ν11ν12 þ 1Þ þ 3K0

11ð1þ ν12Þ þ
3K0

12

ω0

ð4þω0 þ ν11Þ þ 3
K0

12ν11
ω0

ð3þω0Þ

þ 3

�
ω0 þ ðν22 þ ν21Þ þ 3γ −

�
ν11 þ ν12 − 3

K0
12

ω0

���
ðΓ− 1Þðν11 þ ν12 þ 1Þ þK0

11 þ
K0

12

ω0

ð4þω0 þ ν11Þ
�
;

D¼ ν22ν21ð9þ 6ω0Þ þ 3ω0ν22K0
21 þ 3½ν22ν21ðγ − 1Þ þK0

22ν21�ð3þω0Þ þ 3

�
ω0 þ ðν22 þ ν21Þ þ 3γ −

�
ν11 þ ν12 − 3

K0
12

ω0

��

×

�
ν11ν12ðΓ− 1Þ þK0

11ν12 þ
K0

12ν11
ω0

ð3þω0Þ
�
;

E ¼ 3ðν11 þ 1Þðν12 þ 1Þ− 9
K0

12ðν11 þ 1Þ
ω0

− ðν22 þ ν21 þ 1Þð3þ 3ω0 þ 9γÞ− 3ν22ν21 − 9K0
22

þ 3

�
ω0 þ ðν22 þ ν21Þ þ 3γ −

�
ν11 þ ν12 −

K0
12

ω0

���
ν11 þ ν12 þ 1− 3

K0
12

ω0

�
;

F ¼ −ν22ν21ð3ω0 þ 9γÞ− 9K0
22ν21 þ 3

�
ω0 þ ðν22 þ ν21Þ þ 3γ −

�
ν11 þ ν12 − 3

K0
12

ω0

���
ν11ν12 − 3

K0
12ν11
ω0

�
: ðA6Þ
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The last step is to extract the DE pressure PðxÞ from Eqs. (A3) and (A4); we obtain for the DE pressure the following
relationship,

�
eF−F−fE−

F2

E

�
PðxÞ¼x5WðVÞþ

�
3þAþe−

F
E

�
x4WðIVÞþ

�
2AþBþeA−

AF
E

�
x3W000

þ
�
BþCþeB−

BF
E

−bE
�
x2W00þ

�
DþeC−

CF
E

−cE
�
xW0þ

�
eD−D−

DF
E

−dE
�
W; ðA7Þ

and put this PðxÞ into the Eq. (A3). As the result, we obtain the key equation

x6WðVIÞ þ ω1x5WðVÞ þ ω2x4WðIVÞ þ ω3x3W000 þ ω4x2W00 þ ω5xW0 þ ω6W ¼ 0; ðA8Þ

in which the following coefficients are introduced

ω1 ¼ 8þ Aþ e; ω2 ¼ 12þ 6Aþ 4eþ Bþ eAþ f;

ω3 ¼ 6Aþ 4Bþ Cþ 3eAþ eB − bE þ fA;

ω4 ¼ 2Bþ 2CþDþ 2eB − 2bE þ eC − cE − bF þ fB;

ω5 ¼ eC − cE þ eD − dE − cF þ fC; ω6 ¼ fD − dF: ðA9Þ

APPENDIX B: KEY EQUATION FOR THE CASE
ω0 = 0, K0

12 ≠ 0, K0
21 ≠ 0

When ω0 ¼ 0, we extract the DE pressure P from (23)
and the DM pressure from (24)

P ¼ −
1

3
xW0 −W; Π ¼ −

1

3
xE0 − E: ðB1Þ

Then we put these P and Π into the Eqs. (27) and (28)
obtaining two equations, which link now the DE and DM
energy densities W and E,

x3W000 þ α1x2W00 þ α2xW0 þ α3W ¼ −3K0
12ðxE0 þ ν11EÞ;

ðB2Þ

x3E000 þ α4x2E00 þ α5xE0 þ α6E ¼ −3K0
21ðxW0 þ ν22WÞ;

ðB3Þ

where the new auxiliary parameters are the following:

α1 ¼ ð3þ 3Γþ ν11 þ ν12Þ;
α2 ¼ 3K0

11 þ ð1þ 3ΓÞð1þ ν11 þ ν12Þ;
α3 ¼ 3ν12ðν11Γþ K0

11Þ α4 ¼ ð3þ 3γ þ ν22 þ ν21Þ;
α5 ¼ 3K0

22 þ ð1þ 3γÞð1þ ν22 þ ν21Þ;
α6 ¼ 3ν21ðν22γ þ K0

22Þ: ðB4Þ

When K0
12 ≠ 0, we find subsequently E000ðxÞ, E00, E0, and E

from this pair of equations. For the DM energy density E
we obtain

EðxÞ � 3K0
12½α6 þ ðα4 − 2 − ν11Þð1þ ν11Þν11 − α5ν11� ¼ x5WðVÞ þ x4WðIVÞð4þ α1 þ α4 − ν11Þ

þ x3W000½6þ 4α1 þ α2 þ α5 þ ðα4 − 2 − ν11Þð2þ α1 − ν11Þ�
þ x2W00½2α1ν11 þ α3 þ α1α5 þ ðα4 − ν11Þðα1 þ α2 − α1ν11Þ�
þ xW0½α2α5 þ ðα4 − 2 − ν11Þðα3 − α2ν11Þ − 9K0

12K
0
21�

þW½α3α5 − α3ðα4 − 2 − ν11Þð1þ ν11Þ − 9K0
12K

0
21ν22�: ðB5Þ

Then we put E000ðxÞ, E00, E0, and E into (B3) and find the key equation of the sixth order in derivatives:

x6WðVIÞ þ Ω1x5WðVÞ þ Ω2x4WðIVÞ þ Ω3x3W000 þ Ω4x2W00 þΩ5xW0 þ Ω6W ¼ 0; ðB6Þ

where the auxiliary parameters Ωj are of the form
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Ω1 ¼ 9þ α1 þ α4;

Ω2 ¼ 30þ 8α1 þ α2 þ α5 þ ðα4 − 2Þð6þ α1Þ;
Ω3 ¼ 18þ 14α1 þ 5α2 þ α3 þ 3α5 þ α6 þ α1α5 þ ðα4 − 2Þð6þ 4α1 þ α2Þ;
Ω4 ¼ 4α1 þ 4α2 þ 2α3 þ 2α1α5 þ α2α5 þ α1α6 þ ðα4 − 2Þð2α1 þ 2α2 þ α3Þ − 9K0

12K
0
21;

Ω5 ¼ α2α5 þ α3α5 þ α2α6 − 9K0
12K

0
21ð1þ ν11 þ ν22Þ;

Ω6 ¼ α3α6 − 9K0
12K

0
21ν11ν22: ðB7Þ
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