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Self-interaction in a cosmic dark fluid:
The four-kernel rheological extension of the equations of state
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We establish a new self-consistent model of coupling between the cosmic dark energy and dark matter in
the framework of the rheological approach, which is based on the representation of the equations of state in
terms of integral operators of the Volterra type. We elaborate on the so-called four-kernel model, in the
framework of which both the dark energy and dark matter pressures are presented by two integrals
containing the energy densities of the dark energy and dark matter. For the Volterra operators, the kernels of
which are associated with the effects of fading memory, the corresponding isotropic homogeneous
cosmological model is shown to be exactly integrable. We consider the classification of the model exact
solutions, based on the analysis of roots of the characteristic polynomial associated with the key equation of
the presented model. The scalars of the pressure and energy density of the dark energy and dark matter, the
Hubble function and acceleration parameter are presented explicitly as the functions of the dimensionless
scale factor. The scale factor as the function of the cosmological time is found in quadratures and is
described analytically, qualitatively, and numerically. Asymptotic analysis allows us to classify the models
with respect to behavior typical for the big rip, little rip, and pseudorip (de Sitter type). Two intriguing exact
cosmological solutions are discussed, which describe the superexponential expansion and the symmetric
bounce. New solutions are presented, which correspond to the quasiperiodic behavior of the state functions

of the dark fluid and of the geometric characteristics of the Universe.
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I. INTRODUCTION

A. On the problem of internal interactions
in the cosmic dark fluid

The cosmic dark fluid, which consists of dark matter and
dark energy, plays the key role in all modern cosmological
scenaria [1-17]. The dark matter and dark energy interact
by the gravitational field, thus creating the spacetime
background for various astrophysical and cosmological
events. Observational data, obtained recently, show that the
direct (nongravitational) interaction between dark matter
and dark energy cannot be excluded [18-21]. The concept
of nongravitational interaction in the dark sector, precisely
between dark matter (DM) and dark energy (DE), was
phenomenologically introduced to explain, in particular,
the cosmic coincidence problem [22-24]. There are few
models of interactions in the dark sector. The most well-
known phenomenological model operates with the so-
called kernel of interaction, the function Q(r), which
appears in the individual balance equations for the DE
and DM energy densities with opposite signs, +Q and —Q,
thus providing the conservation of the total (DE + DM)

fAlexander.Balakjn @kpfu.ru
‘alexeyilinjukeu@gmail.com

2470-0010/2022/105(10)/103525(20)

103525-1

energy density (see, e.g., [25-29]). In the series of works
[30-33] the DE/DM interaction is modeled on the base of
relativistic kinetic theory with an assumption that DE acts
on the DM particles by the gradient force of the
Archimedean type. In [34,35] the DE/DM interactions
are considered in terms of extended electrodynamics of
continua. In [36] the kernel of nongravitational interaction
between DE and DM is presented by the integral Volterra-
type operator. The main idea of both differential and
integral extensions of the interaction terms is based on
the concept that the response of the DM on the DE action
(and vice versa) occurs with a time delay, not instantly. This
approach is supported by various physical models for the
classical matter with rheologic properties, and we hope that
the behavior of the dark constituents of the cosmic dark
fluid is similar in this sense. As for the self-interaction
inside the DE and DM, there are models (see, e.g., [30,37]),
in which the equations of state of the DE are extended by
the terms with the first derivative of the DE pressure. The
extension of this type was inspired by the results of the
relativistic causal thermodynamics, elaborated on by Israel
and Stewart [38]. In fact, the appearance of the differential
and/or integral terms in the equations of state for DM and
DE reveals the intention to describe the simplest effects of
nonlocality in time. One can mention two classical theories

© 2022 American Physical Society


https://orcid.org/0000-0001-7296-2469
https://orcid.org/0000-0002-9951-1198
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.105.103525&domain=pdf&date_stamp=2022-05-18
https://doi.org/10.1103/PhysRevD.105.103525
https://doi.org/10.1103/PhysRevD.105.103525
https://doi.org/10.1103/PhysRevD.105.103525
https://doi.org/10.1103/PhysRevD.105.103525

ALEXANDER B. BALAKIN and ALEXEI S. ILIN

PHYS. REV. D 105, 103525 (2022)

which have realized this paradigm; the theory of visco-
elasticity and rheology (see, e.g., [39—43]). In these theories
the concept of fading memory is used, and the correspond-
ing mathematical formalism is based on the theory of linear
Volterra operators [44], which considers the value of the
pressure at the moment to be predetermined by whole
prehistory of the material evolution. Generally, the problem
of theoretical description of nonlocal interactions is well
known in physics, and particularly, in cosmology and
theories of gravity (see, e.g., [45-50]. We intend to involve
the formalism of the nonlocal theory to the problem of
internal interactions in the cosmic dark fluid, using the
isotropic homogeneous spacetime platform.

B. Prolog

Classical theory of viscoelasticity [39] operates with two
local constitutive laws; first, with Hooke’s law which states
that the stress ¢ is proportional to the strain €, and second
with Newton’s law which claims that the stress is propor-
tional to the time derivative of the strain é. Symbolically,
these laws can be written as follows:

o = Eye, c = e, (1)
where the parameter E(, describes the elastic modulus, and
n relates to the viscosity coefficient. For the schematic
illustration of the material properties one uses combination
of springs, which symbolize the Hooke’s properties, and of
the dashpots, when one deals with the behavior of the
Newton type. Serial connection of one spring and one

dashpot symbolizes the Maxwell model of viscoelasticity,
which can be described by the constitutive equation

E
6+—o = Eyé. (2)
n

This constitutive equation can be rewritten in the integral
form

o(t) = G(O)e_i'iol +E, /t dfé(r)e_iﬂo(t_r). (3)
0

The right-hand side of this formula contains the so-called
Volterra integral with the difference multiplicative kernel

K(t—1) = e_a_o(t_f) = e_b;_rol . eb;_lof (4)

which describes the fading memory [39,41].

When one depicts two springs and two dashpots con-
nected as two parallel Maxwell details, one obtains the
Burgers model with the constitutive equation of the second-
order time derivative,

E E E\E
&+b<—1+—2) +o—2= f(e),
m M mn2
. 1 1

m m

This differential relationship is equivalent to the integral
one

N 0 5(0 - ~
o(t) = [5(0) coshI't + wsinh Ft} e 7!
1 B, _E1g,_
ToF / def(@)]e n 07 — ) (6)

where the parameters 7 and I" are given by

. 1/E, E 1/E, E
2\m m 2\m  m

When ¢(0) =0 and 6(0) =0, we obtain from (6) the
integral form of the constitutive equation for the Burgers
model. Clearly, the Burgers model of viscoelasticity deals
with the multiplicative kernels of the Volterra type, which is
given by the difference of two Maxwell kernels (4). This
illustration gives us the analog and motivation for the four-
kernel extension of the model of interaction between the
dark energy and dark matter.

C. Structure of the work

In the presented work we deal with the dark fluid
consisting of two dark constituents, and we consider two
equations of state (EoS). In the EoS for the dark energy the
DE pressure is presented by two Volterra integrals con-
taining the DE energy density scalar and DM energy
density scalar, respectively. Similarly, the EoS for the dark
matter contains two Volterra integrals. Thus, the model
requires to introduce four kernels; our ansatz is that all four
kernels describe the fading memory and have the multi-
plicative form.

The paper is organized as follows. In Sec. II we describe
the formalism. i.e., we present the equations of the gravity
field, the equations of state for the DE and DM, and the
balance equations. In Sec. III we derive the integro-differ-
ential equations describing the evolution of the isotropic
homogeneous Universe, and obtain the so-called key
equation, which is the linear differential equation of the
Euler type in ordinary derivatives for the DE energy
density. Depending on the completeness of the set of
phenomenologically introduced coupling parameters, the
key equation can be the sixth, fifth, fourth, third, and
second-order derivative; we describe all the corresponding
schemes of derivation and present the sets of auxiliary
coefficients in Appendices I and II. In Sec. IV we give the
classification of the exact solutions to the key equation
based on the analysis of solutions to the characteristic
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equation associated with the Euler equation; using the
asymptotic analysis of the obtained solutions we indicate
the cases which correspond to the Universe behavior
typical for big rip, little rip, and pseudorip. Section V
contains explicit examples of analytic solutions for the
model, which describes the pressureless dark matter and
nonlocally self-interacting dark energy coupled by the local
link. In Sec. VI we consider exact explicit solutions of the
model of the nonlocal cross action of DE on DM.
Section VII contains discussion and conclusions.

II. THE FORMALISM

A. Two-fluid representation of the isotropic
homogeneous cosmological model

The master equations for the gravity field obtained from
the Hilbert-Einstein action functional have the form

[ . . )
k _ ik ik
R — Egl R — Ag™ = k[T {5g) + T (8)
where R is the Ricci tensor, R is the Ricci scalar, A is the
cosmological constant. The quantities TE’]‘)E) and TE’BM) are
the stress-energy tensors of the dark energy and dark
matter, respectively. We assume that the spacetime is
described by the line element

ds* = d* — a®(1)[dx* + dy? + dZ?]. (9)

Our ansatz is that the DE and DM stress-energy tensors
have the form

Tik

— i i ik
g = WU'U—PAK, T

(DM) =EU'U*-T1A*,  (10)
Here U' = &) is the timelike unit velocity four-vector and
A* = gk —U'U* is the projector. W and E are the
energy density scalars of DE and DM, respectively, and
P and TII describe the corresponding pressure scalars. All
the state functions are assumed to be the functions of
time only.

The Bianchi identity provides the sum of the DE and DM
stress-energy tensors to be divergence free,

V[T + Tiky ] = 0. (11)

In the isotropic homogeneous spacetime with the metric (9)
this equality can be rewritten via two balance equations

W +3H(W + P) = Q, (12)
E+3H(E+T) = -0, (13)

where H(t) = % is the Hubble function, the dot denotes

the derivative with respect to time. The quantity Q(7) is
some auxiliary function of time indicated as the kernel of

interaction between the DE and DM. We assume that the
kernel of DE/DM interaction is of linear form,

0(1) = woH (1) [E(1) = W(1)], (14)

where @, is a dimensionless phenomenological constant.
Due to the symmetry of the model we have only one
independent equation describing the gravity field, it has the
form

3H? — A = k[W(1) + E(1)). (15)

To solve the set of master equations (15), (12), (13), with
(14) we have to add two equations of state for the DE and
DM, respectively,

P=P(W.E), MN=I(W,E). (16)

B. Reconstruction of the constitutive equations

We suggest to formulate the equations of state for the
dark energy in the following integral form,

P(1) = (T = 1)W(r) + / "dEK L (1. OW(E)

)

4 / "dEK (1. EE(E). (17)

using two Volterra type operators. Similarly, the equation of
state for the dark matter is presented in the form

() = (7 — DE() + / "dEK ) (1 EW(E)

)

+ / dEK (1. E)E(E). (18)

These constitutive laws require the following comments.

(1) When Kll = K12 = Kz] = K22 = 0 the constitutive
laws (17) and (18) give the standard barotropic
equations of state P(f)=(T—-1)W(s) and
[1(z) = (y — 1)E(t); thus, the constants I" and y play
the roles of the adiabatic parameters for the DE and
DM, respectively.

(2) When the cross terms vanish, i.e., Ki; = K5 =0,
we deal with two integral type equations of state,
which are independent for DE and DM; there are no
internal cross interactions in the dark fluid, but there
exist self-interactions in DE and DM individually.

(3) Generally, K|, # K,;, though the symmetric case
K|, = K, is also interesting.

(4) The constitutive equations (17) and (18) belong to
the class of nonlocal laws, i.e., the value of the DE
and DM pressures at the time moment ¢ are
predetermined by all prehistory of the dark fluid
evolution.
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C. The Volterra kernels describing the fading memory

Keeping in mind the classical analogs from the Maxwell
and Burgers models of viscoelasticity, we suggest to use the
multiplicative Volterra kernels of the following form

K,j(1.8) = KOH(D [%} (19)

where i, j = 1, 2. As for the quantities K ?J and v;;, they are
some dimensionless phenomenological constants. The
signs of the parameters v;; (for the case of fading memory)
can be fixed as follows. When we deal with the de Sitter
model, and a(t) = a(ty)e™’, the term K;;(1,£) in (19)

takes the form
Ki;(1, &) = KYHye Hors=), (20)

Comparing (20) with (3) we conclude that it is reasonable
to assume that the parameters v;; are positive.

III. KEY EQUATION OF THE MODEL
A. General strategy

1. Balance equations for DE and DM energy densities

The first step towards resolving the set of equations (15),
(12), (13), (14), with (17) and (18) is to obtain the key
equation, which contains only one unknown function;
namely, the DE energy density scalar W. We mention that
in the presented model one can consider the functions W
and E to depend on cosmological time through the scale
factor, i.e., W = W(a(r)) and E = E(a(r)). This allows us
to use the well-known approach based on the introduction
of the following dimensionless variable instead of the
cosmological time,

= xH(x)—. (21)

When the Hubble function H(x) is found, the relation
between cosmological time and this new variable can be
obtained in quadrature as follows:

a(t)
dx
a(ry)
t—ty= . 22
o= | i (22)

In these terms the balance equations (12) and (13) convert
into

xil—‘;cv+3(W+P) = wy(E - W), (23)

xj—f+3(E+n):a)0(W—E). (24)

2. Integral form of the DE and DM equations of state

In this context, the main interest is connected with the
constitutive equations (17) and (18), which can be now
presented in the integral and differential forms. The integral
representations are

P(x) = (T = DW(x) + x 1KY, / Cdyyn W)

+xeKY, / dyye1E(y), (25)

M(x) = (¢ - DE() + 1KY, / * dyy W ()

T / Cdyy E(y). (26)
1

3. General differential form of the
DE and DM equations of state

It is well known that the integral equations with the
multiplicative kernels can be reduced to the differential
equations; in our case we obtain the equations of state for
the DE (25) and for the DM (26) in the following form,

PP+ (vyy + v + DxP' + vy P
= ([ =)W+ [(C= 1) (v +vip + 1) + K xW
+ [T = 1) + K9 vp]W + K)OxE' + v K E,
(27)

X0 + (U + oy + DXIT 4 vy 1T
= (r = DPE" + [(r = D(vaa +va1 + 1) + K xE'
+ [wavar (¥ = 1) + K un JE + K5\ xW' + 15, K5, W.
(28)

Here and below the prime denotes the derivative with
respect to variable x. Clearly, the Egs. (23)—(26) do not
contain the Hubble function, thus the equation

3H?(x) = A+ k[W(x) + E(x)] (29)

gives us the unknown function H(x), when W(x) and E(x)
are found.

4. Initial data problem

When we convert the integral relationships into the
differential equations, we have to keep in mind that the
initial data for the quantities participating in these pro-
cedure have to satisfy the conditions

103525-4
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P(1) = (C-=-1)w(). (1) = (r - DEQ),
P'(1) = (C = 1)W'(1) + K}, W(1) + K}, E(1),
(1) = (y = E'(1) + K, W(1) + K5, E(1),....  (30)

Additionally, keeping in mind (23) and (24) for the starting
point x = 1, we obtain

W(1) = woE(1) = W(1)(3T + ). (31)
E'(1) = woW(1) — E(1)(37 + ay). (32)
W(1) + E(1) = -3[W(1) +7E(D)]).  (33)

Below we will keep in mind these relationships if we intend
to simplify a model and to link some guiding parameters
and initial data.

5. First particular case: The DM (or DE)
self-interaction is absent

When K,, =0 and vy, = 0, i.e., when there is no the
DM nonlocal self-interaction, the differential version of the
equation of state for the dark matter becomes the equation
of the first-order derivative

x + vy I = (y = 1)(xE' + vy E) + KS,W, (34)

linking the state functions Il, E, and W. Similarly, when
K1 =0 and v;; =0, we deal with the first-order differ-
ential equation of instead of (27).

6. Second particular case: The DM/DE
cross-interaction is absent

When Ky, = 0 and vy, = 0, i.e., when there is no action
of the DM on the DE substratum, the corresponding
differential version of the equation of state for the dark
energy takes the form

xP' +uv P= T =1)xW +v, W)+ KO W.  (35)

Again we deal with the first-order derivative equation, but
now the DM energy density scalar E disappears from this
equation, i.e., the DE constitutive equation can be
decoupled from the set of the DE/DM equations of state.
Similarly, when K,; = 0 and v,; = 0, the DM constitutive
equation happens to be decoupled.

B. The scheme of reconstruction of the key equation

1. General case: @y # 0, K} # 0, v;; # 0

When w, # 0, we extract the DM energy density E(x)
from (23)

E(x) = wio W () + 3+ w)W 3P, (36)

and extract the DM pressure I1(x) from (24),

1
1) = =35 BW + (7 4 200)2W' + (9 + 60 W

+ 3xP' + (9 + 3w P). (37)

Then we put E(x) from (36) and II(x) from (37) to
Egs. (27) and (28), thus excluding the state functions of
the dark matter. The last step of this procedure is the
following: We exclude the DE pressure P(x) and obtain the
key equation for the DE energy density

WV 4 0, 5WY) 4 @, W) o3 x3W
+ w4 W + 0sxW' + ogW = 0. (38)

In Appendix A this procedure is described in detail, and the
coefficients w; are presented. The main feature of the key
equation (38) is that it is the linear sixth-order ordinary
differential Euler equation and thus, its general solution can
be presented in standard elementary functions. When the
solution to the Euler equation (38) is written and W(x) is
presented, we find P(x) using (A7); then we find E(x) from
(36) and I1(x) from (37). The last step is to find H(x) from
(15) and then a(t) from (22).

2. The special case wy=0, but K%, # 0 and K3, # 0

The condition @, = 0 means that the coupled balance
equations (23) and (24) convert into the conservation laws
for the DE and DM individually, however, there exists the
nonlocal cross interaction between DE and DM. When the
parameter @, vanishes, we have to change the strategy of
the derivation of the key equation. Now we extract the DE
pressure P from (23) and the DM pressure I1 from (24)

P:—%xW’—W, H:—%xE’—E. (39)
Then we put these P and II into the Egs. (27) and (28)
obtaining two equations, which link now the DE and DM
energy densities W and E. At the last step we exclude E(x)
and obtain the key equation for the DE energy density of
the form (38), but all the coefficients @; should be replaced
by Q; (they are presented in the Appendix B). We deal
again with the sixth-order Euler equation derivative; when
W(x) is written, we obtain E(x) from (B5), then find P(x)
and TI(x) from (39), H(x) from (15) and a(t) from (22).

3. The special case =0 and KY,=0

As an example, we discuss now the case, when the DM
action on the dark energy is assumed to be negligible. Now
we obtain that the equation for the DE energy density W
happens to be decoupled

BW" + W' 4+ ayxW' + az W = 0, (40)
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where the coefficients a;, a,, @3 are presented in
Appendix B. We deal now with the third-order Euler
equation for the unknown function W. When W(x) is
found, we solve the third-order Euler equation (B3) for
E(x) and then follow the logics of the previous
subsubsection.

4. The special case wy # 0, but KY,=0 and v, =0

Now we find that the coefficient wg vanishes and wg = 0
(see Appendix A); this means that the key equation
becomes a fifth-order derivative. The same result appears
if K9, = 0 and v,; = 0. When the pairs of the coefficients
K?j and the corresponding pairs of v;; vanish, one can
reduce the key equation (38) to a fourth-order differential
equation.

IV. ANALYSIS OF THE SOLUTIONS TO
THE KEY EQUATION

A. Characteristic equation and the structure of the
general solution

The general solution to the Euler equation (38) can be
reconstructed by the standard method; we search for the
particular solutions in the form W(x) — x°, and obtain a
sixth-order characteristic equation for o,

o® + (w; — 15)6° + (85 — 10w, + w,)c*
+ 6%(=225 + 35w, — 6w, + w3)
+ (274 = 500, + 11w, — 3w; + w4)0>
+ (=120 + 24w, — 6w, + 203 — w4 + ws)o + wg = 0.
(41)

Clearly, the sixth-order algebraic polynomial with real
coefficients can have the following sets of roots; six real
roots, four real roots and a pair of complex conjugated
ones, two real roots and two pairs of complex conjugated
ones, and three pairs of complex conjugated roots. The
general solution to the Euler equation (38) is known to be
the linear combination of six fundamental solutions. For the
simple real root o the basic solution is x°; when k real
roots coincide the corresponding basic solutions are
x°1, x% log x, ..., x° (log x)¥=!. When there is a complex-
conjugated pair ¢ = a £ iff among the roots of the char-
acteristic equation, one has to choose two basic solutions in
the form x°! cos (flog x) and x?' sin (flog x); when there
are coinciding pairs of the complex conjugated roots, one
has to use the products of the corresponding basic functions
with (log x)*, as in the case of the real roots. This procedure
is standard, and below we present the classification of the
mentioned six roots and consider the corresponding sol-
utions to the key equation (38) in the asymptotic regime
Xx — oo in order to select the appropriate models, which
seem to be physically motivated.

B. Real roots

Let us start with the case when all six roots of the
characteristic equation (41), o, are real. One can distin-
guish eleven different subcases; there is one (the so-called
completely nondegenerated) set of real roots (there are no
coinciding pairs); also, there are ten degenerated sets (two,
three, four, five, or six roots coincide, etc.).

1. Completely nondegenerate set of roots

When all six roots do not coincide, the general solution
to the key equation (38) can be written as follows:

6
W(x) = Z ClayX™@), (42)
(

a)=1

where C(,) are integration constants. According to the
scheme of analysis proposed above we obtain now that
the solutions for E(x), P(x), I1(x), and H? have exactly the
same structure as W(x) (42), we just have to specify
the corresponding coefficients. Also, the acceleration
parameter

a x(H*(x))'

—_ = — 1
1= 1 +
14330 Cl (1 +30(0)x7

1+ 332021 Clapx™@

, (43)

happens to be presented in the elementary functions.
The scale factor a(r) is the function, which generally can
be found in quadratures only

Clearly, in general, the scale factor can be obtained only
numerically. However, one can analyze the asymptotic
behavior of the Universe geometric characteristics as
follows. Let the root of the characteristic equation o,
be the maximal among the six real roots ¢,). The root 5,
can be positive, zero, or negative.

1. O (m) > 0.
In this case the scale factor behaves asymptotically as
t 1 7
IO [ ] Ch (45)
a(ty) — (1. —1)

When 7 — t,, the functions W(t), E(¢), P(t), and I1(¢) tend
to infinity, and we deal with the big rip (for the classi-
fication of future singularities see, e.g., [S1-54]).

2.0 (m) = 0.

Now we deal with the behavior, which is characterized
by the asymptotically constant DE and DM state functions,

103525-6
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t— 1

FIG. 1. This figure illustrates the behavior of dimensionless
scale factor a(t)/a(ty) (upper panel) and Hubble function
H(t)/H(ty) (bottom panel) as functions of cosmological time
t — ty; five values of the max(o(a)) are fixed in the right side of the

figure. C,,) corresponding to the maximal root o,, is considered
to be positive; other integration constants C(; are negative.

W(t) » Wy, E(t) > Ey, P(t) = Py, II(t) > I, and
H(t) - H; as for the scale factor, it behaves as

A w E
a(t) o« et H, :\/ + i ( 3oo+ oo)‘

(40)

We follow the works [51-54] and prefer to indicate this
final state as pseudorip.

3. O(m) < 0.

For this case all the DE and DM state functions tend
asymptotically to zero, and we deal with the standard de
Sitter asymptote with H = %

Tlustration of the mentioned regimes is presented
in Fig. 1.

2. Degenerated sets of roots

When all the roots of the characteristic equations are real,
there exists ten specific cases, which describe the situations
with coinciding roots:

(1) Two roots coincide, say, 6(;) = 6(3), and other roots

are different;

(2) Three roots coincide, say, o(1) = 02) = 0(3), and

other roots are different;

(3) Four roots coincide, say, O(1) = 0(2) = 0(3) = O(4)»

and other roots are different;

(4) Five roots coincide, say, o() =0 =03 =

O(4) = 0(5), and the last one differs from them;

(5) All six roots coincide;

(6) There are two pairs of coinciding roots, say, ¢(;) =
0(2) # 0(3) = 0(4) and other two roots are different;

(7) There are three pairs of coinciding roots,
say, 0(1) = 0(3) F 0(3) = Oa) F 0(5) = 0(5);

(8) There is the set of roots, satisfying the condi-

tions (1) = 0(g) = 0(3) # 0(4) = 0(5) # ()3

(9) There is the set of roots, satisfying the condi-

tions o(1) = 6(2) = 0(3) = 0(4) # 0(5) = 05
(10) There are two trio of coinciding
O(1) = 02) = 0(3) # Oa) = 0(5) = 0(6);

The procedure of representation of the general solution
to the key equation in all ten cases is well documented.
For instance, let k real roots coincide (2 <k <6),
say, 6(1) = 0() = ... = 0() = 6y, and other roots be differ-
ent. The corresponding general solution to the key equation
reads

roots,

W(x) = xUO[Cl +Cylogx+ -+ C'klogk‘lx]
6,
+ Z ij"(f)_ (47)

This structure is also typical for the functions E(x), P(x),
(x), and H?(x).

The asymptotic behavior of the solutions can be
estimated keeping in mind two principal cases; what is
bigger—o or one of the roots o(;), j > k? When ;) > 0,
the asymptotic behavior of the system is described in the
previous subsubsection. Now we assume that the root o is
the biggest one among the roots of the set under discussion.
Then the biggest term in (47) is

W(x = c0) = Crx(log x)k1. (48)

The solution for the scale factor a(r) depends on the sign of

the root o).

(1) When oy < 0, H(x) - /4 and we deal with the de
Sitter type behavior of the model.

(2) When 6, =0, and thus H(x) — K(logx)T, we
obtain three interesting cases.

Q1) If k=2, a(t > o) x X', we deal with the
solution indicated as anti-Gaussian solution in
[30]. It is an example of the little rip-type
behavior.

22) Ifk=3,a(t > ) x eem; we deal with the solution
indicated as superexponential solution in [30].
Again, it is an example of the little rip behavior.

(2.3) If 3 < k <6, the integral (22) converges when the
upper limit tends to infinity. This means that the
scale factor a reaches the infinite value during the
finite interval of the cosmological time. We deal now
with the big rip-type solution.

(3) When 6, > 0, and thus H(x) — Kx2 (logx)'T, we
can rewrite (44) as follows:
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(2 )TICt - y(s,u) = Au déec&571, (49)

where y (s, u) is the incomplete lower Gamma function with
the arguments

3-k o a(t)
s="5—. u= Eolog [a(to)]. (50)

This function links with the complete Gamma function
I['(s) and with incomplete upper gamma function I'(s, u) =
[ dée=¢E! by the simple condition y(s,u) =I(s)—
I'(s,u). For large argument u we can use the relationship
y(s,u) ~T(s) — e “u*~'. In other words, the integral (49)
converges at a — oo, and the scale factor reaches the
infinite value during the finite interval of time; again we
deal with the big rip scenario.

In summary, we assume that the big rip scenario is not
physically motivated, thus, the models with real character-
istic roots have to correspond to two cases; first, (,) <0,
and second, Ola) = 0 and k£ < 3.

C. Complex roots

1. Preliminary classification

When not all the roots are real, we obtain six intrin-

sic cases.

(1) There is one pair of complex conjugated roots
O(a) = Aa) T if(4), and other four roots are real
(there are five internal cases with and without
degeneracy of the real roots).

(2) There are two different pairs of complex conjugated
roots, and two roots are real (there are two inter-
nal cases).

(3) There are three different pairs of complex conju-
gated roots.

(4) There are two coinciding pairs of complex conju-
gated roots, and two roots are real (there are two
internal cases).

(5) There are three pairs of complex conjugated roots,
and two of them coincide.

(6) There are three coinciding pairs of complex con-
jugated roots.

2. First case: there is one pair of
complex conjugated roots

Now the solution to the key equation (38) can be written
as follows:

W(x) = x%[C, cos (Blog x) + C; sin (Blog x)] + W rear)
(51)

where the decomposition W .., is given in the previous
subsection. Again we see that the DE and DM state
functions E(x), P(x), II(x), as well as, the square of the
Hubble function H? have the same form, but the coef-
ficients of decomposition are specific. New details of
solution appear when the real part a of the complex root
happens to be bigger than the real roots o(,) encoded in the
term W.,). Then in the asymptotic regime x — co we
obtain the following integral for searching for the scale
factor,

- /:(E:) dlogx
— 0 pr— = ~ '
'\ /A+2(C cos (Blogx) + Csin(Blog )

(52)
For illustration, we consider « =0 and C, =0, C, = C,
obtaining
dl
=ty = / oex . (53)
\/ + Ccos (flogx)
Our goal is to obtain the formula
i/ -’ e
1- k2 sin’ 54)

which appears from (53) after the following redefinitions,

a(r) _6C
a(t0)>’ kQ*A+3C‘ (53)

This interest is predetermined by the fact that the right-hand
side of (54) presents the definition of the incomplete elliptic
integral of the first kind F(¢|k?), and that the functions
reciprocal to u = F(¢p|k®) are connected with the Jacobi
elliptic sine and cosine functions

1 1
Eiﬂlogx, @ :E/)’log <

sn(u.k?) =sing.  cn(u.k?) =cosp,  (56)

and two auxiliary functions

dn(u, k) = /1 — k*sin’g,

The abbreviation am is used for the so-called Jacobi
amplitude function.

Now we see that the cosmological time can be expressed
via the incomplete elliptic integral

m(u,k*) =¢. (57)

2V3 1 6C
t—t() ﬁm < ﬂlogx m), (58)

and the scale factor is of the form
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FIG. 2. Upper panel: Illustration of the behavior of the Hubble
A0 Here x = 410

VA3 alto)
is cosmological constant, 7 is cosmological time. Bottom panels:
Dimensionless scale factor a(t)/a(ty) (left panel) and Hubble

function is the dimensionless scale factor, A

function \;’Q (right panel). Blue line corresponds to the case

kK=1lorC= red lineto C = orange lineto C = 5, purple
line to C = 0.
a(r) 2 PVA+3C 6C

= exp [ﬂ < (t—19),———=]|. (59)
a(ty) 23 A+3C

There are two special regimes of behavior of the presented
solution, when k2 =1and kK> =0.

(1) When C = and thus k> = 1, the elliptic functions
are known to be converted into the hyperbolic functions
i (u, 1) = tanh !
sing = sn(u, 1) = tanh u, cos @ = ,
¢ ¢ cosh u
am(u, 1) = ¢ = arcsin (tanh u). (60)

In this case (59) gives

5((;)) = exp {;arcsin [tanh <ﬂ\/§(; - fo))] } (61)

In the asymptotic regime, when ¢ — co, we obtain that the

scale factor tends to the constant value a(f)ef, and the
Hubble function tends to zero, H — 0.

(ii)) When C = 0 and thus k> = 0, we obtain from (53)
that a(r) = a(to)e\/{;\(f—’“), i.e., we deal with the de Sitter
regime.

When the parameter k> belongs to the interval
0<k <1, ie, 0<C<%, we see that 1 — oo at
a(t) — oo; as for the Hubble function H(t), it remains

bounded, 1/%—C<H< 1/%—|—C.

The regime is illustrated in Fig. 2.

3. Second case: two complex conjugated pairs coincide

In order to illustrate the novelty, which appears in the
asymptotic behavior of the system in this case, we consider
the model, in which the real parts of two coinciding pairs of
roots are equal to zero o1 = 0, = +if}, and the real parts of
all other roots are nonpositive Reo(,) <0. Then in the
asymptotic regime x — o0

W(x) = log x(C, cosflogx + C,sinfflogx).  (62)

The state functions E(x), P(x), IT(x), as well as, the square
of the Hubble function H?(x) have the same structure.
Searching for the scale factor for the late-time Universe
evolution we have to calculate the following integral,

dy/logx
1 \/Clcos (flogx) + C,sin(flogx)

(63)

Clearly, the term in the square root takes zero value at

x = x,, where tan (flogx,) = —%, and then changes the

sign. This means that the Hubble function becomes
imaginary and the model happens to be inappropriate.

4. Third case: three complex conjugated pairs coincide

When three complex conjugated pairs coincide and
have the form «a £ if5, the square of the Hubble function
at x — oo can be approximated as

H?(x) — x*log?x[C, cos (Blogx) + C,sin (Blogx)].  (64)

Again, there exists a value of the scale factor x,, when the
Hubble function takes zero value and then becomes the
imaginary one; this model is not appropriate.

In summary, we assume that physically motivated
models with complex conjugated pairs of the characteristic
roots correspond to the case, when there are no coincid-
ing pairs.

V. FIRST EXAMPLE OF EXACTLY INTEGRABLE
MODELS: PRESSURELESS DARK MATTER AND
NONLOCALLY SELF-INTERACTING DARK
ENERGY ARE COUPLED BY THE LOCAL LINK

A. Truncated model

In this first model we assume that y =1 and
K9, = K9 =0, vy; = vy, =0. In this case according to
(26) the dark matter is pressureless, i.e., II(x) = 0. The
interaction with the DE is considered to be local, i.e.,
@y # 0, and the dark energy to be characterized by I' = 0
and K ?2 = 0, v, = 0—the DE self-interaction is nonlocal.
The scheme of derivation of the key equation is now
simplified; we obtain the DE pressure and the DM energy
density in the form
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W+ 2xW (24 wy) +3W(3+ 2wy —vy; +KY))
3(vi1 =3 -wy) ’
(65)

P(x)

W+ xW (14w +v1y) + WEKY, 4+ wgvy — 0})
wo(v11 =3 =)

E(x)

(66)

where the DE energy density W(x) satisfies the third-order
Euler equation

W 4+ 2W"(6 + 2wy + 1)
+ xW' (4 + 5wy + 4vy; + 3K, + 2vp 00)

+ 3W[l/11600 + K(l)l (3 + 0)0)} =0. (67)

If we calculate the third-order derivative of this equation we
obtain (38) with wg = w5 = w, = 0.
The corresponding third-order characteristic equation,

(73 +62(3 +2(1)0 +l/11) +6(3(UO +3l/11 +3K(l)l +21/11ﬂ)0)
+3[K(1)1(3+a)0>+U11(00]:0, (68)

can have three real root or a pair of complex conjugated

roots plus one real root. In order to simplify the illustration

of general scheme of the solution classification, we con-
sider the following choice of the parameter KY|,

_ iy
3+60()’

K(l)l = (69)

thus providing that the first root, 6y = 0, is real and the
roots o,, o3 satisfy the quadratic equation

342wqg)v @
403+ 200+ 111) + | 3o +0)) 4 O 220N @0]
3+a)0

(70)

B. Three coinciding real roots
We start the illustration with the model, which admits
three coinciding roots; now they are 61 = 0, = 03 = 0. Itis
possible, when

w0(3 + 2(1)0)
vt = —(3 + 2wy), K9, 31wy (71)
and the parameter @, is the solution to the equation
wo(3 + 2wy)?* +3(3 + wy)? = 0. (72)

Equation (72) has only one real root, wy ~ —2.06. The
solution to the key equation is

)

0.

W(x) = W(1) + Cylogx + C3log? x, (73)

where C, and Cj are the integration constants, which can be
found from the initial conditions as follows:

- 3(00(2"’(1)0)

CZIW/(I), C3— 2(3+w0)2

[E'(1)(3+ o) =W (1)ay].
(74)

The DE pressure P(x) and the DM energy density can be
presented as follows:

(3 +2wy)
(3 + wy)
B (34 2w()[2C5(3 4+ @wg) +9C5(2 + wy)]

P(x)=P(1)—C; log?x

9(2 + 0)(3 + wg) log x.
(75)
E(x) = E(1) + Cs ﬁlogzx
[2C3(3 + wg)? + 3C,(2 + wy) v ogx.  (76)

3w0(2 + wg) (3 + @g)

The Hubble function H(x) can be written as

H(x) = :l:\/Hz(l) + hylog? x + hylogx,  (77)

where the following guiding parameters are introduced

Hz(l):%—i—g[W(lH—E(l)}, (78)

_ k(3 +2w0)(2+@o) [y @0 /
hy = 2(3 + w,)? [E(l) (3 + wy) M}
(79)
hy =S E(1) + W(1)). (80)

3

Further results depend essentially on the sign of the
parameter /1, or equivalently, on the relationships between
initial values of the derivatives of the DE and DM energy
densities.

1. hy > 0, little rip models

2N

— G W'(1). The
result depends now on the relationship between W(1),
E(1), W'(1), E'(1), and A, but for the sake of compactness
we formulate the corresponding conditions using the
parameters H(1), h,, h; and t}%eir combinations.

(i) The first case H(1) > 3.

This is possible, when E'(1) <
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We obtain for the scale factor the following formula,

a(t) = a(t.) exp {hcsinh [\/hyo(t = 1))}, (81)

where the auxiliary quantities are

a(tx) = a(ty) exp (— Zh—;) (82)
1 ) n3
hy =5 H*(1) —4—;2, (83)
o1 hy
1, =1t \/EArSh [2% T __2] <ty (84)

The presented solution for the scale factor is regular; its
asymptotic behavior can be indicated as superexponential.
In terms of the cosmological time the Hubble function can
be presented as

2

H2(1) = 25 cosh [/l (1 = 1,)],  (85)

H(1) = 4y

and the acceleration parameter is

B H 1 [ sinh[/hy(1 —1,)]
== e

Asymptotically, H(t - o0) — oo, glnd —q(t > o) > 1.
(ii) The second case H2(1) <3 ‘
Formally speaking, now, in orcfer to obtain the scale

factor we have to replace the function sinh with cosh, and

_ M with \/ o — H?*(1). We do not discuss the

details of th1s exact solutions, since they are similar to the
previous case. R
(iii) The third case H?(1) = 4}’73.
We obtain the following solutions for the scale factor,
Hubble function and acceleration parameter, respectively,

alt) = alty) exp {2’% [eV/ai=t0) _ 1}}, (87)

H(1) = H(ty)eVm0), (88)

By VI i), (89)

=1
7=t H(1o)

To summarize, the three submodels discussed above are
regular, and are characterized by the superexponential
asymptotes for the scale factor, exponential asymptotes
for the Hubble function, DM and DE energy density scalars
and DE pressure. We deal with variants of the little rip, for

which the infinite values of the state functions can be
reached during infinite time interval.

2. h, < 0, quasiperiodic models

Such a situation can be realized, when

E'(1) > (3|"|)2,| sW/(1). In this situation we obtain the

exact solution for the scale factor of the periodic type

a(t) = a(t,) exp {hy sin[\/ha|(t = 1,)]}, (90)
h
a(ty) = a(ty) exp <_2|T32|> (91)
_ 1 2 h3
h, = N H (1)+4|h2|, (92)

arcsin

(93)

hy
ty =ty— - .
hZ
Vh| 2/l HA (1) + 5y

The parameter +/|A,| plays the role of the frequency of the
oscillations, and the parameter a(z,) describes the mean
value of the Universe radius. The Hubble function

H(r) = |H*(1) +Mcos [V]ha|(t=1,)], (94)

has an infinite number of nulls, and changes the sign with
the frequency +/|h,|. The periodic acceleration parameter

0 sin /Tl 1)
fu{wewﬁaa—un} )

signals that there are infinite number of epochs of decel-
eration and acceleration in the Universe evolution, and this
parameter becomes infinite, when the Hubble function
takes zero values.

The regime is illustrated in Fig. 3.

—g=1-

3. h, =0, the symmetric bounce

In this particular case the state parameters of the system
are linked by the relationship

|w0|

(3 = laol)

and thus, the sign of the parameter

E(1) = wi(1), (96)
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SIS st

FIG. 3. Tllustration of the behavior of dimensionless scale factor
a(t)/a(ty) (upper panel), Hubble functon H(¢)/H(ty) (middle
panel) and acceleration parameter ¢(¢) (bottom panel) as func-
tions of cosmological time ¢ for the set of A3 presented in the
upper right corner of the figure; for all plots here we assume for
simplicity h, = —1.

is predetermined by the sign of the initial value of the
derivative W’(1). We obtain now that the scale factor has
the Gaussian form

a(t) = a(t,) exp Em(t - z*)Z], (98)

where the auxiliary parameters are

H(1
t, =1ty— 2% < 1y, (99)

Hz(l)). (100)

alt) = ali)exp (-1

Clearly, the Universe expands, when A3 >0, i.e.,
W/(1) <0 and E'(1) > 0. For this solution the Hubble
function is the linear function of the cosmological time

H() = Sha(i— 1), (101)

and we deal with the solution, which at i3 > 0 can be

indicated as the symmetric bounce (see, e.g., [55]). The
acceleration parameter

2

g =1+
1 +h3<t_t*)2

(102)

is presented by the monotonic function at 43 > 0, it tends to
one asymptotically.

C. Complex conjugated pair of roots

1. Solution to the key equation

Let us consider the model, in which the characteristic
equation is of third order; one of the root is equal to zero,
and two roots are complex conjugated with vanishing real
parts. For this model we obtain from (70)

0)0(3 + 20)0)
= -3+ 2wy), KV =—— 7 103
20 (3 4 2m) i 3+ o, (103)
The characteristic equation reduces now to
>+ =0, (104)
where the quantity
3(3 2 3+ 2m)?

3+0)0

is considered to be positive due to a special choice of the
parameter @,. (For instance, when w, = —% and thus
vii =2, K9, =10, we obtain that f* =3 > 0). For the
presented model we reconstruct the solution for the DE

energy density in the form

W(x)=Ww(1)+ W/ﬂ(l)sin (flog x)

+%[W”(l) + W/(1)][1 = cos (flogx)].

According to (66) the DM energy density can be recovered
as

(106)

E(x) = 3—01)0 —% FaW(x)| + a;ofz]) . (107)
and can be rewritten in the form similar to (106)
E(x) = E(1) + Eél) sin ($log x)
+[%[E"(1) + E(D)[1 = cos (Blogx)],  (108)

where the initial values E(1), E'(1), and E”(1) are linked
with W(1), W/(1) and W”(1) as follows:

W) T e
E(l _30)0[ (2+w0)+W(1)}+3+w0, (109)
By == E |- W)

— woW(1) = (3+ wp)E(1). (10)
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(34 wy)

E'(1) = _3600(2 + @)

(111)

2. Geometric characteristics of the model

The next step is to calculate the square of the Hubble
function; again it can be represented in the form,

H?(x) = H*(1) + A[1 — cos (flog x)] + Bsin (Blog x),

(112)
where
A S
H?(1) = §+§[W(l) + E(1)], (113)
A:%ﬁz[W”(l)+E”(1)—|—W/(1)+E’(1)}, (114)
B= 5 W) +E(1)] (115)

Now the scale factor a(¢) can be found from the integral

ﬂ(f—fo)IiA

where we introduced the following auxiliary quantities

ﬁlOga‘zSQ) dz
VF = Acosz+ Bsinz

(116)

F=H*(1)+ A, z = plogx. (117)
If we introduce the notations
0= 1( ) tanz, = —— (118)
- 2 < Z* k) a Z* - A’
and assume that F + v/ A> + B*> > 0, we obtain
1
iiﬂ\/f+ VA2 + B (1 = 1)
Yplogl—z,) de
:/- a0 (1)
Lz, V1 = K?sin’6
where
2V A2+ B2
K? = —+ (120)
F4+ VA + B

Clearly, we deal again with the incomplete elliptic integrals
of the first kind and obtain

1 a(t) 1

[W”(l)(4—|—a)0) + W’(l)(l +ﬁ2)]- F(E'Bl()ga(to) _EZ*|IC2> = j(t),

J(1) = F(—%z,ﬂ@) i%ﬁ\/}"+ VA% + B (1 - tp).

(121)

The scale factor can be expressed in terms of the inverse
elliptic functions

o) = atw)exp { .+ 20O} (12)

The Hubble function is now quasiperiodic (see (112)); its
maximal and minimal values are predetermined by the
inequalities

A-VA+B<H*(t)-H*(1) <A+ VA + B
(123)
The acceleration parameter

p
2H?(x)

—q(x) =1+ [Asin (flogx) + Bcos (flogx)]

(124)

is also quasiperiodic. Formally speaking, the function ¢(¢)
can change the sign for special choice of the guiding
parameters of the model and initial values of the DE and
DM energy density scalars.

VI. NONLOCAL CROSS ACTION OF DE ON DM:
EXAMPLES OF EXPLICIT REPRESENTATION OF
THE SOLUTIONS TO THE MASTER EQUATIONS

A. Exact solutions for the state functions

We consider the model for which three simplifications
are assumed. First of all, we assume that wy = 0, i.e., the
local link between DE and DM is absent. Second, we
assume that DM does not act on DE, and thus, K9, = 0 and
vy, = 0. Third, there exists the nonlocal cross action of DE
on DM, but the self-interaction in the DM itself is absent,
ie., K9, =0, vy = 0. For this case the scheme of deriva-
tion of the key equation is the following. We extract the
pressure P(x) from the conservation law for the DE

P(x) = —%[xW’ +3W], (125)

and put it into the modified equation of state

W' 4 3TW = —3x 1KY, /1 Cdyyn W), (126)
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The differential version of this integral equation
W +xW (1+v +30)+3W(Ty +K9,)=0  (127)

presents the second-order Euler equation; the correspond-
ing characteristic equation
o +o(vy +30) + 3Ty +K9) =0 (128)

gives the roots

1 1
01,2:—2(1/11+3F)i\/4(1/1]—3F)2—3K(1)1. (129)

Now one can obtain three different situations; there are two
different real roots (o, # 0,), two coinciding real roots
(61 = 0,), and there is the pair of complex conjugated toots
(61, =a=xif). In all these cases the methods of the
presentation of the solutions for W(x) is well documented.

Then we extract the pressure IT(x) from the conservation
law for the DM

M(x) = —%(xE’ 1 3E), (130)

and put it into the equation of state for DM; as the result we
obtain the solution for E(x) in quadratures

E(x) = E(1)x™ = 3K9,x™ / PR
1

z
X j dyy ='W (y). (131)

For all three variants of the structure of the function W(x)
the integral in (131) gives the solution for E(x) in terms of
elementary functions.

B. Two real roots 6; # o,

1. The explicit solution

This situation corresponds to the case, when the guiding
parameters v}, I, and K9, satisfy the inequality

1

Z(l/ll — 3F)2 > 3K(I)l (132)

Respectively, we obtain for the DE energy density

W(x) = Cx° + Crx“2, (133)
where the constants of integration are connected with the
initial data as follows:

W (1) =e,W(1)
Cl=——"—"-""">,
01—0

CZZ—W'(1)+01W(1)'

(134)

01—03

If we put W(x) from (133) into (131) the integration
procedure gives the DM energy density in the form

3K9 C C
E(x)=x7{ E(1 21 ‘ 2
W)=x {”*(m—m [<ol+3y>+<oz+sy>
_3K9 { Crx Cox”
o1 +va)(o1+37)  (62+121)(02+37)

+ _x‘”Zl < C] + C2 >}
vy =3y \(o1+va1) (o2+v)) )

The square of the Hubble function can be now found as

(135)

H?(x) = A +

3 [@1)(61 + @2){362 + @3X_U21 —|— @4)(_3}/} s

Wl x

(136)

where the following auxiliary parameters are introduced,

3K3,
Gr=06 {1 (o1 +va)(o + 37)]7 (137)
T
O = (U231K—gl37) [(61 ‘iC‘IVzl) - (o2 i2V21):|’ (139)
G =E)+ (ij—ggr) {(01?37/) i (62C+23y)} (140)

The acceleration parameter can be represented in terms of x
as follows:

_q(x) =1 +§[01®1X61 =+ 52®2x"2

—U7 ®3X_y21 - 3y®4x_37] .

(141)

2. The example of exact analysis

One can see from (128) that ¢; and o, have opposite
sings, if K, < —T'vy;. Since one of the roots happens to be
positive in this case, the DE energy density, the DM energy
density and the square of the Hubble function infinitely
grow at x — oo; we omit this version of the theory.

When K(l)1 > —I'vy, the parameters o, and o, are of the
same sign; we assume that they are negative, obtaining the
supplementary inequality v;; > —3I. Now the functions
W(x) and E(x) vanishes asymptotically, the Hubble func-

tion tends to the de Sitter value H — \/é, and —g(x) - 1.
In case when K9, = —T'vy;, one of the roots takes zero
value, say, 6 = 0, and the second root 6, = —(vy; + 3I) is

again negative, if v;; > —3I". For this submodel the state
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functions W(x) and E(x) tend asymptotically to their
constant values

W(x) = W, = W(1) +%, (142)
B = By — ~ KW (143)
vy

We require that E,, is positive and assume that K9, < 0,
V51 > 0. As for the Hubble function, it tends to the constant
value

H(x) > Hy, = \/A+§(W0° YE),  (144)

3

providing the asymptotic regime to be of the de Sitter type.

Finally, in order to represent analytically the scale factor
as the function of the cosmological time we consider the
following simple illustration. Let the parameters of the
model and the initial data be chosen specifically as follows:
3K9, = (02 + v21) (02 +37),

o] = 0, (145)

E(1) = . W) = W) (o +ry).  (146)

For this specific choice @, = ;3 = ©, = 0 and thus we
obtain the constant Hubble function

A kW (D)
H(x>_Hoo_\/§+ 9 o1 —vi +3(y=T)].  (147)

We deal with the example of solution describing the de
Sitter-type Universe.

C. Two coinciding real roots 6, =06, =o¢

This situation corresponds to the case, when

%(1/“ —3I)? =3K,, a:—%(u” +30). (148)
Now we obtain for the DE energy density
W(x) = x°[C, + C,logx], (149)
where
C,=w(Q), C,=W(1)—eW(1). (150)

The DM energy density can be represented as

LT B ()]

-3Kgl{[cl<v+m>—c2] L © }

(6+v)? c+3y)  (v21—-3y)
Crx°[(o+3y)logx—1]
(64121)(0+3y)? } (151

The square of the Hubble function includes now the
logarithm

H?(x) =

Wl >

K ® ® -4 ~
+3 %701 + 0, logx) + O3x72 + OuxY].
(152)

The new auxiliary functions are introduced as follows:

Or=¢ [l o } 23K2](2G+3y+’/21)
1— %1 - ’
(6+v21)(0+37) (6 +v21)2(0+3p)?
(153)
® 3K)
0, =0C|1- 21 ’ 154
2 2{ (0+U21)(0—|—3y):| (154)
& 3KY,
= (va1 = 3y) (0 +1a1)? [Cy = Ci(o + 1)), (155)
6, = E(1) + 3K9, (c _ﬁ) 136)
) (b =3)c+3y)\ ' o+3y)

The acceleration parameter is modified respectively as

—4(x) = 1+ o5 (x7[0®; + Gx(clogr + 1)

—1/21®3X_y21 - 3]/@4)6_3}'}. (157)
Taking into account physical motives we assume that the
parameter ¢ is nonpositive, i.e., vy; + 3" > 0.

1. Illustration for the case ¢ =0

For illustration of an analytical result we assume that

/ Kgl
W(1) = v, W(1), 3—]/2,

E(1) = W(1) (158)

providing the square of the Hubble function takes the
simplified form

H?(x) = =+ (0, + 0, logx), (159)

W >
WA

where
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K21

&, =w(1) (1+—>, &, = W(1) <y21 —%> (160)

37/2

For this Hubble function the scale factor is of the
symmetric-bounce type [55]

a(t) = a(t,)e?0="1), (161)
where
3 0
a(t.) =a(n)e @ .  Q="T.  (162)

12

D. Complex conjugated roots ¢, , =a + iff

This situation corresponds to the case, when

1
Z(IJ]] —3F)2 < 3K?] y

1 1
a:_§<y“ +30), p= \/31(?1 —Z(Vn —3r)% (163)

‘We obtain now

W(x) = x"{W(l) cos (flog x)

W'(1) —aW(1)
T

Clearly, the DE energy density changes the sign inevitably,
so that the model seem to be nonphysical.

sin (flog x) } (164)

VII. DISCUSSION AND CONCLUSIONS

(1) The main result of the presented work is the analysis
of one specific rheologic-type model of interaction
between the dark energy and dark matter. We
introduce into the DE and DM equations of state
four integral operators of the Volterra type; two of
them describe the DE/DM cross-coupling, and two
operators relate to the self-interactions in the DE and
DM individually. The Volterra operators are chosen
to correspond to the paradigm of fading memory,
i.e., the kernels of these operators are of the differ-
ence type and multiplicative.

(2) The established model belongs to the class of exactly
integrable models, i.e., the DE and DM state func-
tions (energy densities and pressures), as well as, the
Hubble function and the acceleration para-
meter are presented in the elementary functions. It
has become possible since the key equation of the
model is the linear sixth-order Euler equation in
ordinary derivatives. The scale factor as the function
of the cosmological time is found in quadratures
and is studied analytically, qualitatively, and nu-
merically.

3

“

&)
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The four-kernel model of the DE/DM interactions
contains eight new guiding parameters; four of them,
v;j, describe the rates of memory fading, and other

four K?]- describe the effectiveness of the cross-

coupling and self-interactions, respectively [see
(19)]. On the one hand, such a multiparametricity
extends the analytic possibilities for modeling of the
Universe expansion. On the other hand, we use two
instruments to constrain the set of these parameters.
The first instrument is connected with the asymptotic
analysis of the model; we assume that the big rip
scenarios have to be avoided and require that the late-
time Universe expansion is accelerated. As the result,
we claim, for instance, that all the exact solutions
corresponding to the roots of the characteristic
equation, which have positive real parts, are non-
physical. The second instrument relates to the re-
quirement that the DE and DM energy densities
scalars have to be positive during all the interval of the
Universe evolution, thus imposing taboo for a few
quasiperiodic regimes corresponding to the complex
conjugated roots of the characteristic equation.

In order to illustrate the general conclusions, we
considered four examples of exact explicit solutions,
which already appeared, e.g., in the framework of
modified theories of gravity. The first example de-
scribes the superexponential (or superinflationary)
growth of the scale factor and exponential laws for
the DE/DM state functions [see, (81), (87)]; this
example belongs to the class of solutions of the little
rip type. The second example relates to the solution
known as the symmetric bounce [see (98) and (161)].
The solutions of this type also belong to the class of the
little rip from the point of view of asymptotic behavior;
as for the global point of view, this solution is non-
singular, and the Hubble function is the linear function
of time. The third example can be indicated as
pseudorip; the corresponding Hubble function tends
asymptotically to constant H ., # % [see (144)]; the
interesting feature of this solution is that the DE and
DM energy densities tend asymptotically to nonvan-
ishing constants (142), (143), and it is the explicit
result of the nonlocal interactions. The fourth example
relates to the solution with constant Hubble function

H = const # \/§ [see (147)]. One can indicate this

solution as the de Sitter type one; the Hubble constant
includes now the rheological parameters.

We presented two exact explicit quasiperiodic sol-
utions. For the first solution the scale factor is of the
form (90), the Hubble function is presented by the
formula (94), the behavior of the DE energy density
can be reconstructed using (73). The frequency of

oscillations is associated with the parameter /||
(79), which is linked, formally speaking, with the
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parameter of the local DE/DM interaction, y;
however, the corresponding truncated model is
obtained with the conditions (71), which include
the parameters of the nonlocal interaction. The
second quasiperiodic solution is presented in terms
of the incomplete elliptic integrals; the scale factor is
presented by the formula (122) and the Hubble
function can be correspondingly extracted
from (112).
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APPENDIX A: KEY EQUATION
FOR THE CASE w, # 0
Starting from the formulas

E(x) = — [xW/(x) + (3 + wp)W + 3P]

(A1)
W

1
T1(x) = = 3= LW 4 (7 4 200X W'+ (9 + 6 W

+3xP' + (9 + 3w,) P}, (A2)

0

3K
A=l/22+1121+6+2a)0+3}’+3r+w—12,
0

we obtain a pair of equations containing only the DE state
functions, the pressure P and the energy density W,

PP 4 exP' + fP = bW + cxW' +dW,  (A3)
ExP' + FP = x*W) 4 AXWUI) - B2W"
+ CxW' + DW. (Ad)

The auxiliary parameters e, f, b, c, d are written as follows:

KO
b=T—-1+—12,
@
KO
c=(T=1) (v, +1/12+1)+K(1)1+w—12(4+a)0+1/”),
0

0 U11K(1)2
d= IJ]]I/]Z(F— 1) +K111/]2 +(1)—(3 +0)0)7
0
K K
e=vy +up+1-3—"2, f:V111/12—3u-
@o @o
(A5)

Similarly we can represent the parameters &, F, A, B, C, D,

B = 34+ 12(00 + (1/22 +U21)(9+2(D0) +l/221/21 +3(}/— 1)(1/22 +1/21 +6+(U0) +3Kg2 +3(F— 1)(1/11 +l/12 +3)

3KY

KY K
+3K9, +—a);2 (6+w0+y11)+3[a)0+(1/22+y21)+3y— (l/u +V12—3w—12>} (F— 1 +£),

0 @

C= (IJ22 +I/2] —+ 1)(16—|— 8600) —|—I/221/21(7 + 2(00) + 3[(}/— 1)(1/22 +1/2] + 1) + ng}(4+a)0) + 3[1/221/21 (}/ - 1) + K(2)2U21]

3K
+3woKY, +3(C = 1)(vyy +via v +1) + 3K, (1 +112) +w—012(4+a’0 +vi)+3

0
Kl 1281

2
o (3+ )

K K
+3[600+ (vy2 1) + 37— (Vn +V12—3w—12>} {(F— (v +via+ 1)+ K9, +w—12(4+0)0+1/11>]v
0

0

KO
D= 1251 %31 (9 + 6600) + 30)01/221(81 + 3[1/221/21 (7/ - 1) + K(2)2V21K3 + Cl)()) +3 |:Cl)0 + (1/22 + IJ21> + 3]/ - <l/11 ‘v — 3¥>:|

0 K(l)zl/ll
x vyl = 1)+ K v+ o (3+aw)|,
K% (v, + 1
5:3(1/11"'1)(1/124’1)—9%
0

K K
+3[600+ (vyp +va1) +3y = <l/11 +V12—w—12)] <V11 +up+1 —3£>,
0

K K%v
F = —1/221/21(30)0 +9}’) - 9K(2)2U21 + 3 |:a)0 + (IJ22 +I/21) + 3]/ - (l/]l +IJ12 - 30)_102>:| (1/111/12 — 3#”) .

W

- (1/22 + v + 1)(3 + 3600 +9]/) - 31/221/21 — 9K82

2]

(A6)
@y
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The last step is to extract the DE pressure P(x) from Egs. (A3) and (A4); we obtain for the DE pressure the following
relationship,

F2 5 Vv r 4 1A% AF 3
eF—F—fé—— P(x)=xWV) + 3+Ate—7)x W) 4 2A+B+eA——|x w"

BF F DF
+ <B+C+eB—g—b€>x2W”+ <D+eC—Cg—c5>xW’+ <eD—D—5—d5> W, (A7)

and put this P(x) into the Eq. (A3). As the result, we obtain the key equation
WD £ W) + w0, x* W) + 3 3W" + w0, W + wsx W' + wgW = 0, (A8)

in which the following coefficients are introduced

0 =8+A+e, wy =12+ 6A+4e+B+eA+f,
@3 =0A+ 4B + C+3eA + eB—b& + fA,
w; = 2B +2C+ D + 2¢B — 2b€ + ¢C — ¢£ — bF + fB,

ws =eC—cE+eD—dE—cF+ fC, wg = fD — dF. (A9)

[

APPENDIX B: KEY EQUATION FOR THE CASE where the new auxiliary parameters are the following:
wy=0, KY, #0, K3, #0

When oy = 0, we extract the DE pressure P from (23)

and the DM pressure from (24) ay =B +30 4, +up)

a = 3K, + (1 +30)(1 + vy + 1),
a3 = 31/12(1/11F+ K(l)l) g = (3 + 3}/ + 1Z%0%) + 1/21)7

Then we put these P and II into the Eqs. (27) and (28) a5 = 3K9, + (14 3y)(1 + vy + va),
obtaining two equations, which link now the DE and DM _3 K0 B4
energy densities W and E, ag = 351 (V27 + K3). (B4)

1 1
P=—2xW-W. H=-xE-E (Bl)

x3w/// + aIXZW// + asz/ + a3W = —3K(1)2()CE/ + l/]lE),

(B2)  When K9, # 0, we find subsequently E” (x), E”, E', and E

from this pair of equations. For the DM energy density E
VE" 4+ ayx*E" + asxE' + agE = 3K, (xW' + v W), we obtain

(B3)
!

E(x) % 3K a6 + (ay =2 —vq)) (1 +vp)vyy —aspyy] = WY+ AWV (4 4 oy + aq —vyy)
+ W6+ 4da; +ar +as + (ag —2 —v) (2 +a; —vyy)]
+ W2y + a3+ ajas + (g —viy) (@ + o — agvyy)]
+ xWaas + (@ =2 = vyy) (a3 — apryy) = 9K, K9, ]
+ Wlasas — az(ay =2 —vyp) (1 4 v11) — 9K, K9 v (B5)

Then we put E”(x), E”, E', and E into (B3) and find the key equation of the sixth order in derivatives:
xXWVD 1 Q xWY) + Qox* W) + Qa3 W + QW + QsxW' + QW = 0, (B6)

where the auxiliary parameters €2; are of the form

103525-18



SELF-INTERACTION IN A COSMIC DARK FLUID: THE FOUR- ...

PHYS. REV. D 105, 103525 (2022)

Ql :9+(11+(X4,

Qz :30“‘86{1 +az+aj+(a4—2)(6+(ll),

93 =18 + 14(11 + 5(12 + as + 3(15 +(16 +a1a5 + (614 - 2)(6 +4a1 + (12),
94 = 401 +4az + 2a3 + 2a1a5 + (05X % + a0 + (04 - 2)(201 + 202 + ag) - 9K(1)2Kg1,

95 = 05 —+ 305 —+ Qg — 9K(1)2K(2)1(] +U11 + 1/22),

_ 0 0
96 = 30 — 9K12K21U11U22.

(B7)
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