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One of the important open questions in high-energy physics is to understand the lack of evidence of the
Kalb-Ramond (KR) field, in particular in present day cosmology. In this paper we aim to address this issue
by showing that a bounce scenario in the evolution of the Universe strongly advocates their elusiveness,
even if their energy density was very large to start with. We consider the Kalb-Ramond field and its effects
in the context of generalized teleparallel gravity in (3 4 1) dimensions. Teleparallel gravity is a description
of gravitation in which the tetrads are the dynamical degrees of freedom, and the torsion arising from fields
with spin are accommodated naturally as field strength tensors. In order to describe the coupling
prescription, we address the correct generalization of the Fock-Ivanenko derivative operator for an n-form
tensor field. By varying with respect to the tetrads, this rank-2 field is shown to source the teleparallel
equivalent of Einstein’s equations. We study the possibility of reproducing two well-known cosmological
bounce scenarios; namely, symmetric bounce and matter bounce in four-dimensional spacetime with the
Friedmann-Lemaitre-Robertson-Walker metric, and observe that the solution requires the KR field energy
density to be localized near the bounce. The crucial result in our work is that this feature also naturally
explains the lack of cosmological evidence of the rank-2 field in the present day Universe for the matter-

bounce scenario. Thus, among the bouncing cosmologies, the latter is favored over the former.
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I. INTRODUCTION

The Kalb-Ramond (KR) field has been understood to be
essential to correctly reproduce the low-energy string
effective action [1,2]. These antisymmetric tensor fields
constitute the field content of all superstring models and
must have significant imprint during the primordial epoch
of the evolution of the Universe. Apart from string inspired
models, the KR field arise in higher-dimensional theories,
that aim to unify gravity and electromagnetism. Still, the
KR field is not yet detected in any of the experiments [3].

In this paper we aim to address the KR field in a
generalized teleparallel setup and show that a natural
explanation for its absence in the present-day Universe is
realized in bouncing cosmology. Apart from the benefit that,
here, gravity is understood as a gauge theory of the trans-
lation group [4], along with a conserved energy-momentum
gauge current, this description also naturally accommodates
the effects of fields with a spin quantum number through
tetrads, which form the dynamical variables, instead of the
metric. Generalized teleparallel gravity also naturally
accommodates an explanation to cosmological phenome-
non like the late-time acceleration of the Universe [5—12].
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Here, we consider a generalized teleparallel gravity setup
in (3 + 1) dimensions appended by an action of the Kalb-
Ramond field. With the appropriate generalization of the
Fock-Ivanenko derivative operator (FIDO) for the KR field,
we compute the equivalent of Einstein’s equations by
varying the action with respect to the tetrads. This gives
the equivalent energy-momentum tensor of the antisym-
metric field. With the setup in place we now study the
requirement to achieve bouncing cosmology.

Models with bounces [13—15] provide an elegant sol-
ution to the initial singularity in the big bang paradigm and,
in some instances, could generate a scale-invariant power-
law spectrum [16] as well. Even though there have been
immense efforts carried out in modified gravity theories
with higher-order corrections [17,18] and in braneworld
scenarios [19,20], it is interesting to understand these
phenomena in the teleparallel equivalent of General
Relativity (TEGR) [4]. In this paper, we explicitly compute
the energy spectrum of the tensor field and the appropriate
teleparallel gravity model for symmetric and matter bounce
scenarios. We show that the energy and pressure densities
of the tensor field are indeed localized at t = 0, which acts
as the source for the bounce. We find that, in the case of
symmetric bounce, a significant fraction of the energy
density of KR field remains to the present day Universe,
whereas in the context of matter bounce, the energy density

© 2022 American Physical Society


https://orcid.org/0000-0003-1929-6967
https://orcid.org/0000-0003-3264-3628
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.105.103505&domain=pdf&date_stamp=2022-05-05
https://doi.org/10.1103/PhysRevD.105.103505
https://doi.org/10.1103/PhysRevD.105.103505
https://doi.org/10.1103/PhysRevD.105.103505
https://doi.org/10.1103/PhysRevD.105.103505

KRISHNANAND K. NAIR and MATHEW THOMAS ARUN

PHYS. REV. D 105, 103505 (2022)

of the KR field drastically decreases from 3 My, at the
bounce, to ~0 at t = ;. Hence, we show that the null
results from searches for the KR field strongly suggests
matter bounce for the cosmic evolution.

The paper is categorized as follows. We start with a brief
review of TEGR formalism in Sec. II and introduce Kalb-
Ramond fields as a source of torsion. In Sec. III, we explain
the minimal coupling prescription and develop the Fock-
Ivanenko operator for the Kalb-Ramond field. As an
application to cosmology, in Sec. IV, we compute the
energy density and pressure density of KR fields in the
generalized teleparallel setup that will lead to correct
expansion coefficients in symmetric and matter bounce
scenarios. Finally, in Sec. V we summarize our results.

II. TELEPARALLEL EQUIVALENT
OF GENERAL RELATIVITY

In Einstein’s General Relativity (GR), the affine con-
nection is taken to be torsionless and satisfies the metricity
condition,

vygup =0, ( 1)

where V, is the covariant derivative with the Levi-Civita
1:’;,, playing the role of affine connection. However, in
teleparallel gravity (TG), the Levi-Civita affine connection
is replaced by the Weitzenbock connection, which is
torsionfull but curvatureless and satisfies the metricity
condition Eq. (1).

Although teleparallel gravity is an alternative to General
Relativity, they are conceptually distinct [21]. In TEGR, the
spacetime metric is constructed out of tetrads (h“,), which
are the dynamical degrees of freedom, as

gm/ = ”abhaﬂhb;ﬂ (2)

where 7, is the Minkowski metric of the tangent space.
The tetrads 2“, could be written in terms of flat-space
tetrads (e?, = 0,x%) as [21]

h, = e, + 0"y, x" + A%, (3)

The flat-space tetrads satisfy the relation 7, = nahe,‘je,’j,
where 7,,, is the metric of Minkowski spacetime and the
spin connection (w%,) is given by w®,, = A*.0,A,°,
where A is the Lorentz matrix and the translational
connection on the tangent space is denoted by A¢,. Note
that, in this paper, we will be referring Greek indices (u, v)
to the spacetime manifold and the Latin indices (a, b) to
the local Minkowski tangent space. We also assume the
signature of 7, as diag (—+ ++).

Now, the Weitzenbock connection I, can be written
as [22]

7, =h/o,h%, + haﬂw”bﬂhf. (4)

Since we are interested in the evolution of the Universe, we
stick to a particular choice of tetrads given in Eq. (39)
corresponding to the flat Friedmann-Lemaitre-Robertson-
Walker (FLRW) space-time for which the spin connection
oy, = 0[23-27]. Given this solution, one can easily show
that the Weitzenbdck covariant derivative of the tetrads
vanish identically, thus satisfying the metricity condition,

VA =0,h8, —Thh,* =0, (5)

where V, represents the covariant derivative constructed
with the Weitzenbock connection.

Now, the torsion tensor could be constructed from the
Weitzenbock connection as given below,

Tp;w = Fp;w - Fpl/ﬂ' (6)

Using Eq. (3) and Eq. (4), it is straightforward to see that
the torsion tensor acts as the field strength of the translation
potential A“,, for spin connection @“;, =0 [21]

re,, =he,17, =0,A —9,A%,. (7)

The Weitzenbdck connection in teleparallel gravity 17,
and the Levi-Civita connections I, in GR are then

mathematically related as

v

Fp/w - Kﬂm/ = 1:‘/7 (8)

Hv

where K”,, is the contorsion tensor given by

K’ (T,/’U +717°,— 17,,). 9)

w =

| =

Note that we use overtilde to represent quantities calculated
using the Levi-Civita connection in GR to distinguish it
from teleparallel gravity in this paper. It is straightforward
to show that the curvature of the Weitzenbdck connection
also vanishes

R, (') = 0. (10)

The dual torsion tensor is defined as
1
SPHY. — 5 [KHP — g*TH ) + PP TH)]. (11)

Finally, we define a quadratic function of torsion called the
torsion scalar T given by

T=T

oS =10, T 2+ TP, T, =217, ,T*,. (12)

The gravitational Lagrangian using the torsion scalar can be
written as
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h
- T 1
Lo 162G’ (13)

where h = det(h]) = /=g

Using Eq. (8) in the above action and reformulating the
above Lagrangian in terms of Levi-Civita connection, we
can obtain the mathematical relation between the torsion
scalar T in teleparallel gravity and the Ricci scalar R in GR

T=-R+B, (14)

where R is the Ricci scalar and B = 2@,(?’/) is a total
divergence term. Thus this action is equivalent to the
Einstein-Hilbert action, which gives Einstein’s field equa-
tions of gravity [28].

III. COUPLING PRESCRIPTION USING
FOCK-IVANENKO DERIVATIVE OPERATOR
IN THE TELEPARALLEL GEOMETRY

In Minkowski space, the dynamics of the Kalb-Ramond
field is described by the Lagrangian [29]

Lgr = _HabcHabc’ (15)
where
Habc = 8aBbc + abBca + acBab! (16)
is the field strength of the Kalb-Ramond field B,;, which is
a rank-2 antisymmetric tensor field. On varying the action
with respect B,;,, we get the field equations
d,H™ =0, (17)
along with the Bianchi identity

ﬁ[aHbcd] - O (18)

For the Lorentz gauge 9,B“° =0, the field equation
[Eq. (17)] becomes

9,0°B® = 0. (19)
However, in teleparallel gravity, the existence of torsion
destroys the gauge invariance of the theory when the KR

field is used as the source of the equation of motion of the
field. If we assume the coupling prescription given by

N — g = q“bh’;hz 0, — Vﬂ =0,-T, (20)

where I' is the Weitzenbock connection, the KR-field
strength takes the form,

Hy,), = vﬂBVP + vﬂBMv + vapﬂ

= 38[}43vp] + 3T6[;41/Bp]0~ (21)

The last term in Eq. (21) indicates the nonminimal coupling
of torsion with the KR field in teleparallel geometry and
thus Eq. (21) is not invariant under U(l) gauge
transformation.

In order to keep the transformation gauge invariant, in
the framework of teleparallel geometry, one needs to use
the minimal coupling prescription [30],

],Iab N g;u/ — ﬂabhghl;;a

9, D, =0, - %Qabﬂfa,,, (22)

where D, is the Fock-Ivanenko derivative operator [31],
which acts only on the local Lorentz indices. Here, Q® 18
given by

Q“bﬂ = —thp”ﬂhf, (23)

and J,;, is the generator in the appropriate representation of
the Lorentz group. For instance, J,;, acting on any n-form
field could be written as

Jab(BiliZMi”) = 1(5;1}’”“ - 52’7510)361.2”1"

+ l<5212’7bc - 5Z”ac)Bi1CM["

Foee i8Ny — S Mae) B (24)
It is also important to note that FIDO in teleparallel gravity
is equivalent to the Levi-Civita covariant derivative in the
Einstein GR in the absence of contorsion, as shown in the
Appendix [Eq. (A)]. More importantly, with this coupling
prescription, torsion does not violate the gauge symmetry
of Kalb-Ramond theory.

Using Eq. (23) and Eq. (24), we get the Fock-Ivanenko
derivative acting on B* as

i .
D,B* = 0,B* — 59“1”(1(6?17@ — 84n,4)) B

e : ag
- Egcdy(l(élcyndg - ésncg))B g

— aﬂBab _ K/)thth[aﬂBb]d. (25)

Any spacetime tensor B*¥ can be transformed to a Lorentz
tensor B? by

B = 4, h’,B". (26)

Now, using Eq. (26) and making use of Eq. (5) in Eq. (25),
we have the teleparallel version of the covariant derivative
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o

DﬂB“” = h“,,thVﬂB/’”, (27)
with
V,B° =V,B" — K/, B — K B’ (28)

where V, B is the Weitzenbock covariant derivative given as
VB = 0,B" +1,B +T9,B". (29)

Thus, the teleparallel version of minimal coupling pre-
scription is given as

0, >V, =0,+T,—K,. (30)

The Fock-Ivanenko derivative Vﬂ in Eq. (22) turns out to be
the Weitzenbock connection in teleparallel gravity minus
the contorsion tensor.

With the correct prescription ready, let us now consider
the Kalb-Ramond action in the teleparallel background as
follows:

L, =—hH,,H", (31)
where h = /=g and H,,, is given as
H,, = vﬂva + va/w + vapM
=0,B,,+0,B,, +09,B,, (32)

PP uy
which is U(1) gauge invariant. The teleparallel version of
field equation is given as

o

Vv, H" =0, (33)

And the teleparallel version of the Bianchi identity can be
written as

v[}t Hp/)o'] =0. (34)

Assuming Lorentz gauge V,B* = 0, and using the com-
mutation relation

V,.V,B* = -0, B* - Q,,B*, (35)
where
Qg/w = vﬂKgpv - KHWKGPH - VI/KHPM + Keaquﬂw (36)

we can derive the field equations in teleparallel gravity
to be

o o

V,V BY - QUinp, —20 B =0.  (37)

IV. NONSINGULAR COSMOLOGICAL BOUNCE
IN THE PRESENCE OF KALB-RAMOND FIELD

To study the cosmological bouncing in F(7T') gravity, lets
consider the flat homogeneous isotropic FLRW metric,

ds* = —dr* + a(1)*(dx* + dy* +dz°).  (38)

where a(t) is the scale factor, which is a function of 1.
Corresponding to this metric, the tetrads become

he, = diag(1. a(t), a(t). a(1)). (39)

In this geometry, the nonzero components of the
Wietzenbock connection Eq. (4), torsion tensor Eq. (6),
contorsion tensor Eq. (9) and dual torsion tensor Eq. (11)
can be derived as

Iy, = H, (40)

T'y = —T'y; = —H. (41)
K%; = —Ha(t)?, (42)
Ky =—H, (43)
SiOi = _Sii() =H, (44)

a()
a(t)
compute the torsion scalar using Eq. (12) as

where H = is the Hubble parameter. Thus, we can

T = 6H>. (45)

Our objective is to find the functional form of the
gravitational Lagrangian F(T) that can give rise to non-
singular bouncing cosmology in the presence of Kalb-
Ramond fields in the FLRW geometry. To do this, let us
consider the action,

1

S=53 [ / d“xh(F(T)—i—A)} —% / d*xhH,,,H", (46)

where F(T) = —T + f(T), k = v8zG and A is the cos-
mological constant. On varying this action with respect to
the tetrads hy [28], we get the following equations of
motion,

MY =2hfrr0, TS/ +2fre,0,(hS*) = 2hf1T°,, S,

—h(f+AN)&,
1
= hx? <3HWHW =50 Hpo QHW) : (47)
2
where fr = g—f; and frr = %
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Varying the KR action with respect to the field B,,,, gives
the equation of motion as
V,H" = 0. (48)

The completely antisymmetric three-form field H* is
physically equivalent to its Hodge dual, namely a one-form
field in four dimensions. One can think of the one-form
field to be following from a scalar potential ¢ and is
defined as

HW = e . (49)

This however makes the above EOM second order in ¢ and
can be written as

vﬂ HWvp — ghvhp 8}4 (i)qu — ghvip (raﬂp _ Ko‘ﬂp)agq') =0. (50)

The equation of motion of ¢ can now be obtained from the
Bianchi identity

VyH,po = 0. (51)

Substituting Eq. (49) in Eq. (51) and using the fact

Vi€,679°¢ =0 in four dimensions, we obtain the
equation of motion of ¢ as

V, ' = 0. (52)
Using Eq. (49) the equation of motion (56) becomes
M} = hk* (36,200 ,p — 65, D, ).  (53)

Since we are interested in how the KR field affects the time
evolution of the Universe, for simplicity, we consider ¢
as a function of the cosmic time ¢, satisfying the initial
conditions

P(1,) =0, ¢'(t) =1, (54)

where ¢, is the time when the bounce occurs. Now, the
equations of motion Eq. (52) and Eq. (53) takes the form,

1
3H? — 6H>fp + SF+A) = K2Pons (55)

1
3H? - 2H + 3 (F + A) = 62 fr = 2H' 1 = 2H f 1T
= _szm7 (56)
& +3HY =0, (57)

where p,, and p,, are the energy density and the matter
pressure of the Kalb-Ramond field in the Universe, given by

Pm = 3¢/27 Pm = 3¢/2a2' (58)

Equations (55) and (56) can be together written as
2H' —2H'fr —2Hf;T' = =322 (a®> +1).  (59)

The Eq. (57) then gives the solution of the KR field as

1) = / Tl i@, gr 4y, (60)

1

where ¢; and ¢, are constants set to satisfy the initial
conditions Eq. (54).

In particular, we will be looking into two cases of
nonsingular bouncing cosmology, namely

(A) Symmetric bounce

(B) Matter bounce.

A. Symmetric bounce

In symmetric bouncing cosmology, the scale factor is
given as [32,33]

alt) = agexp (ai—j) (61)

*

where a; = a(0) > 0 is the minimum value attained by the
scale factor, #, > 0 is an arbitrary time and a > 0 is a
parameter. Fig. 1(a) shows the behavior of a(t) over time,
where we chose the parameter f = a/t?. There is a
particular time 7, > O when the scale factor becomes unity
i.e., a(ty) = 1. We define ¢, to be the present cosmological
time with the present Hubble parameter Hy = H(#). The
expression for ¢, using Eq. (61) is given as

-1
ty = 2“0. (62)

Since f > 0, Eq. (62) restricts the range ay € (0,1). The
current time is computed to be #, = 6.7 x 10" GeV~!,
according to the Planck Collaboration results (2015) [34].
Given the expression of the scale factor it is straightforward
to calculate the Hubble parameter and the torsion scalar as

H(t) = 2pt, T(1) = 24p%1%. (63)
In Fig. 1(b), we plot the Hubble parameter over time, where
H(t) varies linearly with time. The Hubble parameter’s
positivity determines whether a universe is expanding or
contracting. The phase when H <0 for t <0 is the
contracting phase followed by the expansion phase where
H > 0 for t > 0. Clearly, the bounce occur at t = 0 (which
is a nonsingular bounce), when H = 0. The current
observational value of Hubble constant is Hy = H(t)) ~
10~* GeV. Using H, and ¢, in Eq. (63), we get the value of
ptobe 7.46 x 1078 GeV?2. Solving the equation of motion
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(a) Time evolution of the scale factor a(7), (b) the Hubble parameter H(¢), (¢) Energy density p,, of the KR field, (d) Matter

pressure p,, of the KR field in symmetric bounce for g = 7.46 x 107 GeV? and 1, = 6.7 x 10*! GeV~!.

(57) using the initial conditions Eq. (54), we get the
expression of ¢ in the symmetric bounce cosmology,

00 = 5[50, (64

where erf(x) is the error function. In Fig. 2, we plotted
the time evolution of ¢(t). ¢(r) behaves as a sigmoid
function, varying monotonically, but almost saturates after
a certain point. This is evident from the asymptotic
behavior of ¢(7),

101

05¢

0.0f

(1) 1 Plto)

-0.5¢

-1.0} ,
-1.0 -0.5 0.0 0.5 1.0
t/ 1

FIG. 2. Time evolution of the scalar field ¢(¢) in symmetric
bounce for f = 7.46 x 1073 GeV? and #, = 6.7 x 10*! GeV~!.

lim, .o 41 —é\/% (65)

The energy density and pressure of the KR field can be
obtained using Eq. (58) as

Pm = 3 exp(_6ﬂt2)’ (66)

Pm = 3exp(=2p15) exp(—4p1*). (67)

The evolution of energy density and matter pressure
with respect to the cosmic time ¢ is plotted in Fig. 1(c) and
Fig. 1(d), respectively. Both the plots show a similar
behavior with a bell-like profile and localization at
t = 0. Further, it is evident that the evolution depends
on the factor 3, which determines how fast the Universe
expands or contracts. The energy density at the bounce is
obtained to be 3 My, and at the present time 7, it is
1.34 M‘f,l. Similarly the matter pressure p,, at t =0 and
t = 1o are 1.53 My, and 0.9 M}, respectively. Clearly, the
localization of energy densities at 1 = 0 is responsible for
the bounce, but is large enough to have its effects noticeable
at the present day cosmology. Using Eq. (59) we get the
differential equation of f(T) as
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3
2Tfrr+fr=1+ 4ﬁexp(—ﬂt0)l< eXP<6;>

jﬂx exp< ;) (68)

Solving the above differential equation, we finally derive
the exact functional form of F(T) to be

%K‘ exp<4ﬂ) |:2+36Xp( —pt3) exp<12ﬁ>]
v et (3 1)
—HJ_MM%Q¢%a%VZ>+C (69)

where C is an integration constant. Moreover, it is impor-
tant to note that the reconstructed Lagrangian [Eq. (69)] is
an even function, and hence is symmetric with respect to
the bounce at r = 0.

For the gravitational Lagrangian to be able to recover
vacuum solutions, 7" has to be zero in the absence of matter
[35]. This is evident from Eq. (63). Also, as a consequence
of Eq. (55) we assume A = 6k? such that it satisfies the

F(T) =

20¢

1.5

101

a(t) x 10728

05¢

00}
-2000

21000 0 1000 2000
t(Mp™")

(a)

3.0F
25}
2.0}
15}
1.0}
0.5}

0.0F
-2000

Pm(t)x Mpr*

21000 0 1000 2000
t(Mp™")

©

FIG. 3.

vacuum solution constraint f(0) = 0. This fixes the inte-
gration constant C to be

c:-@+5%%%9. (70)

Figure 5(a)) shows the function F(7T') vs torsion scalar T
and Fig. 5(a) shows the evolution of F(T) with respect to
the cosmic time ¢, corresponding to the symmetric-bounce
scenario in the presence of Kalb-Ramond field described
by Eq. (64).

B. Matter bounce

In matter bounce cosmology [33,36,37] the scale factor
is given as

amz%eﬁ+ga (71)

where a(0) = a, is a positive quantity, and 0 < 6 < 1 is
the a positive quantity, which is determined from the loop
quantum gravity [33]. The parameter ¢ also determines
how fast the bounce occurs [38]. Figure 3(a) shows the time
evolution of the scale factor in matter bounce cosmology.
The present cosmological time #, > 0 can be obtained from
Eq. (71) as

-0.5¢

-1.0}
-2000  -1000 0 1000 2000
t(Mp™")
(b)
0.4
ﬂ‘_
= 03
5
,‘;\ 0.2
s 0.1
0.0Ff ‘ ]
-2000  -1000 0 1000 2000
t(Mp™")

(d)

(a) Time evolution of the scale factor a(¢), (b) the Hubble parameter H(¢), (c) Energy density of the KR field, (d) Matter

pressure of the KR field in matter bounce for 6 =7 x 107 M3, and 7, = 6.7 x 10*! GeV~'.
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~—

2 1
th=4/—|—=—1]. 72
: 3a<a3 ) (

Thus, the range of a, is restricted to (0,1), since ¢ > 0. We
have taken 6 = 7 x 107® M3, which is determined by the
amplitude of the CMB spectrum [38]. and the present
Hubble constant could be evaluated using this ¢ to be
H, ~ 10~* GeV. The expressions of the Hubble parameter
and the torsion scalar in matter bounce cosmology takes the
form,

20t 246212
=235 TO=m—35 750
301" 42 (3ot* +2)

H(r) (73)

H(t) is plotted in Fig. 3(b), which clearly shows that a
nonsingular bounce occurs at ¢ = 0, with a contracting and
expansion phase for r <0 and ¢ > 0 respectively. The
torsion scalar at the cosmic time #;, can be obtained by
substituting Eq. (72) in Eq. (73), which is given as

To=T(ty) = 4ai(l — a})o. (74)

The corresponding energy density and matter pressure of
the KR field is obtained as

12
=, 75
’ (301> +2)? (75)
2
PR — (76)

 27(368 + 2)5

These are plotted in Figs. 3(c) and 3(d), which shows that
the maximum of energy density and matter pressure is
again at 1 = 0. At the bounce, the energy density is 3 My,
but it drastically decreases to 6.1 x 10723* M}, at the
present time t = f,. This feature explains the lack of
cosmological effects of the KR field in the present day
Universe. Upon solving the KR field equation [Eq. (59)] we
get the expression of the scalar field ¢ corresponding to the
matter bounce cosmology as

40t

s 20}
S
S

X 0 [

RS _20 |

—40}

-2000 -1000 0 1000 2000
t(Me™")

FIG. 4. Time evolution of the scalar field ¢(¢) in matter bounce
for 6 =7 x 107°M3, and 1, = 6.7 x 10*' GeV~l.

o(t) = \/%tan‘l< 3—26t) (77)

The time evolution of ¢ () is plotted in the Fig. 4. It can be
observed that the behavior of ¢ is again similar to what we
have seen in the case of symmetric bounce, where it
behaves as a sigmoid function. The asymptotic behavior
of ¢(t) in matter bounce as t — oo is given as

lim, o, (1) = (78)

Gk
Q-

Solving the functional form of F(T) using Eq. (77) in
Eq. (55) and Eq. (56), we get F(T) as a function of 1,

24x2 481262
F(1) = 232 2 \2
(2+37%6)* (2+ 3f%0)
+ oo 80 + K2(6 4 9a2(V/2(2 + 31%0))3)
(2 + 37%6)? 0 ‘
6\/6t0 3
+ L;ﬁz tant (/224
(2+3r°0°) 2
18a3K* o 113 3
213202 3272 2 < (79)
where ,F[a,b;c;d] represents the hypergeometric
function.

The symmetry between the contraction and the expan-
sion phase in matter bounce requires F(z) to be an even
function of . In Fig. 6(b), we have plotted the cosmic time
evolution of F(7), which shows its symmetric behavior with
respect to the bouncing point at # = 0. The inverse relation
t(T) can be obtained by the inversion of 7 in Eq. (73),

r(T)_i\@\/%—};—%m—; (80)

Here, we have retained the solution pair that produces the
desired result, 7 = 0 at t = 0. It is important to note that the

solution is invertible only for —\/3Z <t< \/3Z This
Lo} o

corresponds to a characteristic time period for each matter
bounce universe corresponding to the critical parameter o.
Beyond this region of time, we assume TEGR is valid [38].
As the solution Eq. (79) is an even function of ¢, both +
solutions in Eq. (80) provides the identical form of F(T),
with — and + solutions, representing the contraction and
expansion phases, respectively.

Substituting Eq. (80) in Eq. (79), we get the functional
form of F(T) as
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35 1.0 [
3.0
0.8
. 25
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T 20 N 0.6
=15 =
- £ 04
g [T
“ 10
05 0.2
0.0 0.0 : ]
0 1 2 3 4 5 6 -1.0 -0.5 0.0 0.5 1.0
TITo t/t
(a) (b)

FIG.5. The plot (a) shows F(T) vs T/T, in symmetric bounce scenario for # = 7.46 x 1078 GeV?, which corresponds to the present
Universe. Here, Ty = 24/ In a is the torsion scalar at = 0 and we have chosen x = Myp;. The evolution of F(T') with respect to 7/t is

plotted in (b).
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F(T) / F(To)
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0.00 |-
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F(t) / F(to)
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0.02

0.00 |
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t/ tmin
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FIG. 6. The plot (a) shows function F(T) in terms of T/c in the matter bounce scenario In (a), F(T) is only valid for 7/o < 1,

equivalently |7 < 7, =

\/% in (b). In plot (b), evolution F(7T) in terms of the #/ty;, for 6 =7 x 107% M3, is plotted.

TABLE I. The KR field ¢(7) and the reconstructed Lagrangian F(T') corresponding to different setups for bouncing cosmology. The
function A(T) used in the matter bounce Lagrangian is defined as Eq. (82).

Model a(t) (1)

F(T)

ag exp(a%)

Symmetric bounce : \/%erf (\v/3pr1)

Matter bounce

3 -T T
EKz exp (E) {2 + 3exp(pt3) exp (@)]

+6yx %}(%rf (% \/%) +3V6r exp(ﬂt%)\/%,éerf( %)

9
‘(”m)

R ) e (o ()

113 2h(T)o

—20Th(T)(\/E L;T)—éxtan—l <\/E,/L;T)—é) + 1>ﬂ — 6x?
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F(T) :m [3,<2 <ag(T— 26h(T)) (3 « 22/3T<

—26Th(T) <\/E\ /2h;T) —étan‘l <\/E %;T)—:‘;) + 1))] — 6K,

which is also restricted to 7 <o (equivalently,
-+ <1<%). In Eq. (81), we have taken h(T) as a
functions of T,

given as
T
WT)=1—-4/1——.
(1) =1-4/1-

In Fig. 6(a), we have plotted the function F(T) in terms of
T. Note that the solution Eq. (81) satisfies the vacuum
solution constraint F(0) = 0.

(82)

V. DISCUSSIONS AND CONCLUSION

TEGR is a successful gravity description, specifically in
the presence of sources that could twist the geometry to
create torsion. One such example that could source torsion
is the anti-symmetric rank-2 Kalb-Ramond field. These
antisymmetric tensor fields form an integral part of heter-
otic string models [29,39] as massless closed string modes
and of some supersymmetric models like N =2 and N = 8
extended SUGRA. They have also been widely studied [40]
in the context of electromagnetic field coupling to the
Einstein-Cartan system. Though essential, it is noteworthy
that there are no experimental evidence for this field in the
present day Universe [3].

Since the presence of torsion breaks the U(1) invariance
of the gauge theory, it is important to introduce a suitable
coupling prescription in teleparallel gravity. To do that
successfully, we first define an equivalent of the covariant
derivative called the Fock-Ivanenko derivative operator in
teleparallel geometry. In Sec. III, we generalize FIDO to
operate on any n-form tensor field in (d + 1)-dimensional
space, using the equations Eq. (22), Eq. (23), and Eq. (24)
and in particular on KR field. For completeness, we show
the equivalence of Fock-Ivanenko derivative of the KR
field in teleparallel gravity to the Levi-Civita covariant
derivative in Einstien’s gravity in Appendix.

We then compute the equations of motion and show that
the dynamics of tetrad fields in teleparallel geometry are
governed by the KR field. To keep the discussion general,
we start with a generic function F(7T'). And we considered
the effect of this setting in producing two bouncing
cosmologies, namely symmetric bounce and matter
bounce. The absence of initial singularity in cosmological
evolution has been a significant advantage of bouncing
cosmologies over the inflationary paradigm. In these

@) o —26h(T),F, G%% 1 —2h(TT)">>

(81)

scenarios, the big bang is replaced by a continuous phase
of expanding and contracting.

Note that the scale factor for both these scenarios are
sourced by the localized energy density of the KR field as
shown in Figs. 1(c) and 3(c). These plots indicate the
nature of energy density with time ‘. At the present time
to = 6.7 x 10* GeV~!, the symmetric-bounce scenario
predicts the KR field-energy density of p,, = 1.34 M3,
Where as matter bounce predicts a much smaller energy
density p,, ~ 0. Thus the lack of cosmological evidence of
KR field in the present day Universe strongly advocate
matter bounce scenario over symmetric bounce.

In the symmetric bounce, the generalized teleparallel
gravity is an increasing function of 7, for T € (0, ) as
shown in Fig. 5(a), but for large T, F(T) behaves linearly.
Whereas in matter bounce, F(T) again exhibits similar
behavior, albeit the evolution is valid up to some value
T < o, as shown in Fig. 6. The analytical results are given
in Table I. In both these scenarios, the scalar field shows a
wave profile [Figs. 2 and 4] and energy profile [Figs. 1 and
3] of a ‘kink” which could be interesting to study further. It
is also interesting to wonder how an axion/pseudoscalar
field will behave in the teleparallel setting, given the
possible parity violations.
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APPENDIX: COUPLING PRESCRIPTION USING
FOCK-IVANENKO DERIVATIVE OPERATOR
IN THE RIEMANNIAN GEOMETRY

In the framework of Riemannian geometry, the math-
ematical equivalent of Fock-Ivanenko derivative of the KR
field B**, using Eq. (22) and Eq. (24), is given by

U d /o7 ca a
DMBab = ayBuh - EQCdy(l(ﬁcnd!] - 6(1776'!1))th
i .
B EQCdM<’(5lc)’7dg - 52’709)>Bag
= a,uBuh + QacﬂBCd + QbCﬂBuC' (Al)

Now, using Egs. (5) and (8) in Eq. (23), we can write
Q, as
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Q“h” = hgvﬂh””. (A2)
This can be equivalently written as
0,he, + Q4 P, — 17, = 0. (A3)

Using the definition of the Fock-Ivanenko derivative of the
tetrads,

D,hy = 0,h%, + Qbﬂhby, (A4)
we can rewrite Eq. (A3) as
D,h¢, =17,,h",. (AS)

Substituting Eqgs. (A2) and (26) in Eq. (Al) and using
Eq. (AS5), we get

D,B* = h* ,h*,V B, (A6)

where ﬁ,,Bw is the Levi-Civita covariant derivative of B”°.

Thus, the Fock-Ivanenko derivative of the antisymmetric

Lorentz tensor B“’ reduces to the usual Levi-Civita

covariant derivative of general relativity. In other words,

we can say that the minimal-coupling prescription in
Riemannian geometry can be written as

8,~>D,=0,+I,=V (A7)

ue

Now let us consider the Kalb-Ramond Lagrangian in the
background of Riemannian geometry

L, = —/—gH,,H"", (A8)
where the field strength H,,, is given by
H,,=V,B,+V,B,, +V,B,, (A9)
The corresponding field equation can be written as
v, HY = 0. (A10)

Assuming the Lorentz gauge @MB"” =0, and using the
commutation relation,
V,.V,]B* = R*,,, B* + R, B*, (A11)

we have the field equations of KR fields in teleparallel
geometry,

V, VB + R¥B,, + 2R FBI = 0.  (Al2)
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