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One of the important open questions in high-energy physics is to understand the lack of evidence of the
Kalb-Ramond (KR) field, in particular in present day cosmology. In this paper we aim to address this issue
by showing that a bounce scenario in the evolution of the Universe strongly advocates their elusiveness,
even if their energy density was very large to start with. We consider the Kalb-Ramond field and its effects
in the context of generalized teleparallel gravity in (3þ 1) dimensions. Teleparallel gravity is a description
of gravitation in which the tetrads are the dynamical degrees of freedom, and the torsion arising from fields
with spin are accommodated naturally as field strength tensors. In order to describe the coupling
prescription, we address the correct generalization of the Fock-Ivanenko derivative operator for an n-form
tensor field. By varying with respect to the tetrads, this rank-2 field is shown to source the teleparallel
equivalent of Einstein’s equations. We study the possibility of reproducing two well-known cosmological
bounce scenarios; namely, symmetric bounce and matter bounce in four-dimensional spacetime with the
Friedmann-Lemaître-Robertson-Walker metric, and observe that the solution requires the KR field energy
density to be localized near the bounce. The crucial result in our work is that this feature also naturally
explains the lack of cosmological evidence of the rank-2 field in the present day Universe for the matter-
bounce scenario. Thus, among the bouncing cosmologies, the latter is favored over the former.
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I. INTRODUCTION

The Kalb-Ramond (KR) field has been understood to be
essential to correctly reproduce the low-energy string
effective action [1,2]. These antisymmetric tensor fields
constitute the field content of all superstring models and
must have significant imprint during the primordial epoch
of the evolution of the Universe. Apart from string inspired
models, the KR field arise in higher-dimensional theories,
that aim to unify gravity and electromagnetism. Still, the
KR field is not yet detected in any of the experiments [3].
In this paper we aim to address the KR field in a

generalized teleparallel setup and show that a natural
explanation for its absence in the present-day Universe is
realized in bouncing cosmology. Apart from the benefit that,
here, gravity is understood as a gauge theory of the trans-
lation group [4], along with a conserved energy-momentum
gauge current, this description also naturally accommodates
the effects of fields with a spin quantum number through
tetrads, which form the dynamical variables, instead of the
metric. Generalized teleparallel gravity also naturally
accommodates an explanation to cosmological phenome-
non like the late-time acceleration of the Universe [5–12].

Here, we consider a generalized teleparallel gravity setup
in (3þ 1) dimensions appended by an action of the Kalb-
Ramond field. With the appropriate generalization of the
Fock-Ivanenko derivative operator (FIDO) for the KR field,
we compute the equivalent of Einstein’s equations by
varying the action with respect to the tetrads. This gives
the equivalent energy-momentum tensor of the antisym-
metric field. With the setup in place we now study the
requirement to achieve bouncing cosmology.
Models with bounces [13–15] provide an elegant sol-

ution to the initial singularity in the big bang paradigm and,
in some instances, could generate a scale-invariant power-
law spectrum [16] as well. Even though there have been
immense efforts carried out in modified gravity theories
with higher-order corrections [17,18] and in braneworld
scenarios [19,20], it is interesting to understand these
phenomena in the teleparallel equivalent of General
Relativity (TEGR) [4]. In this paper, we explicitly compute
the energy spectrum of the tensor field and the appropriate
teleparallel gravity model for symmetric and matter bounce
scenarios. We show that the energy and pressure densities
of the tensor field are indeed localized at t ¼ 0, which acts
as the source for the bounce. We find that, in the case of
symmetric bounce, a significant fraction of the energy
density of KR field remains to the present day Universe,
whereas in the context of matter bounce, the energy density
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of the KR field drastically decreases from 3 M4
Pl at the

bounce, to ∼0 at t ¼ t0. Hence, we show that the null
results from searches for the KR field strongly suggests
matter bounce for the cosmic evolution.
The paper is categorized as follows. We start with a brief

review of TEGR formalism in Sec. II and introduce Kalb-
Ramond fields as a source of torsion. In Sec. III, we explain
the minimal coupling prescription and develop the Fock-
Ivanenko operator for the Kalb-Ramond field. As an
application to cosmology, in Sec. IV, we compute the
energy density and pressure density of KR fields in the
generalized teleparallel setup that will lead to correct
expansion coefficients in symmetric and matter bounce
scenarios. Finally, in Sec. V we summarize our results.

II. TELEPARALLEL EQUIVALENT
OF GENERAL RELATIVITY

In Einstein’s General Relativity (GR), the affine con-
nection is taken to be torsionless and satisfies the metricity
condition,

∇μgνρ ¼ 0; ð1Þ

where ∇μ is the covariant derivative with the Levi-Civita
Γ̃μ
νρ playing the role of affine connection. However, in

teleparallel gravity (TG), the Levi-Civita affine connection
is replaced by the Weitzenböck connection, which is
torsionfull but curvatureless and satisfies the metricity
condition Eq. (1).
Although teleparallel gravity is an alternative to General

Relativity, they are conceptually distinct [21]. In TEGR, the
spacetime metric is constructed out of tetrads (haμ), which
are the dynamical degrees of freedom, as

gμν ¼ ηabhaμhbμ; ð2Þ

where ηab is the Minkowski metric of the tangent space.
The tetrads haμ could be written in terms of flat-space
tetrads (eaμ ¼ ∂μxa) as [21]

haμ ¼ eaμ þ ωa
bμxb þ Aa

μ: ð3Þ

The flat-space tetrads satisfy the relation ημν ¼ ηabeaμebν ,
where ημν is the metric of Minkowski spacetime and the
spin connection (ωa

bμ) is given by ωa
bμ ¼ Λa

c∂μΛb
c,

where Λ is the Lorentz matrix and the translational
connection on the tangent space is denoted by Aa

μ. Note
that, in this paper, we will be referring Greek indices (μ, ν)
to the spacetime manifold and the Latin indices (a, b) to
the local Minkowski tangent space. We also assume the
signature of ηab as diag ð−þþþÞ.
Now, the Weitzenböck connection Γρ

μν can be written
as [22]

Γρ
μν ¼ haρ∂μhaν þ haρωa

bμhbν : ð4Þ

Since we are interested in the evolution of the Universe, we
stick to a particular choice of tetrads given in Eq. (39)
corresponding to the flat Friedmann-Lemaître-Robertson-
Walker (FLRW) space-time for which the spin connection
ωa

bμ ¼ 0 [23–27]. Given this solution, one can easily show
that the Weitzenböck covariant derivative of the tetrads
vanish identically, thus satisfying the metricity condition,

∇μhνA ≡ ∂μhAν − Γρ
μνhρA ¼ 0; ð5Þ

where ∇μ represents the covariant derivative constructed
with the Weitzenböck connection.
Now, the torsion tensor could be constructed from the

Weitzenböck connection as given below,

Tρ
μν ¼ Γρ

μν − Γρ
νμ: ð6Þ

Using Eq. (3) and Eq. (4), it is straightforward to see that
the torsion tensor acts as the field strength of the translation
potential Aa

μ, for spin connection ωa
bμ ¼ 0 [21]

Ta
μν ¼ haρTρ

μν ¼ ∂μAa
ν − ∂νAa

μ: ð7Þ

The Weitzenböck connection in teleparallel gravity Γρ
μν

and the Levi-Civita connections Γ̃ρ
μν in GR are then

mathematically related as

Γρ
μν − Kρ

μν ≡ Γ̃ρ
μν; ð8Þ

where Kρ
μν is the contorsion tensor given by

Kρ
μν ¼

1

2
ðTμ

ρ
ν þ Tν

ρ
μ − Tρ

μνÞ: ð9Þ

Note that we use overtilde to represent quantities calculated
using the Levi-Civita connection in GR to distinguish it
from teleparallel gravity in this paper. It is straightforward
to show that the curvature of the Weitzenböck connection
also vanishes

Rρ
λμνðΓÞ ¼ 0: ð10Þ

The dual torsion tensor is defined as

Sρμν ¼ 1

2
½Kμνρ − gρνTλμ

λ þ gρμTλν
λ�: ð11Þ

Finally, we define a quadratic function of torsion called the
torsion scalar T given by

T¼TρμνSρμν ¼Tρ
μνTρ

μν=2þTρ
μνTνμ

ρ−2Tρ
μρTνμ

ν: ð12Þ

The gravitational Lagrangian using the torsion scalar can be
written as
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LG ¼ −
h

16πG
T; ð13Þ

where h ¼ detðhaμÞ ¼ ffiffiffiffiffiffi−gp
Using Eq. (8) in the above action and reformulating the

above Lagrangian in terms of Levi-Civita connection, we
can obtain the mathematical relation between the torsion
scalar T in teleparallel gravity and the Ricci scalar R̃ in GR

T ≡ −R̃þ B; ð14Þ

where R̃ is the Ricci scalar and B ¼ 2∇̃μðTν
ν
μÞ is a total

divergence term. Thus this action is equivalent to the
Einstein-Hilbert action, which gives Einstein’s field equa-
tions of gravity [28].

III. COUPLING PRESCRIPTION USING
FOCK-IVANENKO DERIVATIVE OPERATOR

IN THE TELEPARALLEL GEOMETRY

In Minkowski space, the dynamics of the Kalb-Ramond
field is described by the Lagrangian [29]

LKR ¼ −HabcHabc; ð15Þ

where

Habc ¼ ∂aBbc þ ∂bBca þ ∂cBab; ð16Þ

is the field strength of the Kalb-Ramond field Bab, which is
a rank-2 antisymmetric tensor field. On varying the action
with respect Bab, we get the field equations

∂aHabc ¼ 0; ð17Þ

along with the Bianchi identity

∂ ½aHbcd� ¼ 0: ð18Þ

For the Lorentz gauge ∂aBab ¼ 0, the field equation
[Eq. (17)] becomes

∂c∂cBab ¼ 0: ð19Þ

However, in teleparallel gravity, the existence of torsion
destroys the gauge invariance of the theory when the KR
field is used as the source of the equation of motion of the
field. If we assume the coupling prescription given by

ηab → gμν ¼ ηabhμahνb ∂a → ∇μ ≡ ∂μ − Γμ; ð20Þ

where Γ is the Weitzenböck connection, the KR-field
strength takes the form,

Hμνρ ¼ ∇μBνρ þ∇ρBμν þ∇νBρμ

¼ 3∂ ½μBνρ� þ 3Tσ ½μνBρ�σ: ð21Þ

The last term in Eq. (21) indicates the nonminimal coupling
of torsion with the KR field in teleparallel geometry and
thus Eq. (21) is not invariant under U(1) gauge
transformation.
In order to keep the transformation gauge invariant, in

the framework of teleparallel geometry, one needs to use
the minimal coupling prescription [30],

ηab → gμν ¼ ηabhμahνb;

∂a → Dμ ¼ ∂μ −
i
2
Ωab

μJab; ð22Þ

where Dμ is the Fock-Ivanenko derivative operator [31],
which acts only on the local Lorentz indices. Here, Ωab

μ is
given by

Ωab
μ ¼ −haρKρν

μhbν ; ð23Þ

and Jab is the generator in the appropriate representation of
the Lorentz group. For instance, Jab acting on any n-form
field could be written as

JabðBi1i2…inÞ ¼ iðδi1a ηbc − δi1b ηacÞBci2…in

þ iðδi2a ηbc − δi2b ηacÞBi1c…in

þ…:þ iðδina ηbc − δi1b ηacÞBi1i2…c: ð24Þ

It is also important to note that FIDO in teleparallel gravity
is equivalent to the Levi-Civita covariant derivative in the
Einstein GR in the absence of contorsion, as shown in the
Appendix [Eq. (A)]. More importantly, with this coupling
prescription, torsion does not violate the gauge symmetry
of Kalb-Ramond theory.
Using Eq. (23) and Eq. (24), we get the Fock-Ivanenko

derivative acting on Bab as

DμBab ¼ ∂μBab −
i
2
Ωcd

μðiðδacηdg − δadηcgÞÞBgb

−
i
2
Ωcd

μðiðδbcηdg − δbdηcgÞÞBag

¼ ∂μBab − Kρ
νμhdνh½aρBb�d: ð25Þ

Any spacetime tensor Bμν can be transformed to a Lorentz
tensor Bab by

Bab ¼ haμhbνBμν: ð26Þ

Now, using Eq. (26) and making use of Eq. (5) in Eq. (25),
we have the teleparallel version of the covariant derivative
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DμBab ¼ haρhbσ∇
∘
μBρσ; ð27Þ

with

∇∘ μBρσ ¼ ∇μBρσ − Kρ
λμB

λσ − Kσ
λμB

ρλ; ð28Þ
where∇μBρσ is theWeitzenböckcovariantderivativegivenas

∇μBρσ ¼ ∂μBρσ þ Γρ
μλB

λσ þ Γσ
μλB

ρλ: ð29Þ

Thus, the teleparallel version of minimal coupling pre-
scription is given as

∂a → ∇∘ μ ≡ ∂μ þ Γμ − Kμ: ð30Þ

The Fock-Ivanenko derivative∇∘ μ in Eq. (22) turns out to be
the Weitzenböck connection in teleparallel gravity minus
the contorsion tensor.
With the correct prescription ready, let us now consider

the Kalb-Ramond action in the teleparallel background as
follows:

Lm ¼ −hHμνρHμνρ; ð31Þ

where h ¼ ffiffiffiffiffiffi−gp
and Hμνρ is given as

Hμνρ ¼ ∇∘ μBνρ þ∇∘ ρBμν þ∇∘ νBρμ

¼ ∂μBνρ þ ∂ρBμν þ ∂νBρμ; ð32Þ

which is U(1) gauge invariant. The teleparallel version of
field equation is given as

∇∘ μHμνρ ¼ 0: ð33Þ

And the teleparallel version of the Bianchi identity can be
written as

∇∘ ½μ Hνρσ� ¼ 0: ð34Þ

Assuming Lorentz gauge ∇∘ μBμν ¼ 0, and using the com-
mutation relation

½∇∘ μ;∇
∘
ν�Bλμ ¼ −Qλ

σμνBσμ −QμνBλμ; ð35Þ
where

Qθ
ρμν ¼ ∇μKθ

ρν − Kθ
σνKσ

ρμ −∇νKθ
ρμ þ Kθ

σμKσ
ρν; ð36Þ

we can derive the field equations in teleparallel gravity
to be

∇∘ μ∇
∘ μ
Bνλ −QνλσμBσμ − 2Qμ

½νBλ�μ ¼ 0: ð37Þ

IV. NONSINGULAR COSMOLOGICAL BOUNCE
IN THE PRESENCE OF KALB-RAMOND FIELD

To study the cosmological bouncing in FðTÞ gravity, lets
consider the flat homogeneous isotropic FLRW metric,

ds2 ¼ −dt2 þ aðtÞ2ðdx2 þ dy2 þ dz2Þ; ð38Þ

where aðtÞ is the scale factor, which is a function of t.
Corresponding to this metric, the tetrads become

haμ ¼ diagð1; aðtÞ; aðtÞ; aðtÞÞ: ð39Þ

In this geometry, the nonzero components of the
Wietzenböck connection Eq. (4), torsion tensor Eq. (6),
contorsion tensor Eq. (9) and dual torsion tensor Eq. (11)
can be derived as

Γi
0i ¼ H; ð40Þ

Ti
i0 ¼ −Ti

0i ¼ −H; ð41Þ

K0
ii ¼ −HaðtÞ2; ð42Þ

Ki
0i ¼ −H; ð43Þ

Si0i ¼ −Sii0 ¼ H; ð44Þ

where H ¼ a0ðtÞ
aðtÞ is the Hubble parameter. Thus, we can

compute the torsion scalar using Eq. (12) as

T ¼ 6H2: ð45Þ

Our objective is to find the functional form of the
gravitational Lagrangian FðTÞ that can give rise to non-
singular bouncing cosmology in the presence of Kalb-
Ramond fields in the FLRW geometry. To do this, let us
consider the action,

S¼ 1

2κ2

�Z
d4xhðFðTÞþΛÞ

�
−
1

2

Z
d4xhHμνρHμνρ; ð46Þ

where FðTÞ ¼ −T þ fðTÞ, κ ¼ ffiffiffiffiffiffiffiffiffi
8πG

p
and Λ is the cos-

mological constant. On varying this action with respect to
the tetrads haμ [28], we get the following equations of
motion,

Mμ
ν ≡ 2hfTT∂μTSνμλ þ 2fTeaν∂μðhSaμλÞ− 2hfTTσ

μνSσλμ

− hðfþΛÞδλν
¼ hκ2

�
3HμρσHνρσ −

1

2
δμ

νHρσλHρσλ

�
; ð47Þ

where fT ¼ ∂f
∂T and fTT ¼ ∂2f

∂T2.
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Varying the KR action with respect to the field Bμν, gives
the equation of motion as

∇∘ μHμνρ ¼ 0: ð48Þ
The completely antisymmetric three-form field Hμνρ is
physically equivalent to its Hodge dual, namely a one-form
field in four dimensions. One can think of the one-form
field to be following from a scalar potential ϕ and is
defined as

Hμνλ ¼ εμνλρ∂ρϕ: ð49Þ

This however makes the above EOM second order in ϕ and
can be written as

∇∘ μHμνρ¼ εμνλρ∂μ∂ρϕ− εμνλρðΓσ
μρ−Kσ

μρÞ∂σϕ¼ 0: ð50Þ
The equation of motion of ϕ can now be obtained from the
Bianchi identity

∇∘ ½μHνρσ� ¼ 0: ð51Þ

Substituting Eq. (49) in Eq. (51) and using the fact

∇∘ ½μενρσλ�∂ρϕ ¼ 0 in four dimensions, we obtain the
equation of motion of ϕ as

∇∘ λ∂λϕ ¼ 0: ð52Þ
Using Eq. (49) the equation of motion (56) becomes

Mμ
ν ¼ hκ2ð3δμν∂ρϕ∂ρϕ − 6δλ

ν∂λϕ∂μϕÞ: ð53Þ
Since we are interested in how the KR field affects the time
evolution of the Universe, for simplicity, we consider ϕ
as a function of the cosmic time t, satisfying the initial
conditions

ϕðtbÞ ¼ 0; ϕ0ðtbÞ ¼ 1; ð54Þ

where tb is the time when the bounce occurs. Now, the
equations of motion Eq. (52) and Eq. (53) takes the form,

3H2 − 6H2fT þ 1

2
ðf þ ΛÞ ¼ κ2ρm; ð55Þ

3H2 þ 2H0 þ 1

2
ðf þ ΛÞ − 6H2fT − 2H0fT − 2HfTTT 0

¼ −κ2pm; ð56Þ
ϕ00 þ 3Hϕ0 ¼ 0; ð57Þ

where ρm and pm are the energy density and the matter
pressure of the Kalb-Ramond field in the Universe, given by

ρm ¼ 3ϕ02; pm ¼ 3ϕ02a2: ð58Þ

Equations (55) and (56) can be together written as

2H0 − 2H0fT − 2HfTTT 0 ¼ −3κ2ϕ02ða2 þ 1Þ: ð59Þ

The Eq. (57) then gives the solution of the KR field as

ϕðtÞ ¼
Z

t

1

eð−
R

ζ

1
3HðξÞdξÞc1dζ þ c2; ð60Þ

where c1 and c2 are constants set to satisfy the initial
conditions Eq. (54).
In particular, we will be looking into two cases of

nonsingular bouncing cosmology, namely
(A) Symmetric bounce
(B) Matter bounce.

A. Symmetric bounce

In symmetric bouncing cosmology, the scale factor is
given as [32,33]

aðtÞ ¼ a0 exp

�
α
t2

t2�

�
; ð61Þ

where a0 ¼ að0Þ > 0 is the minimum value attained by the
scale factor, t� > 0 is an arbitrary time and α > 0 is a
parameter. Fig. 1(a) shows the behavior of aðtÞ over time,
where we chose the parameter β ¼ α=t2�. There is a
particular time t0 > 0 when the scale factor becomes unity
i.e., aðt0Þ ¼ 1. We define t0 to be the present cosmological
time with the present Hubble parameter H0 ≡Hðt0Þ. The
expression for t0 using Eq. (61) is given as

t0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− ln a0

β

s
: ð62Þ

Since β > 0, Eq. (62) restricts the range a0 ∈ (0,1). The
current time is computed to be t0 ¼ 6.7 × 1041 GeV−1,
according to the Planck Collaboration results (2015) [34].
Given the expression of the scale factor it is straightforward
to calculate the Hubble parameter and the torsion scalar as

HðtÞ ¼ 2βt; TðtÞ ¼ 24β2t2: ð63Þ

In Fig. 1(b), we plot the Hubble parameter over time, where
HðtÞ varies linearly with time. The Hubble parameter’s
positivity determines whether a universe is expanding or
contracting. The phase when H < 0 for t < 0 is the
contracting phase followed by the expansion phase where
H > 0 for t > 0. Clearly, the bounce occur at t ¼ 0 (which
is a nonsingular bounce), when H ¼ 0. The current
observational value of Hubble constant is H0 ¼ Hðt0Þ≈
10−42 GeV. UsingH0 and t0 in Eq. (63), we get the value of
β to be 7.46 × 10−85 GeV2. Solving the equation of motion
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(57) using the initial conditions Eq. (54), we get the
expression of ϕ in the symmetric bounce cosmology,

ϕðtÞ ¼ 1

2

ffiffiffiffiffi
π

3β

r
erfð

ffiffiffiffiffi
3β

p
tÞ; ð64Þ

where erfðxÞ is the error function. In Fig. 2, we plotted
the time evolution of ϕðtÞ. ϕðtÞ behaves as a sigmoid
function, varying monotonically, but almost saturates after
a certain point. This is evident from the asymptotic
behavior of ϕðtÞ,

limt→∞ ϕðtÞ ¼ 1

2

ffiffiffiffiffi
π

3β

r
: ð65Þ

The energy density and pressure of the KR field can be
obtained using Eq. (58) as

ρm ¼ 3 expð−6βt2Þ; ð66Þ

pm ¼ 3 expð−2βt20Þ expð−4βt2Þ: ð67Þ

The evolution of energy density and matter pressure
with respect to the cosmic time t is plotted in Fig. 1(c) and
Fig. 1(d), respectively. Both the plots show a similar
behavior with a bell-like profile and localization at
t ¼ 0. Further, it is evident that the evolution depends
on the factor β, which determines how fast the Universe
expands or contracts. The energy density at the bounce is
obtained to be 3 M4

Pl, and at the present time t0, it is
1.34 M4

Pl. Similarly the matter pressure pm at t ¼ 0 and
t ¼ t0 are 1.53 M4

Pl and 0.9 M4
Pl, respectively. Clearly, the

localization of energy densities at t ¼ 0 is responsible for
the bounce, but is large enough to have its effects noticeable
at the present day cosmology. Using Eq. (59) we get the
differential equation of f(T) as

(a) (b)

(c) (d)

FIG. 1. (a) Time evolution of the scale factor aðtÞ, (b) the Hubble parameter HðtÞ, (c) Energy density ρm of the KR field, (d) Matter
pressure pm of the KR field in symmetric bounce for β ¼ 7.46 × 10−85 GeV2 and t0 ¼ 6.7 × 1041 GeV−1.

FIG. 2. Time evolution of the scalar field ϕðtÞ in symmetric
bounce for β ¼ 7.46 × 10−85 GeV2 and t0 ¼ 6.7 × 1041 GeV−1.
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2TfTT þ fT ¼ 1þ 3

4β
expð−βt20Þκ2 exp

�
−T
6β

�

þ 3

4β
κ2 exp

�
−T
4β

�
; ð68Þ

Solving the above differential equation, we finally derive
the exact functional form of FðTÞ to be

FðTÞ ¼ 3

2
κ2 exp

�
−T
4β

��
2þ 3 expð−βt20Þ exp

�
T
12β

��

þ 6
ffiffiffi
π

p
ffiffiffiffi
T
β

s
κ2erf

�
1

2

ffiffiffiffi
T
β

s �

þ 3
ffiffiffiffiffiffi
6π

p
expð−βt20Þ

ffiffiffiffi
T
β

s
κ2erf

� ffiffiffiffiffi
T
6β

s �
þ C; ð69Þ

where C is an integration constant. Moreover, it is impor-
tant to note that the reconstructed Lagrangian [Eq. (69)] is
an even function, and hence is symmetric with respect to
the bounce at t ¼ 0.
For the gravitational Lagrangian to be able to recover

vacuum solutions, T has to be zero in the absence of matter
[35]. This is evident from Eq. (63). Also, as a consequence
of Eq. (55) we assume Λ ¼ 6κ2 such that it satisfies the

vacuum solution constraint fð0Þ ¼ 0. This fixes the inte-
gration constant C to be

C ¼ −
�
3þ 9

2 expðβt20Þ
�
: ð70Þ

Figure 5(a)) shows the function FðTÞ vs torsion scalar T
and Fig. 5(a) shows the evolution of FðTÞ with respect to
the cosmic time t, corresponding to the symmetric-bounce
scenario in the presence of Kalb-Ramond field described
by Eq. (64).

B. Matter bounce

In matter bounce cosmology [33,36,37] the scale factor
is given as

aðtÞ ¼ a0

�
3

2
σt2 þ 1

�1
3

; ð71Þ

where að0Þ ¼ a0 is a positive quantity, and 0 < σ ≪ 1 is
the a positive quantity, which is determined from the loop
quantum gravity [33]. The parameter σ also determines
how fast the bounce occurs [38]. Figure 3(a) shows the time
evolution of the scale factor in matter bounce cosmology.
The present cosmological time t0 > 0 can be obtained from
Eq. (71) as

(a) (b)

(c) (d)

FIG. 3. (a) Time evolution of the scale factor aðtÞ, (b) the Hubble parameter HðtÞ, (c) Energy density of the KR field, (d) Matter
pressure of the KR field in matter bounce for σ ¼ 7 × 10−6 M2

Pl and t0 ¼ 6.7 × 1041 GeV−1.
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t0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3σ

�
1

a30
− 1

�s
: ð72Þ

Thus, the range of a0 is restricted to (0,1), since σ > 0. We
have taken σ ¼ 7 × 10−6 M2

Pl, which is determined by the
amplitude of the CMB spectrum [38]. and the present
Hubble constant could be evaluated using this σ to be
H0 ≈ 10−42 GeV. The expressions of the Hubble parameter
and the torsion scalar in matter bounce cosmology takes the
form,

HðtÞ ¼ 2σt
3σt2 þ 2

TðtÞ ¼ 24σ2t2

ð3σt2 þ 2Þ2 : ð73Þ

HðtÞ is plotted in Fig. 3(b), which clearly shows that a
nonsingular bounce occurs at t ¼ 0, with a contracting and
expansion phase for t < 0 and t > 0 respectively. The
torsion scalar at the cosmic time t0 can be obtained by
substituting Eq. (72) in Eq. (73), which is given as

T0 ≡ Tðt0Þ ¼ 4a30ð1 − a30Þσ: ð74Þ

The corresponding energy density and matter pressure of
the KR field is obtained as

ρ ¼ 12

ð3σt2 þ 2Þ2 ; ð75Þ

p ¼ 6a20
2−

1
3ð3σt2 þ 2Þ43 : ð76Þ

These are plotted in Figs. 3(c) and 3(d), which shows that
the maximum of energy density and matter pressure is
again at t ¼ 0. At the bounce, the energy density is 3 M4

Pl,
but it drastically decreases to 6.1 × 10−234 M4

Pl at the
present time t ¼ t0. This feature explains the lack of
cosmological effects of the KR field in the present day
Universe. Upon solving the KR field equation [Eq. (59)] we
get the expression of the scalar field ϕ corresponding to the
matter bounce cosmology as

ϕðtÞ ¼
ffiffiffiffiffi
2

3σ

r
tan−1

� ffiffiffiffiffi
3σ

2

r
t

�
: ð77Þ

The time evolution of ϕðtÞ is plotted in the Fig. 4. It can be
observed that the behavior of ϕ is again similar to what we
have seen in the case of symmetric bounce, where it
behaves as a sigmoid function. The asymptotic behavior
of ϕðtÞ in matter bounce as t → ∞ is given as

limt→∞ ϕðtÞ ¼ πffiffiffiffiffi
6σ

p : ð78Þ

Solving the functional form of FðTÞ using Eq. (77) in
Eq. (55) and Eq. (56), we get FðTÞ as a function of t,

FðtÞ ¼ 24κ2

ð2þ 3t2σÞ2 −
48t2σ2

ð2þ 3t2σÞ2

þ 6t2σ
ð2þ 3t2σÞ2

�
8σ þ κ2ð6þ 9a20ð

ffiffiffi
2

p
ð2þ 3t2σÞÞ23Þ

�

þ 6
ffiffiffi
6

p
tσ

1
2

ð2þ 3t2σ2Þ
�
κ2tan−1

� ffiffiffiffiffi
3σ

2

r
t

��

−
18a20κ

2t2σ
ð2þ 3t2σ2Þ 2F1

�
1

3
;
1

2
;
3

2
;−

3t2σ
2

�
− 6κ2; ð79Þ

where 2F1½a; b; c; d� represents the hypergeometric
function.
The symmetry between the contraction and the expan-

sion phase in matter bounce requires FðtÞ to be an even
function of t. In Fig. 6(b), we have plotted the cosmic time
evolution of FðtÞ, which shows its symmetric behavior with
respect to the bouncing point at t ¼ 0. The inverse relation
tðTÞ can be obtained by the inversion of T in Eq. (73),

tðTÞ ¼ �
ffiffiffi
2

3

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

T
−
1

σ
−
2

T

ffiffiffiffiffiffiffiffiffiffiffi
1 −

T
σ

rs
: ð80Þ

Here, we have retained the solution pair that produces the
desired result, T ¼ 0 at t ¼ 0. It is important to note that the

solution is invertible only for −
ffiffiffiffi
2
3σ

q
≤ t ≤

ffiffiffiffi
2
3σ

q
. This

corresponds to a characteristic time period for each matter
bounce universe corresponding to the critical parameter σ.
Beyond this region of time, we assume TEGR is valid [38].
As the solution Eq. (79) is an even function of t, both �
solutions in Eq. (80) provides the identical form of FðTÞ,
with − and þ solutions, representing the contraction and
expansion phases, respectively.
Substituting Eq. (80) in Eq. (79), we get the functional

form of F(T) as
FIG. 4. Time evolution of the scalar field ϕðtÞ in matter bounce
for σ ¼ 7 × 10−6M2

Pl and t0 ¼ 6.7 × 1041 GeV−1.
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(a) (b)

FIG. 5. The plot (a) shows FðTÞ vs T=T0 in symmetric bounce scenario for β ¼ 7.46 × 10−85 GeV2, which corresponds to the present
Universe. Here, T0 ¼ 24β ln a0 is the torsion scalar at t ¼ 0 and we have chosen κ ¼ MPl. The evolution of FðTÞ with respect to t=t0 is
plotted in (b).

(a) (b)

FIG. 6. The plot (a) shows function FðTÞ in terms of T=σ in the matter bounce scenario In (a), FðTÞ is only valid for T=σ ≤ 1,

equivalently jtj ≤ tmin ¼
ffiffiffiffi
2
3σ

q
in (b). In plot (b), evolution FðTÞ in terms of the t=tmin for σ ¼ 7 × 10−6 M2

Pl is plotted.

TABLE I. The KR field ϕðtÞ and the reconstructed Lagrangian FðTÞ corresponding to different setups for bouncing cosmology. The
function hðTÞ used in the matter bounce Lagrangian is defined as Eq. (82).

Model aðtÞ ϕðtÞ F(T)

Symmetric bounce a0 expðα t2

t2�
Þ 1

2

ffiffiffiffi
π
3β

q
erfð ffiffiffiffiffi

3β
p

tÞ 3

2
κ2 exp

�
−T
4β

��
2þ 3 expðβt20Þ exp

�
T
12β

��

þ 6
ffiffiffi
π

p
ffiffiffiffi
T
β

s
κ2erf

�
1

2

ffiffiffiffi
T
β

s �
þ 3

ffiffiffiffiffi
6π

p
expðβt20Þ

ffiffiffiffi
T
β

s
κ2erf

� ffiffiffiffiffi
T
6β

s �

−
�
3þ 9

2 expðβt20Þ
�

Matter bounce a0ð32 σt2 þ 1Þ13 ffiffiffiffi
2
3σ

q
tan−1

� ffiffiffiffi
3σ
2

q
t
�

1

3hðTÞ2σ2
�
3κ2

�
a20ðT − 2σhðTÞÞð3 × 22=3T

�
σhðTÞ
T

�
2=3

− 2σhðTÞ2F1

�
1

3
;
1

2
;
3

2
; 1 −

2hðTÞσ
T

��

− 2σThðTÞ
� ffiffiffi

σ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2hðTÞ
T

−
1

σ

r
× tan−1

� ffiffiffi
σ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hðTÞ
T

−
1

σ

r �
þ 1

���
− 6κ2
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FðTÞ¼ 1

3hðTÞ2σ2
�
3κ2

�
a20ðT−2σhðTÞÞ

�
3×22=3T

�
σhðTÞ
T

�
2=3

−2σhðTÞ2F1

�
1

3
;
1

2
;
3

2
;1−

2hðTÞσ
T

��

−2σThðTÞ
� ffiffiffi

σ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2hðTÞ
T

−
1

σ

r
tan−1

� ffiffiffi
σ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hðTÞ
T

−
1

σ

r �
þ1

���
−6κ2; ð81Þ

which is also restricted to T ≤ σ (equivalently,
− 2

3σ ≤ t ≤ 2
3σ). In Eq. (81), we have taken hðTÞ as a

functions of T,
given as

hðTÞ ¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffi
1 −

T
σ

r
: ð82Þ

In Fig. 6(a), we have plotted the function FðTÞ in terms of
T. Note that the solution Eq. (81) satisfies the vacuum
solution constraint Fð0Þ ¼ 0.

V. DISCUSSIONS AND CONCLUSION

TEGR is a successful gravity description, specifically in
the presence of sources that could twist the geometry to
create torsion. One such example that could source torsion
is the anti-symmetric rank-2 Kalb-Ramond field. These
antisymmetric tensor fields form an integral part of heter-
otic string models [29,39] as massless closed string modes
and of some supersymmetric models like N ¼ 2 and N ¼ 8
extended SUGRA. They have also been widely studied [40]
in the context of electromagnetic field coupling to the
Einstein-Cartan system. Though essential, it is noteworthy
that there are no experimental evidence for this field in the
present day Universe [3].
Since the presence of torsion breaks the Uð1Þ invariance

of the gauge theory, it is important to introduce a suitable
coupling prescription in teleparallel gravity. To do that
successfully, we first define an equivalent of the covariant
derivative called the Fock-Ivanenko derivative operator in
teleparallel geometry. In Sec. III, we generalize FIDO to
operate on any n-form tensor field in (dþ 1)-dimensional
space, using the equations Eq. (22), Eq. (23), and Eq. (24)
and in particular on KR field. For completeness, we show
the equivalence of Fock-Ivanenko derivative of the KR
field in teleparallel gravity to the Levi-Civita covariant
derivative in Einstien’s gravity in Appendix.
We then compute the equations of motion and show that

the dynamics of tetrad fields in teleparallel geometry are
governed by the KR field. To keep the discussion general,
we start with a generic function FðTÞ. And we considered
the effect of this setting in producing two bouncing
cosmologies, namely symmetric bounce and matter
bounce. The absence of initial singularity in cosmological
evolution has been a significant advantage of bouncing
cosmologies over the inflationary paradigm. In these

scenarios, the big bang is replaced by a continuous phase
of expanding and contracting.
Note that the scale factor for both these scenarios are

sourced by the localized energy density of the KR field as
shown in Figs. 1(c) and 3(c). These plots indicate the
nature of energy density with time ‘t’. At the present time
t0 ¼ 6.7 × 1041 GeV−1, the symmetric-bounce scenario
predicts the KR field-energy density of ρm ¼ 1.34 M4

Pl.
Where as matter bounce predicts a much smaller energy
density ρm ∼ 0. Thus the lack of cosmological evidence of
KR field in the present day Universe strongly advocate
matter bounce scenario over symmetric bounce.
In the symmetric bounce, the generalized teleparallel

gravity is an increasing function of T, for T ∈ ð0;∞Þ as
shown in Fig. 5(a), but for large T, FðTÞ behaves linearly.
Whereas in matter bounce, FðTÞ again exhibits similar
behavior, albeit the evolution is valid up to some value
T < σ, as shown in Fig. 6. The analytical results are given
in Table I. In both these scenarios, the scalar field shows a
wave profile [Figs. 2 and 4] and energy profile [Figs. 1 and
3] of a ‘kink’ which could be interesting to study further. It
is also interesting to wonder how an axion/pseudoscalar
field will behave in the teleparallel setting, given the
possible parity violations.
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APPENDIX: COUPLING PRESCRIPTION USING
FOCK-IVANENKO DERIVATIVE OPERATOR

IN THE RIEMANNIAN GEOMETRY

In the framework of Riemannian geometry, the math-
ematical equivalent of Fock-Ivanenko derivative of the KR
field Bab, using Eq. (22) and Eq. (24), is given by

DμBab ¼ ∂μBab −
i
2
Ωcd

μðiðδacηdg − δadηcgÞÞBgb

−
i
2
Ωcd

μðiðδbcηdg − δbdηcgÞÞBag

¼ ∂μBab þ Ωa
cμBcd þΩb

cμBac: ðA1Þ

Now, using Eqs. (5) and (8) in Eq. (23), we can write
Ωab

μ as
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Ωab
μ ¼ haρ∇̃μhbρ: ðA2Þ

This can be equivalently written as

∂μhaν þΩa
bμh

b
ν − Γ̃ρ

νμhaρ ¼ 0: ðA3Þ

Using the definition of the Fock-Ivanenko derivative of the
tetrads,

Dμhaν ¼ ∂μhaν þ Ωbμhbν; ðA4Þ

we can rewrite Eq. (A3) as

Dμhaν ¼ Γ̃ρ
νμhaρ: ðA5Þ

Substituting Eqs. (A2) and (26) in Eq. (A1) and using
Eq. (A5), we get

DμBab ¼ haρhbσ∇̃μBρσ; ðA6Þ

where ∇̃μBρσ is the Levi-Civita covariant derivative of Bρσ.
Thus, the Fock-Ivanenko derivative of the antisymmetric

Lorentz tensor Bab reduces to the usual Levi-Civita
covariant derivative of general relativity. In other words,
we can say that the minimal-coupling prescription in
Riemannian geometry can be written as

∂a → Dμ ¼ ∂μ þ Γ̃μ ≡ ∇̃μ: ðA7Þ

Now let us consider the Kalb-Ramond Lagrangian in the
background of Riemannian geometry

Lm ¼ −
ffiffiffiffiffiffi
−g

p
HμνρHμνρ; ðA8Þ

where the field strength Hμνρ is given by

Hμνρ ¼ ∇̃μBνρ þ ∇̃ρBμν þ ∇̃νBρμ: ðA9Þ

The corresponding field equation can be written as

∇̃μHμνρ ¼ 0: ðA10Þ

Assuming the Lorentz gauge ∇̃μBμν ¼ 0, and using the
commutation relation,

½∇̃μ; ∇̃ν�Bλμ ¼ R̃λ
σμνBσμ þ R̃μνBλμ; ðA11Þ

we have the field equations of KR fields in teleparallel
geometry,

∇̃μ∇̃μBνλ þ R̃νλσμBσμ þ 2R̃μ
½νBλ�μ ¼ 0: ðA12Þ
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