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A cosmological first-order phase transition gravitational wave could provide a novel approach to
studying the early Universe. In most cases, the acoustic gravitational wave from the sound wave
mechanism is dominant. Considering different sound velocities in symmetric and broken phases, we study
sound velocity effects on the acoustic phase transition gravitational wave spectra in the sound shell model.
We demonstrate that different sound velocities could obviously modify the peak frequency and peak
amplitude of the gravitational wave power spectra. Therefore, taking more realistic sound velocities might
provide more accurate predictions for various gravitational wave experiments.
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I. INTRODUCTION

Since the discovery of the gravitational wave (GW) by
LIGO and Virgo [1] and Higgs boson at the LHC [2,3], the
cosmological first-order phase transition has attracted a lot
of attention, and the corresponding phase transition gravi-
tational wave (PTGW) could provide new perspectives to
understand the fundamental problems of particle cosmol-
ogy, including the baryon asymmetry of the Universe, dark
matter formation mechanism, primordial black holes,
primordial magnetic field, and spontaneous symmetry
breaking in the early Universe. Future GW experiments,
such as TianQin [4,5], LISA [6], Taiji [7], etc., may be able
to detect the PTGW signals generated by bubble collision,
turbulence, and sound wave mechanisms [8–10]. For most
cases of thermal phase transition, GW signals from the
sound wave mechanism are dominant [11].
To extract more reliable information of the early

Universe from the GW spectra, it is necessary to precisely
calculate the PTGW spectra, especially the dominant
source, acoustic PTGW spectra from sound wave mecha-
nism. Currently, there are several methods to calculate the
acoustic PTGW. One is the numerical method directly from
lattice hydrodynamic simulation of the coupled fluid-field
system [8–10] or a simplified numerical method called the

hybrid simulation [12,13]. The other methods depend on
some specific models [14–16]. Here, we use the sound shell
model (SSM) [14,15] developed by Mark Hindmarsh to
study the sound velocity effects on the PTGW spectra. In
the SSM, the calculation of the shear stress unequal time
correlator (UETC)1 is converted to the computation of the
velocity UETC since the dominant contribution of shear
stress comes from the fluid velocity field. And the essential
ingredient for the velocity UETC is the velocity profile.
Then, the corresponding effect can transfer to the shear
stress UETC, and finally the velocity profile would affect
the GW power spectra. Therefore, we should consider more
realistic sound velocities in the symmetric and broken
phases to obtain more reliable velocity profiles. Taking
sound velocity effects into account, we calculate the
velocity power spectra and the corresponding PTGW
power spectra in the SSM.
This paper is organized as follows. In Sec. II, we give a

brief introduction to the SSM. Section III presents the phase
transition dynamics and the bubble collision time distri-
bution. In Sec. IV, we discuss the self-similar fluid profiles
around the expanding bubbles with different sound veloc-
ities in symmetric and broken phases. Then, the GW
spectral density from shear stress UETC is reviewed in
Sec. V. We study the velocity power spectra in Sec. VI and
the GW power spectra in Sec. VII for different sound
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velocities. The discussions and conclusion are given in
Secs. VIII and IX, respectively.

II. SOUND SHELL MODEL IN A NUTSHELL

Current studies show there are three mechanisms, which
are bubble collision, turbulence, and sound waves, for the
production of PTGW. In most of thermal phase transitions,
the PTGW from sound waves is much stronger than the
other two sources. The SSM provides a simple approach to
obtain the GW prediction without time-consuming lattice
simulations. This method is based on the fact that GW is
determined by the anisotropic stress tensor Πij, and for
sound waves, Πij ∼ ½γ2ðρþ pÞvivj�TT . Thus, the calcula-
tion of GW power spectra from sound waves is converted to
the study of velocity power spectra. In this section, we
briefly introduce the basic setup of the SSM [14,15,17–20]
with the schematic process shown in Fig. 1.
In the SSM, a basic approximation is that the source of

anisotropic stress is originated from the fluid sound wave.
And the generation of a sound wave is a random process
which is initiated after the collision of bubbles. The GW
spectra could be obtained from the shear stress UTEC,
which could be calculated from the velocity UETC (or the
spectral density of the velocity field). One basic assumption
for the SSM is that fluid velocity field is the superposition
of self-similar velocity profiles generated by expanding
bubbles. Here, in Fig. 1, we illustrate superposition of
velocity profiles for two different hydrodynamical modes,
which are detonation (left panel) and deflagration (right
panel). The bubble wall is represented by the black circle,
and the blue shaded ring denotes the sound shell. For
calculating the bubble lifetime in the SSM, we define that a
bubble is completely destroyed when half of it has merged
with other bubbles. Hence, to obtain more reliable velocity
power spectra and PTGW, we should try to give more
realistic velocity profiles or improve the modeling of the

bubble lifetime. And in this work, we consider more
realistic sound velocities in both symmetric and broken
phases to study the sound velocity effects on the velocity
profile and the resulting acoustic GW power spectra.
Here, we present the basic steps for the calculation of

PTGW in the SSM:
(i) Derive the self-similar velocity and enthalpy profiles

of a single expanding bubble based on the specific
equation of sate (EoS) which can incorporate differ-
ent sound velocities in the symmetric and broken
phases.

(ii) Obtain the single-bubble plane wave amplitude from
single-bubble self-similar profile. Then, derive the
plane wave amplitude correlation function for the
velocity field generated by N randomly placed
bubbles in a given volume.

(iii) Estimate the bubble collision time distribution for a
specific nucleation history, and derive the velocity
spectral density and power spectrum.

(iv) Finally, derive the GW power spectrum using the
relation between the shear stress UETC and the
velocity spectral density.

III. PHASE TRANSITION DYNAMICS AND
BUBBLE COLLISION TIME DISTRIBUTION

For a cosmological first-order phase transition, the
starting point of the phase transition dynamics is the bubble
nucleation rate per unit time per unit volume

ΓðtÞ ¼ Γ0e−SE; ð1Þ

where SE is the bounce action and can be obtained by
solving the equation of motion of order-parameter field
with a given effective potential [21–25]. However, to
calculate the PTGW and other phenomenology, we need
more parameters: the characteristic temperature T�, the

FIG. 1. Schematic diagrams of the superposition of self-similar profiles for detonation (left) and deflagration (right) in the SSM. The
black circle represents the bubble wall, and the blue shaded ring depicts the sound shell.

XIAO WANG, FA PENG HUANG, and YONGPING LI PHYS. REV. D 105, 103513 (2022)

103513-2



characteristic length scale R�, the energy budget, and the
bubble wall velocity vw. In a first-order phase transition, T�
is the temperature at which GW is generated. And this
temperature is conventionally approximated as nucleation
temperature or percolation temperature in most of the
literature. To derive the percolation temperature, the frac-
tion of space remaining in the symmetric phase (i.e., the
probability of finding a point still in the false vacuum) is
important, and it is

PðtÞ ¼ exp

�
−
4π

3

Z
t

tc

dt0Γðt0ÞRðt0; tÞ
�
; ð2Þ

where the radius of the bubble nucleated at t0 is Rðt0; tÞ ¼R
t
t0 dt

00vw ¼ vwðt − t0Þ neglecting the expansion of the
Universe. The overlap of the bubbles is taken into account
by the exponentiation of Eq. (2). Usually, the characteristic
length scale is chosen as the mean bubble separation R�
when GWs are produced. And it can be conventionally
expressed as

R� ¼
ð8πÞ1=3

β
vw; β ¼ HT

dSE
dT

����
T¼T�

: ð3Þ

Then, the bubble number density is nb ¼ R−3� . The energy
budget and the bubble wall velocity are strongly related,
and they can significantly affect the strength of PTGW.
And the energy budget is usually obtained by a model-
independent method [26–29], which is developed with
some specific models of EoS. The bubble wall velocity vw
is conventionally chosen as a free parameter in the relevant
studies of PTGW and electroweak baryogenesis. However,
it should be determined by the interaction between the
bubble wall and the surrounding plasma [30–42].
To derive the GW power spectrum in the SSM, one of the

essential quantities is the bubble collision time distribution.
And for the calculation of bubble collision time distribu-
tion, the key parameters are the bubble nucleation rate ΓðtÞ,
the fraction of space remaining in the symmetric phase
PðtÞ, the area of the bubble wall (or the phase boundary)
per unit volume AðtÞ, and the bubble wall velocity vw. In
Fig. 2, we demonstrate the bubble lifetime schematically.
At time t, there is a bubble just formed at the light gray dot
and an expanding bubble depicted by light gray circle. The
distance between the light gray dot and the wall of
expanding bubble is R. At t0, the two bubbles first collide
and start to merge, and t0 − t ¼ R=ð2vwÞ. At t00, half of the
small bubble has merged with the large bubble, we define
that the small bubble disappears. Hence, the lifetime of the
small bubble is R=vw. So, in time interval dt, the bubbles
nucleated in the volume Aðtþ R=vwÞdR are all destroyed.
Hence, we have

d2nb ¼ ½Aðtþ R=vwÞdR�½ΓðtÞdt�;

d

�
dnb
dR

�
¼ Aðtþ R=vwÞΓðtÞdt: ð4Þ

Then, the bubble size distribution can be derived as

dnb
dR

¼
Z

t0

tc

Aðtþ R=vwÞΓðtÞdt; ð5Þ

where tc is the time at which the effective potential has
degenerate minima and the area per unit volume of the
bubble wall is

A ¼ −
1

vw

dP
dt

: ð6Þ

Here, we introduce the probability density distribution of
lifetime nðT iÞ, which will be described in detail in Sec. VI.
The relation between the probability density distribution of
lifetime nðT iÞ and the bubble number density nb is

Z
nðT iÞdT i ¼ nb; nðT iÞdT i ¼ dnb: ð7Þ

Hence,

dnb
dR

¼ nðT iÞ
dT i

dR
; dT i ¼ dR=vw: ð8Þ

We can derive

FIG. 2. Schematic diagram for the bubble lifetime. At time t,
there is a bubble just formed at the light gray dot and an
expanding bubble depicted by the light gray circle. The distance
between the light gray dot and the wall of expanding bubble is R.
At t0, the two bubbles firstly collide and start to merge, and
t0 − t ¼ R=ð2vwÞ. At t00, half of the small bubble has merged with
the large bubble, and we define that the small bubble disappears.
Hence, the lifetime of the small bubble is R=vw.
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β

R3�
fcolðT̃ ÞdT i ¼ nðT iÞdT i; ð9Þ

then, the collision time distribution can be defined as

fcolðT̃ Þ ¼ vw
R3�
β

dnb
dR

: ð10Þ

Here, T i is the lifetime of bubbles, and T̃ ¼ βT i. In this
work, we only consider the exponential nucleation. Taking
a suitable approximation, one can derive the collision time
distribution as follows [15]

fcolðT̃ Þ ¼ e−T̃ : ð11Þ

IV. SELF-SIMILAR FLUID SHELL WITH
REALISTIC SOUND VELOCITY

In this work, we consider the sound velocity effects on
PTGW power spectra. According to the basic setup of the
SSM, the effect of sound velocity is originated from
the self-similar profiles. To derive the sound-velocity-
dependent profiles, we use different sound velocities model
(DSVM) [27–29,43] as the EoS to derive the initial self-
similar fluid profiles. In the DSVM, the EoS is

pþ ¼ c2þaþT4þ − ϵ; eþ ¼ aþT4þ þ ϵ;

p− ¼ c2−a−T4
−; e− ¼ a−T4

−; ð12Þ

where a� ¼ g�π2=30, and g� are the degree of freedom for
the symmetric and broken phases, respectively (þ for
symmetric phase and − for broken phase). To obtain the
initial condition of the SSM, we need to solve the
hydrodynamical equations [26–29,43–46]

2
v
ξ
¼ γ2ð1 − vξÞ

�
μ2

c2s
− 1

�
∂ξv;

∂ξw
w

¼
�
1þ 1

c2s

�
μγ2∂ξv; ð13Þ

where

μðξ; vÞ ¼ ξ − v
1 − ξv

: ð14Þ

With different boundary conditions, we can derive the
velocity and enthalpy profiles for three stable hydrody-
namical modes, which are deflagration, hybrid, and deto-
nation. In the DSVM of EoS, the strength parameter can be
defined as

FIG. 3. The velocity and energy fluctuation profiles of the deflagration mode and detonation mode for the DSVM of EoS. The left
column is detonation, and the right column is deflagration. Different colors represent different combinations of sound velocities in
symmetric and broken phases.
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α ¼ 1

3

�
1 − c2þ=c2−
1þ c2þ

þ ð1þ 1=c2−Þϵ
wþ

�
: ð15Þ

One can define the energy fluctuation variable as

λðxÞ ¼ eðxÞ − ē
w̄

; ð16Þ

where w̄ and ē are mean enthalpy and mean energy density,
respectively. Then, according to the EoS and the fluid
profiles, for detonation, we have

λDTðξÞ ¼
�

cwðξÞ=w̄
ð1þ dð3α − bÞ=aÞ − 1

��
1

d
þ 3α − b

a

�

¼ 1

1þ c2−

�
wðξÞ
w̄

− ð1þ 3c2−αÞ
�
; ð17Þ

and for deflagration,

λDFðξÞ ¼
�
wðξÞ=w̄þ dð3α − bÞ=a

1þ dð3α − bÞ=a − 1

��
1

d
þ 3α − b

a

�
;

ð18Þ

where

a ¼ 1þ 1=c2−; b ¼ 1 − c2þ=c2−
1þ c2þ

;

c ¼ 1þ c2þ
1þ c2−

; d ¼ 1þ c2þ: ð19Þ

In this work, we do not consider the hybrid mode. We
exemplify the corresponding velocity and energy fluc-
tuation profiles of the deflagration and detonation modes
for the DSVM of the EoS in Fig. 3. The left column is
detonation, and the right column is deflagration. Different
colors represent different combinations of sound velocities
in symmetric and broken phases. From the numerical
results shown in Fig. 3, we can see that the sound velocities
in symmetric and broken phases have obvious impact on
the velocity and energy fluctuation profiles. According to
Fig. 3 and Eq. (17), we can find only the sound velocity of
the broken phase can affect the corresponding profiles of
detonation. For a given phase transition model, precise
calculation of the velocity and energy profiles is crucial to
the precise prediction of PTGW spectra since they act as the
initial conditions for the calculation of GW spectra in
the SSM.

V. GRAVITATIONAL WAVE SPECTRAL
DENSITY FROM SHEAR STRESS UNEQUAL

TIME CORRELATOR

For most of the cosmological first-order phase transition,
the phase transition duration is much shorter than the

Hubble time. Thus, we could ignore the cosmic expansion
if the supercooling is not too strong. In the weak field
approximation, we have the following metric perturbation:

ds2 ¼ −dt2 þ ðδij þ hijÞdxidxj: ð20Þ

Substituting the above perturbation into the Einstein field
equation, we obtain the GW equation for the transverse-
traceless part of the energy momentum tensor:

ḧij −∇2hij ¼ 16πGΠij: ð21Þ

We can write it in a more convenient form,

ψ̈ ij −∇2ψ ij ¼ 16πGτij; ð22Þ

with hij ¼ ψTT
ij and Πij ¼ τTTij . Using the projection oper-

ator, we can derive

_hijðk; tÞ ¼ λij;klðkÞ _ψklðk; tÞ; ð23Þ

where λij;klðkÞ ¼ PikðkÞPjlðkÞ − 1
2
PijðkÞPklðkÞ and

PijðkÞ ¼ δij − k̂ik̂j. Ignoring the scalar field contribution
to the energy-momentum tensor, we have

τij ¼ ðeþ pÞγ2vivj: ð24Þ

The solution is

ψ ijðk; tÞ ¼ 16πG
Z

t

0

dt0
sin ½kðt − t0Þ�

k
τijðk; t0Þ: ð25Þ

Therefore, we could obtain the GW energy density

ρgw ¼ 1

32πG
h _hijðxÞ _hijðxÞi: ð26Þ

And in Fourier space, we could define the spectral density
of _h as

h _hijðk; tÞ _h�ijðk0; tÞi ¼ P _hðkÞδ3ðk − k0Þ: ð27Þ

Then, we have the following expression for the GWenergy
density:

ρgw ¼ 1

32πG

Z
d3kP _hðkÞ ¼

1

32πG
1

2π2

Z
dkk2P _hðkÞ: ð28Þ

For GW experiments, it is also convenient to define the so-
called power spectrum, which is easier to compare with the
noise of GW detectors. Here, we give the power spectrum

P _h ¼
k3

2π2
P _hðkÞ; ð29Þ
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then,

ρgw ¼ 1

32πG

Z
dk
k
P _hðkÞ: ð30Þ

In cosmology, it is common to use the energy density
Ωgw ¼ ρgw=ρcrit, where ρcrit ¼ 3H2

0=ð8πGÞ is the critical
density, andH0 is the current Hubble rate. Finally, we could
define the GW power spectrum as

PgwðkÞ≡ dΩgw

d lnðkÞ ¼
1

ρcrit

1

32πG
P _hðkÞ ¼

1

12H2
P _hðkÞ: ð31Þ

Hence, to derive the GW power spectrum, we need to first
obtain the spectral density. Substituting Eq. (25) into
Eq. (27), we can obtain

h _hijkðtÞ _hijk0 ðtÞi

¼ ð16πGÞ2
Z

t

0

dt1dt2 cos ½kðt − t1Þ� cos ½kðt − t2Þ�

× λij;klðkÞhτijðk; t1Þτklðk0; t2Þi: ð32Þ

We define the UETC for shear stress as follows:

λij;klðkÞhτijðk; t1Þτklðk0; t2Þi ¼ UΠðk; t1; t2Þδ3ðkþ k0Þ:
ð33Þ

Then, the GW spectral density can be obtained as

P _hðk; tÞ ¼ ð16πGÞ2 1
2

Z
t

0

dt1dt2 cos ½kðt1− t2Þ�UΠðk; t1; t2Þ:

ð34Þ

Therefore, to calculate the GW power density, we need to
calculate the shear stress UETC, which could be obtained
by the velocity UETC or the velocity spectral density as
discussed in the following.

VI. VELOCITY FIELD IN THE SOUND
SHELL MODEL

In the SSM, the fluid is assumed to be the only source of
shear stress. For nonrelativistic fluid velocities, based on
Eq. (24), we have

τij ≃ w̄vivj: ð35Þ

From this equation, we could find that the GW generated by
sound wave is fully determined by the behavior of the
sound shell velocity. According to energy-momentum
conservation, we can derive the linearized fluid equation as

_e
w
þ ∂jvj ¼ 0;

_vi þ ∂ip
w

¼ 0: ð36Þ

In Fourier space, we have

_̃λq þ iqjṽ
j
q ¼ 0;

_̃viq þ c2siqiλ̃q ¼ 0: ð37Þ

The solution for the velocity field can be expressed as

viðx; tÞ ¼
Z

d3q
ð2πÞ3 ðv

i
qe−iωtþiq·x þ v�iq eiωt−iq·xÞ; ð38Þ

and the plane wave amplitude at time ti is

viq ¼ 1

2

�
ṽiðq; tiÞ þ

i
ω
_̃viðq; tiÞ

�
eiωti : ð39Þ

where ω ¼ csq.
In the SSM, the velocity field is the superposition of self-

similar velocity profiles which are generated by expanding
bubbles. Hence, the velocity field

viðx; tÞ ¼
XN
n¼1

vni ðx; tÞ; vni ðx; tÞ ¼
Rn
i

Rn vðξÞ; ð40Þ

where the index n represent the nth bubble, Rn
i ¼ xi − xni is

the bubble radius, Tn ¼ t − tn is the duration since the
nucleation time tn, and ξ ¼ Rn=Tn. In Fourier space, the
velocity field is

ṽni ðq; tÞ ¼
Z

d3xvni ðx; tÞe−iq·xn

¼ e−iq·x
n
iðT nÞ3 ∂

∂zi
�Z

d3ξ
1

ξ
vðξÞe−iziξi

�
¼ e−iq·x

n
iðT nÞ3ẑif0ðzÞ; ð41Þ

where zi ¼ qiT n. The function fðzÞ is defined by angular
integration,

fðzÞ ¼
Z

d3ξ
1

ξ
vðξÞe−iziξi

¼ 4π

z

Z
∞

0

dξvðξÞ sinðzξÞ: ð42Þ

The Fourier-transformed energy fluctuation is

λ̃nðq; tÞ ¼ e−iq·x
nðT nÞ3lðzÞ; ð43Þ

where
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lðzÞ ¼ 4π

z

Z
∞

0

dξλðξÞξ sinðzξÞ: ð44Þ

The plane wave amplitude is

vnq;i ¼ iðT n
i Þ3ẑieiωti−iq·xnAðzÞ; ð45Þ

where

AðzÞ ¼ 1

2
½f0ðzÞ þ icslðzÞ�; ð46Þ

and T n
i ¼ tni − tn is the lifetime of the nth bubble. The

velocity field should freely propagate in the broken phase;

hence, we use the sound velocity of broken phase c− to
calculate the corresponding properties.
For N bubbles in a given volume V, the plane wave

amplitude correlation function is

hviqvjq0 i ¼
XN
m¼1

XN
n¼1

hT 3
mT 3

nẑiẑ0jAðzÞAðz0Þ

× e−iq·xmþiq0·xneiðω1−ω2Þtii: ð47Þ

Averaging over the bubble nucleation sites in ½t0; t0 þ dt0�,
and the colliding time interval ½ti; ti þ dti�, we have

(a) Detonation (b) Deflagration

FIG. 4. Sound velocity effects on velocity power spectra for detonation (left column) and deflagration (right column).
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XN
m¼1

XN
n¼1

he−iq·xmþiq0·xni ¼ d2P
N
V
ð2πÞ3δðq − q0Þ: ð48Þ

Here, nðT iÞ ¼ N
V
dPðT iÞ
dT i

is the probability density distribu-
tion of bubble lifetime as mentioned in Sec. III; then,

hviqvjq0 i ¼
Z

dT inðT iÞT 6
i ẑ

iẑjjAðzÞj2ð2πÞ3δðq − q0Þ: ð49Þ

Substituting Eqs. (9) and (11) into Eq. (49), we can derive
the spectral density of the velocity field as

PvðqÞ ¼
1

β6R3�

Z
dT̃ fcolðT̃ ÞT̃ 6

����A
�
T̃ q
β

�����2; ð50Þ

where T̃ ¼ βT i. Then, we can obtain the velocity power
spectrum

PvðqÞ ¼ 2
q3

2π2
PvðqÞ

¼ 2

ðβR�Þ3
1

2π2

�
q
β

�
3
Z

dT̃ fcolðT̃ ÞT̃ 6

����A
�
T̃ q
β

�����2:
ð51Þ

In Fig. 4, we demonstrate the results of velocity power
spectra for detonation (left column) and deflagration
(right column) with different phase transition strengths.
The effects of sound velocities on the velocity power
spectra are obvious for both detonation and deflagration.
For detonation cases, the velocity power spectra can only
be affected by the sound velocity of broken phase c−, since
the corresponding velocity and energy fluctuation profiles
are only modified by c−. However, for deflagration, the
velocity power spectra can be affected by both c− and cþ
and show more complicated behaviors.2

VII. GRAVITATIONAL WAVE SPECTRA FOR
DIFFERENT INITIAL CONDITIONS

Having obtained the velocity profiles and hence the
velocity power spectra, we could get the velocity UETC
and then the shear stress UETC. Equation (33) defines the
shear stress UETC, which is determined by the source
tensor τij. The source tensor is dominated by the fluid
velocity, and it is τij ≃ w̄vivj in the nonrelativistic situation.
Thus, in Fourier space,

τijðk; tÞ ¼ w̄
Z

d3qṽiðq; tÞṽjðq̃; tÞ; q̃ ¼ q − k: ð52Þ

Then, we can schematically write the shear stress UETC in
terms of velocity UETC for the Gaussian velocity field as

P _h ∼UΠ ∼ hττi ∼ hṽ ṽ ṽ ṽi ¼
X

hṽ ṽihṽ ṽi ∼
X

PvPv:

ð53Þ

After deriving hṽ ṽi, the shear stress UETC can be obtained
as

UΠðk; t1; t2Þ ¼ 4w̄2

Z
d3q
ð2πÞ3

q2

q̃2
ð1 − μ2Þ2PvðqÞ

× Pvðq̃Þ cosðωt−Þ cosðw̃t−Þ; ð54Þ

with t− ¼ t1 − t2 and μ ¼ q̂ · k̂. For details, see Ref. [15].
Substituting the shear stress UETC into the GW spectral
density formula in Eq. (34), we obtain the dimensionless
GW spectral density,

P̃gwðyÞ ¼
1

4πycs

�
1 − c2s
c2s

�Z
zþ

z−

dz
z
ðz − zþÞ2ðz − z−Þ2

zþ þ z− − z

× P̄vðzÞP̄vðzþ þ z− − zÞ; ð55Þ

with PvðqÞ ¼ L3
fŪ

2
fP̄vðqLfÞ. And Lf is the length scale of

the velocity field. Then, using Eq. (31), we could obtain the
GW power spectrum

PgwðkÞ ¼ 3ðΓ̃Ū2
f Þ2ðHτvÞðHLfÞ

ðkLfÞ3
2π2

P̃gwðkLfÞ; ð56Þ

where y ¼ kLf , z ¼ qLf , z� ¼ yð1� csÞ=2cs, τv is the
lifetime of sound wave, and the adiabatic index Γ̃ ≈ 1þ c2s .
The root-mean-square fluid velocity is

Ū2
f ¼

Z
dq
q
PṽðqÞ

¼ 2

ðβR�Þ3
Z

dT̃ fcolðT̃ ÞT̃ 3

Z
dz

z2

2π2
jAðzÞj2

¼ 3

4πv3w

Z
dz

z2

2π2
2jAðzÞj2: ð57Þ

We can also derive the growth rate of GW power spectrum
scaled by the Hubble rate as

P0
gw ¼ 1

H
d
dt

Pgw ¼ 3ðΓ̃Ū2
f Þ2ðHLfÞ

ðkLfÞ3
2π2

P̃gwðkLfÞ: ð58Þ

When the GWwas generated, the sound wave should freely
propagate in the broken phase, Hence, the sound velocity cs
in the calculation of GW should be c− in this work. We can
see that the sound velocity effects should be considered to
predict more reliable GW signals.

VIII. DISCUSSIONS

Using the detailed procedures mentioned above in the
SSM, we present main results in Figs. 5–7. In Fig. 5,2More detailed studies are left for our future work.

XIAO WANG, FA PENG HUANG, and YONGPING LI PHYS. REV. D 105, 103513 (2022)

103513-8



we show the scaled GW power spectra for detonation (left
column) and deflagration (right column) with different
phase transition strengths. We can see that the peak
amplitude and peak frequency of the scaled GW power
spectra are modified after considering different sound
velocities in symmetric and broken phases. For detonation,
only the sound velocity c− of the broken phase can give an
obvious modification to the GW power spectra, since only
c− can change the corresponding velocity and energy
fluctuation profiles. In contrast, the sound velocities of
both symmetric and broken phases could affect the GW
power spectra for deflagration cases. The stronger

dependence of the GW power spectrum on sound velocities
for deflagration is strongly related to the corresponding
fluid profiles derived by solving the hydrodynamical
equations. In our study, when the strength of phase
transition is weaker, we actually found the fluid profile
could get stronger dependence on sound velocities for
deflagration. Hence, the GW power spectrum derived by
these fluid profiles shows stronger dependence on sound
velocities, as shown in the bottom of Fig. 5(b). Recent
numerical study [17] shows that there are kinetic defects as
the phase transition strength increases in deflagration cases.
To take this effect into account in the SSM, Ref. [18]

(a) Detonation (b) Deflagration

FIG. 5. Sound velocity effects on the scaled GW power spectra for detonation (left column) and deflagration (right column).
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introduces a suppression factor. This factor can quantita-
tively change our result, but not qualitatively. We do not
consider this suppression factor in this work.
In Fig. 6, we show the sound velocity effects on the peak

amplitude Ap and the peak angular frequency kRp of the
scaled GW spectrum for detonation. Here, we use different
line styles with different colors to represent the results
obtained by different phase transition strengths. According
to both panels of Fig. 6, we find larger sound velocity
differences produce a larger deviation of the peak ampli-
tude and the peak angular frequency. With the decreasing of

the sound velocity of broken phase, the peak amplitude and
the peak angular frequency monotonically decrease. Since
the sound velocity of symmetric phase could not affect the
GW power spectra of detonation, we set cþ ¼ 1=

ffiffiffi
3

p
here.

However, for deflagration, the behaviors of peak ampli-
tude and peak angular frequency modification are relatively
complicated. We show the peak amplitude and peak
angular frequency as function of sound velocities for
deflagration in Fig. 7. Different lines with different colors
denote different phase transition strengths. In the top
panels, we set c− ¼ 1=

ffiffiffi
3

p
and show effects of different

FIG. 7. Peak amplitude (left column) and peak angular frequency (right column) as a function of sound velocities for deflagration.

FIG. 6. Peak amplitude (left panel) and peak angular frequency (right panel) of scaled GW spectrum as a function of sound velocities
for detonation.
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sound velocities of the symmetric phase on the peak
amplitude and the peak angular frequency, respectively.
With the decreasing of the sound velocity of the symmetric
phase, the peak amplitude of GW spectrum monotonically
decreases, while the peak angular frequency monotonically
increases. For a weaker phase transition, the effect of sound
velocity is more significant. However, fixing the sound
velocity cþ ¼ 1=

ffiffiffi
3

p
in the symmetric phase, the peak

amplitude shows a relatively more complicated behavior
with the decreasing of sound velocity in the broken phase
as depicted in the bottom left panel of Fig. 7. We find the
peak amplitude first increases and then decreases when the
sound velocity of the broken phase is smaller than an
inflection point for α ¼ 0.003 and α ¼ 0.03. But with the
increasing of phase transition strength, this inflection point
of sound velocity becomes larger. And when phase tran-
sition is strong enough, the peak amplitude monotonically
decreases with the decreasing of the sound velocity in the
broken phase. For the peak angular frequency, it mono-
tonically decreases with the decreasing of the sound
velocity in the broken phase for different phase transition
strengths. As shown in Figs. 4 and 7, the GW spectrum of
deflagration is strongly related to the sound velocities of
both phases and phase transition strength.
For the GW power spectrum, these modifications of peak

amplitude and peak angular frequency originate from the
variation of velocity and energy fluctuation profiles after
considering different sound velocities in the DSVM. These
results remind us that we should precisely model the EoS in
both symmetric and broken phases and calculate the sound
velocities to get more precise predictions on the velocity
and energy fluctuation profiles. Then, we could get more
reliable velocity power spectra and hence more precise
acoustic GW spectra.
According to the results shown in Figs. 5–7, we find that

the sound velocity slightly changes the shape of the GW
spectrum but mostly affects the peak amplitude and peak
frequency for both the weak and strong phase transition.
Sound velocity and bubble wall velocity are degenerate
with other phase transition parameters: the phase transition
strength α, duration of the phase transition β, and the phase
transition temperature T. However, the degeneracy of these
parameters is difficult to quantitatively model here. It
deserves a further study to reveal the degeneracy between
the sound velocity, bubble wall velocity vw, and other phase
transition parameters, e.g., α, β, and T. Based on the results
shown in Figs. 5 and 6, a change of the sound velocity c2−
from 1=3 to 0.25 at α ¼ 0.3 can have an impact of around
60% on the peak amplitude and around 15% on the peak
frequency for detonation. And for weaker phase transition
(e.g., α ¼ 0.03 and α ¼ 0.003), a change of the sound
velocity of the detonation mode can have an impact on
almost the same fraction of corrections on the peak
amplitude and peak frequency as the α ¼ 0.3 case. For
deflagration, Figs. 5 and 7 show that a change of the sound

velocity c2þ from 1=3 to 0.25 at α ¼ 0.3 can have an impact
of around few percent on the peak amplitude and around
40% on the peak frequency and a change of the sound
velocity c2− from 1=3 to 0.25 at α ¼ 0.3 can have an impact
of around 63% on the peak amplitude and around 15% on
the peak frequency. For weaker phase transition (e.g., α ¼
0.03 and α ¼ 0.003), a change of velocity c2þ from 1=3 to
0.25 can have an stronger impact on the peak amplitude and
peak frequency for deflagration. And a change of velocity
c2− from 1=3 to 0.25 can have an impact on almost the same
fraction of corrections on peak frequency as the α ¼ 0.03
case. However, the impact on the peak amplitude becomes
stronger and more complicated for the change of c2−.
Nevertheless, the impact from the sound velocity at α ∼
Oð0.1Þ is already quite obvious. Since LISA and TianQin
will be sensitive to phase transitions with α ∼Oð0.1Þ,
sound velocity might be an important factor for the future
GW experiments.

A. Observational consequences

After we obtain the GW spectra at the production time, it
is straightforward to calculate the GW signals observed
today and the signal-to-noise ratio for a given GW experi-
ment. We just need to calculate the concrete phase
transition parameters and include the redshift effect. And
the sound velocity effects would directly reflect on the
detectability of the PTGW signal. To clearly show the
effects of sound velocities on the GW detectability, we
demonstrate a simple example with the following bench-
mark set:

T� ¼ 500 GeV; HR� ¼ 0.01; α ¼ 0.4: ð59Þ

The GW power spectrum predicted by the SSM is a
function of phase transition parameters ðT�; α; HR�; vwÞ
and the scaled wave number z ¼ kR� at the production
time. While the GW power spectrum, which is represented
in terms of frequency f today, can be derived as

ΩgwðfÞ ¼ FgwPgwðzðfÞÞ; ð60Þ

where [10]

Fgw ¼ ð3.57� 0.05Þ × 10−5
�
100

g�

�
1=3

: ð61Þ

Taking the redshift into account, we have the following
relation between z and f,

f ¼ z
HR�

f�; ð62Þ

where [11]
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f� ¼ 2.6 × 10−6 Hz

�
T�

100 GeV

��
g�
100

�
1=6

: ð63Þ

Finally, we have

ΩgwðfÞ ¼ 3FgwðΓ̃2Ū3
f ÞðHR�Þ2

ðzÞ3
2π2

P̃gwðzÞ: ð64Þ

Here, we replace Hτv in Eq. (56) with HR�=Ūf [10,11].
And we conventionally use h2Ωgw (h ≈ 0.678) to represent
the GW power spectrum in Fig. 8. The left and right
panels of Fig. 8 denote the GW spectra of detonation (left
panel vw ¼ 0.92) and deflagration (right panel vw ¼ 0.44)
for the benchmark set in Eq. (59). The solid (c2þ ¼ 1=3,
c2− ¼ 1=3), dashed (c2þ ¼ 1=3; c2− ¼ 0.25), dot-dashed
(c2þ¼0.25, c2−¼1=3), and dotted (c2þ¼0.25, c2− ¼ 0.25)
lines represent GW spectra derived by different combina-
tions of sound velocities. The magenta line and purple line
are the power-law integrated sensitivities of LISA and
TianQin at the level of SNR ¼ 5 with 108 s observation
time [47,48], respectively. As shown in Fig. 8, different
sound velocities can also affect the peak amplitude and
peak frequency of PTGW observed today. Hence, sound
velocity could be important to the detectability of PTGW.
Therefore, more precise GW spectra depend on more
reliable sound velocities of both phases. In Appendix,
we show the sound velocity could deviate from 1=

ffiffiffi
3

p
in a

generic class of new physics models from the perspective of
standard model effective field theory.

IX. CONCLUSION

We have studied the sound velocity effects on the scaled
gravitational wave spectra in the sound shell model.
We find that large deviation of sound velocities from the

pure radiation value 1=
ffiffiffi
3

p
leads to obvious shifts of peak

amplitude and peak angular frequency. To extract reliable
information of the early Universe from the future gravita-
tional wave experiments, it is necessary to first obtain the
precise sound velocities in symmetric and broken phases.
More comprehensive calculations in some representative
new physics models using the above method are in progress.
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APPENDIX: SOUND VELOCITY DEVIATION IN
A REPRESENTATIVE EFFECTIVE MODEL

We have shown that the sound velocities in the broken
and symmetric phases could make significant modification
on the peak amplitude and peak frequency of the PTGW.
The sound velocity deviation from 1=

ffiffiffi
3

p
of the pure

radiation phase might appear in a wide classes of new
physics models including the various examples in Ref. [28]
and a representative effective model in Ref. [29]. To
illustrate the common feature of sound velocity deviation
in various new physics models, we consider the represen-
tative effective model, namely, the dimension-6 effective

model with the tree-level potential VðϕÞ ¼ μ2

2
ϕ2 þ λ

4
ϕ4 þ

κ
8Λ2 ϕ6. From the perspective of standard model effective
field theory, the effective model with dimension-6 operator
could represent various new physics models, including the
inert singlet, doublet, triplet, or composite Higgs model as
discussed in our previous studies [49–53]. Here, we take
the approximated free energy of the effective model

(a) Detonation (b) Deflagration

FIG. 8. The GW spectra for the benchmark set in Eq. (59) with different bubble wall velocities. The left panel is for detonation with
vw ¼ 0.92, and the right panel is for deflagration with vw ¼ 0.44. The solid (c2þ ¼ 1=3, c2− ¼ 1=3), dashed (c2þ ¼ 1=3, c2− ¼ 0.25), dot-
dashed (c2þ ¼ 0.25, c2− ¼ 1=3), and dotted (c2þ ¼ 0.25, c2− ¼ 0.25) lines represent GW spectra obtained by different combinations of
sound velocities. The magenta line and purple line are the power-law integrated sensitivities of LISA and TianQin at the level of
SNR ¼ 5, respectively.
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F ðϕ; TÞ ¼ Veffðϕ; TÞ ≈ −
a�
3
T4 þ μ2 þ cT2

2
ϕ2

þ λ

4
ϕ4 þ κ

8Λ2
ϕ6 ðA1Þ

to demonstrate the sound velocity deviation. a� ¼ g�π2=30
(g� is the number of degrees of freedom), Λ=

ffiffiffi
κ

p
is the

effective cutoff scale, and cT2 represents the thermal
correction with

c ¼ 1

16

�
g02 þ 3g2 þ 4y2t þ 4

m2
h

v2
− 12

κv2

Λ2

�
; ðA2Þ

where g0 and g are gauge couplings, yt is the Yukawa
coupling of top quark, and v is the electroweak vacuum
expectation value. Hence, we have the pressurep ¼ −F and
energy density e ¼ T ∂p

∂T − p. Since the definition of sound
velocity is c2s ¼ ∂p=∂e, we can obtain the sound velocity as

c2s ¼
∂p=∂T
∂e=∂T ¼ 4a�T3 − 3cTϕ2

12a�T3 − 3cTϕ2
: ðA3Þ

In the symmetric phaseϕ ¼ 0, then the corresponding sound
velocity is

c2þ ¼ 4aþT3

12a2þT3
¼ 1

3
: ðA4Þ

However, we have

ϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2λΛ2 þ 2Λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2Λ2 − 3κðμ2 þ cT2Þ

p
3κ

s
ðA5Þ

in the broken phase, and the sound velocity is

c2− ¼ 4a−T3 − 3cTϕ2

12a−T3 − 3cTϕ2
: ðA6Þ

It is obvious that c2− can deviate from 1=3, and c2− is also
related to the model parameter Λ=

ffiffiffi
κ

p
and temperature. Our

previous study [29] demonstrated the sound velocity as a
function of temperature for different cutoff scales in Fig. 2
therein. In Table I of Ref. [29], we found a lower cutoff scale
could give a c2− that significantly deviates from 1=3, and c2−
could even be 0.2317 forBP6. Models [54,55] with multiple
order-parameter fields could generate two-step phase tran-
sition, and the sound velocity of symmetric phase could also
deviate from 1=

ffiffiffi
3

p
[28,29]. For a given phase transition

model, when the field-dependent masses of the thermal
particles are comparable with the phase transition temper-
ature, the sound velocities would deviate from 1=

ffiffiffi
3

p
of the

pure radiation phase as discussed in Refs. [28,29].
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