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We consider a nonminimally coupled scalar field as a potential cold dark matter candidate. These models
are natural extensions of the ultralight axion models which are based on minimally coupled scalar fields.
Such ultralight scalar fields are motivated by string theory and, in particular, have been studied in the
context of the axiverse scenario. For a nonminimally coupled field, the scalar-field energy density behaves
as radiation at early times, which yields a bound on the coupling constant, ξ≲ 10, from the primordial
nucleosynthesis theory. The first-order perturbations of the nonminimally coupled field with adiabatic
initial conditions cause the gravitational potential to decay on large scales. A comparison of the
cosmological data with the theoretical matter power spectrum yields the following constraint on the
coupling constant: ξ≲ 0.01. We also consider isocurvature modes in our analysis. We argue that a mix of
adiabatic and isocurvature initial conditions for a nonminimally coupled scalar field might allow one to
obtain the usual adiabatic CDM power spectrum.
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I. INTRODUCTION

A multitude of evidence from astrophysical and cosmo-
logical observations supports the existence of dark matter.
Such evidence includes galaxy rotation curves [1], large-
scale galaxy clustering [2–6], cosmological weak gravita-
tional lensing [7,8], high-redshift supernova 1a [9], and
cosmic microwave background anisotropies [10–16]. Cold
dark matter (CDM) provides a dominant contribution to the
dark matter in the concordanceΛCDMmodel (e.g. [17] and
references therein). However, even after decades of labo-
ratory and astronomical searches, the nature of cold dark
matter has yet to be directly determined.
One of the current leading candidates of cold dark matter

is the weakly interacting massive particle (WIMP), which is
partly motivated by the so-called WIMP miracle [18].
The WIMP miracle refers to the coincidence that many
supersymmetric extensions of the standard particle physics
model predict the correct cold dark matter abundance for
the self-annihilation cross section hσvi∼ 3×10−26 cm3 s−1
and masses in the range 100–1000 GeV. The WIMP
miracle led to an increased interest in the search of dark
matter particles through terrestrial particle physics experi-
ments [19–34]. However, despite orders-of-magnitude
improvement in the sensitivity of these experiments, they
have not yet succeeded.

While CMB anisotropy and galaxy clustering data show
the CDM to be a viable candidate of dark matter for large
scales, k < 0.1 Mpc−1, there could be multiple issues with
the model at smaller scales. N-body simulations based on
the CDM model overpredict the number of satellite
galaxies of the Milky Way by over an order of magnitude
[35–40]. Many other results also suggest that the WIMP
picture of cold dark matter predicts more power at galactic
scales than has been inferred from observations/N-body
simulations [41], e.g. the cusp-core problem [42] and
the “too big to fail” issue [43,44]. All these issues have
motivated particle physicists and cosmologists to look
beyond the standard CDM paradigm and to consider
alternatives which modify the CDM model on galactic
scales but reproduce its success on cosmological scales.
In this paper, we study ultralight axions (ULA) as a

potential candidate for cold dark matter. These ultralight
scalar fields arise naturally in string theory [45,46] and
become interesting for cosmological observables when
their masses lie in the range 10−33 < mϕ < 10−19 eV. In
particular, these fields have found extensive applications
within the framework of the axiverse [47,48]. Various
studies have shown that the ULA are viable candidates
of cold dark matter on large scales at late times [49–55]. At
smaller scales, the ULA behave like an effective fluid with
a scale-dependent sound speed that approaches the speed of
light at very small scales [53,55]. This implies the sup-
pression of matter power at small scales, leading to a
potential solution to the small-scale problems. The mass
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range of interest from this perspective ismϕ ≳ 10−24 eV, and
these models have been studied extensively for various
astrophysical and cosmological applications [49–52,55–67].
The main focus of all the studies involving ULA as

potential CDM candidates has been the minimally coupled
scalar fields. It is conceivable that the gravity sector is more
complicated with additional couplings (e.g. [68]). The
resulting impact of the more complex dynamics that occur
in such models has been studied for inflationary cosmol-
ogy, the growth of perturbations at later times, and the dark
energy models close to the current epoch (e.g. [48,68–71]).
In the current study, we extend the analysis to nonmini-
mally coupled scalar fields. In these models, the scalar field
has an additional coupling to the gravity sector (for a more
recent application of this additional coupling for cosmologi-
cal observables, see [72]; for details of the relevant formu-
lation in gauge-invariant theory, see [73]). This results in
more complex evolution of both the background and per-
turbed components and allows one to consider a wider range
of initial conditions. Our main aim is to compute the matter
power spectrum in this case for adiabatic and isocurvature
initial conditions. We also compare our findings against the
previous studies and the observed power spectrum.
This paper has been organized as follows. In Sec. II, we

discuss in detail the mathematical formulation needed to
study the dynamics of nonminimally coupled scalar fields.
In particular, we explicitly derive the relevant equations to
study the background and the perturbed equations and
describe the variables employed to make the problem more
tractable. In Sec. III, we present our main results. In Sec. IV,
we summarize our results and outline future perspectives.
In Appendix A, we list the Einstein’s equations along with
the dynamical equations for the other components. In
Appendix B, we derive the necessary initial conditions
and discuss salient aspects of the numerical implementation
needed to solve the coupled Einstein-Boltzmann equations
in Appendix C. Throughout the paper, we assume a
spatially flat universe and the best-fit Planck parameters
corresponding to it [13].

II. NONMINIMALLY COUPLED REAL
SCALAR FIELD

In this paper, we solve the multiple component system
comprised of photons, massless neutrinos, baryons, cos-
mological constants, and a nonminimally coupled real
scalar field along with Einstein’s equations. In this section,
we describe the scalar-field dynamics in detail. The relevant
equations for other components along with the initial
conditions are given in the Appendixes A and B. For our
work, we employ the Newtonian gauge (e.g. [17,73–75]).
In this gauge, the perturbed FRW line element for a
spatially flat universe is given by

ds2 ¼ −a2ðηÞð1þ 2ΨÞdη2 þ a2ðηÞð1þ 2ΦÞδijdxidxj: ð1Þ

Here η ¼ R
dt=a is the conformal time. The functions

Ψðη;xÞ and Φðη;xÞ fully specify the scalar metric pertur-
bations at first order.
The Lagrangian for the nonminimally coupled scalar

field, ϕ, is chosen to be (e.g. Kodama and Sasaki [73])

Lϕ ¼ −
1

2

ffiffiffiffiffiffi
−g

p ½gμν∂μϕ∂νϕþm2
ϕϕ

2 þ ξRϕ2�: ð2Þ

Here, gμν is the metric [Eq. (1)] and g its determinant, and
mϕ is the axion mass. The last term represents the coupling
of the scalar field with the Ricci scalar R, with ξ being the
dimensionless coupling constant. The scalar field is min-
imally coupled when ξ ¼ 0. The scalar field is not coupled
to any other component.
By varying the Lagrangian with the field ϕ, we obtain the

field equation given by

□ϕ − ξRϕ −m2
ϕϕ ¼ 0; ð3Þ

where □ is the d’Alembert operator. We can also compute
the scalar-field energy-momentum tensor from the
Lagrangian by varying it with respect to the metric gμν.
The energy-momentum tensor is computed to be [73]

Tμ
ðϕÞν ¼ ∂μϕ∂νϕ −

1

2
δμνð∂λϕ∂λϕþm2

ϕϕ
2Þ

þ ξ½Gμ
νϕ

2 − ðϕ2Þ;μν þ δμν□ðϕ2Þ�: ð4Þ

Here Gμ
ν is the Einstein tensor, and the semicolon

represents the covariant derivative. In this paper, we
solve the coupled system up to first order in perturbation
theory. Therefore, the scalar field can be decomposed
into a homogeneous and an inhomogeneous component,
ϕðη;xÞ ¼ ϕ0ðηÞ þ δϕðη;xÞ, and all the terms that are
second order in δϕðη;xÞ are dropped.

A. Background equations

The zeroth order equation of motion for the scalar field
can be obtained from Eq. (3):

ϕ̈0 þ 2aH _ϕ0 þ a2m2
ϕϕ0 þ 3ξa2H2ð1 − 3wÞϕ0 ¼ 0: ð5Þ

The overdot represents a derivative with respect to η. Note
thatH is the Hubble parameter defined asH ¼ _a=a2, and w
is the equation of state of the universe defined as the ratio of
the total pressure to the total energy density of all the
components constituting the universe:

w ¼
P

ipiP
iρi

: ð6Þ

The scalar-field energy density can be computed using
Eq. (4):
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ρϕ ¼ 1

2

_ϕ0
2

a2
þ 1

2
m2

ϕϕ
2
0 þ 3ξH2

�
ϕ2
0 þ

2

aH
ϕ0

_ϕ0

�
: ð7Þ

Equations (5)–(7), (A2), (A7), and (A8) describe the
background evolution of all the relevant variables. This
system of equations could be stiff even for the minimally
coupled case. To overcome this issue, we define a new set
of variables—Ω̃ϕ and θ; the choice of these variables is
motivated by similar variables used by Ureña-López and
Gonzalez-Morales [54]:

ffiffiffiffiffiffi
Ω̃ϕ

q
sin

�
θ

2

�
¼

ffiffiffiffiffiffiffiffiffi
4πG
3

r
_ϕ0

aH
; ð8Þ

ffiffiffiffiffiffi
Ω̃ϕ

q
cos

�
θ

2

�
¼ −

ffiffiffiffiffiffiffiffiffi
4πG
3

r
mϕϕ0

H
: ð9Þ

Here G is the gravitational constant. The background
equation of motion, Eq. (5), in terms of the new variables
is given by

Ω̃0
ϕ ¼ 3ðwþ cos θÞΩ̃ϕ þ 6

ξ

y
ð1 − 3wÞΩ̃ϕ sin θ; ð10Þ

θ0 ¼ −3 sin θ þ yþ 6
ξ

y
ð1 − 3wÞð1þ cos θÞ: ð11Þ

Here the prime denotes a derivative with respect to ln a and
y ¼ 2mϕ=H. Since a is a monotonically increasing func-
tion of η, we can use ln a as a time variable instead of η.
The scalar-field energy density ρϕ and the equation of

state of the scalar field wϕ can be expressed in terms of
these new variables as

Ωϕ ¼ 8πGρϕ
3H2

¼ Ω̃ϕ

�
1þ 12ξ

�
1þ cos θ

y2
−
sin θ
y

��
; ð12Þ

�
1þ 12

ξ

y2
ð1þ cos θÞf1 − ð1 − 6ξÞΩϕg − 12

ξ

y
sin θ

�
ωϕ

¼ −ð1 − 4ξÞ cos θ þ 12
ξ

y2
ð1 − 6ξÞ ð1þ cos θÞ

×

�
Ωγ þΩν

3
−ΩΛ

�
þ 24

ξ2

y2
ð1þ cos θÞ. ð13Þ

Note thatΩγ , Ων, andΩΛ are the photon, neutrino, and dark
energy density parameters, respectively. Note that for the
minimally coupled scalar field (ξ ¼ 0), these equations can
be simplified to Ω̃ϕ ¼ Ωϕ and wϕ ¼ − cos θ, respectively
(for details, see Ureña-López and Gonzalez-Morales [54]).
By numerically solving Eqs. (10) and (11) along with the

background Einstein equations and the equations of motion
for other components in the universe given in Appendix A 1,
we obtain the evolution of all the relevant background
variables.

B. First order equations

Using the perturbed metric [Eq. (1)], Eq. (3) yields the
following equation of motion for the scalar field in Fourier
space at first order:

δϕ̈þ 2aHδ _ϕþ ½k2 þ a2m2
ϕ þ 3ξa2H2ð1 − 3wÞ�δϕ

¼ ð _Ψ − 3 _ΦÞ _ϕ0 − a2½2m2
ϕΨþ ξfδRþ 6H2ð1 − 3wÞΨg�ϕ0:

ð14Þ
Here, k is the wave number of the mode, and δR is the
perturbed part of the Ricci scalar.
To solve Eq. (14), which could be stiff, we again

define two new variables, α and β, which are motivated
by similar variables used by Ureña-López and Gonzalez-
Morales [54]:

ffiffiffiffiffiffi
Ω̃ϕ

q
α cos

�
θ − β

2

�
¼ −

ffiffiffiffiffiffiffiffiffiffiffi
16πG
3

r
δ _ϕ

aH
; ð15Þ

ffiffiffiffiffiffi
Ω̃ϕ

q
α sin

�
θ − β

2

�
¼ −

ffiffiffiffiffiffiffiffiffiffiffi
16πG
3

r
mϕδϕ

H
: ð16Þ

We can express Eq. (14) in terms of the new variables:

α0 ¼−
3

2
α½cosθþ cosðθ−βÞ�− k2

2k2J
α sinðθ− βÞ

− ðΨ0 − 3Φ0Þ
�
sin

�
θ−

β

2

�
þ sin

�
β

2

��

− yΨ
�
cos

�
θ−

β

2

�
þ cos

�
β

2

��

− ξ

�
3α

y
ð1− 3wÞfsinθþ sinðθ− βÞg

þ 2

y

�
δR
H2

þ 6ð1− 3wÞΨ
��

cos

�
θ−

β

2

�
þ cos

�
β

2

���
;

ð17Þ

β0 ¼ −3½sin θ þ sinðθ − βÞ� − k2

k2J
½1 − cosðθ − βÞ�

− 2

�
Ψ0 − 3Φ0

α

��
cos

�
β

2

�
− cos

�
θ −

β

2

��

− 2
yΨ
α

�
sin

�
θ −

β

2

�
− sin

�
β

2

��

þ 2ξ

α

�
3α

y
ð1 − 3wÞfcos θ þ cosðθ − βÞg

−
2

y

�
δR
H2

þ 6ð1 − 3wÞΨ
��

sin

�
θ −

β

2

�
− sin

�
β

2

���
:

ð18Þ

Here kJ ¼ a
ffiffiffiffiffiffiffiffiffiffi
mϕH

p
; kJ acts as an effective Jeans’ scale in

the dynamics of a perturbed scalar field. In the minimally

NONMINIMALLY COUPLED ULTRALIGHT AXIONS AS COLD … PHYS. REV. D 105, 103517 (2022)

103517-3



coupled case, perturbations corresponding to scales k > kJ
cannot grow. The definition of kJ adequately captures the
dependence of this scale on time and the mass of the scalar
field even in the more general case we consider here.
From the energy-momentum tensor, Eq. (4), we can

define four fluid quantities at first order. These quantities
are the density perturbation δϕ, the irrotational component
of the bulk velocity vϕ, the isotropic pressure perturbation
πϕ, and the anisotropic stress Πϕ. These quantities can be
expressed in terms of the new variables as follows:

�
1þ 12

ξ

y

�
1þ cosθ

y
− sinθ

��
δϕ ¼ −Ψð1− cosθÞ

− α sin

�
β

2

�
þ 12

ξ

y

�
2

�
1þ cosθ

y

��
Φ0 −Ψþ k2

3a2H2
Φ
�

− ðΦ0 − 2ΨÞ sinθþ α

y

�
1þ k2

3a2H2

��
sin

�
θ−

β

2

�

− sin
�
β

2

��
þ α cos

�
θ−

β

2

��
; ð19Þ

�
1þ 12

ξ

y

�
1þ cos θ

y
− sin θ

��
ð1þ wϕÞvϕ

¼ ak
H

α

y

�
cos

�
θ −

β

2

�
− cos

�
β

2

��
− 4

k
aH

ξ

y

�
Ψ sin θ

þ α cos

�
θ −

β

2

�
þ 2

y
ðΦ0 −ΨÞð1þ cos θÞ

−
α

y

�
sin

�
θ −

β

2

�
− sin

�
β

2

���
; ð20Þ

�
1þ12

ξ

y

�
1þcosθ

y
− sinθ

��
wϕπϕ¼−Ψð1−cosθÞ

−αsin

�
θ−

β

2

�
þ2ξ

�
2Ψð1−cosθÞþ2αsin

�
θ−

β

2

�

−
9

y2
ð1þcosθÞ

�
Φ00 þ3Φ0−Ψ0−3Ψ−

3

2
ð1þwÞðΦ0−2ΨÞ

þ k2

3a2H2
ðΦþΨÞ

�
þ6

α

y2

�
sin

�
θ−

β

2

�
− sin

�
β

2

��

×

�
wþ2ξð1−3wÞþ k2

9a2H2

�
þ2ξ

δR
mϕ2

ð1þcosθÞ
�
; ð21Þ

�
1þ 12

ξ

y

�
1þ cos θ

y
− sin θ

��
wϕΠϕ ¼ −

ξk2

a2m2
ϕ

×

�
ð1þ cos θÞðΦþ ΨÞ þ α

�
sin

�
θ −

β

2

�
− sin

�
β

2

���
:

ð22Þ

Equations (19)–(22) provide source terms to the first order
Einstein’s equations [Eqs. (A17)–(A20)]. We note that the

anisotropic stress Πϕ is nonzero only for the nonminimally
coupled case.
The system of relevant equations constitutes the first

order Klein-Gordon equation, Eqs. (17) and (18), along
with the first order Einstein equations and the Boltzmann
equations for other components of the universe given in
Appendix A 2. For comparison with the observed matter
power spectrum at the current epoch, the quantity of direct
interest is the scalar-field density perturbation δϕ [Eq. (19)],
which can be determined from the solutions of α and β.

III. RESULTS

In addition to the zeroth and the first order dynamical
equations for the nonminimally coupled scalar field, we
need to consider other components in the universe which
either dominate at early times (photons and neutrinos),
make a comparable contribution (baryons), or dominate at
late times (cosmological constant). For the cosmological
constant, we only consider the background evolution as it
does not couple to first order equations (e.g. [75]). The
coupled zeroth and first order Boltzmann equations of all
these components along with Einstein’s equations are given
in Appendix A. These equations are solved along with the
scalar-field equations in Secs. II A and II B. In Appendix B,
we derive the relevant initial conditions. For our work, we
consider two initial conditions: adiabatic and isocurvature.
We first discuss the zeroth order solutions.

A. Background solution

Figures 1(a) and 1(b) display the evolution of the energy
density of the scalar field for different values of ξ and
scalar-field masses. First, we briefly summarize the well-
known behavior for a minimally coupled field. During the
initial phase, y ≪ 1 and θ ≪ 1 (see Appendix B 1 for
details). During this phase, the friction term [the term
proportional to _ϕ0 in Eq. (5)] dominates. This causes the
scalar-field energy density [Eq. (7)] to be nearly constant,
resulting in the scalar field behaving as a cosmological
constant. For mϕ ≳H, the scalar field starts oscillating
around ϕ0 ¼ 0. This phase culminates with the oscillation
frequency converging to ≃mϕt. For mϕt ≫ 1, the rate of
this oscillation far exceeds the expansion timescale, and as
our aim is to track the evolution of relevant quantities on the
expansion timescale, we define time-averaged quantities
where the time average is over rapid oscillations. During
this phase, the time-averaged ϕ0 vanishes, and the time-
averaged scalar-field energy density falls as a−3 or it
behaves as nonrelativistic matter such as cold dark matter.
For numerical stability, we employ the WKB approxima-
tion during the oscillatory phase and switch from the
oscillatory solutions to the time-averaged evolution at
θ ¼ π=2 (for further details, see e.g. [54]).
Figure 1(a) shows that for nonzero ξ, the scalar-field

energy density scales as a−4 during the initial phase like the
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energy density of relativistic components (photons and
neutrinos).1 In the intermediate phase, for ξ≲ 10−1, the
scalar field makes a transition to a phase in which its energy
density is constant. For ξ≳ 1, the energy density in the
intermediate phase can become negative. At a later stage,
a ≃ 10−6, the energy density starts falling off as a−3 for all
values of ξ for mϕ ¼ 10−23 eV. Figure 1(b) shows the
impact of changing mϕ for a fixed ξ on the energy density.
For larger mϕ, the field enters both the constant energy
density phase and the a−3 phase earlier.

In this paper, we focus on the range of values of ξ for
which the scalar-field energy density is always a positive
quantity. Thus, we work with ξ≲ 1.
In Fig. 2, we further investigate the relative contribution of

different terms in the equation of motion of nonminimally
coupled scalar fields [Eq. (5)]. It is seen that the term
proportional to the nonminimal coupling ξ always dominates
at initial times. This term is ∝ H2 and follows from the
corresponding term in the scalar-field Lagrangian, Eq. (2),
which is proportional to the Ricci scalarR ∝ H2. This causes
the energy density of the scalar field to behave as radiation
during early times. At later times, the nonminimal coupling
term becomes smaller than other terms, mainly owing to the
rapid decrease in H2, and the nonminimally coupled model
behaves as a minimally coupled model.
This shows that the main difference in the back-

ground evolution between the minimally and nonminimally
coupled scalar fields is during the initial phase: The energy
density of the minimally coupled scalar field (ξ ¼ 0) is
constant during this phase while it falls as a−4 for nonzero ξ.
The evolution of the scalar-field equation of state wϕ is

shown in Fig. 3. In the figure, we switch from the full
solution to the time-averaged solution at a ¼ 10−5. We
tried to show the oscillations in wϕ; for the actual solution,
we switch to the time-averaged solution at θ ¼ π=2, as
discussed above. As follows from the discussion above, the
minimally coupled scalar field starts as a cosmological
constant with wϕ ¼ −1 while the nonminimally coupled
scalar field has the equation of state, wϕ ¼ 1=3 (or it
mimics radiation) during the initial phase, irrespective of
the value of ξ. This radiationlike behavior of a non-
minimally coupled scalar field at early times can also be
inferred from Eq. (13). At early times, y ≪ 1 and θ ≪ 1
(Appendix B 1). Further, using the fact that Ωγ and Ων

dominate other density parameters during the radiation-
dominated era, wϕ becomes

FIG. 2. Different terms of Eq. (5) shown as a function of time.

FIG. 1. Evolution of ULA energy density displayed in terms of
the critical density at the current epoch: ρcr ¼ 3H2ðt0Þ=8πG. (a)
Energy density as a function of scale factor for different values of
ξ and (b) Energy density as a function of scale factor for different
values of mϕ.

1We note that this yields an additional constraint on the
nonminimally coupled case from primordial nucleosynthesis,
which we discuss later.
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wϕ ≃
8 ξ
y2 ð1 − 6ξÞ þ 48 ξ2

y2

24 ξ
y2

¼ 1

3
: ð23Þ

During intermediate times, the equation of state wϕ tends
to −1 for the nonminimally coupled case also. Formϕ ≳H,
wϕ oscillates between positive and negative values, aver-
aging to zero, for all the cases.

B. First order solution

To gauge the impact of nonminimal coupling, we show
the evolution of the metric perturbation Φ and the scalar-
field density perturbation δϕ for the adiabatic mode for
k ¼ 10−4h Mpc−1, 10−2h Mpc−1, and 10−1h Mpc−1 in
Figs. 4 and 5, respectively. We show four different ξ values
with mϕ ¼ 10−23 eV. We also plot the evolution of Φ and
δCDM in the usual ΛCDM case for reference.
We first summarize the features seen in Figs. 4 and 5:

(a) The evolution of Φ for a minimally coupled scalar field
(ξ ¼ 0) agrees with the CDM case for all values of k.
(b) After the matter-radiation equality, the density pertur-
bations for the minimally coupled scalar field coincide with
the CDM model. (c) For the nonminimally coupled case,
both Φ and δϕ are suppressed after the matter-radiation
equality for small k. The suppression is seen to scale with ξ
for a given k. The impact of the nonminimal coupling
decreases for smaller scales for a fixed ξ. The scales that
enter the horizon before the matter-radiation equality
(k ≥ 10−1h Mpc−1) are not affected appreciably by the
nonminimal coupling. (d) For a minimally coupled scalar
field, the initial density perturbation δϕ is zero, whereas for
the nonminimally coupled case, it has an initial value
of 2Φp, the same initial condition as for δγ, the photon

density perturbation (for further details, see Appendix B).
Thus, even at first order, a nonminimally coupled scalar
field behaves like radiation at early times.

FIG. 3. Evolution of the scalar-field equation of state wϕ

displayed for different values of ξ. The plot is exact for
a≲ 10−5. For a≳ 10−5, the time average of wϕ is shown (see
text for more details).

FIG. 4. Scalar metric perturbationΦ (adiabatic mode) shown as
a function of the scale factor for different values of k. Note that
Φp is the primordial value of Φ.
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The main impact of nonminimal coupling is on large
scales, in particular, scales that enter the horizon at late
times. We focus on this issue below.

To understandFigs. 4 and 5,we first consider the evolution
of the potential, Φ, for the ΛCDM model. In the ΛCDM
model, the potential drops by a factor of 9=10 after matter-
radiation equality for scales that enter the horizon deep in the
matter-dominated era (k ¼ 10−4h Mpc−1 in Fig. 4), while
the decay is larger for smaller scales (e.g. [17,76]). The
potential decays again when the universe becomes domi-
nated by the cosmological constant at z≲ 0.7.
The decay ofΦ by a factor of9=10 for the longwavelength

modes can be understood within the framework of multi-
component fluids in theΛCDMmodel. In theΛCDMmodel,
both the background and the first order perturbations (on
superhorizon scales) are dominated by relativistic compo-
nents, photons, and neutrinos, in the radiation-dominated era
with an effective equation of state w ≃ 1=3 [Eq. (6)] and an
adiabatic sound velocity c2s ≡ δp=δρ ≃ 1=3. In the matter-
dominated era, cold darkmatter dominates the dynamics, and
bothw and c2s vanish. In addition, the initial conditions for all
components are assumed to be adiabatic, which implies that
the pressure perturbations are entirely specified by density
perturbations: δp ¼ c2sδρ. Under these conditions, it can be
shown analytically that the initial potential at large scales
falls by a factor of 9=10 after the matter-radiation equality
(for details, see [76]).
In the ULA model, the background evolution of the

scalar field behaves as a pressureless fluid, hwi ¼ 0, for
z≲ 105 (Fig. 3). However, many of the other conditions
satisfied by theΛCDMmodel do not hold for this model. In
particular, the behavior of pressure perturbations is more
complicated in this case [Eq. (21)]. While the pressure
perturbations become negligible for small scales for
z≲ 105, they could be significant for large scales even
after the matter-radiation equality. In addition, for ULA
models, it is not possible to express pressure perturbations
entirely in terms of density perturbations [Eqs. (19) and
(21)]. This means the pressure perturbations in the scalar
field are not purely “adiabatic,” and the “entropy” part of
the perturbation provides an additional source of perturba-
tions.2 An important distinction between the minimal and
nonminimal coupling is that for the minimal coupling this
split renders both c2s and entropy perturbations singular.
However, for the nonminimally coupled case, the split is
well behaved (for detailed discussion, see [73]).
These additional features of the ULA model could cause

the potential to behave differently from the usual case. For a
minimally coupled case, the impact of these additional
features is negligible, and we notice that the behavior of Φ
is similar to the CDM case. However, for the nonminimallyFIG. 5. Evolution of ULA density perturbation δϕ (adiabatic

mode) displayed for different values of k. Note that Φp is the
primordial value of the metric perturbation Φ. 2Pressure perturbations of any component of the fluid can, in

general, be expressed in terms of two thermodynamical variables.
For isentropic initial conditions, the pressure perturbations can be
written in terms of only one variable (e.g. density perturbation),
δp ¼ c2sδρ, where c2s is the adiabatic velocity of sound in the
medium. In principle, a whole range of other initial conditions are
possible (e.g. [73] and references therein).

NONMINIMALLY COUPLED ULTRALIGHT AXIONS AS COLD … PHYS. REV. D 105, 103517 (2022)

103517-7



coupled case, pressure perturbations of the scalar field
could play an important role during the transition from
radiation to matter domination and cause the potential to
decay for a longer period extending into the matter domi-
nation. As the pressure perturbations are related to other
perturbations through energy-momentum conservation con-
ditions, we expect a significant impact on other components
of matter perturbations also. In particular, Fig. 5 shows that
the density contrast for the scalar field also decays for
k ≃ 10−4h Mpc−1. This anomalous behavior of density
perturbations for large scales results in a significant change
in the observable matter power spectrum.
From density contrasts of different components, we can

compute the matter power spectrum Pðk; t0Þ (e.g. [17]):

Pðk; t0Þ ¼
A
k3

�
k
H0

�
n−1

Ω2
mδ

2
netðk; t0Þ: ð24Þ

Here δnet ¼
P

i fiδi with fi ≡Ωi=
P

iΩi and δi being the
fraction and density contrast of different components. At the
current epoch, only the scalar field and baryons provide
important contributions to the density contrast,3 and we use
values of fi given by the best-fit Planck parameters for
baryons and CDM.HereΩm ¼ Ωϕðt0Þ þΩbðt0Þ is the value
of the totalmatter density parameter at the current epoch,A is
a constant whose value is determined by matching the
theoretical matter power spectrum to cosmological observ-
ables, and n is the scalar spectral index of the initial matter
power spectrum generated during the inflationary era:
Pðk; tiÞ ∝ kn with n ≃ 1. In this paper, we use the best-fit
value obtained by the Planck Collaboration, n ¼ 0.96 [13].
The matter power spectrum is probed by the Planck

CMB data for scales in the range k ≃ 10−4–10−1h Mpc−1
(e.g. [12]). Using Planck data, the matter power spectrum
can be reconstructed in the aforementioned range [77]. The
SDSS galaxy clustering data measure the power spectrum
for k ≃ 10−2–0.4h Mpc−1 [2]. We note that only the galaxy
data for k≲ 0.1 Mpc−1 can be directly compared with the
prediction of linear perturbation theory, as linear theory
fails for smaller scales at the current epoch (e.g. [17]). The
CMB and galaxy clustering data are compatible with each
other using the results of general relativistic perturbation
theory for the usual ΛCDM model (which includes the
inflation-generated initial power-law matter power spec-
trum [see the discussion following Eq. (24), e.g. [12]]. One
can normalize the matter power spectrum using Planck
CMB temperature anisotropy and CMB lensing measure-
ments (e.g. [77]). Alternatively, it can be normalized using
the abundance of low-redshift massive clusters and cosmo-
logical weak lensing data at z≲ 1 (e.g. [17] and references
therein). These data can be used to construct σ8, the mass

dispersion at the scale 8h−1 Mpc. Planck results give σ8 ¼
0.81 [12], which is in agreement with the low redshift data.
In Fig. 6, we show the matter power spectra for ξ ¼ 0.

Both the adiabatic and isocurvature modes4 are shown for a
fixed ULAmass,mϕ ¼ 10−23 eV. The matter power for the
two modes is matched at large scales to the ΛCDM model.
For the range of scales shown in Fig. 6, k≲ 0.3h Mpc−1,
the matter power spectrum for the minimally coupled scalar
field agrees with the power spectrum for the usual ΛCDM
case. This inference is compatible with existing results in
the literature (e.g. [54]).5 We note that, for the case shown
in Fig. 6, the ULA matter power spectrum has a power
deficit as compared to the ΛCDM model at smaller scales,
k≳ 1 Mpc−1 (these scales are not shown in the figure), and
multiple studies have considered the implications of this
small-scalematter power suppression6 [49–52,55–57,61–64].
However, our focus in this paper is on large scales.

FIG. 6. Adiabatic and isocurvature matter power spectra shown
for minimally coupled axions for mϕ ¼ 10−23 eV. The ΛCDM
model results are also shown for comparison. The data points
corresponding to the monopole of the measured galaxy power
spectrum from SDSS are also shown (e.g. [78]).

3We assume that the only component of dark energy is the
cosmological constant forwhich the density contrast vanishes [75].

4We consider only the CDM isocurvature case here; see
Appendix B for details. This mode is shown here for the sake
of completeness as it is ruled out by the cosmological data, e.g. [15].

5One can compute the minimally coupled ULA matter power
spectra using the code AxionCAMB, which is a modified version
of the publicly available code CAMB; it is available at https://
github.com/dgrin1/axionCAMB.

6For smaller mϕ, the matter power spectrum deviates from the
ΛCDM model for larger scales; for instance, for mϕ ¼ 10−24 eV,
the suppression occurs for k≳ 0.3 Mpc−1. An approximate rela-
tion between this scale and the scalar-field mass can be obtained by
showing that the scalar field behaves as a medium with a time- and
scale-dependent effective sound speed at subhorizon scales (e.g.
see [53] for details). In this paper, we only present results for
mϕ ¼ 10−23 eV, but we verified the expected small-scale behavior
for ULA models for smaller masses.
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In Fig. 7, we display the matter power spectrum for the
nonminimally coupled case for mϕ ¼ 10−23 eV. As dis-
cussed above, in this case, the density perturbations in the
scalar field deviate from the CDM density perturbations at
large scales but reproduce the results of the CDM model at
small scales. This leaves observable traces on the observed
matter power spectrum. We match the matter power
spectrum to the ΛCDM model at large scales. Given the
decay of density perturbations on large scales for the
nonminimally coupled scalar field (Fig. 5), the matter
power is expected to differ between the nonminimal
coupling case and the ΛCDM (or minimal coupling case)
at small scales. As a result, the matter power is found to be
significantly larger at small scales as compared to the CDM
power spectrum. Alternatively, if we had chosen to normal-
ize the power spectrum at small scales (e.g. by choosing the
measured value of σ8 by cluster abundance data), we would
find a deficit of matter power at large scales. The power
excess in Fig. 7 is proportional to the value of ξ. To obtain
agreement with both the large- and small-scale data, we
obtain the following constraint on the nonminimal coupling
for the adiabatic mode: ξ≲ 0.01.
Figure 7 also shows that, for nonminimal coupling, the

matter power spectrum for the isocurvature mode is in
much better agreement with the usual adiabatic CDM
mode. For instance, the isocurvature mode for ξ ¼ 0.05
agrees well with the ξ ¼ 0 adiabatic mode at large scales.
We do not carry out a more detailed comparison, here but
our results suggest that a mix of adiabatic and isocurvature
initial conditions for the nonminimally coupled ULAs
might behave similarly to the CDM adiabatic mode.
In Figs. 4, 5, and 7, we show results for a fixed ULA

mass mϕ ¼ 10−23 eV as a function of the nonminimal

coupling. For our work, we consider a mass range
10−25 eV < mϕ < 10−19 eV. We note that the large-scale
behavior shown in the figures is obtained for this entire
range of masses. The best reported upper limit on the mass
mϕ ≳ 10−20 eV arises from the small-scale behavior of the
power spectrum using the Lyman-α data [64]. Our main
results are compatible with this upper limit.

IV. CONCLUSION

In this paper, we study a nonminimally coupled scalar
field as a potential cold dark matter candidate. The minimal
scalar-field models have been extensively studied as ultra-
light axions in the literature and are known to alleviate well-
known small-scale issues with the usual ΛCDM model.
Our study is a natural extension of such models.
The dynamics of both the background and the perturbed

components of the scalar field change substantially for the
nonminimally coupled case. Initially, the background scalar
field behaves as radiation, unlike the usual case in which
the scalar-field energy starts as a cosmological constant.
For a scale factor in the range a ≃ 10−5–10−7, the non-
minimal scalar field makes a transition to the cosmological-
constant domination phase (Fig. 1). The altered initial
evolution yields a new constraint on such models from
primordial nucleosynthesis. During primordial nucleosyn-
thesis, the final abundance of helium-4 and deuterium is a
sensitive function of the total radiation content of the
universe at a ≃ 10−9. A comparison of current data with
the theory of formation of light elements suggest that the
amount of “dark radiation” could not exceed 10% of the
radiation energy density given by photons and the standard
model neutrinos during that era (e.g. see [79] and refer-
ences therein). This constrains the strength of the gravity-
scalar-field coupling ξ≲ 10 for the range of scalar-field
masses we consider here.
The first order perturbation theory of a nonminimally

coupled scalar field adds multiple new complexities as
compared to the usual case. One of the new features is the
presence of anisotropic stress, which mainly impacts small
scales [Eq. (22)]. Our most important finding in this paper
relates to large scales. For nonzero ξ, the perturbations on
scales that enter the horizon after the matter-radiation
equality could have radically different behavior (Figs. 4
and 5). This causes the matter power spectrum to deviate
significantly from the minimal coupling case (Fig. 7). For
adiabatic initial conditions, a comparison of the computed
matter power spectrum with galaxy clustering and CMB
anisotropy data puts strong constraints on the nonminimal
coupling: ξ≲ 0.01.
We also consider isocurvature initial conditions. More

specifically, we consider the scalar-field isocurvature mode
in which only the scalar-field density contrast is nonzero
initially. Figure 7 shows that this isocurvature mode for
nonzero ξ agrees with the adiabatic CDM (or minimally

FIG. 7. Adiabatic and isocurvature matter power spectra for the
nonminimally coupled ULAs shown for different values of ξ. The
solid lines denote the adiabatic power spectra, and the dashed
lines show the isocurvature power spectra.
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coupled) mode at large scales. This means that a mix of
isocurvature and adiabatic initial conditions might explain
the observed matter power spectrum for a nonminimally
coupled ULA.
In the current work, we focus on computing the matter

power spectrum for nonminimally coupled ULAs and
compare the prediction of the model with the galaxy power
spectrum and CMB results. This yields an approximate
bound on the strength of nonminimal coupling. A more
detailed multiparameter analysis based on either the Fisher
matrix or MCMC methods will give more precise con-
straints. This work also needs to be extended to CMB
temperature and polarization anisotropies, as a direct
comparison with the CMB anisotropy data would help
quantify our results further. In particular, the new physics
our model introduces might result in novel outcomes such
as the following: (a) the integrated Sachs-Wolfe effect
would be altered owing to the time dependence of the
potential at large scales; (b) the sound horizon close to the
era of recombination might change such that it would have
a bearing on the issue of Hubble tension between the CMB
and low-redshift data (e.g. [80] and references therein). We
hope to return to these issues with the theoretical compu-
tation of the CMB temperature and polarization anisotro-
pies and a more detailed statistical comparison with
cosmological data in a future work.
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APPENDIX A: EINSTEIN AND FLUID
EQUATIONS

In this section, we give the necessary cosmological
equations, including Einstein equations and the relevant
equations for photons, baryons, neutrinos, and cosmologi-
cal constants at zeroth and first order (for details, see e.g.
[17,54,73–75]).

1. Background equations

For the sake of completeness and consistency of nota-
tions, we list the relevant equations for the background
evolution of the universe.
We have already defined the scalar field, photon, and

neutrino density parameters in Sec. II A. We can similarly
define the density parameter for any component of the
universe by

Ωi ¼
8πGρi
3H2

: ðA1Þ

We denote the baryon density parameter by Ωb and the
cosmological-constant density parameter by ΩΛ.

In general, the density parameter for the ith component
evolves as

Ω0
i ¼ 3ðw − wiÞΩi; ðA2Þ

where wi is the equation of state of the ith component.
Thus, the density parameters evolve according to the
following equations:

Ω0
γ ¼ 3

�
w −

1

3

�
Ωγ; ðA3Þ

Ω0
ν ¼ 3

�
w −

1

3

�
Ων; ðA4Þ

Ω0
b ¼ 3wΩb; ðA5Þ

Ω0
Λ ¼ 3ðwþ 1ÞΩΛ: ðA6Þ

Using Eq. (6), these equations specify the evolution of all
the density parameters. In addition to these fluid equations,
we have two Einstein equations given by

H2 ¼ _a2

a4
¼ 8πG

3

X
i

ρi; ðA7Þ

_H ¼ −4πGa
X
i

ðρi þ piÞ: ðA8Þ

Equation (A7) can be written in terms of the density
parameters as

Ωγ þ Ων þ Ωϕ þ Ωb þ ΩΛ ¼ 1: ðA9Þ
On the other hand, Eq. (A8) converts to an equation for y,
defined in Sec. II A as y ¼ 2mϕ=H. We obtain

y0 ¼ 3

2
ð1þ wÞy: ðA10Þ

Equations (10)–(13), along with Eqs. (A3)–(A6) and
(A9)–(A10), constitute the complete set of background
equations.

2. First order equations

In Fourier space, the first order equations for photons,
neutrinos, and baryons are (for details, see e.g. [17,73–75])

Θ0
0 þ

k
aH

Θ1 ¼ −Φ0; ðA11Þ

Θ0
1 −

k
3aH

Θ0 ¼
k

3aH
Ψ −

neσT
H

�
Θ1 −

ivb
3

�
; ðA12Þ

N 0
0 þ

k
aH

N 1 ¼ −Φ0; ðA13Þ
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N 0
1 −

k
3aH

ðN 0 −N 2Þ ¼
k

3aH
Ψ; ðA14Þ

δ0b þ
ik
aH

vb ¼ −3Φ0; ðA15Þ

v0b þ vb ¼ −
ik
aH

Ψ −
neσT
HR

ðvb þ 3iΘ1Þ: ðA16Þ

Our notation is consistent with that of Dodelson [17]. Here
Θ0 and Θ1 are the monopole and the dipole components of
the photon temperature perturbation, respectively; N 0 and
N 1 are the monopole and dipole components of the neutrino
temperature perturbation, andN 2 is the quadrupolemoment.
The quadrupole moment for photons is omitted as it is
negligible in the tight-coupling approximation [17]. Note
that δb ¼ δρb=ρb is the baryon overdensity, vb is the bulk
velocity of baryons, ne is the electron number density, σT is
the Thomson scattering cross section, and R ¼ 3Ωb=4Ωγ is
the baryon-energy–to–photon-energy ratio.
We simplify photon equations further in the tight-

coupling approximation and retain terms up to first order
in the scattering timescale, 1=ðneσTcÞ. This procedure
neglects Silk damping, which is needed for accurate treat-
ment of CMB anisotropies and the matter power spectrum
at small scales. However, it makes a negligible impact on
our treatment as the main impact of our results is at large
scales. For massless neutrinos, we adopt N 2 ¼ 0 and
neglect higher multipoles. These modes play an important
role for subhorizon modes, kη > 1. For l ≥ 2, these modes
decay as jlðkηÞ after the horizon entry (e.g. Ma and
Bertschinger [75]). We check the efficacy of our procedure
by putting neutrino perturbation to zero after the horizon
entry, and we find that a more precise treatment of higher
neutrino multipoles does not significantly affect the pre-
dicted matter power spectrum on the scales of interest to us.
The perturbed metric components, Φ and Ψ, obey the

following first order Einstein equations:

Φ0 − Ψþ k2

3a2H2
Φ ¼ 1

2
ð4ΩγΘ0 þ 4ΩνN 0

þ Ωϕδϕ þΩbδbÞ; ðA17Þ

Φ0 − Ψ ¼ −
3

2

aH
k

½4ΩγΘ1 þ 4ΩνN 1

þ Ωϕð1þ wϕÞvϕ þΩbvb�; ðA18Þ

Φ00 þ3Φ0−Ψ0−3Ψ−
3

2
ð1þwÞðΦ0−2ΨÞþ k2

3a2H2
ðΦþΨÞ

¼−
3

2

�
4

3
ΩγΘ0þ

4

3
ΩνN 0þΩϕwϕπϕ

�
; ðA19Þ

−
k2

3a2H2
ðΦþ ΨÞ ¼ ΩϕwϕΠϕ: ðA20Þ

Equations (17)–(22), along with Eqs. (A11)–(A20), con-
stitute the complete set of first order equations. Not all of
these first order equations are independent of each other. In
particular, we solve two Einstein’s equations [Eqs. (A17)
and (A20)] along with the fluid equations. The other two
Einstein’s equations can be derived from the equations we
use (for details, see e.g. Kodama and Sasaki [73]).

APPENDIX B: INITIAL CONDITIONS

To obtain the initial conditions, we analytically solve the
set of background and first order equations in the radiation-
dominated era such that kη ≪ 1 for all scales of interest to us.
However, for nonminimally coupled scalar fields, the com-
plex nature of equations does not always permit an analytic
solution even at early times. In such cases, we choose the
initial condition for ξ ¼ 0 and numerically search for the
suitable initial conditions for the nonminimally coupled case.
We assume that the correct solution is an attractor solution,
and the approximate initial conditions allow us to reach the
relevant solution once the nonminimally coupled field enters
the cosmological-constant-dominated phase.
We follow the work of Ureña-López and Gonzalez-

Morales [54] to obtain the initial conditions for variables
related to ULAs. For initial conditions for other variables,
we follow the work of Dodelson [17].

1. Background initial conditions

We find the initial conditions at the scale factor a ¼ ai
such thatmϕ=Hi ≪ 1, that is, yi ≪ 1. This is expected deep
in the radiation-dominated epoch. Thus, we expect
Ωγi þ Ωνi ≃ 1, and Ωai ≪ 1 for a ≠ γ, ν. The initial

condition for the scalar field is chosen such that _ϕi ¼ 0
and ϕi < 0. Therefore, the initial value of θ satisfies the
condition θi ≪ 1 [Eqs. (8) and (9)].
Using these approximations, we have, at early times,

H ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωγ0 þ Ων0

p
=a2. Thus, we have the initial con-

dition for y,

yi ¼
2mϕ

Hi
¼ 2mϕa2i

H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωγ0 þΩν0

p : ðB1Þ

Both Eqs. (10) and (11) contain a term ð1 − 3wÞ=y. This
term can be approximated at early times as follows:

1 − 3w ¼ 1 − ðΩγ þ Ων þ ΩϕÞ þ 3ΩΛ ¼ Ωb þ 4ΩΛ: ðB2Þ

Here, we have used Eq. (A9) and the fact that, at early
times, wϕ ¼ 1=3 [see Eq. (23)]. From Eq. (A1), we have
Ωb=ðΩγ þ ΩνÞ ¼ ρb=ðργ þ ρνÞ ¼ aρb0=ðργ0 þ ρν0Þ. Thus,
the initial condition for Ωb is

Ωbi ¼
Ωb0ai

Ωγ0 þΩν0
: ðB3Þ
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Similarly,

ΩΛi ¼
ΩΛ0a4i

Ωγ0 þ Ων0
: ðB4Þ

So, we obtain

1 − 3w
y

¼ H0

2mϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωγ0 þ Ων0

p
�
Ωb0

a
þ 4ΩΛ0a2

�
ðB5Þ

deep in the radiation-dominated epoch.
Finally, using the approximation θi ≪ 1, Eq. (11) gives

θ0 ¼ −3θ þ 2mϕa2

H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωγ0 þ Ων0

p

þ 6ξH0

mϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωγ0 þΩν0

p
�
Ωb0

a
þ 4ΩΛ0a2

�
: ðB6Þ

The solution to this ODE is

θ ¼ 2

5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωγ0 þΩν0

p
�
mϕ

H0

þ 12ξH0ΩΛ0

mϕ

�
a2

þ 3ξH0Ωb0

mϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωγ0 þΩν0

p 1

a
þ C
a3

; ðB7Þ

where C is the constant of integration. We neglect the
fastest decaying mode, which is the last term in the
solution. This gives the initial condition for θ,

θi ¼
2

5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωγ0 þΩν0

p
�
mϕ

H0

þ 12ξH0ΩΛ0

mϕ

�
a2i

þ 3ξH0Ωb0

mϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωγ0 þ Ων0

p 1

ai
: ðB8Þ

Obtaining the initial condition for Ω̃ϕ in this manner is
difficult. Thus, we put ξ ¼ 0 and follow the method used in
the work of Ureña-López and Gonzalez-Morales [54]. This
gives the following initial condition for Ω̃ϕ:

Ω̃ϕi ¼ K
Ωϕ0

Ωγ0 þΩν0
ai

�
4θ2i
π2

�
9þ π2=4
9þ θ2i

��
3=4

; ðB9Þ

where K is a constant that needs to be found numerically.
We can use a binary search in order to find the value of K
which gives the correct value of Ωϕ0, the present value of
scalar-field density parameter. For the range of cases we
consider for the nonminimally coupled ULAs, the value of
K can vary by many orders of magnitude.

The initial condition for Ων is given by

Ωνi ¼
Ων0

Ωγ0 þ Ων0
: ðB10Þ

2. First order initial conditions

For the first order equations, we consider two initial
conditions: adiabatic and isocurvature. In a multi-
component fluid, these initial conditions can refer to
different components. We adopt the usual adiabatic initial
conditions in which the ratio of the number densities of
different components is chosen to be the same (for a
detailed discussion, see e.g. [75] or [76]). On the other
hand, for isocurvature initial conditions, only the density
perturbations associated with either the baryons or ULAs
are nonzero initially. For instance, the ULA isocurvature
mode has only δϕ ≠ 0 during very early times, while all
other perturbation variables are set to zero. We consider
only this isocurvature mode in our analysis.
Obtaining initial conditions at first order using analytic

solutions for nonminimally coupled scalar fields is difficult.
Therefore, as in the background case, we start our search
for the suitable initial conditions with the ξ ¼ 0 case for
both modes.

a. Adiabatic mode

Using Eqs. (22) and (A20), we obtainΨ ¼ −Φ for ξ ¼ 0.
For the adiabatic mode, the metric perturbation is constant
deep in the radiation-dominated era. Therefore, Φ0

i ¼ 0.
Further, we know from the previous section that as a → 0,
y → 0, and θ → 0. Thus, at early times, from Eq. (18), we
obtain

lim
a→0

β0 ¼ −3 sinðθ − βÞ − k2

k2J
½1 − cosðθ − βÞ�: ðB11Þ

Note that θ ¼ β is a critical point of the system.
Substituting this value in Eq. (17), we obtain

α0 ¼ −
3

2
αð1þ cos θÞ þ 2y cos

�
θ

2

�
Φ: ðB12Þ

Considering θ to be negligible, we have

α0 ¼ −3αþ 2yΦ: ðB13Þ
From Eqs. (B1) and (B8), we see that, at early times, y ¼
5θ ¼ 5θiða=aiÞ2 for ξ ¼ 0. Substituting this value of y in
Eq. (B13) and solving the resultant ODE, we obtain the
following initial condition for α:

αi ¼ 2θiΦi: ðB14Þ
Here we have neglected a decaying mode.
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Substituting the initial condition for α in Eq. (18), we get

β0 ¼ −6θ þ 3β þ y
θ
ðθ − βÞ ¼ −2β − θ ðB15Þ

for the ξ ¼ 0 case. Thus,

β0 ¼ −2β − θi

�
a
ai

�
2

: ðB16Þ

Solving this equation, and neglecting the decaying mode,
we have

βi ¼ −
θi
4
: ðB17Þ

The initial conditions for other variables are given in the
work of Dodelson [17]:

3Θ0i ¼ 3N 0i ¼ δbi ¼
3

2
Φi; ðB18Þ

3Θ1i ¼ 3N 1i ¼ ivbi ¼ −
k

2aH
Φi: ðB19Þ

Since k=aH is negligible at very early times,
Θ1i ¼ N 1i ¼ vbi ≈ 0.

b. ULA isocurvature mode

For the ULA isocurvature case, we choose αi ¼ 1 and
βi ¼ −π. This gives us δϕi ¼ 1 [see Eq. (19)]. All the other
perturbation variables are set to zero initially, including the
metric perturbations, Φ and Ψ.

APPENDIX C: NUMERICAL IMPLEMENTATION

In this section, we briefly summarize the salient aspects
of numerical implementation of the coupled Einstein-
Boltzmann equations along with the scalar-field dynamics.
We perform numerical integration of the relevant equations
using PYTHON codes.
The background and first order initial conditions are set

using the procedures described in Appendixes B 1 and B 2.
We implement the initial conditions to the lowest order in
kη for the relevant variables, which means zeroth order for
potentials and the density field, first order for bulk
velocities, and second order for the anisotropic stress
(for details, see e.g. [75]). Using matrix methods, one
can systematically develop initial conditions to higher
orders in kη [55,81–84], which is harder for us to imple-
ment as the initial conditions for the ULA have to be
determined numerically in our case.
We verify the robustness of our initial conditions by

checking that the final results do not depend on the choice
of starting time. One novel initial condition in our case
corresponds to the early time radiationlike behavior of the
nonminimally coupled scalar field. In all the cases we
studied, the field makes a transition to the cosmological-
constant phase before the onset of the oscillatory phase. To
check the numerical stability of the initial conditions, we
slowly switch off the nonminimal coupling and verify that
we obtain the relevant results for the minimal coupling
case. An additional numerical issue for the ULA models is
to establish the smooth transition from the oscillatory phase
to the time-averaged phase. As noted above, we follow the
procedure given by the numerical implementation of [54]
and find a satisfactory outcome.
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