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Self-gravitating quantum matter may exist in a wide range of cosmological and astrophysical settings
from the very early universe through to present-day boson stars. Such quantum matter arises in a number of
different theories, including the Peccei-Quinn axion and ultralight (ULDM) or fuzzy dark matter scenarios.
We consider the dynamical evolution of perturbations to the spherically symmetric soliton, the ground state
solution to the Schrödinger-Poisson system common to all these scenarios. We construct the eigenstates of
the Schrödinger equation, holding the gravitational potential fixed to its ground state value. We see that the
eigenstates qualitatively capture the properties seen in full ULDM simulations, including the soliton
“breathing” mode, the random walk of the soliton center, and quadrupolar distortions of the soliton.
We then show that the time evolution of the gravitational potential and its impact on the perturbations can
be well described within the framework of time-dependent perturbation theory. As an illustrative example,
we apply our formalism to a synthetic ULDM halo. We find the soliton core accounts for approximately
30% of the halo’s wave function throughout its evolution, with higher modes accounting for the halo’s
Navarro-Frenk-White skirt, and relatively little mixing between different l modes. Our results provide a
new analytic approach to understanding the evolution of these systems as well as possibilities for faster
approximate simulations.
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I. INTRODUCTION

Standard Lambda cold dark matter (ΛCDM) cosmology
successfully describes structure formation on large scales;
however, it does not necessarily account for observations
on galactic and subgalactic scales. For example, CDM
N-body simulations predict dark matter halos with a central
“cusp”whilemanyobserved galaxy rotation curves are better
described by “cored” profiles with roughly constant central
densities [1–3]. Likewise, CDM simulations yield more
subhalos than are expected from the observed numbers of
dwarf galaxies, leading to the so-called “missing satellite”
problem [4–6]. Such discrepancies may be attributable to
baryonic processes or evennon-Newtonian dynamics [7], but
may also be resolved by dark matter scenarios whose
properties differ from those of simple CDM.
One such candidate is ultralight dark matter (ULDM),

also known as fuzzy dark matter (FDM). Consisting of an
axionlike boson with a mass between 10−23 and 10−20 eV,
structure formation in ULDM scenarios is suppressed on
scales smaller than the corresponding de Broglie wave-
length of up to a few kiloparsecs [8]. ULDM can coalesce
into a Bose-Einstein condensate (BEC) whose behavior is
described by a macroscopic wave function [9–12] governed
by the coupled Schrödinger-Poisson system. The ground

state solution of this system is a soliton, but the astro-
physical dynamics of halo formation lead to configurations
with a solitonic core embedded in a Navarro-Frenk-White
(NFW) “skirt” [13].
Structure formation with ULDM reproduces the suc-

cesses of ΛCDM on large scales while producing cored
halos and substructure that are potentially more consistent
with observations on small scales [9,14,15]. In addition to
dark matter, the Schrödinger-Poisson system of equations
governing ULDM dynamics emerges in other systems of
interest, including boson stars [16–19] and the very early
universe [20–22]. This motivated our study of the dynamics
of the Schrödinger-Poisson system.
While the ground state of the Schrödinger-Poisson system

is well studied, in most astrophysical systems, one would
expect the excited states to be just as relevant as the ground
state, given that the “NFW skirt” of a ULDM halo must be
built up of excited states; see e.g., Refs. [23–26]. However,
the gravitational couplingmakes the system nonlinear in the
wave function, making it challenging to explore the excited
states of this system, and most analyses have relied on
directly simulating the full system.
As was pointed out in Ref. [27], in the limit that the

density of the system is approximately constant in time, one
can avoid the complications of the full system and solve the
Schrödinger equation alone, treating the fluctuations in the
density as perturbations. This is further helped by the fact*luna.zagorac@yale.edu
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the mapping from density to gravitational potential is a
smoothing operation, and therefore naturally reduces the
impact of small scale fluctuations. This paper aims to
develop this idea, primarily focusing on the perturbations to
the soliton as a toy example. This work is a natural
continuation of the results presented in Ref. [27], although
there have been a number of other explorations of pertur-
bations in this system, e.g., [28–31].
Throughout this paper, we will present numerical results

from a pseudospectral solver of the full Schrödinger-
Poisson system, CHPLULTRA. We developed CHPLULTRA

based on the algorithm of PYULTRALIGHT: a sibling code
whose specifics are discussed in detail in Ref. [32]. One
detail in which the PYULTRALIGHT and CHPLULTRA diverge
is the algorithm used for computing the potential; whereas
PYULTRALIGHT uses Fourier transforms and periodic boun-
dary conditions, CHPLULTRA utilizes a Green’s function
approach that allows for isolated boundary conditions. This
difference, along with the implementation of CHPLULTRA is
explained in detail in Ref. [33]. Additionally, details
of CHPLULTRA and our code units are summarized in
Appendix A.
The rest of our paper is organized as follows. We review

the construction of the relevant eigenstates in Sec. II,
paying attention to the impact of the boundary conditions
on our results. Section III starts by demonstrating that
perturbing a soliton by these eigenstates can qualitatively
reproduce many of the results seen in full ULDM simu-
lations. It then continues to show that the time evolution of
these perturbations in the full system can be accurately
captured by a simple perturbative calculation. In Sec. IV we
consider a more realistic case, decompose a ULDM halo
into its eigenstates, and track their evolution. Finally, we
discuss our results in Sec. V.

II. ULDM EIGENSTATES

A. Eigenfunction expansion

We will be solving the Schrödinger-Poisson system

−iℏ
∂
∂tψ ¼

�
−

ℏ2

2ma
∇2 þmaΦ

�
ψ ; ð1Þ

∇2Φ ¼ 4πGmaρ; ð2Þ

where ψ is the ULDM wave function, with ρ ¼ jψ j2 as the
corresponding density and Φ as the gravitational potential.
In what follows, we work in units ofma ¼ ℏ ¼ G ¼ c ¼ 1,
where ma is the mass of the particle. The mapping from
natural to physical units is given in Appendix A.
The Schrödinger equation is linear but the gravitational

interaction introduces a nonlinear dependence on ψ ,
rendering the system substantially more challenging to
solve. However, in many systems of interest the potential is

approximately constant, especially when averaged in
time and over small-scale fluctuations. This suggests the
approximation

−i
∂
∂tψ ¼

�
−
1

2
∇2 þ hΦi

�
ψ ; ð3Þ

where hΦi is an averaged gravitational potential that is
assumed to be constant in time.
We expand the ULDM wave function at t ¼ 0 as

ψðt ¼ 0Þ ¼
XN
i¼1

ciϕi; ð4Þ

where the ci are complex expansion coefficients, ϕi are the
system’s eigenstates, and N is a finite truncation of the
basis. If the ϕi are assumed to be orthonormal, we can
project out their weights

ci ¼
Z

d3rψðrÞϕ�
i ðrÞ; ð5Þ

where the integral is over all space. If we ignore the
backreaction on the potential, the wave function evolves via

ψðtÞ ¼
XN
i¼1

ci expð−iEitÞϕi; ð6Þ

where Ei is the eigenenergy associated with state i.

B. Construction of eigenstates

There is substantial literature on solving the
Schrödinger-Poisson (or Schrödinger-Newton) eigensys-
tem; see e.g., Refs. [34–40]. However, since we have
assumed that Φ is constant, we are effectively determining
eigenstates of the Schrödinger equation, without the addi-
tional coupling to the Poisson equation. Furthermore, we
restrict our attention to spherically symmetric potentials but
allow the perturbations to break spherical symmetry.
With these assumptions we can separate variables so that

the eigenstates are each products of a radial and an angular
component: ϕnlm ¼ fnlðrÞYm

l ðθ;ϕÞ. Rearranging Eq. (3)
and dividing through by Ylm, we arrive at

1

r2
∂
∂r

�
r2
∂fnl
∂r

�
þ lðlþ 1Þ

r2
fnl ¼ 2ðhΦi − EnlÞfnl; ð7Þ

where Enl is the eigenvalue of eigenstate f. The sub-
stitution unl ¼ rfnl transforms the above equation into
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∂2unl
∂r2 þlðlþ1Þ

r2
unlðrÞ−2hΦðrÞiunlðrÞ¼−2EnlunlðrÞ: ð8Þ

We now have a formulation of the Schrödinger equation that can be solved for a given spherical static potential hΦi. We
discretize our variables into vectors of lengthN and our operators into N-by-N matrices over a distance r < rmax with a grid
spacing Δr ¼ rmax=N. The differential equation then becomes the matrix eigenvalue problem

0
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; ð9Þ
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FIG. 1. We illustrate the radial profiles fnl of the ULDM eigenstates for n ≤ 3;l ≤ 2. Recall that the n-index corresponds to the
number of nodes in the state, with the energy of the eigenstate increasing with n. The l-index corresponds to the angular variation of the
wave function (given the appropriate Ylm); recall that fðrÞ ∼ rl as r → 0. The n ¼ 0 states are colored blue, the n ¼ 1 states are yellow,
the n ¼ 2 states are green, and the n ¼ 3 states are red. We keep to this convention whenever possible throughout the paper for
continuity and clarity. All data are shown in internal code units.
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where χðrÞ≡ 2hΦiðrÞ − lðlþ 1Þ=r2 is the gravitational
potential and centrifugal barrier. This can be solved
numerically, with fnl ¼ unl=r being the radial component
of a given eigenstate and Enl its eigenenergy.
The boundary conditions must be specified to ensure we

have a unique solution. The definition of unl and the
requirement that the wave function is finite at r ¼ 0 implies
that unl ¼ 0 at r ¼ 0. We also assume the unl ¼ fnl ¼ 0 at
rmax. Physically, this corresponds to embedding the system
in a spherically symmetric infinite well. We clarify the
implications of this choice below. Both boundary condi-
tions are built into the matrix equation above. This outer
boundary condition is not the natural choice in a pseudo-
spectral code with periodic boundary conditions on a cubic
spatial lattice (such as CHPLULTRA), but it is easily
implemented by setting the wave function to zero outside
of rmax.
We solve the matrix equation for a static potential hΦi

corresponding to an unperturbed soliton of massM ¼ 50 in
code units.1 The radial fnl states that follow from this
choice are illustrated in Fig. 1. The n-index matches the
number of nodes: n ¼ 0 states have no nodes, n ¼ 1 states
have one node, and so on. The l-index is recognizable in
the behavior of the function as r → 0: each state asymptotes
to a slope of rl, such that the l ¼ 0 state has a central core
and higher l-states fall off more quickly.

C. Parameter dependence of eigenstates

When discretizing the Schrödinger equation (and sub-
sequently our eigenstates) we made two independent
choices: the grid spacing, Δr, and the outer boundary,
rmax. ProvidedΔr is small enough to adequately resolve the
full width at half maximum (FWHM) of the central soliton,
rc, its value does not affect the results of the calculation. We
use Δr ≈ rc=25 throughout.
On the other hand, the value of rmax qualitatively impacts

the eigenstates. Requiring that the wave function vanishes
beyond this radius is physically equivalent to putting the
entire system into an infinite spherical well of radius rmax.

So long as the radial extent of the eigenfunction is much
smaller than rmax the boundary does not affect our results,
but the modes are affected when the scales overlap. To gain
some intuition, let us consider a state with n nodes would fit
comfortably into a sphere of some radius rmax. Higher-
order states with more than n nodes, then, can only obey the
boundary conditions of the same sphere if its nodes are
pushed together further than would be the case without the
barrier at rmax. The more nodes a state has, the more it is
distorted by a boundary at rmax.

2

Table I shows eigenenergies for spherically symmetric
perturbations (l ¼ 0) for n ≤ 10 and 1 < rmax < 10. For
n < 2 these are identical; at n ¼ 3, we seeOð1Þ differences
when rmax ¼ 1. With n ¼ 5 we need rmax > 2 and at n ¼ 8
we need rmax > 4 for the eigenenergies to be independent
of rmax. Physically, eigenenergies are independent of rmax
when they do not exceed the (unperturbed) gravitational
potential at rmax.
In realistic astrophysical systems, however, rmax → ∞.

We defer a detailed treatment to future work, but note that
for large rmax, the eigenenergies scale as En ∼ −1=n2, as
expected from a hydrogenlike system, until the effect of the
spherical well becomes apparent. This implies a large
number of states with relatively small energy splittings
near E ∼ 0. It is thus possible to excite many of these states
as rmax → ∞ to similar levels, which could have implica-
tions for the relaxation of perturbed solitons to the
ground state.

III. PERTURBED SOLITONS

We expand the wave function as ψ ¼
ΣnlmfnlðrÞYm

l ðθ;ϕÞ and now explore the time evolution
of these states, focusing on perturbations to the gravita-
tional potential that arise as the system evolves. In what
follows we fix m ¼ 0, preserving azimuthal symmetry
(although our methods apply to the general case), and
write the eigenvectors as jnli. We focus on perturbing the
soliton ground state, ψ sol ¼ f0ðrÞY0

0ðθ;ϕÞ (or jnli ¼ j00iÞ

TABLE I. Calculated eigenenergy values in code units for different values of rmax and l ¼ 0. The cells where eigenenergies begin
exhibiting Oð1Þ differences from the higher rmax values are bolded. Note that these also correspond to the appropriate values of the
potential at rmax, hΦðrrmax

Þi. Thus, comparing the potential at rmax and the derived eigenenergies is a relatively easy way to determine the
eigenstates affected by the boundary condition at rmax.

rmax hΦðrmaxÞi n ¼ 0 n ¼ 1 n ¼ 2 n ¼ 3 n ¼ 4 n ¼ 5 n ¼ 6 n ¼ 7 n ¼ 8 n ¼ 9 n ¼ 10

1.0 −50 −406.9 −175.5 −93.90 −56.17 −21.70 24.83 83.39 153.2 233.7 324.7 425.9
2.0 −25 −406.9 −175.5 −93.91 −58.05 −39.34 −27.83 −16.63 −2.185 15.56 36.36 60.04
4.0 −12.5 −406.9 −175.5 −93.91 −58.05 −39.34 −28.40 −21.45 −16.77 −13.21 −9.43 −4.75
8.0 −6.25 −406.9 −175.5 −93.91 −58.05 −39.34 −28.40 −21.45 −16.78 −13.47 −11.06 −9.241

1We use this as our fiducial ground state in what follows,
though our qualitative results are insensitive to this choice. The
FWHM of the soliton is 0.05 in code units.

2In this work, we consider idealized simulations of a single
perturbed soliton or isolated halo in a box, beyond which space is
empty, so the wave function ψ is effectively zero beyond the
boundary.
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with excited states. We construct the eigenstate basis using
a gravitational potential with a massM ¼ 50 and normalize
the eigenstates to unit mass.

A. Qualitative behavior

We begin with snapshots of three different systems in
which a soliton is perturbed by j10i, j01i, and j02i, shown
in Fig. 2. In order to illustrate the qualitative behavior of the
system, we apply substantial perturbations which induce
visible oscillations. In each case the ground state contrib-
utes 70% of the mass density, and the excited l ¼ 0, 1, 2
states make up the remaining 30%. Each system is shown at
times t ¼ 0T; 0.15T; 0.30T, and t ¼ 0.45T where T ¼
2π=ΔE is the period of oscillation set by the difference
in eigenenergies of the ground state and each perturber.
The top row of Fig. 2 shows the consequence of adding

an l ¼ 0 excited state. This causes the soliton to contract
and collapse, revealing the so-called “breathing mode” that
has been noted in ULDM simulations [41]. The l ¼ 1

mode (middle row) results in the peak of the soliton moving
back and forth, in line with Refs. [42,43], which found that
a soliton in a ULDM halo performs a random walk. Finally,
an l ¼ 2 term (bottom row) results in a quadrupole
oscillation, where in the density it is elongated first in
one direction and then in the perpendicular direction. These
examples illustrate how the phenomenology of ULDM
systems overlaps with the eigenstate description, in agree-
ment with Ref. [27].

B. Solitons with spherically symmetric perturbations

We start by examining spherically symmetric systems
(l ¼ 0) whose initial wave function is given by

ψðt ¼ 0Þ ¼
ffiffiffiffiffi
M

p
ðj0i þ ϵjniÞ; ð10Þ

where we have suppressed the l; m indices on the kets for
brevity. The unperturbed mass of the system isM while the

FIG. 2. An illustration of how the mass density in the plane is perturbed when combining the soliton ground state with excited states.
The perturbations are as follows: row 1 has 30% of its mass in the first l ¼ 0 excited state, row 2 in the first l ¼ 1 excited state, and
row 3 in the first l ¼ 2 excited state. Each column represents a time that is defined with respect to the state’s period, T ¼ 2π=ΔE. The
contours are spaced logarithmically, from 10−4 to 103 in code density units, and are kept constant along each row.
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perturbation increases the mass by ϵ2M since we are
perturbing the wave function and the density scales as jψ j2.
Figure 3 shows the evolution of the first excited state

(n ¼ 1) with ϵ ¼ 0.05, drawn from a solution of the full
Schrödinger-Poisson system. We decompose the full wave
function into the eigenstate basisψðtÞ ¼ P

cnðtÞjni and plot
the magnitudes of the cn with time. For small perturbations,
the amplitude c0 of the ground statewill remain constant, and
this is true in practice to better than 0.1% for this scenario.
Mode-coupling in the full nonlinear system excites the j2i
and j3i modes to significant amplitudes, relative to the
original perturbation, as it evolves.
The eigenstate expansion does not account for the

gravitational couplings between modes. To do so, we
extend our expansion to the interaction picture

ψðtÞ ¼
XN
n¼1

cnðtÞ expð−iEntÞjni: ð11Þ

where our expansion coefficients cn (which are in general
complex) are now time dependent. The evolving eigen-
states will perturb the potential Φ → Φ0 þ ΔΦðtÞ, where
Φ0 is the gravitational potential of the fiducial, ground state
profile. The Schrödinger equation then reduces to a set of
coupled differential equations for the cn,

dcn
dt

¼ −i
XN
k¼0

hnjΔΦjkickðtÞe−iðEk−EnÞt: ð12Þ

This equation is nominally exact, but also gives a frame-
work with which to approximate the evolution of this
system. To determine ΔΦ we first compute the perturba-
tions to the density profile,

Δρ ¼ jψ j2 − jψoj2 ð13Þ

≈
XN
p¼1

2Re ½c0ðtÞcpðtÞ�j0ijpieiðEp−E0Þt�; ð14Þ

where we drop terms below leading order in jcnj for n > 0.3

If we define ΔΦ0p as the gravitational potential that
results from a density profile 2j0ijpi, then Eq. (12) can
be written as

FIG. 3. The evolution of a M ¼ 50 soliton wave function, perturbed by the first l ¼ 0 excited state j1i with amplitude ϵ ¼ 5% and
expanded into the eigenstate basis. The figure shows the magnitudes of these expansion coefficients (normalized by

ffiffiffiffiffi
M

p
for the excited

states) as a function of time. The prominently displayed curves are the amplitudes of the j1i; j2i, and j3i states (from top to bottom),
while the other curves show the next 21 eigenstates. The horizontal dashed line shows the initial amplitude c1ðt ¼ 0Þ ¼ 0.05. The inset
shows the same system evolved to a later time, plotted with a lower time resolution. Also shown is the evolution of the amplitude of the
ground state which remains at its initial value of 1 to better than 0.1%.

3Since our Hamiltonian is real and symmetric, it is possible to
choose our eigenstates to be completely real. We therefore do not
need to consider the complex conjugate of the eigenstates. We
also note the nonstandard notation jaijbi≡ ψaψb for the simple
product of eigenfunctions.
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dcn
dt

¼ −i
XN
p¼0

XN
k¼0

hnjΔΦ0pjkiRe½c0ðtÞcpðtÞ�eiðEp−E0Þt�

× ckðtÞe−iðEk−EnÞt: ð15Þ

This equation must be slightly modified for p ¼ 0 to avoid
double counting and including the unperturbed solution, but
we elide this here for simplicity. We tested the evolving
perturbation equations holding c0 fixed (i.e., ignoring the
p ¼ 0 term), and we find that this makes no difference to our
results.
Figure 4 shows the evolution following initial perturba-

tions of ϵj1i and ϵj2i, with ϵ ¼ 0.05. In the absence of mode
coupling j1i, j2i, and j3iwould stay at their initial values.We
find the perturbative treatment gives a close match to the
weights extracted from solutions to the full equations of
motion. The discrepancy between the approximation and the
full solution grows (albeit slowly) with time.
We expect the match between the perturbative calcu-

lation and the full system to improve as the initial amplitude
is decreased. Figure 5 demonstrates the expected scaling,
between the simulations; a 10% perturbation diverges
relatively quickly from the full solution, but a 1% pertur-
bation tracks relatively well through multiple oscillations.
As we perturb the soliton with higher energy (n) states, we
observe that the time dependence of the resulting cn
amplitude decreases. The amplitude of the fifth excited
state is constant to within 0.3%, while the 15th excited state
varies by 0.02%. It appears that the more rapid fluctuations

in both space and time (higher eigenstates oscillate more
rapidly as a function of radius and time) average out
variations in the potential, reducing the coupling matrix
elements and keeping cn constant in time. This suggests
that even when density profiles are composed of many
eigenstates, the lowest order modes dominate the resulting
gravitational couplings and will drive deviations from the
simple eigenstate evolution.
Examining Eq. (15), we see that the dominant correc-

tions to a state jni come from its coupling to the ground
state through the potential perturbation, corresponding to
the k ¼ 0 terms. One might expect that these couplings will
be further suppressed by the rapidly oscillating exponen-
tials (due to the energy differences). Given this, the largest
contribution to the change in cn comes from the p ¼ n
terms. This qualitatively explains why the ground state does
not see corrections of order ϵ, but the perturber does, as
shown in Fig. 5.

C. Solitons with aspherical perturbations

Next, we turn to full three-dimensional (3D) simulations
consisting of a single soliton with a nonzero l-perturbation.
Similar to the spherically symmetric systems, we consider
the case

ψðt ¼ 0Þ ¼
ffiffiffiffiffi
M

p
ðj00i þ ϵjnliÞ; ð16Þ
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FIG. 4. The time evolution of the amplitudes (from top to
bottom) of the jn ¼ 1i, jn ¼ 2i, and jn ¼ 3i eigenstates, com-
pared to a perturbative calculation. The brighter color lines show
the evolution of states with an initial perturbation proportional to
jn ¼ 1i, while the lighter lines show the jn ¼ 2i case. Perturba-
tive predictions are dashed and dotted for jn ¼ 1i and jn ¼ 2i,
respectively. In the absence of nonlinear couplings due to gravity,
the amplitudes would remain at their initial values of 0.05 and 0.
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FIG. 5. The time evolution of the amplitudes of the jn ¼ 1i
eigenstates compared to a perturbative calculation for different
initial amplitudes. The full yellow lines show the evolution of the
states when the soliton is perturbed by jn ¼ 1i with an initial
amplitude of ϵ ¼ 0.01, ϵ ¼ 0.05, ϵ ¼ 0.1, respectively. The
lighter yellow lines show a scaled version of the ϵ ¼ 0.05
simulation. The corresponding perturbative calculations are
shown in dashed lines. Note that the ϵ ¼ 0.01 figure has a small
range in amplitude, so any divergence between the simulation and
perturbation theory is visually amplified and the perturbative
calculation does not match the full system at late times
for ϵ ≥ 0.1.
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where we restore the l indices to our kets.4 We use jn1i and
jn2i as perturbers for the discussion below, but our
conclusions hold for states with higher l. We decompose
the resulting wave functions into eigenstates at each saved
time step. We start by plotting total l mode coefficients
jClj2 ≡P

n jcn;lj2 in Fig. 6. As with the radial perturbation
in Fig. 4 above, the soliton amplitude remains the mostly
constant dominant component, while each total l mode
oscillates about a constant amplitude. The figure shows the
mixing between the l modes and demonstrates that, to
leading order, the l modes remain independent of each
other. We show that this follows directly from the pertur-
bative treatment below.
In the case where l ¼ 1 is the initial perturbation of ∼5%

in the wave function, its jClj2 value oscillates around just
above ð5%Þ2 ¼ 0.25%, while each subsequent total lmode
is excited to a progressively smaller amplitude. When l ¼
2 is the initial perturbation, each subsequent even value of l
is excited to a smaller and smaller amplitude, while the odd

l-coefficients are only excited at the level of noise in the
simulation box.
We compare these findings with the case where we

perturb solitons using the same modes, but at a larger
amplitude of ϵ ¼ 0.25. The dominant l modes behave
almost exactly the same as in the case of a 5% perturbation,
except that they oscillate around higher amplitudes. On the
other hand, by inspecting the higher l behavior we see how
the larger perturbation amplitude results in a more pro-
nounced coupling to the higher lmodes, raising these from
the noise floor.
Our perturbative treatment from the previous section can

be extended to the nonspherical case. As before, we sum
over states, except that these now run over both l and n,
instead of just n. We then have

dcn1l1
dt

¼ −i
XL

l2;l3¼0

XN
n2;n3¼1

hn1l1jΔΦn2l2 jn3l3i

× Re½c00ðtÞcn2l2ðtÞ�eiðE2−E0Þt�
× cn3l3ðtÞe−iðE3−E1Þt; ð17Þ

where E0 is shorthand for the eigenenergy of the unper-
turbed soliton, E1 ¼ En1l1

, E2 ¼ En2l2 , and E3 ¼ En3l3 ,
and L, N are the highest n- and l-states we track.5 As
before, we approximate the potential perturbations by
considering density fluctuations that arise from the combi-
nation of the ground state with an excited state. While the
above appears cumbersome, it is identical in structure to
the l ¼ 0 case we considered previously. The only new
feature comes from the angular terms in the matrix element,
arising from integrating over the product of three spherical
harmonics. Appendix B presents the details of this
calculation.
Even without solving these equations, we can recover the

qualitative behavior seen in Fig. 6. If we work to the lowest
nontrivial order in the perturbation, we see that n3 and l3

must both be zero; i.e., jn3l3i is the ground state.
Considering the product of the three spherical harmonics
in the matrix element hn1l1jΔΦn2l2 jn3 ¼ 0l3 ¼ 0i, we see
that l1 ¼ l2 for a nonvanishing matrix element at lowest
order. Physically, this means that perturbations mix radial
eigenstates, but remain at the same angular eigenstate,
which is exactly the behavior seen in the figure. However,
this is only true at lowest order—with larger perturbations
there is mixing across angular modes.
We now proceed by integrating the differential equations

as in the previous subsection. The results for perturbing by
j01i and j02i are shown in Fig. 7, and for perturbing by
j11i and j12i are shown in Fig. 8. In each of the cases
solving Eq. (17) accurately matches the evolution of the full

FIG. 6. The figure illustrates jClj2 evolution as a function of
time in the case of a soliton perturbed by a single nonradially
symmetric (l > 0) state. The upper panel illustrates this evolu-
tion in the case where the soliton is perturbed by j01i with initial
amplitudes of ð5%Þ2 (full lines) and ð25%Þ2 (dashed lines). The
lower panel illustrates the equivalent j02i case. The l-indices
correspond to colors as indicated in the legend at the bottom of
the lower panel. Note the l ¼ 1 and l ¼ 3 states in the case of an
l ¼ 2 perturbed (lower panel) are at the noise floor in the
numerical box.

4We continue to set m ¼ 0.

5The perturbative results for the figures in this manuscript were
produced with N ¼ 25, L ¼ 3.
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system. The perturbative calculation is most accurate for
lowest-n states, while at late times higher-n state calcu-
lations begin to diverge from simulation data, as is
particularly evident in the bottom row of Fig. 8. We have
also verified that the behavior of the system is well captured
in the case of a j03i perturber, while j04i and j05i
perturbers’ values remain constant to better that 0.1%, at
which level our simulation is subject to noise.
In general, Figs. 7 and 8 show good agreement between

the simulations and our perturbative calculations. However,
one notable divergence is visible in the top row of Fig. 8 for
the soliton perturbed by j01i. This highlights a subtlety
with our perturbative approach for odd l perturbations due

to momentum conservation. The velocity is determined by
dθ=dxi where θ is the phase of the wave function and xi is
a coordinate direction.6 Consider now a perturbed wave
function of the form j00i þ cjn; oddli, where c is the
relative complex amplitude of the perturbation relative to
the ground state. If c has a nonzero imaginary component,
the above wave function will have a spatially varying phase
since the two eigenstates have different shapes. That,
combined with the antisymmetric nature of the odd l
spherical harmonics, means that the system will have
nonzero overall momentum. For even l values, the phase
will again be spatially varying, but the net momentum will
be zero.
However, the eigenstate expansion does not explicitly

conserve the linear momentum of the system. Structurally,
the eigenstate expansion is not translationally invariant and
therefore does not have linear momentum as a conserved
quantity.7 We can also see this by considering the time
evolution of the perturbed wave function considered above,

ψðtÞ ¼ e−iE0tðj00i þ ce−iðEnl−E0Þtjn; odd liÞ: ð18Þ
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FIG. 7. The time evolution of the amplitudes (from top to
bottom) of the j0li, j1li, j2li, and j3li eigenstates for l ¼ 1, 2
compared to a perturbative calculation. The brighter color lines
show the evolution of the states when the soliton is perturbed by
j01i, while the lighter color lines show a perturbation by j02i. The
perturbative calculations are shown in dashed (for a j01i
perturber) and dotted (for a j02i perturber) lines.
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FIG. 8. The same as Fig. 7, but with the soliton perturbed by
j11i (darker/dashed lines) and j12i (lighter/dotted lines).

FIG. 9. The radially and time-averaged (from t ¼ 0.1 to t ¼ 1.0
code units) density profile of our ULDM halo is shown in blue.
We use the potential corresponding to this profile to calculate our
eigenstates. Snapshots of instantaneous density profiles at
T ¼ 0.2, 0.4, 0.6, 0.8, and 1.0 are shown in grayscale (light to
dark, respectively). The sizes of their fluctuations relative to the
averaged profile are given in the lower panel. Experimenting with
differently time-averaged potentials yielded only small fluctua-
tions in the mass normalization of the resulting eigenstates. All
data are shown in code units.

6See the Madelung representation of this problem as discussed
in e.g., Refs. [15,44].

7By comparison, the eigenstates and perturbation theory are
rotationally invariant, and so angular momentum is explicitly
conserved.
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Even if the imaginary part of c is zero at t ¼ 0, the
perturbation develops a nonzero relative phase at a later
time, and the system does develop a nonzero momentum
(although with a zero time average value). Interestingly, in
our simulations, the relative phase of the j10i term with the
ground state remains constant at approximately zero,
consistent with a vanishing momentum.
While the above suggests an underlying structural

problem with any odd l mode, Figs. 7 and 8 show that
significant discrepancies are only evident for the lowest
energy l ¼ 1 state. We attribute this to the fact that this

mode generates the largest coherent momentum of the
system. Higher energy modes have multiple nodes resulting
in reversals of the velocity direction and higher l modes
result in a less coherent motion, and therefore a smaller net
linear momentum. Furthermore, while the perturbative
theory generically permits coupling across l modes, this
is not allowed at the lowest order as discussed above.
Therefore, even l modes do not excite the j01i mode,
maintaining good agreement with the perturbative results.

IV. ULDM HALO

We now investigate the eigenstate decomposition and
evolution of a ULDM halo. This system can be treated as a
solitonic core with an NFW skirt [14]

ρðrÞ ¼
�
ρsolðrÞ; 0 ≤ r ≤ rα;

ρNFWðrÞ; rα ≤ r ≤ rvir:
ð19Þ

The border between the skirt and the core falls in the
range 3rc ≤ rα ≤ 4rc, where rc is the FWHM of the
solitonic core and the exact value of rα is determined by
setting the mass of the haloMh and requiring the profile be
continuous. To generate a halo profile that could be
described by Eq. (19), we use CHPLULTRA to collide eight
randomly placed equal mass solitons [17]. We then average
the resultant late-time profile over 0.9 code time units. See
Fig. 9 for an illustration of our averaged profile compared
with instantaneous profiles at different times, and see
Fig. 10 for the corresponding potentials.

FIG. 10. The gravitational potentials corresponding to the
density profiles in Fig. 9. Note that the ∼40% fluctuations in
density correspond to ∼10% fluctuations in potentials.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

10–1

100

FIG. 11. The time evolution of jClj2 in a 3D box with an eight-soliton merger ending in an ULDM profile. The colored lines represent
the l modes as indicated in the legend and the gray background tracks the evolution of the soliton (n ¼ 0;l ¼ 0; m ¼ 0). The vertical
line denotes the approximate point of halo formation at time t ¼ 0.1. Note that the l ¼ 0 line dominates throughout the simulation and is
almost entirely composed of the ground state soliton, oscillating around 30%. The l ¼ 1 modes make up around 10% of the halo; the
l ¼ 2 modes make up around 8%; and higher l modes account for around 6% of the halo wave function each.
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We construct the eigenstates for the potential seeded by
the time-averaged ULDM density profile. Next, we analyze
the 3D simulation of the eight-soliton collision that led to
our profile by decomposing it into its constituent jClðtÞj2
indices.8 The results are shown in Fig. 11. At each time
step, the j00i state accounts for the solitonic core at the
center of the halo profile, while a superposition of higher
modes results in the NFW skirt. We find that the l ¼ 0
mode dominates, accounting for just over 35% of the
simulated mass, with almost the entirety being in the soliton
itself (l ¼ 0, n ¼ 0). Higher l-modes account for the
halo’s NFW skirt, with the l ¼ 1 making up about 10% of
the wave function, albeit with large fluctuations. The l ¼ 2
contributions account for a little more than 8%, while the
l ¼ 3 and l ¼ 4 terms account for around 6% each. The
modes presented in Fig. 11 account for ∼67% of the halo’s
mass, with the rest being in higher modes.
As in Fig. 6, the mean amplitude of each jClj2 line is

roughly constant—albeit with relatively large excursions—
suggesting that mass is primarily exchanged between modes
with the same l number. Mapping to astrophysically
reasonable units, the evolution of the system is shown for
approximately 23Gyrs, the halomass isMh ∼ 15 × 108 M⊙,
and its radius is rh ∼ 20 kpc (see Table II). We find no signs
of the eigenstate decomposition tending toward a perfectly
relaxed state over this time period, even though the density
profile of the halo appears to be more stable (as shown in
Fig. 9). It is also possible that this is a result of the artificial
construction of this halo, and that the asymmetry in the initial
conditions somehow still persists. We plan to explore
decompositions for a larger variety of halos in future work.
The relatively large amplitude of nonsolitonic modes

making up ∼70% of this halo suggests that our perturbative
approximations cannot be applied as simply as in the case
of mildly perturbed solitons. In principle, we could attempt
to use Eq. (17) and significantly increase the L, N cutoff
values (i.e., keep track of many more modes) to attempt to
find an approximate perturbative match to the full solution.
Furthermore, since the differential equations for the time
dependent perturbation theory are exact, one could imagine
exactly evolving the full system (including a complete
calculation of the potential) for a truncated basis. This
might provide some advantages over the full Schrödinger-
Poisson solvers.

V. DISCUSSION

In this paper we solved for the eigenstates and eigene-
nergies of the Schrödinger-Poisson system. We assume that
the potential is constant in time, consistent with Ref. [27].
Once we obtain the eigenstates of the system, we see
phenomena familiar from simulations of ULDM halos.
Perturbing the ground state soliton with an l ¼ 0

component, we recovered the familiar “breathing mode”
exhibited by ULDM solitonic cores; l ¼ 1 perturbations
cause the center of the soliton to move in ways reminiscent
of the random walk of the core found in some simulations
[27,43]; l ¼ 2 perturbations resulted in a “cross” oscil-
lation pattern characteristic of the quadrupole moment. We
examined the dependence of our eigenstates on the size of
our outer boundary condition rmax and found that higher
excited states can be strongly impacted by this choice, but
not by our choice of potential.
We tested the accuracy and utility of our perturbative

approximation by comparing it with the evolution of the
full nonlinear Schrödinger-Poisson system. We began by
comparing the evolution of a radially symmetric system,
where the ground state was perturbed by the j100i state,
which we found to be an excellent match when tracking
N ≥ 10 states in our perturbation theory calculation.
Additionally, this remains true when the ground state is
perturbed with different higher n modes. Finally, we
characterized the sensitivity of this approach to the per-
turbation amplitudes, finding that amplitudes in ψ of order
10% quickly begin to diverge from the full solution but
amplitudes of 5% or less match.
Extending our perturbation theory calculation to include

nonradially symmetric components, we likewise found that
full simulation results match the perturbative prediction.
Both of these numerical experiments show that by account-
ing for the perturbations in the potential, ΔΦjk, we were
able to achieve a better match between predicted and
simulated mode evolution than by simple superposition
of modes and their appropriate e−iEnt evolution used in
Refs. [27,45]. The largest divergence between our simu-
lated and perturbative calculations arises because linear
momentum is not conserved in our perturbative eigenstate
expansion. This effects only odd l modes due to the
antisymmetric nature of odd spherical harmonics; further-
more, it is negligible for all except the lowest l ¼ 1 state,
which generates the largest coherent momentum.
We created an ULDM halo in CHPLULTRA by colliding

eight randomly placed solitons. We decomposed each
snapshot of this simulation into jnli eigenstates and
tracked the evolution of jClj2 modes. We found the
following:

(i) the soliton accounts for around 30% of the halo’s
mass;

(ii) higher l ¼ 0 modes account for very little (∼5%) of
the halo mass relative to the soliton;

(iii) the l ¼ 1 modes account for ∼10%, while l ¼ 2, 3,
and 4 account for around 8% or less each;

(iv) the halo does not appear to relax even when evolved
over timescales longer than the current age of the
Universe.

The relatively large amplitudes of excited modes show that
while the perturbative expansion provides insight into the
dynamics, fully reproducing its behavior would require a

8In this section we also sum over m modes, as our halo is not
axisymmetric and m ≠ 0 modes contribute significantly.
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significant number of terms and accounting for mode-mode
interactions.
There are a number of opportunities created by this

work. First, as highlighted by Li et al. [27], this eigenstate
expansion provides a useful language for describing the
evolution of ULDM systems and a computationally cheap
way of synthesizing realistic ULDM halos. Conversely, this
approach has the ability to create benchmark numerical
solutions to validate codes that solve the Schrödinger-
Poisson system and provides a framework with which to
understand the impact that different boundary conditions
could have on results. The machinery developed here
promises to be useful in analyzing ULDM systems with
significant symmetry, such as binary soliton mergers; we
will develop this possibility in future work. Moreover,
although we restricted our discussion to small perturbations
of solitons, our approach could form the basis of a
simulation tool built around the time evolution of a sum
of (appropriately designed) eigenstates, as opposed to a
spatially discretized wave function. Finally, we speculate
that these techniques could provide complementary tools to
better understand questions such as the mechanisms by
which ULDM systems gravitationally relax, and we hope to
explore these questions in the future.
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APPENDIX A: SIMULATIONS WITH CHPLULTRA

The simulations use a pseudospectral Schrödinger-
Poisson solver, CHPLULTRA [33]. The algorithm mirrors
that of PYULTRALIGHT [32], with the added capability to
compute the gravitational potential with isolated boundary
conditions. We implement this in CHAPEL [46,47],9 a next-
generation programming language being developed by
Cray/HPE. CHAPEL’s native features allow for productive
parallel programming, and (relatively) seamlessly targets
systems from traditional supercomputers to commodity
clusters to personal computers. We have successfully scaled
CHPLULTRA out to 512 nodes, running with grids up to

81923, although most of the results presented in this paper
use 5123 to 10243 grids. In addition to CHPLULTRA, we also
developed a spherically symmetric code for the l ¼ 0
results. Instead of operator splitting, this directly computes
the exponential of a discretized version of the Hamiltonian
to implement the symplectic time stepping. We find good
agreement between runs done with both codes.
All of our results are presented in “code” units. To convert

these to more astrophysically recognizable values, we start
by recalling that the Schrödinger-Poisson system remains
invariant when scaled by a parameter λ as follows [24]:

ft; x; V;ψ ; ρg → fλ−2t̂; λ−1x̂; λ2V̂; λ2ψ̂ ; λ4ρ̂g: ðA1Þ

From the above, we can calculate how the total mass,
energy, and angular momentum scale with λ:

fM;E; Lg → fλM̂; λ3Ê; λL̂g: ðA2Þ

Furthermore, the Schrödinger-Poisson system can also
be transformed through scaling the ULDM particle mass
ma → αma as

ft; x; V;ψ ; ρg → ft̂; α−1=2x̂; α−3=2V̂; α−1ψ̂ ; α−3=2ρ̂g ðA3Þ

with the total mass, energy, and angular momentum then
scaling as

fM;E; Lg → fα−3=2M̂; α−5=2Ê; α−2L̂g: ðA4Þ

We adopt a fiducial value of ma ¼ m22 × 10−22 eV,
where the scaling of our results with the axion mass is
captured by m22. Finally, we can introduce appropriate
length, time, and mass scales as in Ref. [32] as a function of
the parameters λ and m22:

L ¼
�

8πℏ2

3m2
aH2

0Ωm0

�1
4

≈ 38.3 kpc × λ−1m
−1
2

22; ðA5Þ

T ¼
�

8π

3H2
0Ωm0

�1
2

≈ 75.5 Gyr × λ−2; ðA6Þ

M ¼
�

8πG4

3H2
0Ωm0

�−1
4

�
ℏ
ma

�3
2

≈ 2.2 × 106 M⊙ × λm
−3
2

22:

ðA7Þ

Each of these scales is equal to one code unit of length,
time, and mass, respectively. We present a few choices of λ
for different astrophysical systems in Table II.9https://chapel-lang.org.
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APPENDIX B: CALCULATING THE
GRAVITATIONAL POTENTIAL

We require the gravitational potentialΦ from densities of
the form ρlmðrÞYlmðθ;ϕÞ,

∇2Φ ¼ 4πρlmðrÞYlmðθ;ϕÞ; ðB1Þ

where we assume that the potential vanishes at infinity.
Recalling that the spherical harmonics are eigenfunctions of
the angular Laplacian, the solution must have the form
Φ ¼ ΦradðrÞYlm. Making the change of variables y ¼ rΦrad,
the radial part of Poisson’s equation becomes

∂2y
∂r2 −

lðlþ 1Þ
r2

¼ 4πrρlmðrÞ ðB2Þ

with boundary conditions

yðr ¼ 0Þ ¼ 0; ðB3Þ

yðrmaxÞ ¼ −
4π

2lþ 1

1

rlrmax

Z
rmax

0

dr0r02ρlm; ðB4Þ

where the upper boundary condition follows directly from the
Laplace expansion of Green’s function for a 1=r potential,
assuming that the density has vanished by rmax. Note that for
l ¼ 0, the upper boundary condition is simply y ¼ −M
where M is the total mass, as expected for a spherically
symmetric problem.We solve this by rewriting the differential
equation as a linear algebra problem, similar to our treatment
of the Schrödinger equation. Note that we could have just as
easily used Green’s function, but we find the linear algebra
approach more convenient computationally.
Given the potential, we are able to calculate its expect-

ation value with any two other states as follows:

hjjΔΦ0pjki ¼
Z

drdΩðf�jY�
jÞðΔΦrad

0pY
�
0YpÞðfkYkÞ

¼ ð4πÞ−1=2
Z

drf�jΔΦrad
0pfk

Z
dΩY�

jYpYk;

where we used the shorthand j ¼ n1l1 and k ¼ n2l2 when
comparing to Eq. (17). Here, we are using ΔΦrad

0p to refer to
the radially dependent piece of the potential arising from
the product of state p with the ground state, while its
spherical behavior is captured by the two spherical har-
monics. Thus, we can split the integration into the radial
piece (which is the same as the spherically symmetric case
in Sec. III B) and a new aspherical piece. Performing the
replacement Y0 ¼ ð4πÞ−1=2 our angular piece becomes an
integral over three spherical harmonics, equivalent to a
Wigner 3j symbol [48].
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