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Perturbation theory (PT) has been used to interpret the observed nonlinear large-scale structure statistics
in the quasilinear regime. To facilitate the PT-based analysis, we have presented the GridSPT algorithm, a
grid-based method to compute the nonlinear density and velocity fields in standard perturbation theory
(SPT) from a given linear power spectrum. Here, we expand on this approach by taking the redshift-space
distortions into account. With the new implementation, we generate for the first time the redshift-space
density field to the fifth order and computed the next-to-next-to-leading-order (two-loop) power spectrum
and the next-to-leading-order (one-loop) bispectrum of matter clustering in redshift space. By comparing
the result with the corresponding analytical SPT calculation and N-body simulations, we find that the SPT
calculation (A) suffers much more from UV sensitivity due to the higher-derivative operators, and
(B) deviates from the N-body results above the Fourier wave number smaller than real space kmax. Finally,
we show that while the Padé approximation removes spurious features in the morphology, it does not
improve the modeling of the power spectrum and bispectrum.
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I. INTRODUCTION

Galaxy redshift surveys [1] provide a wealth of cosmo-
logical information, which enables us to probe the late-time
cosmic expansion history as well as the growth of large-
scale structure. They also offer a clue to probe primordial
fluctuations, from which one can address the fundamental
physics questions of the early Universe. In addition to
several ongoing ground-based surveys such as HETDEX
[2], PFS [3], and DESI [4], there are space-based missions
planned to probe galaxies out to higher redshifts over a
large sky area, such as Euclid1 [5], the Nancy Grace Roman
Space Telescope2 [6], and SPHEREx3 [7]. These gigantic
surveys aim to dramatically improve our understanding of
the Universe, and resolve puzzles such as the nature of dark
matter and dark energy and the physics of cosmic inflation.
Surveying a larger volume with a higher galaxy number

density means that these surveys measure the summary
statistics—such as the power spectrum and correlation
function—with unprecedented precision, and this can offer

a tight constraint on cosmological parameters, helping us to
clarify the nature of cosmic acceleration as well as to test
gravity on cosmological scales [8]. In doing so, it is
indispensable to obtain an accurate theoretical description
of the large-scale structure along with the observational
systematics. In galaxy surveys, major systematics that need
to be controlled are the nonlinearities in gravitational
evolution, galaxy bias, and redshift-space distortions
(RSDs). There have been tremendous efforts to describe
these effects both from analytical treatments and numerical
simulations, and it is indeed one of the major subjects in
observational cosmology (e.g., Refs. [1,9–24]).
Among various techniques and methods, cosmological

N-body simulations and perturbation theory calculations
are the standard theoretical tools to accurately predict the
observed large-scale structure. In particular, N-body sim-
ulations are powerful in quantitatively describing the
clustering of dark matter and halos in the nonlinear regime.
Providing a real-space realization of halos, N-body simu-
lations also make it possible to directly account for the
observational systematics, such as the survey window
function and masks. On the other hand, the perturbation
theory (PT) treatment [25] provides a faster way to predict

1https://sci.esa.int/web/euclid.
2https://roman.gsfc.nasa.gov/.
3https://spherex.caltech.edu/.
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statistical quantities in the weakly nonlinear regime, and is
used as a theoretical template of the measured power
spectrum or correlation function. These two approaches
are complementary, and a combination of them may give a
more efficient theoretical tool with versatile applications
(e.g., Ref. [23]).
To facilitate the PT-based approach, we have developed a

grid-based algorithm to simulate the nonlinear density and
velocity fields of large-scale structure, based on the
standard perturbation theory (SPT) [26] (see Refs. [27,28]
for earlier works). Taking advantage of the fast Fourier
transform (FFT), its C++ implementation, called GridSPT,
enables us to quickly generate the nonlinearly evolved
density and velocity fields at each order in SPT. Then, we
can apply all analysis tools developed for the statistical
analysis of the density and velocity fields on configuration-
space grids, for example, for N-body simulations or for the
analysis of survey data. Furthermore, the observational
systematics such as the survey window function and masks
can be easily incorporated into the grid density fields. As an
explicit demonstration, in Ref. [29] we estimated the
covariance matrix of the matter power spectrum with
various shapes of survey window functions, including
the higher-order corrections from the next-to-leading-order
(one-loop) trispectrum.
In this paper, extending the previous grid-based algo-

rithm to include the RSDs [30,31], we present an explicit
implementation of the RSD effects in GridSPT. Previous
studies, for example in Refs. [14,18] and Ref. [32], have
shown that the naive SPT calculation of the matter power
spectrum in redshift space does not provide as good
of a model as that in real space, and there have been
numerous works to improve the SPT predictions (e.g.,
Refs. [14,18,33–41]). Making use of the grid-based treat-
ment, we will see how the naive SPT treatment leads to an
inaccurate prediction particularly at the field level, even
after including the nonlinear corrections up to the fifth
order. Also, applying the Padé approximations to the SPT
density fields, we will look for the possibility of using a
resummed treatment for more accurate modeling. It is,
however, to be stressed that the implementation of the RSD
effect in GridSPT is not our final goal. In future work we
plan to implement the effect of galaxy bias as well as
the effective-field-theory treatment (e.g., Refs. [20,42–44]),
the latter of which can mitigate the UV-sensitive behaviors
of the SPT calculation, and we thus expect that the method
has the potential to improve upon the SPT predictions.
Note that GridSPT algorithm was applied to a precise
calibration of the effective-field-theory counterterms
for the bispectrum and trispectrum at next-to-leading order
[45,46].
In principle, one can implement the RSD effect from the

GridSPT output by mapping the real-space density field to
redshift space using the line-of-sight component of the
peculiar velocity field. However, a naive implementation of

the mapping formula in grid space needs an interpolation,
for which an accurate computation needs a nonperturbative
calculation. For the perturbative treatment, we present a
novel expression that relates the redshift-space density field
in terms of the real-space density and velocity fields. We
then evaluate the expression at the redshift-space position.
In this way, no interpolation technique is necessary, and one
can directly reconstruct the SPT density field in redshift
space from the real-space GridSPT calculations. With an
explicit implementation of the RSD effects, we investigate
the statistical and morphological properties of the redshift-
space SPT density fields.
The organization of this paper is as follows. In Sec. II we

begin by briefly reviewing the grid-based SPT calculation
of large-scale structure, and comment on the aliasing effect
that appears in a practical implementation. Then, in Sec. III
we consider the RSD, and derive the expression for the
redshift-space density field written in terms of real-space
quantities. Based on this, we present a perturbative frame-
work to compute density fields with GridSPT. Section IV
presents an explicit demonstration of GridSPT calculations
taking the RSD effect into account, for which we also make
a detailed comparison with N-body simulations and ana-
lytical SPT calculations. To this end, we present for the first
time the two-loop SPT power spectrum in redshift space.
Section V discusses the application of Padé approximations
to GridSPT and discusses the possibility to improve the
SPT calculations in redshift space at the field level. Finally,
Sec. VI is devoted to the conclusion and discussions of
future prospects.
Throughout the paper, we use the following Fourier

convention:

fðkÞ ¼
Z

d3xe−ik·xfðxÞ; ð1Þ

fðxÞ ¼
Z

d3k
ð2πÞ3 e

ik·xfðkÞ≡
Z
k
eik·xfðkÞ: ð2Þ

II. GRID-BASED PERTURBATION THEORY

In this section, we present a concise review of the grid-
based calculation for perturbation theory of large-scale
structure called GridSPT described in Ref. [26]. In essence,
GridSPT enables us to perform SPT calculations at the field
level, and to generate the numerical realizations of higher-
order density and velocity fields at each grid point.
The heart of the algorithm is the real-space recursion
relation in Eq. (6), upon which the GridSPT implementa-
tion is based.
Standard perturbation theory models the gravitational

evolution of a matter distribution by integrating the Vlasov-
Poisson equations under the assumption of single-stream
matter flow [25]. In this framework, the large-scale matter
distribution is described by the pressureless fluid equations
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coupled with the Poisson equation. When further combined
with the irrotational flow assumption, which is also valid on
large scales, the system of equations describing the non-
linear evolution of density and velocity fields is further
reduced to

d
dη

�
δ

θ

�
þΩab

�
δ

θ

�
¼

� ∇ · ½δu�
∇ · ½ðu ·∇Þu�

�
; ð3Þ

where we introduce the time variable η defined by
η≡ lnDþðtÞ, with Dþ being the linear growth factor.
We denote the comoving coordinate as x. The quantities
δ ¼ δðx; ηÞ and θ ¼ θðx; ηÞ are the mass density and
the velocity-divergence fields, respectively. The velocity-
divergence field is related to the velocity field v through
θ≡ −∇v=ðfaHÞ≡∇ · u, with f being the linear growth
rate, defined by f ≡ d lnDþ=d ln a. The field u is the
reduced velocity field given by u ¼ ∇½∇−2θ� for an irrota-
tional matter flow. The matrix Ωab ¼ ΩabðηÞ generally
depends on cosmology and time, but replacing that with the
time-independent constant matrix ΩEdS

ab for an Einstein–de
Sitter universe,

ΩEdS
ab ¼

�
0 −1
− 3

2
1
2

�
; ð4Þ

provides a good approximation for a wide class of
cosmology models close to ΛCDM (e.g., Refs. [47–49]).
We obtain the perturbative solutions for Eq. (3) by

expanding the density and velocity fields. For the dominant
growing-mode contributions, we have

δðx; ηÞ ¼
X
n

δnðx; ηÞ; θðx; ηÞ ¼
X
n

θnðx; ηÞ; ð5Þ

with the time dependence at each order scaled as δn,
θn ∝ enη. Hereafter, we suppress arguments of η for the
perturbed quantities and simply write δnðxÞ and θnðxÞ.
Substituting Eq. (5) into Eq. (3) and using Ωab in Eq. (4),
the order-by-order calculation leads to the following
recursion relation [26]:

�
δnðxÞ
θnðxÞ

�
¼ 2

ð2nþ 3Þðn − 1Þ
�
nþ 1

2
1

3
2

n

�

×
Xn−1
m¼1

� ð∇δmÞ · un−m þ δmθn−m
1
2
∇2ðum · un−mÞ

�
; ð6Þ

for n ≥ 2. Here we have used the identity ∇ · ½ðu ·∇Þu� ¼
1
2
∇2ðu · uÞ for an irrotational (curl-free) velocity field u.

Unlike the equivalent expression given in Ref. [26], Eq. (6)
involves no tensor-field calculation, which is helpful
for reducing the memory requirement in the numerical

implementation. We complete the recursion relation by
using the linear-order (n ¼ 1) growing-mode solution

�
δ1ðxÞ
θ1ðxÞ

�
¼ eη

�
1

1

�
δ0ðxÞ; ð7Þ

where δ0ðxÞ is the linear density field given at an initial
time.
For a given linear density field δ0ðxÞ on grids, we use

them as an initial condition for the recursion [Eq. (7)] to
calculate the nonlinear source terms given on the right-hand
side of Eq. (6). The FFT facilitates the calculation of the
derivative operators ∇j, which simply becomes a multi-
plication of ikj in Fourier space. We have presented details
of the algorithm and implementation in Sec. II C of
Ref. [26].4 In Ref. [26], we generated nonlinear density
fields up to fifth order and studied both their morphological
and statistical properties in a face-to-face comparison with
N-body simulations that begins from exactly the same
random realizations. One of the advantages of this method
is that grid-based codes for the statistical analysis of N-
body simulation results can be reused for the outcomes of
GridSPT, and once the density fields are generated the
predictions can be scaled to any redshift analytically by
using the fact that the time dependence of the nth-order
fields is simply described as δn, θn ∝ enη.
It is worth noting that the operations for the GridSPT

implementation, particularly calculating the right-hand side
of Eq. (6), can generate the aliasing effect, which ariseswhen
fast Fourier transforming the nonlinear terms evaluated in
configuration space (see Appendix A 1). The aliasing effect
produces spurious high-wave-number Fourier modes that
affect the small-scale behaviors of the resulting nonlinear
fields. Mitigating such an effect is thus critical for a practical
SPT calculation at the field level.
A simple but widely used technique to mitigate the

aliasing effect is to discard the high-frequency modes. In
our previous papers [26,29], we adopted the so-called 2=3
rule to set Fourier modes in the high-frequency range
of k > ð2=3ÞkNyq to zero at each step of the GridSPT
calculation. Here, the wave number kNyq is the Nyquist

frequency defined by kNyq ≡ π=Lp, where Lp ≡
ðLbox=N

1=3
gridÞ is the grid separation, and Lbox and Ngrid

are, respectively, the side length and total number of grids
for the comoving cubic box inside which the fields δn and
θn are defined. Strictly speaking, however, the 2=3 rule is
valid only for the aliasing effect arising from the quadratic
operations of the fields. For nonlinear terms with the Nth
power of the fields, however, the 2=3 rule has to be
generalized to the 2=ðN þ 1Þ rule. That is, the modes with

4With the real-space recursion relation in Eq. (6), one
important difference from the algorithm in Ref. [26] is that we
do not need to compute the tensor fields ∂iuj at every step of PT
calculations.
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wave number k > 2=ðN þ 1ÞkNyq are to be discarded
before the calculation of nonlinear terms. Applying the
2=ðN þ 1Þ rule has been essential in computing the red-
shift-space density field with GridSPT since the redshift-
space density field is constructed perturbatively with higher
powers of the density and velocity fields. In Appendix A,
we discuss this point in greater detail and present a
comparison among results of the GridSPT calculations
with various dealiasing treatments.
Finally, a cautionary remark is in order: the single-

stream PT treatment ceases to be adequate in the non-
linear regime where the multistream flow is generated,
and recent studies show that the multistream effect on the
matter distribution is manifest even on large scales
and becomes more significant at higher order (e.g.,
Refs. [23,50–52]). The effective-field-theory treatment
can remedy the situation by introducing counterterms
that absorb the UV sensitivity. We will leave a grid-based
implementation of the effective-field-theory treatment for
our future work, and focus on modeling RSD in the
GridSPT framework.

III. IMPLEMENTING REDSHIFT-SPACE
DISTORTIONS IN GridSPT

In this section, based on the standard PT treatment, we
present an algorithm to perturbatively compute the redshift-
space density fields on grids.
First, recall that the observed position of a galaxy in

redshift space, s, is related to the real-space position x
through

s ¼ x − fuzðxÞẑ; ð8Þ

where uz is the line-of-sight component of the field u,
defined earlier as u≡ −v=ðfaHÞ, with v being the peculiar
velocity. Throughout the paper, we work with the distant-
observer limit and take the z axis as the line-of-sight
direction. With the mapping relation in Eq. (8), one finds an
expression for the density field in redshift space, denoted
by δðSÞ, in terms of the real-space quantities as (e.g.,
Refs. [1,32]; see also Refs. [53–55] for the expression
without taking the distant-observer limit)

δðSÞðsÞ ¼
���� ∂s∂x

����
−1
f1þ δðxÞg − 1

¼ δðxÞ þ f∇zuzðxÞ
1 − f∇zuzðxÞ

; ð9Þ

where the operator ∇z stands for the line-of-sight deriva-
tive, ẑ ·∇x. The above expression is exact in the distant-
observer limit and, using GridSPT, the quantities on the
right-hand side can be computed up to an arbitrary order
without expanding the denominator. Note, however, that
the right-hand side of Eq. (9) is still to be evaluated at the
real-space position. In order to obtain the density field in
redshift space, we therefore have to transform the quantities
at the real-space position x to the redshift-space position s
through Eq. (8). Although such a transformation can be
implemented rigorously up to an arbitrary order in PT
calculations, the resultant redshift-space density fields no
longer reside at the original grids. To obtain a regularly
spaced density field, we have to interpolate among the
resultant density fields. Such an operation obscures the
counting of PT order, so it is incompatible with a PT
calculation in a strict sense. We will leave this implemen-
tation as a future work.
To circumvent the situation, we derive an alternative

expression for the redshift-space density field. To do so,
consider the Fourier transform of the redshift-space density
field:

δðSÞðkÞ ¼
Z

d3se−ik·sδðSÞðsÞ

¼
Z

d3se−ik·s
����� ∂s∂x

����
−1
f1þ δðxÞg − 1

�

¼
Z

d3xe−ik·ðx−fuzðxÞẑÞfδðxÞ þ f∇zuzðxÞg: ð10Þ

In the last line we changed the variable of the integral from
s to x, using Eq. (8) and the Jacobian j∂s=∂xj ¼
1 − f∇zuzðxÞ. Taylor expanding the velocity field in the
exponent and substituting the Fourier transform of the
quantities δ and uz, we obtain

δðSÞðkÞ ¼
Z

d3xe−ik·x
X
n¼0

in

n!
ðfkzÞnfδðxÞ þ f∇zuzðxÞgfuzðxÞgn

¼
X
n¼0

ðfkzÞn
n!

Z
d3xe−ik·x

Z
p
eip·x

Z
q1

eiq1·x � � �
Z
qn

eiqn·x
�
δðpÞ þ f

p2
z

p2
θðpÞ

�
q1;z
q21

θðq1Þ � � �
qn;z
q2n

θðqnÞ: ð11Þ
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Here, we consider the irrotational velocity flow,5 and used the velocity-divergence field θ [see Eq. (3) above], with
which uzðkÞ ¼ ð−ikz=k2ÞθðkÞ.
Going back to configuration space, the inverse Fourier transform of Eq. (11) gives

δðSÞðsÞ ¼
Z

d3k
ð2πÞ3 e

ik·sδðSÞðkÞ

¼
X
n¼0

Z
p

Z
q1

� � �
Z
qn

eiðpþq1þ���þqnÞ·s f
nðpz þ

P
n
i¼1 qi;zÞn

n!

�
δðpÞ þ f

p2
z

p2
θðpÞ

�
q1;z
q21

θðq1Þ � � �
qn;z
q2n

θðqnÞ: ð12Þ

Finally, the above expression can be recast as

δðSÞðsÞ ¼
X
n¼0

fn

n!
∇̃n

z ½fδðsÞ þ f∇̃zuzðsÞgfuzðsÞgn�; ð13Þ

with the operator ∇̃z defined by ∇̃z ≡ ẑ ·∇s. Note that the ẑ
direction is well defined both in real space and red-
shift space.
Equation (13) is the key equation to perform a grid-based

PT calculation in redshift space. In contrast to Eq. (9), the
right-hand side is now expressed as a function of the
redshift-space position s. Hence, we use Eq. (13) as a basis
to directly compute the redshift-space density field from the
real-space quantities without any interpolation. To be
explicit, let us apply the SPT expansion given in Eq. (5),
and substitute these expansions in real space into Eq. (13).
Perturbatively computing the redshift-space density field,
the order-by-order calculation leads to

δðSÞ ¼
X
n¼1

δðSÞn ; ð14Þ

with the explicit expression of δðSÞn given below up to the
fifth order:

δðSÞ1 ¼ D1; ð15Þ

δðSÞ2 ¼ D2 þ f∇̃zðD1uz;1Þ; ð16Þ

δðSÞ3 ¼ D3 þ f∇̃zðD1uz;2 þD2uz;1Þ þ
f2

2!
∇̃2

zðD1u2z;1Þ; ð17Þ

δðSÞ4 ¼D4þf∇̃zðD1uz;3þD2uz;2þD3uz;1Þ

þf2

2!
∇̃2

zð2D1uz;1uz;2þD2u2z;1Þþ
f3

3!
∇̃3

zðD1u3z;1Þ; ð18Þ

δðSÞ5 ¼D5þf∇̃zðD1uz;4þD2uz;3þD3uz;2þD4uz;1Þ

þf2

2!
∇̃2

zfD1ð2uz;1uz;3þu2z;2Þþ2D2uz;1uz;2þD3u2z;1Þ

þf3

3!
∇̃3

zð3D1u2z;1uz;2þD2u3z;1Þþ
f4

4!
∇̃4

zðD1u4z;1Þ; ð19Þ

where we introduced the perturbed quantity Dn, defined by

Dn ≡ δn þ f∇̃zuz;n: ð20Þ

Now, the recipe to compute δðSÞ with GridSPT is to first
evaluate the real-space density and velocity fields, δ and uz,
up to an arbitrary order, and then plug them into the above
expressions. All the calculations are done in the same grid
space in which we obtained the real-space quantities. Note
that, as a matter of course, the Fourier transform of the

density field at each order, δðSÞn ðkÞ, yields an identical
expression to the one with the redshift-space kernel Zn in
the literature [see Eq. (B1)].

IV. RESULTS

Using the prescription in Sec. III, we are in a position to
present the results of GridSPT calculations in redshift space
and compare them to the results from N-body simulations.
Here, for the sake of comprehensive study in parallel with
our previous works, we adopt the same cosmological
parameters as used in Ref. [26], assuming the flat-
ΛCDM model: Ωm ¼ 0.279 for the matter density,
ΩΛ ¼ 0.721 for dark energy with an equation-of-state
parameter w ¼ −1, Ωb=Ωm ¼ 0.165 for the baryon
fraction, h ¼ 0.701 for the Hubble parameter, ns ¼ 0.96
for the scalar spectral index, and σ8 ¼ 0.8159 for the
normalization of the fluctuation amplitude at 8 h−1Mpc.
We then use the results of the cosmological N-body
simulation done in Ref. [26]. The simulation was carried
out using the publicly available code GADGET-2 [56], with
Nparticle ¼ 10243 particles in comoving periodic cubes of
Lbox ¼ 1000 h−1 Mpc, with the initial density field calcu-
lated using the 2LPT code [57]. Specifically, we use the
output data at z ¼ 0 and 1 to create the redshift-space
density field as well as to measure the statistical quantities.

5To be precise, in deriving Eq. (13), we do not necessarily
assume irrotationality.
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With the same initial seed and cubic box, we perform the
GridSPT calculations up to the fifth order. Unless otherwise
stated, the number of grids is set to Ngrid ¼ 12003 as a
default setup. To mitigate the aliasing effect, based on the
discussion earlier and in Appendix A, we adopt the
2=ð1þ 5Þ ¼ 1=3 rule (instead of the 2=3 rule that we
adopted in Ref. [26]) with an isotropic sharp-k filter, which
is applied only once to the initial density field.

A. Properties of SPT density fields

Let us begin by looking at the generated density fields in
real and redshift space.
Figures 1 and 2 show the 2D slices of the real- (left) and

redshift-space (right) density fields at z ¼ 0 obtained from
GridSPT and N-body results, taking the z axis to be the

line-of-sight direction. Applying the Gaussian filter of
radius R ¼ 10 h−1 Mpc, a slice of the x − y (Fig. 1) and
x-z plane (Fig. 2) is taken, and is averaged over 10 h−1Mpc
depth in each plane. In Figs. 1 and 2 the density fields over
the entire box are shown. On the other hand, Figs. 3 and 4
plot a zoomed-in view over the 200 × 200 h−1Mpc-sized
region, which are taken from Figs. 1 and 2 enclosed by the
dashed line in the bottom right panel. In all figures, the
amplitudes of density fields, plotted on a linear scale, are
indicated by the same color scale.
In each panel, the five successive subpanels from top left

to bottom middle show the GridSPT results by summing up
higher-order corrections one by one, i.e.,

P
n
j¼1 δj orP

n
j¼1 δ

ðSÞ
j , with the number n indicated in each subpanel.

These are compared with the N-body results shown in the

FIG. 2. Same as Fig. 1, but for a slice of 10 h−1 Mpc depth in the x-z plane.

FIG. 1. 2D density field at z ¼ 0 smoothed with a Gaussian filter of R ¼ 10 h−1 Mpc. A slice of the x-y plane is taken, and the density
field averaged over 10 h−1 Mpc depth is shown. The left and right panels represent the results in real and redshift space, respectively. In
each panel, the results generated with the GridSPT code are shown (from top left to bottom middle). Here, the color scale represents the

amplitude of the density field, δSPT ¼ P
n
j¼1 δj or δ

ðSÞ
SPT ¼ P

n
j¼1 δ

ðSÞ
j , with the number n indicated in each panel. For comparison, the

bottom right panel shows the density field from N-body simulations, evolved with the same initial condition as used in GridSPT
calculations.
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bottom right subpanel. Note that the real-space results in
the left panels of Figs. 1 and 3 are exactly the same as
Figs. 1 and 2 of Ref. [26], but with a different color scheme.
Adding higher-order PT corrections, the real-space
density fields obtained from GridSPT get closer to the
N-body result, and at the fifth order the PT density field
smoothed over 10 h−1Mpc agrees well with the N-body
result.
Similarly, the x-y plane density fields (Figs. 1 and 3) in

redshift space show a good agreement between the fifth-
order PT result and the N-body result. A closer look at the
amplitude reveals that the contrast between under- and
overdense regions is more pronounced in redshift space
than in real space. This could be partly ascribed to the
Kaiser effect [53,58], but the fact that the effect looks more
significant in higher-order GridSPT and N-body density
fields implies that there is some degree of nonlinear
contribution, boosting the linear-order enhancement.

On the other hand, in the x-z plane (Figs. 2 and 3), the
GridSPT density fields exhibit wobbly structures with
successive under- and overdense regions, which appear
most significant along the line-of-sight direction [e.g., see
the region around ðx; zÞ ¼ ð850; 350Þ h−1Mpc in the right
panels of Fig. 2 or 4]. We have found that those structures
are typically found around the underdense regions in the
N-body results. We ascribe this feature to the higher-
derivative terms in the higher-order SPT density field [see
Eqs. (17)–(19)], based on the fact that such a structure is not
seen in the real-space results, and that the feature becomes
more prominent as we increase the PT order in redshift
space. In particular, the GridSPT implementation requires
evaluating the higher-order derivative operator ∇n

z , and we
calculate them in Fourier space by multiplying by the factor
ðikzÞn, which might enhance the aliasing effect beyond the
level remedied by the 2=ðN þ 1Þ rule. We also check that
even when implementing the higher-order differential

FIG. 3. Same as Fig. 1, but an enlarged plot of the 2D density field with a size of 200 × 200 h−1 Mpc is shown for the region enclosed
by the dashed line in the bottom right panel of Fig. 1.

FIG. 4. Same as Fig. 2, but an enlarged plot of the 2D density field over 200 × 200 h−1 Mpc size is shown for the region enclosed by
the dashed line in the bottom right panel of Fig. 2.
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scheme (e.g., see Appendix C of Ref. [59]) the results are
hardly changed. Thus, fake wobbly structures in the x-z
plane are a direct result of our implementation of SPT
involving higher-order derivatives. As a result, the overall
agreement between GridSPT and N-body simulations in
redshift space is not as good as that in real space even at the
fifth order, indicating a slower convergence of the SPT
expansion in redshift space. We will discuss this point in
more detail from the statistical point of view in the next
subsection.

B. Power spectrum and bispectrum

Inspecting the density fields on grids, we next consider
the statistical quantities, in particular focusing on the power
spectrum and the bispectrum of the matter field. In both
GridSPT and N-body simulations, we measure them with
the same grid-based codes using FFT.6 In redshift space, the
statistical isotropy is known to be manifestly broken, and
measured results of the power spectrum and bispectrum,
which we respectively denote by PðSÞ and BðSÞ, exhibit
anisotropies along the line-of-sight direction (z axis in
our case). To characterize their anisotropic nature, we
apply the multipole expansion and define the multipole
moments as

PðSÞ
l ðkÞ≡ 2lþ 1

2

Z
1

−1
dμPðSÞðkÞPlðμÞ ð21Þ

for the power spectrum. The function Pl is the Legendre
polynomials, and the quantity μ is the directional cosine
given by μ≡ k̂ · ẑ or, equivalently, kz=k in our setup.
For the bispectrum, we adopt the definition used in
Ref. [61]:

BðSÞ
l ðk1; k2; k3Þ

≡ 2lþ 1

2

Z
1

−1
dμ

Z
2π

0

dϕ
2π

BðSÞðk1; k2; k3ÞPlðμÞ; ð22Þ

where the directional cosine μ is defined with the orienta-
tion angle between the line-of-sight direction and the vector
normal to the triangle formed with three wave vectors. The
angle ϕ represents the azimuthal angle characterizing the
rotation of the triangle in the plane. To be specific, we set

μ ¼ cosω ¼ ðk̂1 × k̂2Þ · ẑ
sin θ12

; ð23Þ

cosϕ ¼ fẑ × ðk̂1 × k̂2Þg · k̂1
sinω

: ð24Þ

Note that the bispectrum multipoles BðSÞ defined above
differ from those used in the literature (e.g., Refs. [62–65];
see also Ref. [66] for a comparison between different
coordinate choices), but a nice property of this definition is
that they are symmetric under the permutation of the order
of k1, k2, and k3.
Figures 5 and 6 show the results for the matter power

spectrum and matter bispectrum from a single realization at
z ¼ 1. Here the bispectrum is measured in the equilateral
configuration, taking the three wave numbers to be the
same ðk1 ¼ k2 ¼ k3 ≡ kÞ, and is plotted as a function
of k. The GridSPT results (solid lines) are constructed up
to the two-loop and one-loop order, respectively, through

PðSÞðkÞ ¼ PðSÞ
lin ðkÞ þ PðSÞ

1−loopðkÞ þ PðSÞ
2−loopðkÞ; ð25Þ

PðSÞ
lin ðkÞ ¼ PðSÞ

11 ðkÞ; ð26Þ

PðSÞ
1−loopðkÞ ¼ 2PðSÞ

13 ðkÞ þ PðSÞ
22 ðkÞ; ð27Þ

PðSÞ
2−loopðkÞ ¼ 2PðSÞ

15 ðkÞ þ 2PðSÞ
24 ðkÞ þ PðSÞ

33 ðkÞ ð28Þ

for the power spectrum, and

BðSÞðk1;k2;k3Þ¼BðSÞ
treeðk1;k2;k3ÞþBðSÞ

1−loopðk1;k2;k3Þ; ð29Þ

BðSÞ
treeðk1;k2;k3Þ¼BðSÞ

112ðk1;k2;k3Þ
þ2permsðk1↔k2↔k3Þ; ð30Þ

BðSÞ
1−loopðk1; k2; k3Þ
¼ fBðSÞ

123ðk1; k2; k3Þ þ 5 permsðk1 ↔ k2 ↔ k3Þg
þ fBðSÞ

114ðk1; k2; k3Þ þ 2 permsðk1 ↔ k2 ↔ k3Þg
þ BðSÞ

222ðk1; k2; k3Þ ð31Þ

for the bispectrum. In the above, the building blocks of the
power spectrum and bispectrum, Pab and Babc, are defined,
respectively, by

hδðSÞa ðkÞδðSÞb ðk0Þi ¼ ð2πÞ3δDðkþ k0ÞPðSÞ
ab ðkÞ; ð32Þ

hδðSÞa ðk1ÞδðSÞb ðk2ÞδðSÞc ðk3Þi
¼ ð2πÞ3δDðk1 þ k2 þ k3ÞBðSÞ

abcðk1; k2; k3Þ: ð33Þ

Applying the multipole expansion to each term, the multi-
pole moments of the redshift-space power spectrum and
bispectrum are evaluated up to l ¼ 4 and l ¼ 2,

6To be precise, in the case of N-body simulations, we first
assign N-body particles on grids to generate the density fields.
We here adopt the cloud-in-cell (CIC) interpolation to do this.
The interlacing dealiasing correction is made based on Ref. [60]
before we divide by the CIC window function to obtain our final
estimate of the density field on grids.
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respectively, together with the real-space power spectrum
and bispectrum.7

In Figs. 5 and 6 we plot the measurements from the
N-body simulation as red symbols. The error bars shown
for the power spectra indicate the sampling noise estimated
from the number of Fourier modes in each bin. In addition,
we plot the analytical SPT predictions, which we obtain by
directly performing the relevant loop integrals numerically,
at both next-to-leading (one-loop) and next-to-next-to-
leading (two-loop) orders (dotted lines). In Appendix B,
for the sake of completeness, we present the analytical
expressions for the SPT power spectrum and bispectrum in
redshift space. Note that in both GridSPT and analytical

SPT calculations, the two-loop redshift-space power spec-
tra are the results presented for the first time in this paper.
Overall, the GridSPT power spectra consistently repro-

duce the analytical SPT calculations. Note here that for
analytical SPT calculations, we introduce the cutoff scales in
the linear power spectrum so as to accommodate GridSPT
calculations.8 Compared to the real-space results, adding the
two-loop corrections to the one-loop spectra largely sup-
presses the amplitude of the power spectra. As a result, the
predictions at z ¼ 1 get closer to the N-body results at
k≲ 0.2h Mpc−1, above which the GridSPT results become
slightly noisier. Note that this does not simply imply that the

FIG. 5. Power spectrum in real (left) and redshift space (from second left to right) at z ¼ 1, multiplied by k3=2. Solid lines are the
results from the GridSPT calculation with the number of grids Ngrid ¼ 12003. The analytical SPT results are also shown for reference,
depicted as dotted lines. Note that the cutoff scale of kcut ¼ 1.4 hMpc−1 is introduced in the analytical SPT calculations. In both cases,
the green and blue curves, respectively, indicate the results at one- and two-loop order. On the other hand, the red symbols represent the
measured result fromN-body simulations with the same initial seed as used in GridSPT. Note that the error bars shown inN-body results
are the sampling noise estimated from the number of Fourier modes.

FIG. 6. Bispectrum in real (left) and redshift space (middle and right) at z ¼ 1, with the number of grids N ¼ 12003 in GridSPT
calculations. The GridSPT results in the equilateral configuration (i.e., k1 ¼ k2 ¼ k3 ≡ k), depicted as thick solid lines, are plotted as a
function of k. The analytical SPT results are also plotted for reference as dotted lines. In both cases, tree-level and one-loop results are
depicted as green and blue curves, respectively. The red filled circles are the measured results of the bispectrum obtained from N-body
simulations. Note that all of the bispectra are multiplied by k3.

7In practice, measurements from the density fields on grids are
made with discrete Fourier modes, and we use the FFT-based
algorithm to directly evaluate the power spectrum and bispectrum
multipoles (e.g., Refs. [63,67,68]).

8To be precise, we introduce the low-k cutoff kmin set to the
fundamental mode determined by the box size (i.e.,
kmin ¼ 2π=L). Further, the high-k cutoff is introduced, setting
kcut to 1.4h Mpc−1, which is close to the dealiasing filter scale in
GridSPT kcrit ¼ kNyq=3 ≃ 1.26h Mpc−1.
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two-loop SPT corrections are essential in predicting the
redshift-space power spectra. Indeed, in Appendix E we
examine the effective-field-theory treatment and show that
adding the counterterms to the GridSPT at one-loop order
reasonably reproduces the N-body results.
On the other hand, adding the one-loop corrections to the

monopole and quadrupole, the SPT predictions of the
bispectrum positively and negatively increase their ampli-
tudes, respectively. While the one-loop prediction seems to
reasonably match the real-space results in N-body simu-
lations, a quick look at the redshift-space results indicates,
that rather than the one-loop SPT, the tree-level predictions
better explain the N-body results. Although these are
qualitatively similar to what was found in previous works
(e.g., Ref. [61]), the bispectrum measured from the
GridSPT fields is rather noisy and it is difficult to judge
whether it is quantitatively consistent.
For a more quantitative assessment of the statistical

predictions, we increase the number of realizations in
GridSPT calculations up to 200, and in Figs. 7 and 8

the averages over the realizations are shown, with the error
bars of the GridSPT results indicating the standard error of
the mean over 200 realizations. To speed up the calcu-
lations, here we adopt a smaller number of grid points,
Ngrid ¼ 6003. In Appendix E the results of their one-loop
power spectra are also used to study the impact of the
effective-field-theory counterterms. It is now clear that the
GridSPT results agree well with analytical SPT predictions
for not only the power spectrum but also the bispectrum.
Note that the cutoff scales of the analytical SPT calcu-
lations were adjusted again so as to get closer to the one
introduced in the GridSPT calculations.9 Then, in redshift
space the one-loop bispectra are shown to largely deviate
from N-body simulations, and instead the tree-level

FIG. 7. Same as Fig. 5, but for the GridSPT results at one- and two-loop order (green and blue symbols, respectively), averaged over
200 realizations and adopting the number of grids Ngrid ¼ 6003. The analytical SPT results (dotted lines) are computed with the cutoff
scale kcut ¼ 0.8h Mpc−1. The error bars on the GridSPT results indicate the standard error of the mean over the 200 realizations. The N-
body results (red symbols) are identical to those shown in Fig. 5, and their error bars indicate the sampling error estimated from the
number of Fourier modes for a single realization data. Note that the analytical SPT results shown here (dotted) adopt a different cutoff
wave number (see footnote), and thus differ from those in Fig. 5.

FIG. 8. Same as Fig. 6, but for the GridSPT results of tree-level and one-loop calculations (green and blue symbols, respectively),
averaged over 200 realizations and adopting the number of grids Ngrid ¼ 6003. The error bars for the GridSPT results represent the
standard error of the mean over the 200 realizations.

9In this case, while the low-k cutoff is kept fixed to the one
used in Figs. 5 and 6, the high-k cutoff is changed to
kcut ¼ 0.8h Mpc−1. Note that by adopting Ngrid ¼ 6003, the
dealiasing filter scale of the GridSPT calculations is
kcrit ≃ 0.62h Mpc−1.
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bispectra match the N-body results (Fig. 8), in marked
contrast to the real-space bispectrum. These are fully
consistent with previous results.
Finally, going back to the results of the power spectra in

Fig. 7, we find that the agreement between the SPT
predictions and N-body simulations gets worse, compared
to the single-realization results in Fig. 5. The discrepancy is
particularly manifest and significant at small scales for the
monopole and quadrupole moments. The major reason for
this comes from the resolution of the GridSPT calculations,
originating from the UV sensitivity inherent in the SPT.10

Indeed, as discussed in detail in Appendix C, the SPT
predictions of redshift-space power spectra sensitively
depend on the small-scale cutoff. Reducing the high-k
cutoff significantly enhances the power spectrum amplitude
on small scales. Another point to be noted is the generic
feature in the SPT predictions that an oscillatory feature,
arising from the baryon acoustic oscillations [69,70], still
remains prominent even beyond the scale where the
predictions start to deviate from N-body simulations.
This would be a potential concern when improving the
GridSPT predictions with the effective-field-theory treat-
ment, and the implementation of the so-called IR resum-
mation could be crucial (see Appendix E).

C. Cross correlation

So far, comparisons between the GridSPT calculations
and N-body simulations have been made by presenting
their respective predictions. In this subsection, we evaluate
the cross correlation between their density fields, and
statistically investigate the (dis)similarity of the fields
evolved using these different techniques starting from
the same initial seed.
Consider first the density field at each PT order of

GridSPT and compute its cross correlation with the density
field obtained from the N-body simulation. Following

Ref. [26], we define the cross-correlation coefficient rðnÞcorr as

rðnÞcorrðkÞ≡ PðSÞ
0;n×N-bodyðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PðSÞ
0;nnðkÞPðSÞ

0;N-bodyðkÞ
q : ð34Þ

Here, the quantity in the numerator, PðSÞ
0;n×N-body, represents

the monopole moment of the cross power spectrum
between the nth-order SPT density field and the measure-
ment from the N-body simulation, defined by

hδðSÞn ðkÞδðSÞN-bodyðk0Þi ¼ ð2π3ÞδDðkþ k0ÞPðSÞ
n×N-bodyðkÞ: ð35Þ

In the presence of the RSD effect, the above spectrum
exhibits anisotropies, for which we take only the monopole
moment to evaluate Eq. (34), i.e., averaged over the wave
vectors in spherical bins. In Fig. 9 the results in redshift and
real space (solid and dotted lines, respectively) are shown
up to the fifth order (n ¼ 5) at redshifts z ¼ 1 (left) and 0
(right). Note that the real-space results are identical to those
obtained in Ref. [26]. While the low-k behaviors exhibit a
nonmonotonic scale dependence having a positive or
negative value depending on the perturbative order, all
of the cross-correlation coefficients asymptotically go to
zero at high k. In real space, it has been suggested in
Ref. [26] that the asymptotic convergence at high k comes
from the randomness of the linear displacement field, and
this is quantitatively predicted by the analytical treatment
with resummed PT calculations [71]. Note that in the
Lagrangian PT approach this effect is automatically
included, and to describe galaxy/halo density fields per-
turbatively the IR resummation technique has been devel-
oped at the field level [72–74]. Qualitatively, the results in
redshift space show similar trends, but a closer look at small
scales reveals that the asymptotic convergence to zero
seems faster than that in real space, implying that the
convergence of the SPT expansion gets worse in redshift
space, as we expected.
To elucidate this point more clearly, we next compute the

cross-correlation coefficient by summing up each PT
correction up to nth order, RðnÞ

corr, defined by

RðnÞ
corrðkÞ ¼

P
n
a¼1 P

ðSÞ
0;a×N-bodyðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fPn
a;b¼1 P

ðSÞ
0;abðkÞgPðSÞ

0;N-bodyðkÞ
q : ð36Þ

Here, the summation in the denominator is taken only when
the expectation values are nonvanishing, that is, only for

even numbers of aþ b. The measured results of RðnÞ
corr are

plotted up to n ¼ 5 in Fig. 10, where we adopt the same
color scheme and line types as in Fig. 9. As anticipated, the
correlation coefficient in redshift space starts to be sup-
pressed at larger scales, and the suppression appears more
rapidly, compared to the results in real space. These
features are more prominent at z ¼ 0. It is also to be noted
that adding higher-order SPT corrections does not always
improve the cross correlation. At n > 3, the correlation
with N-body simulation is suppressed significantly at k≳
0.2h Mpc−1 and the results get worse than those for n ≤ 3.
Although this is also seen in real space and could be
ascribed to the UV-sensitive features of the higher-order
SPT expansion, a more prominent feature seen in the
redshift-space results suggests that the perturbative descrip-
tion of the redshift-space density field in Eq. (13) further

10Together with the UV-sensitive behaviors, it is also known in
SPT calculations that each of the terms in loop corrections
exhibits IR sensitivity, and the results are sensitive to the low-k
cutoff. However, summing up the contributions at each loop
order, the IR-sensitive behaviors are canceled out. In Appendix F
we examine this issue with the GridSPT calculations, and show
that no significant IR-sensitive behaviors appear in either the real-
or redshift-space power spectra.
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worsens the convergence of the PT expansion. Physically,
in redshift space the velocity fields around and inside
virialized objects are known to have a significant impact on
the density fields even on large scales, referred to as the
“fingers-of-God” effect [75,76]. This is partly deduced
from the exact expressions given in Eq. (9) or Eq. (13),
where the terms involving the line-of-sight velocity field
make the density field nonperturbative. Since the SPT
treatment naively Taylor expands all of the contributions, it
would be difficult for calculations at finite order to capture
the fingers-of-God effect, and any improvement on the PT
prediction would need a nonperturbative treatment or
phenomenological description (e.g., Refs. [14,18,33,77]).
In the next section, wewill examine one such approach, and
discuss its usability by looking at the morphological and
statistical properties of redshift-space density fields.

V. PADÉ APPROXIMATION

In this section, as one of the nonperturbative resumma-
tion methods, we consider the Padé approximation and
compute the resummed density field using the GridSPT
results up to the fifth order. The Padé approximation
reorganizes the original power-series expansion by

considering its rational form. Padé approximations are
known to be superior to Taylor series when functions
contain poles. There have been several works on the
application of Padé approximations in the context of the
perturbation theory of large-scale structure [50,78,79] (see
also Ref. [80] for the application of the Shanks trans-
formation). Here, we particularly focus on the redshift-
space density field and apply the Padé approximations
specifically to the GridSPT calculations.
Provided the PT expansion up to the ðM þ NÞth order,

Padé approximations provide a way to construct a rational
expansion form involving the series expansion up to the
Mth and Nth orders in the numerator and denominator,
respectively, which we denote by Padé ðM;NÞ:

δðSÞSPT ¼
XMþN

n¼1

cn → δðSÞPadeðkÞ ¼
P

M
m¼1 am

1þP
N
n¼1 bn

; ð37Þ

where the coefficient cn is given by cn ¼ δðSÞn , with the

quantity δðSÞn being the Fourier-space density field com-
puted from GridSPT based on Eqs. (15)–(19). Given the
positive integers M and N, the coefficients an and bn are
expressed in terms of fcng. In general, M ¼ N is the best

FIG. 10. Cross-correlation coefficient for GridSPT and N-body density fields, RðnÞ
corr, defined in Eq. (36). The results at z ¼ 1 (left) and

0 (right) are shown in the case of real (dotted) and redshift (solid) space.

FIG. 9. Cross-correlation coefficient for GridSPT and N-body density fields, rðnÞcorr, defined in Eq. (34). Results at z ¼ 1 (left) and 0
(right) are shown. The solid and dotted lines are the results in redshift and real space, respectively.
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choice (e.g., Ref. [81]). Here, we consider the Padé (2,1),
(2,2), and (3,2), which are computed with the SPT density
fields up to third, forth, and fifth order, respectively. In
Appendix D we summarize the explicit form of the
coefficients an and bn for each case.
In Fig. 11 the projected density fields in redshift space

smoothedwith aGaussian filter of radiusR ¼ 10h−1 Mpc (as
similarly shown in Figs. 1 and 2) are plotted. Also, in Fig. 12
we enlarge the plot of the redshift-space density fields, taken
from the regions enclosed by the dashed lines in Fig. 11.
These should be compared with the GridSPT results for
n ¼ 3, 4, and5 inFigs. 1–4.We then find that the fakewobbly
structures seen in the x-z plane, which exhibit successive low-
and high-density regions along the line of sight, fade in the
resummed results with Padé approximations. As a result, the
morphology and structure of density fields from the Padé
(2,2) and (3,2) get much closer to theN-body results, visually
regarded as an improvement.
The improvement, however, does not hold true for the

statistical measures. Figure 13 shows the redshift-space
power spectra at z ¼ 1 measured from a single-realization
density field constructed with the Padé approximation. The
resulting monopole and quadrupole spectra exhibit a rather
large enhancement on small scales. This is presumably due
to the UV-sensitive behaviors inherent in the SPT calcu-
lation. Unlike in the naive PT treatment that evaluates the
power spectrumperturbatively from several loop corrections

[see Eqs. (25)–(28)], no cancellation of the higher-order
corrections is expected in the Padé approximation.
Accordingly, the measured power spectra significantly
deviate from those obtained from the N-body simulations.
In Fig. 14, the cross-correlation coefficient Rcorr is com-

puted for the Padé approximation, and the results at z ¼ 1
(left) and0 (right) are comparedwith those obtained inSec. IV
C for n ¼ 3, 4, and 5 (dotted lines). Note again that these are
obtained from the same single realization data as used in
Figs. 11–13.We then find that the correlation coefficients from
the Padé approximations are prone to be more suppressed
than those of the naive SPT calculations. A closer look at the
results of Padé (3,2) reveals that the suppression at inter-
mediate scales around k ∼ 0.3–0.4h Mpc−1 becomes milder
compared to the SPT results at n ¼ 5, but the improvement of
the cross-correlation coefficient is moderate. In all cases, the
results of the Padé approximations show a rather noisy
behavior, and spikes and dips are also seen in the power
spectra at small scales, k≳ 0.2h Mpc−1. Note that by apply-
ing the Padé approximation to the real-space density fields we
have also seen similar noisy behavior. They are possibly
caused by artificial singularities coming from the rational
function in Eq. (37).11 Although those singular behaviors can
be apparently eliminated by applying the smoothing function

FIG. 11. 2D density field at z ¼ 0 smoothed with a Gaussian filter of R ¼ 10h−1 Mpc. The redshift-space density fields obtained from
Padé approximations are plotted, together with the N-body results. Similar to Figs. 1 and 2, slices of the x-y (upper) and x-z (lower)
planes are taken, and the density fields averaged over 10h−1 Mpc depth are shown.

11In evaluating Eq. (37) numerically, we added a small positive
number to the denominator to prevent divergence.
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and hence we do not see such a spiky structure in Figs. 11
and 12, these could severely affect the statistical quantities
measured from the unfiltered density fields. Since the
singular points eventually appear in the regions where the
higher-order density fields receive a large correction, the
application of the Padé approximation may not be gen-
erally suited to improving the convergence of the SPT

expansion at the field level. We conclude that simply
rewriting the SPT expansion in a rational form does not
improve the predictions in redshift space. Rather, mitigat-
ing the UV sensitivity in the SPT calculations would be
essential, and implementing a regularization scheme
including the effective-field-theory treatment would be
thus important.

FIG. 12. Same as Fig. 11, but an enlarged plot of the 2D density field over 200 × 200h−1 Mpc size is shown for the region enclosed by
the dashed line in the right panels of Fig. 11.

FIG. 13. Redshift-space power spectrum at z ¼ 1, obtained from the Padé approximations of GridSPT calculations. Green, yellow, and
blue solid lines are the power spectra computed with the Padé (2,1), (2,2), and (3,2), respectively. These are compared with N-body
simulations (filled squares), which are taken from Fig. 5.
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VI. CONCLUSION AND DISCUSSIONS

In this paper, we have extended our previous works on a
grid-based SPTalgorithm—GridSPT—to implement RSDs
on grids. The key expression is given in Eq. (13), in which
the redshift-space density field is expressed in terms of the
real-space quantities (density and velocity fields) given at a
redshift-space position. Thus, this expression allows us to
apply the real-space results of GridSPT calculations directly
for a perturbative evaluation of the redshift-space density
field on grids. With this new implementation, we have
demonstrated the GridSPT calculations in redshift space up
to the fifth order, and investigated the morphological and
statistical properties of the SPT density fields, which we
have also compared with cosmologicalN-body simulations.
We found that the redshift-space power spectrum and

bispectrum obtained from the GridSPT calculations agree
well with analytical SPT results up to the two-loop and one-
loop order, respectively. Note that the two-loop SPT power
spectra were numerically evaluated and presented for the
first time in this paper. In redshift space, adding the higher-
loop corrections is shown to significantly change the
amplitudes of both the power spectrum and bispectrum.
In particular, we found that the power spectrum sensitively
depends on the small-scale cutoff. This implies that the
convergence of the SPT expansion [Eq. (13)] in redshift
space becomes worse than that in real space due to the
higher-derivative operators ∇̃n

z . In fact, comparing the
generated density fields from the GridSPT calculations
with those obtained from the N-body simulations, we see
that the SPT expansion is prone to producing fake struc-
tures in redshift space, and even at large scales, unphysical
wobbly structures appear along the line of sight.
Accordingly, the statistical correlation of the GridSPT
density field with N-body results is rather poor, and as
we go to higher k, the resultant cross correlation becomes
suppressed more rapidly than that in real space.
To remedy the poor convergence of the SPTexpansion in

redshift space, we have considered the Padé approximation,

and applied it to the Fourier-space density fields. Rewriting
the SPT expansion with a rational expansion form, the
morphological properties of the smoothed density fields get
visually better, and the wobbly structures mostly disappear.
However, the resultant power spectra exhibit a large
enhancement together with spikes and dips at small scales,
which are also seen in the cross-correlation coefficients.
These presumably originate from the UV-sensitive behav-
iors inherent in the SPT calculation, and higher-order
density fields get a rather large correction at small scales.
With the expansion reorganized in a rational form, no
cancellation of UV sensitivity terms occurs, leading even-
tually to the singularities. We thus conclude that simply
reorganizing the SPT expansion does not improve the
predictions, and mitigating the UV sensitivity would be
rather crucial.
Finally, as we mentioned in Sec. I, the implementation of

the RSD effect in GridSPT is not our final goal, but rather
an important and necessary step toward a practical appli-
cation of the method to observations. In Ref. [29] we
demonstrated that the grid-based algorithm for SPT calcu-
lations allows us to easily incorporate the observational
systematics, such as the survey window function and
masks. In addition, it is rather straightforward to implement
a general expansion scheme to deal with the galaxy bias
that has been actually exploited on the basis of SPT (e.g.,
Refs. [21,22,82–85]; see Ref. [1] for review). With an
effective-field-theory treatment at the field level, we antici-
pate that the UV-sensitive behaviors can be mitigated, and
by incorporating further the IR resummation technique
(which can handle the large-scale bulk flow) into the
GridSPT, an efficient and stable PT prediction would
become possible in redshift space. Consistently incorpo-
rating all observational effects to the grid-based theoretical
calculations may provide an efficient framework to maxi-
mize the cosmological information obtained from the
galaxy survey data (e.g., Refs. [86–88]). An investigation

FIG. 14. Cross-correlation coefficient for density fields obtained from the Padé approximations of the GridSPT calculations and N-
body simulations (solid lines). The results in redshift space are presented at z ¼ 1 (left) and 0 (right). The dashed lines show the GridSPT
results at third, fourth, and fifth order, which are the same as the solid lines in Fig. 10.
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along this direction is important for future practical
application, and we will continue to work on these.
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APPENDIX A: ON THE ALIASING CORRECTION
IN GridSPT CALCULATIONS

In this appendix, we discuss the dealiasing treatment to
mitigate the spurious high-frequency modes arising from
the nonlinear calculations of fields on grids. After describ-
ing dealiasing methods in Appendix A 1, we compare the

results of GridSPT calculations between several dealiasing
treatments in Appendix A 2.

1. Aliasing corrections

Let us first recall how the aliasing effect affects the
GridSPT calculations. For simplicity, we consider a one-
dimensional grid space with a side length of L, and
compute the product of the two fields A1ðxÞ and A2ðxÞ,
where the position x is defined over the range 0 ≤ x ≤ L.
For a grid number N, the discrete Fourier transform of the
fields Ak is described by

AkðxjÞ ¼
XN=2−1

n¼−N=2

AkðknÞeiknxj ; ðk ¼ 1; 2Þ; ðA1Þ

where the discrete Fourier mode kn is given by
kn ¼ 2nπ=L, and the position in grid space, xj, is dis-
cretized as xj ¼ ðj=NÞL for j ¼ 0;…; N − 1. In GridSPT
the product of the two fields A1 and A2 is computed in
configuration space, and then the derivative operations are
applied in Fourier space. Using Eq. (A1), the Fourier
coefficient of the product A1ðxÞA2ðxÞ for the mode kn
becomes

1

N

XN=2−1

j¼−N=2

A1ðxjÞA2ðxjÞe−iknxj ¼
XN=2−1

l;m¼−N=2

δKlþm;nA1ðklÞA2ðkmÞ þ
XN=2−1

l;m¼−N=2

δKlþm;n�NA1ðklÞA2ðkmÞ; ðA2Þ

where we used the fact that

1

N

XN−1

j¼0

eipxj ¼
�
1 ðp¼ 2π

L Nm; m¼0;�1;�2;� ��Þ;
0 otherwise:

ðA3Þ

In Eq. (A2), the first term on the right-hand side represents
the contribution thatwewant to calculate. On the other hand,
the second term is the aliasing contribution originating from
the discreteness of the grid space. To simpleway to eliminate
these spurious contributions is to discard the high-frequency
modes that can produce the aliasing effect. To be precise, if
we set the fields A1ðknÞ and A2ðknÞ to zero for jnj > N=3,
the nonvanishing modes in Eq. (A2) are restricted to
jlþm − nj < N, and thus the aliasing contribution does
not appear. Since the mode kn at jnj ¼ N=3 corresponds to
2=3 times the Nyquist frequency, this zero-padding method
is called the 2=3 rule [89]. Note that the prescription given
here can begeneralized to the case for higher-order products.
That is, in order to avoid the aliasing effect for a product ofM
fields, ΠM

k¼1AkðxjÞ, the modes of the fields AkðknÞ for jnj >
N=ðM þ 1Þ should be set to zero, corresponding to modes
larger than 2=ðM þ 1Þ times the Nyquist frequency.

Further generalizing the above discussion to three-
dimensional grid space, Refs. [26,29] adopted an isotropic
low-pass filter (called sharp-k) with the critical wave
number kcrit ¼ ð2=3ÞkNyq, by which the Fourier modes
in jkj > kcrit are set to zero. The filter is applied at each step
when we proceed to higher-order GridSPT calculations.
Then, the generated PT fields up to the fifth order reproduce
the desired properties known in the analytical calculations.
However, the procedure used in previous works is not a
unique choice. Instead of using an isotropic filter, we
may introduce an anisotropic filter in which the zero
padding is applied to the modes having jkx;y;zj > kcrit.
This also eliminates the spurious aliasing contributions.
Furthermore, recalling that the nth-order PT fields are
expressed as the nth-order product of the linear density
fields, an alternative method of aliasing correction
for the GridSPT calculation at nth order is to adopt the
2=ðnþ 1Þ rule only once. That is, the low-pass filter with
kcrit ¼ 2=ðnþ 1ÞkNyq is applied only to the (initial) linear
density field, and the subsequent higher-order PT calcu-
lations are performed up to nth order, without taking any
filter.
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2. Comparison of dealiasing treatments

Let us quantitatively study the possible impact of the
dealiasing treatment on the GridSPT calculations, focusing
on the statistical quantities obtained from the density fields
up to the fifth order in real and redshift space.
Based on the discussions in Appendix A 1, dealiasing

prescriptions we here examine are summarized as follows:
(1) 2=3 rule (iso): An isotropic sharp-k filter with kcrit ¼

ð2=3ÞkNyq is applied to the PT fields at every order of
PT calculations.

(2) 2=3 rule (aniso): An anisotropic sharp-k filter with
kcrit ¼ ð2=3ÞkNyq, by which the modes having
jkx;y;zj > kcrit are set to zero, is applied to the PT
fields at every order of PT calculations.

(3) 1=3-rule (iso): An isotropic sharp-k filter with kcrit ¼
ð1=3ÞkNyq is applied only to the initial density fields
before PT calculations.

(4) 1=3-rule (aniso): An anisotropic sharp-k filter with
kcrit ¼ ð1=3ÞkNyq, by which the modes having
jkx;y;zj > kcrit are set to zero, is applied only to the
initial density fields before PT calculations.

In Figs. 15 and 16, using the above dealiasing treatments,
GridSPT results of the power spectra and bispectra are
shown at z ¼ 1, adopting the number of grids Ngrid ¼
12003 and 600 in the upper and lower panels, respectively.
Here, the power spectra computed with GridSPTare at two-
loop order, while the bispectra are at one-loop order. Both
results are obtained from the same initial seed as used in the

N-body simulation, whose results are also depicted as filled
circles for reference. For single realization data, the number
of available Fourier modes is limited at large scales, and the
measured results from the N-body simulation suffer from
the effect of finite-mode sampling, which is known to be
significant for low-k modes [90]. Hence, to make a fair
comparison, we add corrections due to the finite-mode
sampling to the GridSPT results. That is, contributions with
odd powers of the (Gaussian) linear density field,
ðP12; P23; P14Þ and ðB111; B113; B122Þ, are added to the
power spectrum and bispectrum, respectively [see
Eqs. (32) and (33) for definitions of Pab and Babc].
Although the odd-power contributions usually vanish in
the limit of an infinite number of Fourier modes, these
contributions do exist in the N-body realization. Indeed,
taking them into account in the GridSPT calculations
makes the agreement with N-body results better, especially
at k≲ 0.1h Mpc−1.
In Fig. 15, apart from a bumpy scale-dependent feature at

k≳ 0.2h Mpc−1, a prominent difference arising from the
dealiasing treatments appears if we adopt a smaller number
of grids, Ngrid ¼ 600 (lower). Typically, the impact gets
large for the redshift-space monopole and quadruple
spectra, and adopting the anisotropic sharp-k filter tends
to suppress the power spectrum amplitude compared to the
isotropic counterpart. Applying the 1=3 rule to only the
initial condition also suppresses the power, compared to the
2=3 rule at every PT order. These behaviors originate from
the change of the mode transfer due to different cutoff

FIG. 15. Impact of the dealiasing treatments on the real- and redshift-space power spectra at two-loop order in GridSPT calculations
(solid lines). The results at z ¼ 1 are shown, multiplied by k3=2. The upper and lower panels represent the GridSPT results when adopting
the number of grids Ngrid ¼ 12003 and 6003, respectively. For reference, N-body results are also shown in each panel (red crosses), with
error bars indicating the sampling noise estimated from the number of Fourier modes in each bin.
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strategies and the cutoff scales imposed, leading to a visible
change in the power spectrum amplitude. The effect would
become more significant at lower redshifts. On the other
hand, looking at the one-loop bispectrum shown in Fig. 16,
we hardly see a clear difference.
Based on the discussion and the results in Figs. 15 and 16,

in the main text we adopt the 1=3 rule for the dealiasing
treatment, since it is considered to have little effect on the
mode-coupling structure. Using a simple isotropic sharp-k
filter, the GridSPT calculation is performed mainly with
Ngrid ¼ 12003, and the results are presented in Sec. IV.

APPENDIX B: ANALYTICAL EXPRESSIONS FOR
SPT POWER SPECTRUM AND BISPECTRUM IN

REDSHIFT SPACE

In this appendix, we present the analytical expressions of
the SPT power spectrum and bispectrum in redshift space.
Let us first recall that in the SPT treatment, the redshift-

space density field δðSÞ is expanded in powers of the linear
density field δ1 [see Eq. (7)], and in Fourier space we have

δðSÞðkÞ ¼
X
n¼1

Z
d3p1 � � � d3pn

ð2πÞ3n δDðk − p1���nÞ

× Znðp1;…; pnÞδ1ðp1Þ � � � δ1ðpnÞ; ðB1Þ

with the wave vector p1���n defined by p1���n ≡ p1 þ � � � þ pn.
Here, the kernels Zn characterize the mode coupling in
redshift space between Fourier modes, and they are
symmetric with respect to the exchange of their arguments.
These kernels are analytically constructed, and are
expressed in terms of the real-space PT kernels, Fn and
Gn, for the nth-order density and velocity-divergence
fields, given by

δnðkÞ ¼
Z

d3p � � � d3p1
ð2πÞ3n δDðk − p1���nÞ

× Fnðp1;…; pnÞδ1ðp1Þ � � � δ1ðpnÞ; ðB2Þ

θnðkÞ ¼
X
n¼1

Z
d3p � � � d3p1

ð2πÞ3n δDðk − p1���nÞ

×Gnðp1;…; pnÞδ1ðp1Þ � � � δ1ðpnÞ; ðB3Þ

with F1 ¼ 1 ¼ G1. The explicit forms of these kernels are
constructed through a recurrence relation (see, e.g.,
Refs. [25,91,92]), which corresponds to the Fourier trans-
form of the formula given by Eq. (6). Using the expressions
in Eqs. (B2) and (B3), the expansion form of δðSÞ, given in
Eq. (11), is reorganized with respect to powers of δ1,
leading to the form given by Eq. (B1), from which we can
read off the analytical expressions for the kernel Zn

FIG. 16. Same as Fig. 15, but for the GridSPT results of the one-loop bispectrum in an equilateral configuration, multiplied by k3. The
upper and lower panels plot the GridSPT results when adopting the number of grids Ngrid ¼ 12003 and 6003, together with the measured
results from N-body simulations (red crosses).
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recursively. In the last step, the kernel Zn has to be
symmetrized by summing up the expressions with all
possible permutations of their arguments. The explicit
forms of Zn can be found in the literature (e.g.,
Refs. [61,93] up to third and fourth order, respectively).
Note that the kernel Zn includes the terms with an explicit
dependence on the linear growth factor f, and by setting f
to zero, it is reduced to the real-space PT kernel Fn.
Provided the kernel Zn, the analytical expressions for the

redshift-space power spectrum and bispectrum are derived
based on the definitions in Sec. IV B. The SPT power
spectrum at two-loop order, given in Eq. (25), consists of
the six contributions summarized in Eqs. (26)–(28). With
the help of the Wick theorem, their analytical expressions
are obtained from Eq. (32):

PðSÞ
11 ðkÞ ¼ fZ1ðkÞg2PLðkÞ; ðB4Þ

PðSÞ
13 ðkÞ ¼ 3Z1ðkÞPL

Z
d3p
ð2πÞ3 Z3ðp;−p; kÞPLðpÞ; ðB5Þ

PðSÞ
22 ðkÞ ¼ 2

Z
d3p
ð2πÞ3 fZ2ðp; k − pÞg2PLðpÞPLðjk − pjÞ;

ðB6Þ

PðSÞ
15 ðkÞ ¼ 15Z1ðkÞPLðkÞ

×
Z

d3pd3q
ð2πÞ6 fZ5ðp; q;−p;−q; kgPLðpÞPLðqÞ;

ðB7Þ

PðSÞ
24 ðkÞ ¼ 12

Z
d3pd3q
ð2πÞ6 Z2ðp; k − pÞ

× Z4ðp; q;−q; k − pÞPLðpÞPLðqÞPLðjk − pjÞ;
ðB8Þ

PðSÞ
33 ðkÞ ¼ 9Z1ðkÞPLðkÞ

�Z
d3p
ð2πÞ3 Z3ðp;−p; kÞPLðpÞ

�
2

þ 6

Z
d3pd3q
ð2πÞ6 fZ3ðp; q; k − p − qÞg2

× PLðpÞPLðqÞPLðjk − p − qjÞ; ðB9Þ

where the function PL is the linear power spectrum in real
space, i.e., PL ¼ P11. On the other hand, the SPT bispec-
trum at one-loop order has four terms, as given in Eqs. (30)
and (31). From Eq. (33), these are analytically expressed as
follows:

BðSÞ
112ðk1; k2; k3Þ ¼ 2Z2ðk1; k2ÞZ1ðk1ÞZ1ðk2Þ

× PLðk1ÞPLðk2Þ; ðB10Þ

BðSÞ
123ðk1; k2; k3Þ ¼ 6Z1ðk1ÞPLðk1Þ

Z
d3p
ð2πÞ3 Z2ðp; k2 − pÞ

× Z3ð−k1;−p;−k2 þ pÞ
× PLðpÞPLðjk2 − pjÞ
þ 6Z1ðk1ÞZ2ðk1; k2ÞPLðk1ÞPLðk2Þ

×
Z

d3p
ð2πÞ3 Z3ðk2; p;−pÞPLðpÞ; ðB11Þ

BðSÞ
114ðk1; k2; k3Þ ¼ 12Z1ðk1ÞZ1ðk2ÞPLðk1ÞPLðk2Þ

×
Z

d3p
ð2πÞ3 Z4ð−k1;−k2; p;−pÞPLðpÞ;

ðB12Þ

BðSÞ
222ðk1; k2; k3Þ ¼ 8

Z
d3p
ð2πÞ3 Z2ðk1 − p; pÞ

× Z2ðk2 þ p;−pÞZ2ð−k2 − p;−k1 þ pÞ
× P11ðjk1 − pjÞPLðpÞPLðjk2 þ pÞ:

ðB13Þ

Finally, we note that the analytical SPT results presented
in this paper are the multipole moments of the power
spectrum and bispectrum. Thus, on top of the loop integrals
shown above, one also has to evaluate the integrals over the
angles [see Eqs. (21) and (22)]. As a result, the six- and
five-dimensional integrals have to be evaluated for the
power spectrum and bispectrum, respectively.12 In order to
deal with these multidimensional integrals, we adopt a
Monte Carlo integration technique, specifically using the
quasirandom sampling in the CUBA library [94] to directly
compute them.

APPENDIX C: UV SENSITIVITY OF SPT
CALCULATIONS IN REDSHIFT SPACE

In this appendix, we discuss the UV sensitivity of the
SPT calculations and examine the cutoff dependence of the
predicted power spectra and bispectra.
In SPT, higher-order PT corrections generally involve

multidimensional loop integrals, and the support of their
integrands gets wider for higher-loop integrals (e.g.,
Refs. [50,51]). That is, as we go to higher orders, the result
of the loop corrections becomes more sensitive to the cutoff
of the integral. While the Galilean invariance of the SPT
calculations ensures the cancellation of the IR divergence
and hence the IR sensitivity can become ignorable for a
sufficiently small cutoff wave number (see Appendix F for

12In the power spectrum case, one can use the rotational
symmetry with respect to the line-of-sight direction to partly
reduce the loop integrals.
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an explicit demonstration), such a cancellation does not
occur for theUV-sensitive behaviors, and caremust be taken
when choosing the UV cutoff (see, e.g., Refs. [71,95] for an
explicit demonstration).
In Figs. 17 and 18we plot the SPTpredictions of two-loop

power spectra and one-loop bispectra at z ¼ 1, respectively.
In each case, the upper panels show the GridSPT results
when varying the number of grids Ngrid and fixing the box
size to Lbox ¼ 1000h−1 Mpc. On the other hand, the lower
panels show the analytical SPTpredictionswhenvarying the
high-k cutoff in the linear power spectrum. In all analytical
SPT results, the low-k cutoff of kmin ¼ 2π=Lbox ≃ 6.28 ×
10−3h Mpc−1 is adopted. The high-k cutoff scales in the
analytical SPT results are taken to be slightly larger than the
dealiasing filter scales (kcrit ¼ kNyq=3) for the GridSPT
calculations,13 but we find a reasonable agreement between
the two predictions.
In Fig. 17, we see that decreasing the high-k cutoff or the

number of grids enhances the power spectrum on small
scales. While these trends have been known in real space
(e.g., Refs. [71,95]), a notable point is that the redshift-space
power spectra exhibit a strong scale-dependent enhance-
ment, not only in GridSPT but also in analytical SPT

calculations. In real space, when we increase the cutoff
scale or number of grids, the predicted amplitude of the
power spectrum tends to converge. In redshift space,
however, we still see a sizable change in the amplitude,
especially at k≳ 0.3h Mpc−1, indicating that the UV
sensitivity is more serious in redshift space. This is perhaps
due to the increasing number of PT corrections at higher
order, arising from the line-of-sight velocity contributions
[see Eq. (13)]. Thus, in redshift space, a careful choice of
high-k cutoff is necessary for the two-loop SPT predictions
of the power spectrum.
On the other hand, the one-loop predictions of the

bispectrum, shown in Fig. 18, do not have a strong UV
sensitivity in both real and redshift space, and the analytical
SPT and GridSPT results with different high-k cutoffs or
numbers of grids Ngrid almost coincide with each other.
These trends are qualitatively similar to those in the one-
loop power spectrum, for which we checked that they are
indeed insensitive to the high-k cutoff.
To sum up, the cutoff dependence of the SPT prediction

is significant in the power spectrum calculation at two-loop
order, and in redshift space, even with a large UV cutoff,
the convergence of the power spectrum result seems to be
slow. Thus, the GridSPT prediction in redshift space suffers
from a rather strong UV sensitivity. However, this is indeed
consistent with the analytical SPT calculations, and as long
as we consider the PT calculations at fifth order, this is only
the case for the power spectrum.

FIG. 17. Sensitivity of the power spectrum predictions to the high-k cutoff in real and redshift space. The results at z ¼ 1 are plotted,
multiplied by k3=2. In the upper panels, varying the number of grids Ngrid, the GridSPT results of the two-loop power spectra at z ¼ 1 are
shown (solid). In all cases, the box size of theGridSPT calculations is held fixed atLbox ¼ 1000h−1 Mpc.On the other hand, the lower panels
show the analytical SPT predictions when varying the high-k cutoff in the linear power spectrum. Again, in all cases the low-k cutoff in the
linear spectrum is set tokmin ¼ 2π=Lbox ≃ 6.28 × 10−3h Mpc−1. For reference, theN-body results are also shown ineachpanel (red crosses).

13For reference, the dealiasing filter scales shown in the upper
panels are estimated as follows: kcrit ¼ 1.26h Mpc−1 (black,
Ngrid ¼ 12003), 0.94h Mpc−1 (blue Ngrid ¼ 9003), 0.63h Mpc−1

(green, Ngrid ¼ 6003), and 0.31h Mpc−1 (red, Ngrid ¼ 3003).
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APPENDIX D: COEFFICIENTS OF PADÉ
APPROXIMATIONS

In this appendix, we present the explicit form of the
coefficients an and bn for the density fields δðSÞPade given in
Eq. (37), which are expressed in terms of the redshift-space

SPT density fields, δðSÞn .
To derive the explicit expressions, we first introduce a

bookkeeping parameter ϵ, and rewrite the coefficients as
an → ϵnan, bn → ϵnbn, and cn → ϵnac. We then equate the
SPT density field up to (M þ N)th order to the rational

form of Padé ðM;NÞ, δðSÞPade, given in Eq. (37). We have

�
1þ

XN
n¼1

ϵnbn

� XMþN

n¼1

ϵncn ¼
XM
m¼1

ϵmam: ðD1Þ

Organizing the above expression in terms of powers of
expansion parameter ϵ, the order-by-order comparison
between both sides yields the equations for an and bn,
involving also the coefficient cn. Solving these equations
for a given set of numbers ðM;NÞ, the coefficients an and
bn are determined uniquely, and are expressed in terms of

cn. Recalling that cn is written as cn ¼ δðSÞn , we obtain the
explicit expressions for the coefficients an and bn as
follows:

Padé (2,1)

a1 ¼ δðSÞ1 ; ðD2Þ

a2 ¼
fδðSÞ2 g2 − δðSÞ1 δðSÞ3

δðSÞ2

; ðD3Þ

b1 ¼ −
δðSÞ3

δðSÞ2

: ðD4Þ

Padé (2,2)

a1 ¼ δðSÞ1 ; ðD5Þ

a2 ¼
fδðSÞ2 g3 − 2δðSÞ1 δðSÞ2 δðSÞ3 þ fδðSÞ1 g2δðSÞ4

fδðSÞ2 g2 − δðSÞ1 δðSÞ3

; ðD6Þ

b1 ¼
δðSÞ1 δðSÞ4 − δðSÞ2 δðSÞ3

fδðSÞ2 g2 − δðSÞ1 δðSÞ3

; ðD7Þ

b2 ¼
fδðSÞ3 g2 − δðSÞ2 δðSÞ4

fδðSÞ2 g2 − δðSÞ1 δðSÞ3

: ðD8Þ

FIG. 18. Same as Fig. 17, but for the results of the one-loop bispectra spectra at z ¼ 1, multiplied by k3.
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Padé (3,2)

a1 ¼ δðSÞ1 ; ðD9Þ

a2 ¼
δðSÞ2 ½fδðSÞ3 g2 − δðSÞ2 δðSÞ4 � − δðSÞ1 fδðSÞ3 δðSÞ4 − δðSÞ2 δð5Þ5 g

fδðSÞ3 g2 − δðSÞ2 δðSÞ4

; ðD10Þ

a3 ¼
δðSÞ3 ½fδðSÞ3 g2 − 2δðSÞ2 δðSÞ4 − δðSÞ1 δðSÞ5 � þ δðSÞ1 fδðSÞ4 g2 þ fδðSÞ2 g2δðSÞ5

fδðSÞ3 g2 − δðSÞ2 δðSÞ4

; ðD11Þ

b1 ¼
δðSÞ2 δðSÞ5 − δðSÞ3 δðSÞ4

fδðSÞ3 g2 − δðSÞ2 δðSÞ4

; ðD12Þ

b2 ¼
fδðSÞ4 g2 − δðSÞ3 δðSÞ5

fδðSÞ3 g2 − δðSÞ2 δðSÞ4

: ðD13Þ

APPENDIX E: IMPACT OF EFT CORRECTIONS
ON GridSPT POWER SPECTRA AT ONE-LOOP

ORDER

Throughout the paper, our main focus is on the field-
level implementation of the RSD on the SPT calculations,
leaving other implementations such as the galaxy bias and
the effective-field-theory treatment to future works.
Nevertheless, it is interesting to see how their systematics
can change the GridSPT results in the main text. In this
appendix, we examine the effective-field-theory (EFT)
treatment and discuss the impact of EFT counterterms
on the GridSPT power spectra at one-loop order.
The EFT treatment provides a systematic way to mitigate

the UV-sensitive behaviors inherent in the SPT by intro-
ducing counterterms. At one-loop order in redshift space,
the multipole moments of the SPT matter power spectrum
given in Eq. (25) are modified to (e.g., Refs. [96–98])

PðSÞ
l;SPTðkÞ ¼ PðSÞ

l;linðkÞ þ PðSÞ
l;1-loopðkÞ

→ PðSÞ
l;EFTðkÞ ¼ PðSÞ

l;linðkÞ þ PðSÞ
l;1-loopðkÞ − 2c2l;effk

2PlinðkÞ;
ðE1Þ

where the last term in the second line is the EFT counter-
term, which suppresses the power spectrum amplitude.
With the scale-dependent suppression, the counterterm can
mitigate the UV-sensitive behaviors. In Eq. (E1), the
parameters originally introduced in Ref. [96] are redefined,
and are summarized for each multipole as cl;eff . Given the
measured power spectra from N-body simulations, these
parameters are separately and uniquely determined by
comparing those with Eq. (E1) constructed from the
GridSPT results.

In Fig. 19, using the one-loop GridSPT results shown in
Figs. 5 and 7, the power spectra PðSÞ

l;EFT are obtained, and
they are plotted as green dashed lines, together with the
N-body (solid filled square) and GridSPT results without
the EFT corrections (green solid). Here, the calibrated
results of the EFT parameters, indicated in each panel, are
obtained by fitting the N-body results to GridSPT data
below the cutoff scale kmax ¼ 0.25h Mpc−1.14 The EFT
power spectra agree well with simulation results at
k≲ kmax. The resultant EFT parameters are close to each
other between the two panels, where the GridSPT results
with different resolutions (upper: Ngrid ¼ 12003; lower:
Ngrid ¼ 6003) are used to construct the EFT spectra. These
are indeed consistent with those found in the literature (e.g.,
Refs. [98,99]). In Fig. 20, we also examine the cutoff
dependence of the EFT parameters, the results of which are
plotted as a function of kmax. This shows that the EFT
parameters calibrated fromN-body and GridSPT results are
rather insensitive to the cutoff scales, again consistent with
those found in previous works.
Finally, a closer look at EFT predictions in Fig. 19

reveals that a prominent wiggle feature, arising from the
baryon acoustic oscillations, still remains visible even
beyond kmax. This implies that adding only the counter-
terms does not fully describe the nonlinear smearing effect
of baryon acoustic oscillations, which are clearly seen in
the N-body simulations. The results suggest that the IR
resummation at the field level is crucial to further improve

14In our case with a single free parameter, given the N-body
and GridSPT power spectra, PðSÞ

l;N-body, P
ðSÞ
l;SPT, and Plin, the EFT

parameters are determined uniquely from

c2l;eff ¼
1

2

P
ki≤kmax

k2PlinðkiÞ
½ΔPðSÞ

l;N-bodyðkiÞ�2
½PðSÞ

l;SPTðkiÞ − PðSÞ
l;N-bodyðkiÞ�

P
kj≤kmax

fk2PlinðkjÞg2
½ΔPðSÞ

l;N-bodyðkjÞ�2
;

ðE2Þ

where the quantity ΔPðSÞ
l;N-bodyðkÞ is the error of the N-body

simulations, for which we adopt the sampling error estimated
from the number of Fourier modes.
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the predictions. In Refs. [72,74], the field-level IR resum-
mation was considered in the framework of the Lagrangian
PT, and it was implemented based on the hybrid scheme

that combines both the grid- and particle-based methods.
Since the displacement fields in Lagrangian PT calculations
are linked to the SPT density fields, in combination with the

FIG. 19. Real- and redshift-space power spectra at z ¼ 1 obtained from the GridSPT calculations at one-loop order, taking the EFT
corrections into account. The dashed lines are the GridSPT one-loop spectra including the EFT counterterms [see Eq. (E1)]. Adopting
the EFT parameters calibrated with N-body simulations at k ≤ kmax ¼ 0.25h Mpc−1, the results shown in the upper and lower panels are
obtained in the same setup as shown in Figs. 5 and 7, respectively. The EFT parameters used in the plot, cl;eff , are indicated in each panel
in units of h Mpc−1. For comparison, we also plot the results of N-body simulations (filled squares), GridSPT (solid lines or crosses),
and analytical SPT (thin dotted lines) one-loop calculations without EFT corrections, which are taken from Figs. 5 and 7. Note that all of
the power spectra are multiplied by k3=2.

FIG. 20. Dependence of the EFT parameters cl;eff on the cutoff scale kmax at z ¼ 1. Using the GridSPT and N-body data set shown in
Figs. 5 and 7, each of the EFT parameters given in real and redshift space [Eq. (E1)] is independently calibrated according to Eq. (E2),
and the results are presented in the left and right panels, respectively, as a function of the cutoff wave number kmax. While the filled
circles represent the real-space EFT parameter cr;eff, filled squares, filled triangles, and crosses are the redshift-space EFT parameters for
the monopole, quadrupole, and hexadecapole moments (c0;eff , c2;eff , and c4;eff ), respectively.
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particle-based method, the IR-resummed density field can
also be generated with the GridSPT calculations. On the
other hand, a proper way to treat the field-level IR
resummation with only the grid-based method needs
further investigation, and we leave it to future studies.

APPENDIX F: ON THE IR SENSITIVITY OF
GridSPT CALCULATIONS

As we discussed in the main text and Appendix C, in
addition to the UV sensitivity, the SPT calculations intrinsi-
cally possess an IR-sensitive behavior. In particular, for the
scale-free linear power spectrum of Plin ∝ kn with n < −1,
each of the loop integrals is known to exhibit an IR
divergence. However, summing up the contributions order
by order, these divergences are exactly canceled out
[25,100–102]. This is known as a consequence of the
Galilean invariance. Although the IR divergence does not
occur in reality for the ΛCDM-like linear power spectrum,
a large cancellation of the loop integrals still remains
significant, and hence the IR-safe integration technique
needs to be implemented for an accurate analytical SPT
calculation (e.g., Refs. [67,103]).
Here we discuss the IR sensitivity of the GridSPT

calculations, and try to see its impact by computing
separately the higher-order corrections to the SPT power
spectrum. For this purpose, we consider three different box
sizes of Lbox ¼ 600, 1000, and 1300h−1 Mpc, and the
GridSPT calculations are performed for each cubic box

over 200 realizations, adopting Ngrid ¼ 3603, 6003, and
7803, respectively. With this setup, the Nyquist frequency
becomes kNyq ≃ 1.88h Mpc−1 for all three cases, and using
the 1=3 rule for the aliasing correction, the GridSPT results
have the same resolution up to kcrit ≃ 0.62h Mpc−1, as we
examined in Figs. 7 and 8.
Figure 21 shows the results of the one- (upper) and two-

loop (lower) corrections to the power spectra at z ¼ 1. Each

of the SPT corrections [PðSÞ
ab as defined in Eq. (32)] is

separately measured, and by applying the multipole expan-
sion in redshift space, the absolute values of the power
spectra averaged over 200 realizations are plotted on
logarithmic scales, together with the standard error of
the mean. On top of the strong scale-dependent behavior
of each contribution having a positive or negative ampli-
tude, a careful look at the two-loop corrections reveals a
small but visible systematic trend in both real and redshift
space. That is, the absolute values of the two-loop correc-
tions are systematically reduced when decreasing the box
size, resulting in ∼5% change in amplitude between the
results with Lbox ¼ 600 and 1300h−1 Mpc. This is indeed
expected from the IR-sensitive behaviors, and is consistent
with analytical SPT predictions.
In Fig. 22, summing up each contribution in Fig. 21, the

total one- and two-loop corrections [as defined in
Eqs. (27) and (28)] are shown. Due to a large cancellation,
the resultant amplitude of the loop corrections, PðSÞ

1-loop and

PðSÞ
2-loop, is significantly reduced, and here we plot them on

FIG. 21. Sensitivity of the SPT power spectrum corrections to the low-k cutoff at z ¼ 1. Varying the box size Lbox from 600 to
1300h−1 Mpc, the GridSPT results of the one-loop (upper) and two-loop (lower) corrections to the real- and redshift-space power
spectra, averaged over 200 realizations, are plotted separately. From left to right, the absolute values of the real-space power spectra,
monopole, quadruple, and hexadecapole moments of redshift-space power spectra are shown. The error bars indicate the standard error
of the mean. Note that the resolution of GridSPT calculations is kept fixed for three different box sizes by changing the number of grids:
Ngrid ¼ 360, 600, and 780 for Lbox ¼ 600, 1000, and 1300h−1 Mpc.

TARUYA, NISHIMICHI, and JEONG PHYS. REV. D 105, 103507 (2022)

103507-24



a linear scale. Apart from some variations over the results
with different Lbox, which look prominent for higher
multipoles, there is no clear systematic dependence on
the box size, compared to the trend seen in each building
block. We have also checked the results in individual

realizations and again found no systematic dependence on
the box size. This implies that the Galilean invariance is
properly ensured in the GridSPT calculations, and
the IR sensitivity disappears after summing up loop
corrections.
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