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We study different variants of the Gibbs sampler algorithm from the perspective of their applicability to
the estimation of power spectra of the cosmic microwave background (CMB) anisotropies. These include
approaches studied earlier in the CMB literature as well as new ones which are proposed in this work. We
demonstrate all these variants on full- and cut-sky simulations and compare their performance, assessing
both their computational and statistical efficiency. For this we employ a consistent comparison metric, an
effective sample size per second, commonly used in this context in the statistical literature. We show that
one of the proposed approaches, referred to as Centered overrelax, which capitalizes on additional,
auxiliary variables to minimize the computational time needed per sample, uses overrelaxation to
decorrelate subsequent samples, and performs better than the standard Gibbs sampler by a factor between
one and two orders of magnitude in the nearly full-sky, satellitelike cases. It therefore potentially provides
an interesting alternative to the currently favored approaches.
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I. INTRODUCTION

In the past few decades, the analysis of the cosmic
microwave background (CMB) has made a lot of progress.
Numerous novel and advanced statistical and numerical
techniques have been proposed and implemented for vir-
tually every step down the CMB data analysis pipeline. In
particular, an entire slew of very diverse methods have been
designed to produce estimates of the temperature and
polarization power spectra, or estimates of the cosmological
parameters from a set of noisy CMB maps. We can divide
these in three broad categories. The first one includes the
so-called pseudo-Cl approaches, e.g., [1–5], which compute
the power spectra directly from the observed noisy maps of
the CMB sky (see [6] for a review). The second category
involves the maximum likelihood methods [7,8], which
maximize the likelihood of the observed CMB maps with
respect to the sought after coefficients of the CMB power
spectra. The third category comprises of the Bayesian
approaches using Markov chain Monte Carlo (MCMC)

sampling methods, which directly target the posterior dis-
tribution of the estimated parameters, such as power spectra,
given the observed data. A number of such techniques exist
and some have been applied either for the power spectra or
cosmological parameter estimation. These include the
Metropolis-Hastings sampler, [9–11]. the HamiltonianMonte
Carlo sampler [12,13], or the Gibbs sampler [14–18].
Out of those, the pseudo-Cl methods are computationally

very efficient but require careful characterization of their
statistical properties and a design of a corresponding
pseudolikelihood to allow for a meaningful interpretation
of the estimated spectra. They are often a method of choice
for the analysis of spectra at angular scales much smaller
than the observed sky area, when such a pseudolikelihood
construction is more straightforward [6].
The maximum likelihood methods are statistically more

robust; however, they are computationally heavy and typi-
cally require approximations to provide a meaningful
description of the power spectrum likelihood. They are
typically applicable only to downsized data sets providing
constraints on the power spectra on large angular scales [7,8].
The MCMC sampling techniques can provide a robust

description of the posterior distribution of the estimated
spectra in the full range of angular scales. They do so by
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generating chains of samples which encode the statistical
properties of the posterior. Some of these techniques can
also cut significantly on the computational load of the
maximum-likelihood methods. Out of the potential meth-
ods, Gibbs samplers has been found to be particularly well
adapted to the context of the CMB power spectrum
estimation, e.g., [14,16,17], and this is a Gibbs sampler
which is implemented in the most advanced (existing)
Bayesian CMB power spectrum estimation code, [16].
Gibbs samplers also have a thorough statistical under-
pinning. In particular, the efficiency of the two-step Gibbs
sampler for linear hierarchical models, i.e., as used in the
CMB context, have been extensively studied in the stat-
istical literature, e.g., [19].
However, the current implementations of the Gibbs

sampler remain computationally demanding. This often
imposes practical limits on the number or the size of test
and validation runs which can be afforded, and frequently
requires approximations in modeling input CMB data in
order to simplify the calculations. The speedup here comes
however at the potential risk of increased statistical uncer-
tainties, presence of biases or both, in the final results of
such analyses. More efficient Gibbs algorithms are required
in order to bypass such limitations.
There are two factors determining sampler’s run time; the

time needed to draw a single sample and the overall number
of samples required to provide sufficient sampling of the
posterior. How good the posterior sampling is, is best
quantified by a number of effective, uncorrelated samples.
This number is smaller, and typically much smaller, than
the number of actual samples, which are usually correlated.
The stronger the correlations means the samples explore the
volume of the posterior less efficiently, and consequently,
more samples are needed to reach the same number of the
effective samples. This effect is referred to in the statistical
literature as a bad mixing of the algorithm [20].
In this paper we present several new ideas aiming at

enhancing the performance of the Gibbs sampler as applied
to the CMB power spectrum estimation. These include
methods which aim at cutting the number of actual samples
required to reliably characterize the posterior, i.e., improving
mixing properties of the algorithms as well as methods
which attempt to trade the time needed to compute samples
for their number, potentially leading to a net gain in the
overall performance. The third possibility of improving
numerical algorithms and their implementation to cut the
computational time of each sample is not considered in this
work. To compare the different methods, we evaluate the
number of effective, uncorrelated samples which these
methods can produce per unit time. This metric, referred
to as an effective sample size (ESS) per second, is defined
and discussed in Sec. VII.
We organize this paper as follows. In Sec. II we review the

adopted data model and introduce the basic formalism. In
Sec. III we present the standard Gibbs sampler as considered

in early CMB power-spectrum estimation literature and
discuss its deficiencies. In Secs. IV and V we discuss
techniques aiming at decreasing the number of necessary
samples, while keeping the sample computations
unchanged. In Sec. VI, we discuss ways to suppress time
needed for the single-sample computations, compensating
by an increased number of samples. Finally, in Sec. VII, we
describe our experiments and compare the performance of
all the presented Gibbs variants. We show that on nearly full-
sky, satellitelike data, one of the proposed algorithms
performs (in terms of the effective sample size per second)
one order of magnitude better on theEE power spectrum and
two orders of magnitude better on the BB power spectrum
than our baseline algorithm. We conclude our findings in
Sec. VIII.

II. BASIC FORMALISM

A. Data model

We assume throughout this work that the input data set
consists of noisy maps including only the CMB signal and
we focus on the estimation of its power spectra from such
maps. The maps typically cover only part of the entire sky
and can be of one, two, or three Stokes parameters,
corresponding to the total intensity I, or Stokes parameters,
Q and U only, or all three Stokes parameters, I, Q, and U,
respectively. The CMB signal is assumed to be Gaussian,
with the covariance given by matrix C. The noise in the
maps is also Gaussian with the covariance given by N. The
data model underlying the maps is therefore hierarchical,
(see [11,14,18,21]), and reads

fClg ∼ p0;

sjfClg ∼N ð0;CÞ;
djs ∼N ðỸs;NÞ; ð1Þ

Here, ∼ denotes a sample drawn from the distribution on
the right-hand side. p0 is the flat prior andN ðm;ΣÞ denotes
the Gaussian distribution with mean m and covariance Σ.
fClg2≤l≤lmax

stands for a set of all relevant power
spectra coefficients numbered by a multiple number, l,
(with the monopole and dipole ignored in the case of the
total intensity power spectrum). These uniquely define the
CMB covariance matrix, C. Each Cl can be a number, i.e.,
in the case of the total intensity maps, or a matrix in the case
of multiple Stokes parameter maps, as elaborated on
in Eq. (3).
s is the sky map expressed in the spherical harmonic

basis. Hereafter, we follow the convention that we use two
real numbers (one for the coefficients with m ¼ 0) corre-
sponding to the real and imaginary part of the sky harmonic
coefficients, instead of a single complex one, and separate
them into two real vectors—see [22] for an extensive
justification.
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Ỹ is the product of the spherical harmonics synthesis
matrix Y and the (diagonal) Gaussian beam matrix B,
in the spherical harmonic domain, which is assumed
diagonal corresponding to an axially symmetric beam.
Consequently, Ỹ s stands for the beam-smoothed CMB
map in the pixel domain computed from the harmonic
coefficients, s, drawn from the Gaussian distribution with
covariance C. The map Ỹ s, corresponds only to the
observed part of the sky for which the data, as defined
by the data vector d are available, and in general it will
cover only limited area of the full sky.
We assume that for a full-sky map,

4π

Npix
YTY ¼ I; ð2Þ

where I denotes the identity matrix. This means that the
adapted pixelization used to descretize the map objects is
such that the spherical harmonics all the way up the band
limit, lmax, are orthogonal on the grid made of the pixel
centers.
The data vector d ∈ RNpix is the noisy-sky map in the

pixel domain, and Npix is the number of pixels of the map.
We note that the noise covariance N, is given in the pixel

domain and assumed hereafter to be diagonal (though not
necessarily to be proportional to the unit matrix). In
contrast, the signal covariance C is defined in the harmonic
domain, and is block diagonal (diagonal in the case of total
intensity only). For example, in the case of inference on
total intensity and polarization, the blocks of the signal
covariance are

Cl ¼

0
B@

CTT
l CTE

l CTB
l

CTE
l CEE

l CEB
l

CTB
l CEB

l CBB
l

1
CA; ð3Þ

where fCTT
l g, fCEE

l g, fCBB
l g, fCTE

l g, fCTB
l g, and fCEB

l g
are the temperature, E-mode, B-mode and cross-correlation
power spectra. For the standard parity-invariant cosmology
adopted in this work, fCTB

l g ¼ fCEB
l g ¼ 0. In the rest of

this paper, for simplicity, we will drop the dependency of
the signal covariance matrix on the power spectrum and
define C ≔ CðfClgÞ.
For the sake of transparency, hereafter we present our

algorithms specialized for the case of the total intensity as the
generalization to include polarization is straightforward, see
[15] for example. We however include polarization in all our
numerical experiments in Sec. VII.

B. Likelihood

If the observed data are normally distributed given the
power spectrum, the likelihood of the observed data reads

LðdjfClgÞ ∝
exp f−ð1=2ÞdTðỸCỸT þ NÞ−1dg

jỸCỸT þ Nj1=2 ; ð4Þ

where j…j denotes the absolute value of the determinant of
a matrix, and ỸCỸT is the signal covariance of the observed
sky map, therefore either full- or cut-sky map in the pixel
domain.
The full covariance matrix of this likelihood is dense in

the pixel domain and, in the case of partial sky coverage
and noise covariance matrix not proportional to the identity,
is also dense in the harmonic domain. Therefore inverting it
and computing its determinant is time consuming as soon
as the dimension, i.e., the number of the observed sky
pixels, is high. Hence, the computation of the likelihood,
and therefore the maximum-likelihood approach, becomes
quickly prohibitive. We can however rely on the Bayesian
approach instead.

C. Bayesian approach

Adopting the Bayesian viewpoint and putting an
improper flat prior p0ðfClgÞ on the power spectrum, we
can derive the posterior distribution of the power spectrum
coefficients,

πðfClgjdÞ ∝ LðdjfClgÞ: ð5Þ

Unfortunately, evaluating this posterior is as computa-
tionally involved as the computation of the likelihood and
makes the application of the sampling algorithms difficult
or, as in the case of Metropolis-Hastings sampler, directly
infeasible.
To bypass this difficulty we can augment our data model

and consider a joint posterior over the power spectrum and
sky map, as done in previous works [11,14,15,18,21],

πðfClg; sjdÞ ∝ pðdjsÞpðsjfClgÞ; ð6Þ

where

logpðdjsÞ ¼ −ðd − ỸsÞTN−1ðd − ỸsÞ=2þ c1; ð7Þ

and

logpðsjfClgÞ ¼ −sTC−1s=2 − log jCj=2þ c2; ð8Þ

with c1, c2 being real-valued constants. We note that s
denotes the set of spherical-harmonic coefficients and is
therefore equivalent to the full-sky map in the pixel domain,
notwithstanding the fact that the available data d, may
correspond only to a partial sky. Consequently, the number
of elements of s can be much larger than the number of the
data points collected in d. The elements of s are referred to
as latent variables, as they are introduced to facilitate the
computation and will be eventually discarded. As their
covariance matrix C is very structured, its determinant and
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its inverse are both straightforwardly computable. Hence,
we could apply the Metropolis-Hastings algorithm to this
joint distribution; However, we do not expect it to be
efficient due to the high dimensionality of the problem and
the strong correlations between the variables. However, as
first proposed in [18,23], we can sample from the respective
conditional posterior distributions of this joint posterior and
can apply a Gibbs sampler instead. We discuss this in detail
in the next section.
We note that, in general, using an improper prior

distribution may lead to an improper posterior distribu-
tion—that is one with infinite mass—creating problems for
MCMC algorithms as discussed in the statistical literature,
e.g., [24]. However, in our application and in the case of
full-sky data it can be shown (see Appendix A) that the
improper flat prior pðfClgÞ results in a proper posterior
distribution. This is consistent with the previous CMB
literature on MCMC applications, [11,14,15,18,21], which
have reported no pathological cases. In contrast, as also
shown in Appendix A, using Jeffrey’s prior [25] on this
model, as also suggested in some previous CMB works,
e.g., [11] and [15], leads to an improper posterior distri-
bution in the case of full-sky observations and thus results
in a nonvalid MCMC algorithm. Given that, and following
the accepted convention in the field, we adopt the improper
flat prior on the power spectrum throughout this work.

III. GIBBS SAMPLING

A. The algorithm

The principle of Gibbs sampling for data augmentation is
to sample iteratively from the conditional distributions of
the parameters and the latent variables, see, e.g., [26].
Algorithm 1 shows one iteration of this technique applied
to the joint posterior distribution in equation (6).
The first step of drawing a sample of the sky signal stþ1,

given the data and the power spectrum is called the
constrained realization step. The second step is the power
spectrum sampling step as it draws a sample of the power
spectrum given the data and the sky signal. This type of
algorithm has been widely used for CMB data analysis
[11,14,15,18,21]. The hierarchical data model underlying
Algorithm 1 can be represented graphically by a directed
acyclic graph (DAG) shown in Fig. 1.

B. Constrained realization step

The distribution of the sky map, conditional on the
observed map and the power spectrum, is given by,

sjd; fClg ∼N ðμ;ΣÞ; ð9Þ

where

Σ ≔ Q−1 ¼ ðỸTN−1Ỹ þ C−1Þ−1
μ ≔ ΣỸTN−1d: ð10Þ

However, in the case of an inhomogeneous noise and/or an
incomplete sky coverage, the covariance matrix in Eq. (9)
ðΣÞ is dense and highly dimensional. Hence, it is costly to
invert it or to compute its Cholesky decomposition.
In order to sample from this Gaussian distribution, we

can rely instead on an algorithm proposed in the CMB
context in [18] and known in the statistical literature as the
Perturbation-Optimization algorithm [27]. The steps are:

(i) Draw w0; w1 ∼N ð0; IÞ
(ii) Solve for x:

ðỸTN−1Ỹ þ C−1Þx ¼ ỸTN−1=2w0 þ C−1=2w1

þ ỸTN−1d; ð11Þ

where M1=2 denotes any matrix satisfying

M ¼ M1=2ðM1=2ÞT:

Obviously, the right-hand term of Eq. (11) is a normal
variable with distributionN ðỸTN−1d;QÞ and the solution
of this system is a random variable drawn from the
distribution in Eq. (9). Since this system may be very
high dimensional and badly conditioned, in practice the
system in Eq. (11) is solved using an iterative solver such
as preconditioned conjugate gradient (PCG) algorithm.
Indeed has been the standard way of calculating the
constrained realization step in the context of CMB data
analysis, see [11,14,15,17,18,21]; however, see, e.g., [28],
for alternative solvers and [29] for their comparison. In the
following, we introduce the truncated perturbation opti-
mization (TPO) algorithm—a perturbation-optimization
algorithm using an iterative method to solve the linear
system which is terminated after a predetermined number
of iterations or reaching a precision threshold, therefore
potentially failing to attain sufficient accuracy.

C. Power spectrum sampling

The second step of the Gibbs sampler in Algorithm 1
consists in sampling the power spectrum conditionally on
the sky signal, s, and the observed data, d. As visualized in

Algorithm 1. Iteration t ofGibbs sampling for data augmentation.

Input: ðfClgt; stÞ
Output: ðfClgtþ1; stþ1Þ

1 stþ1 ∼ pðsjd; fClgtÞ // Constrained Realization step
2 fClgtþ1 ∼ pðfClgjd; stþ1Þ // Power Sampling step

FIG. 1. Directed acyclic graph of model (1). Circles and squares
represent unobserved and observed variables respectively. Plain
arrows represent stochastic dependence.
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Fig. 1, the sampling is in fact independent on the data as
pðfClgjs; dÞ ¼ pðfClgjsÞ and given by

pðfClgjsÞ ∝
exp f−ð1=2ÞsTC−1sg

jCj1=2 : ð12Þ

In the case of either temperature or polarization, separately,
this corresponds to a product of inverse gamma distributions
[11,14,15,18,21],

pðfClgjsÞ ∝
Ylmax
l¼2

exp f−ð2lþ 1Þσl=2Clg
Cð2lþ1Þ=2
l

; ð13Þ

where

σl ≔
1

2lþ 1

X
−lmax≤m≤lmax

jal;mj2;

is the empirical power spectrum. In the case of temperature
and polarization, we must instead sample from independent
inverseWishart distributions, see [11,14,15,18,21]. Hereafter,
we continue presenting the formalism for the total intensity
case and include polarization only in the numerical experi-
ments in Sec. VII.

D. Shortcomings

While being straightforward to implement and tuning
free, this algorithm has two major issues that can prohibit
its application in many cases of interest. These are the high
computational cost of the constrained realization step and
the strong correlations between the sky map and the power
spectrum. This is this last property, referred to in the
statistical literature as bad mixing of the algorithm, which
drives the number of samples needed to sample the full
volume of the posterior. Both these factors tend to inflate
the overall computational time of the algorithm potentially
limiting its applicability. We discuss each of them in more
detail below.

1. Constrained realizations

The resolution of the system in Eq. (11) is costly in
general. Depending on the preconditioner that is being
used, between Oð350Þ and Oð1000Þ spherical harmonics
transforms were required for a WMAP-like experiment
with eight frequency bands, see [14]. In this work, we find
that the resolution of the system takes Oð240Þ spherical
harmonic transforms for a lower-resolution, LiteBIRD-like
experiment with an 80% Planck galactic mask, assuming
the standard, Block-Jacobi preconditioner.
More sophisticated preconditioners could speed up the

convergence; however, they typically require expensive
precomputation and extra time to apply them. These can
significantly offset any gain in the number of iterations they
may bring.We note that in principle we need highly-accurate

solutions which exacerbates the computational problem. The
high accuracy is necessary to ensure that the solutions are
really drawn from the required distribution. So, while it may
be tempting to compromise on the solution precision in the
interest of the time, for low-accuracy solutions we may not
even know what the true underlying distribution they have
been effectively drawn from is, potentially invalidating the
entire procedure.
This is a real issue for the Gibbs sampler since if we are

not sampling from the correct conditional distributions at
each iteration, we have no idea what effective joint distri-
bution the Gibbs sampler is simulating from or even whether
this distribution exists at all.

2. Power spectrum sampling

The second problem concerns the sampling of the power
spectrum conditional on the sky map—that is, the second
step of our Gibbs sampler.
We define the lag-1 autocorrelation for any function f

with finite second-order moment under π, i.e., for whichR
f2ðxÞπðxÞdx is finite, as

γf ¼ CovðfðfClg0Þ; fðfClg1ÞjdÞ
VarðfðfClgÞjdÞ

; ð14Þ

where fClg0 ∼ πðfCljdÞ and fClg1 are two consecutive
power spectrum samples computed at stationarity. It has
been shown in the statistical literature [19] that in the
case of data augmentation as in the case under consid-
eration, at stationarity, the lag-1 autocorrelation γf, can be
expressed as

γf ¼ 1 −
EfVarðfðfClgÞjs; dÞjdg

VarðfðfClgÞjdÞ
: ð15Þ

Following the statistical literature results (see [30,31]) it
can be shown that the geometric rate of convergence of the
Gibbs sampler γ [see equation (C2) in Appendix C for a
definition] reads

γ ¼ sup
f

γf ¼ fsup
f;g

CorrðfðClÞ; gðsÞjdÞg2; ð16Þ

where the supremum is taken over all functions with finite
variance under π, and Cov, Var, Corr, and E represent
covariance, variance, correlation, and expectation value of
the arguments, respectively. Equation (15) shows that the
lag-1 autocorrelation is determined by the fraction of
the “conditional variance” over the posterior variance. If
the conditional variance of the power spectrum given the
sky is very small compared to the posterior variance of the
power spectrum, then the lag-1 autocorrelation is high,
leading to an inefficient sampling of the posterior and the
bad mixing of the algorithm. Equation (16) states that this
happens when fClg and s are highly correlated.
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This is actually intuitive; when the variance of the
conditional distribution is small compared to the posterior
one, sampling from this conditional distribution will make
only “small steps”, changing the power spectrum very little
compared to the full range of potential posterior values.
This in turn will lead to a small change as compared to the
full posterior when sampling the signal conditionally on the
power spectrum and so on. Consequently, the algorithm
will not explore the posterior distribution efficiently.
Unfortunately, we encounter this problem in our applica-

tion. Indeed, let us consider the case where we observe the
full sky and have an isotropic noise covariance matrix. In this
case the matrix ðCþ ỸTNỸÞ−1 is diagonal in the harmonic
domain and the posterior distribution is a product of the
inverse translated Gamma distribution and we have (roughly)

VarðCljdÞ ∝ ðCl þ NlÞ2;
VarðCljsÞ ∝ C2

l;

where the noise power spectrum Nl, includes the beam
effects. Hence, the lag-1 autocorrelation for multipole l reads

γðlÞf ≈ 1 −
�

Cl

Cl þ Nl

�
2

¼ 1 −
�

SNRl

SNRl þ 1

�
2

; ð17Þ

where SNRl stands for the signal-to-noise ratio of the power
spectrum coefficient corresponding to multipole l, defined as

SNRl ¼ Cl

Nl
: ð18Þ

This shows that the lag-1 autocorrelations are determined by
the signal-to-noise ratios of the respective power spectrum
coefficients. Consequently, they are going to be different for
different coefficients. In the CMB power spectrum estimation
we estimate a broad range ofCl, as defined on one end by the
size of the observed sky patch and by the instrument
resolution on the other, and which will therefore typically
span a large range of signal-to-noise ratio values, from high
signal-to-noise cases with SNR ≫ 1 to the low signal-to-
noise ones with SNR < 1 and passing through those for
which SNR ∼ 1.
We can now see that for low signal-to-noise coeffi-

cients the standard Gibbs sampler will not sample their
respective marginal distributions efficiently. This is
because for SNRl ≪ 1, γðlÞf ∼ 1 (following on the pre-
vious discussion) the posterior variance of the respective
marginal will be much bigger than its conditional vari-
ance. From Eq. (16) this is related to the fact that the
correlation between the power spectrum coefficients and
the sky maps in this regime are strong.
For high signal-to-noise cases, γðlÞf ∼ 0, and the condi-

tional and posterior variances are comparable, the correla-
tions between the power spectra and the sky are expected to
be significantly lower, and we expect that the algorithm will
perform well for these coefficients, or that it will mix well for
these marginal distributions.

All these observations are graphically summarized
in Fig. 2.

IV. NONCENTERED GIBBS SAMPLING

A. Algorithm

To circumvent this problem, we reparametrize the model
in Eq. (1) to break the dependencies between the signal and
the power spectrum. Such an approach was studied in the
statistical literature, e.g., [32–34] and the CMB context in
[17]. The new model reads

fClg ∼ p0;

s̃ ∼N ð0; IÞ;
d ¼ ỸC1=2s̃þ n; ð19Þ

where n ∼N ð0;NÞ and I is the identity matrix of dimen-
sion ðlmax þ 1Þ2 − 4. We plot its directed acyclic graph
representation in Fig. 3.

FIG. 2. Example of a sequence of consecutive samples of the
Gibbs sampler in the centered parametrization. For low signal-
to-noise power spectrum coefficients, shown in the right panel, the
sky map and the power spectrum are strongly correlated. This leads
to the bad mixing of the algorithm in this regime and a large number
of samples is needed to explore the posterior marginals for such
coefficients. This is not the case of the high signal-to-noise
coefficients as shown in the left panel. Here, the correlations are
small and the resulting mixing of the algorithm is good with many
fewer samples needed to explore the posterior. In both panels the
red plain arrows depict sampling of the power spectrum given
the sky map and the blue dotted arrows sampling the sky map given
the power spectrum.

FIG. 3. Directed acyclic graph of the model in Eq. (19). Circles
and squares represent unobserved and observed variables, re-
spectively. Plain arrows represent stochastic dependence. Dashed
arrows represent deterministic dependence.
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In this parametrization, the power spectrum fClg and the
signal s̃ are now independent a priori and all the posterior
correlations come from the likelihood of the model.
In order to sample from that model we are also using a

Gibbs sampler. Algorithm 2 shows one iteration of the
algorithm.
The first step is implemented like the first step of

the centered Gibbs sampler except that at its conclusion
we change the parametrization; we simulate stþ1 ∼
pðsjd; fClgtÞ and then set s̃tþ1 ¼ C−1=2

t stþ1. The second
step, however, is different. This is because the power
spectrum and the observed sky map are not independent
when conditioned on the signal map. The second condi-
tional density takes the following form,

logpðfClgjs̃; dÞ ¼−
1

2
ðd− ỸC1=2s̃ÞTN−1ðd− ỸC1=2s̃Þþ c;

ð20Þ

where c is a constant. Since we are unable to sample
directly from this conditional, we rely on a Metropolis
step. This is implemented as follows:

(i) Propose fClgnew ∼ qð·jfClgtÞ
(ii) Set fClgtþ1 ¼ fClgnew with probability

r ¼ minð1; αÞ;

where

α ¼ exp f−ðd − ỸC1=2
news̃tÞTN−1ðd − ỸC1=2

news̃tÞ=2g
exp f−ðd − ỸC1=2

t s̃tÞTN−1ðd − ỸC1=2
t s̃tÞ=2g

×
qðfClgtjfClgnewÞ
qðfClgnewjfClgtÞ

; ð21Þ

otherwise set fClgtþ1 ¼ fClgt.
Here qð:jfClgtÞ is the proposal distribution assumed to be
normal with a diagonal covariance matrix centered in
fClgt, whose marginals are truncated to real positive
numbers. This algorithm has already been implemented
in the context of CMB data analysis in [17]. In addition,
since the problem is very high dimensional, we decom-
pose fClg into disjoint subsets and we sample each of
them in turn, one-by-one, while keeping all others fixed
following the approach of [17]. Consequently, we are
implementing a Gibbs sampler targeting distribution in

Eq. (20), however each Gibbs step is performed thanks to
the Metropolis step. We also follow [17] in order to tune
the diagonal elements of the covariance matrix of the
proposal distribution q.

B. Shortcomings

We can already expect this algorithm to suffer from two
main shortcomings. First, we still have to solve a high-
dimensional linear system, as described in Sec. III D 1. The
problems are the same; namely, the high computational cost
of the algorithm and the fact that it may not always converge
to a solution which is sufficiently accurate.
The second problem of the noncentered Gibbs sampler

is related to the sampling of the power spectrum condi-
tionally on the observed data and the signal map as
discussed in, e.g., [17]. Indeed, when looking at the
distribution in Eq. (20) we see that for the low signal-
to-noise ratio parameters, we can make large moves in the
parameter space and the value of the density will not
change much because the noise is much bigger.
Unfortunately, the opposite is true for high signal-
to-noise ratio parameters; when the noise is small
compared to the power spectrum, making large moves
will make large changes in the value of the density,
leading to a small acceptance rate in the Metropolis-
Hasting algorithm. This is in addition to the fact that a
mere use of the noncentered parametrization already
worsens the mixing properties of the Gibbs sampler of
the marginal distributions for the high signal-to-noise
ratio coefficients as visualized in Fig. 4. This intuition is
confirmed by the experiments made in [17].
Consequently, we still need to find an alternative

algorithm that is capable of sampling efficiently the high
and low signal-to-noise ratio simultaneously.

Algorithm 2. Iteration t of the noncentered Gibbs sampler.

Input: ðfClgt; s̃tÞ
Output: ðfClgtþ1; s̃tþ1Þ

1 s̃tþ1 ∼ pðs̃jd; fClgtÞ
2 fClgtþ1 ∼ pðfClgjd; s̃tþ1Þ

FIG. 4. Example of a sequence of samples of the noncentered
Gibbs sampler. For low signal-to-noise power spectrum coef-
ficients, the sky map and the power spectrum are strong
correlated, right panel. This is not the case of the high signal-
to-noise coefficients, left panel. The green plain arrows depict
sampling the power spectrum given the sky map and the orange
dotted arrows the sky map given the power spectrum. As shown,
the noncentered Gibbs sampler explores the marginals of the high
signal-to-noise coefficients much less efficiently, left panel, than
those of the low signal-to-noise ones, right panel.
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V. INTERWEAVING

A. Algorithm

The idea of interweaving, also called ASIS in the
statistical literature (see [35]) allows us to capitalize on
the properties of the centered and noncentered Gibbs
algorithm presented earlier. This is done by combining
both these samplers together rather than simply alternating
between them. In this section we apply this idea to the
power spectrum estimation.
The interweaving scheme proposed here applies first the

Gibbs kernel as described in Sec. III, followed by changing
the variable to get a noncentered version of the algorithm
and finally concluding by sampling the power spectrum as
explained in Sec. IV. These steps are implemented in
Algorithm 3. The first two steps of the algorithm are the
usual centered Gibbs sampler (Sec. III). The third step
constitutes a change of variable that shifts to the non-
centered version of the Gibbs sampler. The fourth step
effectively samples the power spectrum from the non-
centered parametrization, while the fifth goes back to the
centered one.
We note that we can look at the interweaving algorithm

as an alternating subspace-spanning resampling algorithm
(ASSR), see [36] with the underlying MCMC algorithm
being the centered Gibbs sampler and the mapping defined
as MðfClg; sÞ ¼ ðfClg; s̃Þ.
Intuitively, the algorithm will have better mixing

properties than the centered and noncentered Gibbs
sampler algorithms. First, interweaving will mix as well
as the centered Gibbs sampler on the marginals of the high
signal-to-noise ratio parameters because of Steps 1 and 2
(see Sec. III). It will also mix as well as the noncentered
Gibbs sampler on the marginals of the low signal-to-noise
ratio ones, thanks to the change of variable and sampling
in Steps 3 and 4. Second, we are not exploiting the
strength of each algorithm. We can expect interweaving to
show a “compound effect”; the case of the high signal-to-
noise ratio parameters will still benefit a bit from the
noncentered step, however inefficient it may be, and
vice versa.
So far we have proposed an algorithm that we expect to

behave nicely on a broad range of signal-to-noise ratios but
the constrained realization step is still a problem; whatever
the mixing properties of the algorithm we are using, the

cost of one iteration is still very high and this is expected to
continue to be a major hindrance for the applications.

VI. CONSTRAINED REALIZATION STEP

Solving the constrained realization equation [Eq. (11)] is
a problem for several reasons. First, this system is highly
dimensional and dense, so explicitly computing the inverse
of its system matrixQ would be really time consuming, not
to mention the memory requirements to store it. These
issues can be efficiently handled by the use of an iterative
solver—most commonly a preconditioned conjugate gra-
dient (PCG) algorithm. However, iterative algorithms solve
the system only up to some predefined accuracy and
sometimes require a large number of iterations to provide
a sufficiently precise solution. Trading on this may speed
up time to solution but can result in a bias, the effects of
which are hard to quantify.
One solution would be to add a Metropolis-Hastings step

after we proposed a new sky-map sample using Eq. (11).
This would ensure that the accepted constrained realization
solutions conform with the desired posterior. However, such
a naive implementation would lower the acceptance rate
resulting in high autocorrelations between the successive
samples.
We propose two alternative solutions to these two

problems in this section. First, we present an auxiliary
variable scheme that allows us to add a Metropolis-Hastings
step without reducing the efficiency of the sampler. Second,
we introduce another auxiliary variable that allows us to
eliminate altogether any need to sample exactly from a high
dimensional normal distribution with a dense covariance
matrix.
These two algorithms leave the distribution in Eq. (9)

invariant, leading therefore to a valid Gibbs sampler.

A. Reversible jump perturbation optimization step

Our first approach is based on an algorithm called in the
statistical literature the reversible-jump perturbation opti-
mization (RJPO) algorithm described in [37].
We start from augmenting the model with an auxiliary

variable z such that

zjs ∼N ðQsþ Qμ;QÞ; ð22Þ

where Q, and μ are defined in Eq. (10) and s is distributed
according to Eq. (9). We then perform a Metropolis-
Hastings move on this augmented target.
Our proposal consists in the following deterministic,

differentiable and reversible transformation,

ϕðs; zÞ ¼ ð−sþ fðzÞ; zÞ ¼ ðs0; zÞ: ð23Þ

Following [37], the Metropolis acceptance rate for this
proposal is

Algorithm 3. Iteration t of ASIS.

Input: ðfClgt; stÞ
Output: ðfClgtþ1; stþ1Þ
1: stþ0.5 ∼ pðsjd; fClgtÞ
2: fClgtþ0.5 ∼ pðfClgjstþ0.5Þ
3: s̃tþ0.5 ¼ CðfClgtþ0.5Þ−1=2stþ0.5
4: fClgtþ1 ∼ pðfClgjd; s̃tþ0.5Þ
5: stþ1 ¼ CðfClgtþ1Þ1=2s̃tþ0.5

DUCROCQ, CHOPIN, ERRARD, and STOMPOR PHYS. REV. D 105, 103501 (2022)

103501-8



minð1; e−rðzÞtðs−s0ÞÞ; ð24Þ

where rðzÞ ≔ z − QfðzÞ.
On choosing fðzÞ ¼ Q−1z, the acceptance rate of the

Metropolis-Hastings scheme is one, and we accept every
proposed move. In addition, as shown in [37], this choice of
fðzÞ leads to uncorrelated successive samples.
Note that in this case s0 ¼ −sþ Q−1z ¼ −sþ

Q−1ðQsþ ηÞ ¼ Q−1η where η ∼N ðQμ;QÞ which means
we are solving the exact same system as for sampling from
Eq. (9) in the usual centered Gibbs sampler.
As we explained before, the problem is that we are

unable to solve this system exactly and instead we have to
relay on some iterative algorithms that in the interest of
time we stop once some predefined precision has been
reached. The scheme considered here allows to account on
such effects.
Indeed, instead of defining fðzÞ ¼ Q−1z, we can define it

as the output of a truncated iterative solver like the
preconditioned conjugate gradient algorithm. applied to
the system QfðzÞ ¼ z. The acceptance rate of the corre-
sponding Metropolis-Hastings algorithm will not be 1 and
the correlations between two successive samples will not be
0 anymore. Since the ratio depends on rðzÞ, the more
precisely we solve the system the higher the acceptance
rate, but so is the computational cost. With this algorithm,
we are facing a computational efficiency/autocorrelation
tradeoff.
Let us denote û the approximate solution of QfðzÞ ¼ z.

Now we have s0 ¼ −sþ û and rðzÞ ¼ z − Qû ¼ z−
Qðsþ s0Þ ¼ η − Qs0. Finally the algorithm reads as
Algorithm 4.
It is remarkable that the first and second steps of this

RJPO algorithm are exactly the same system as for
sampling from the distribution in Eq. (9). We are just
adding a Metropolis-Hastings step to ensure that we are
leaving this distribution invariant, however approximately
we solve the system.
The presence of such a Metropolis step allows us to solve

the system with an arbitrary precision without biasing the
Metropolis-within-Gibbs algorithm. Thus, we can spare
some computation time by decreasing the precision
required to solve the system.
If one chooses to solve the system exactly, the RJPO

algorithm always accept the proposed move and the
successive samples are uncorrelated. In this case, RJPO
is exactly the same as the PO algorithm used to sample
from Eq. (9) in Sec. III B.

If instead we decide to solve the system only approx-
imately, we introduce correlations between successive
samples and the acceptance rate will depend on how
approximately we solve it; the more precise we are, the
higher the acceptance rate.
Even though the RJPO algorithm has nice properties it

still involves solving a very high-dimensional system at
least very approximately. We also have to arbitrate between
a lower computing time and higher autocorrelations. In the
next section we present another auxiliary variable scheme
that completely bypasses such inconveniences.

B. Augmented Gibbs step

Instead of shortening the computing time needed to solve
the constrained realization linear system as we did in the
previous subsection, we may avoid it completely and rely
on a different MCMC scheme. The dimension is huge
though, and we would like to avoid the computation of an
acceptance ratio. AGibbs sampler seems a natural solution.
The relevant algorithm has been originally proposed in the
statistical literature in [38]. In this section we describe it
and adapt the generic algorithm to the specific case of the
CMB power spectrum estimation.

1. Gibbs step

Instead of sampling directly from the conditional
distribution (9)

πðsjfClg; dÞ;

we augment it with an auxiliary variable v so that
sampling from Lðvjs; fClg; dÞ and Lðsjv; fClg; dÞ is
easier. We choose a v such that

vjs; fClg; d ∼N ðΓỸs;ΓÞ; ð25Þ

where Γ ≔ ðβI − N−1Þ and β is a scalar chosen so that Γ is
positive definite. This gives us the following conditional
distribution (up to an irrelevant prior on v),

sjv; fClg; dÞ ∼N ðMỸTðvþ N−1dÞ;MÞ; ð26Þ

where B is the beam matrix and M ≔ ðβNpix

4π B2 þ C−1Þ−1.
Note that both Γ and M are diagonal, or block diagonal
matrices in the case of temperature and polarization. We note
that we can sample efficiently from these two conditional
distributions, and consequently we are able to sample from
the distribution in Eq. (9) as well and to do so without any
need for solving the constrained realization problem. Indeed,
we can simply use the Gibbs sampler and draw pairs of ðs; vÞ
consecutively from their conditional distributions and sinceR
πðs; vjd; fClgÞdv ¼ πðsjd; fClgÞ, we merely discard v

at the end. Such a scheme leaves the distribution in Eq. (9)
invariant.

Algorithm 4. RJPO algorithm.

1: Sample η ∼N ðQμ;QÞ
2: Solve Qŝ ¼ η approximately
3: Compute α ¼ minð1; e−rðzÞtðs−ŝÞÞ where rðzÞ ≔ η − Qŝ.
4: With probability α, set s0 ¼ ŝ, otherwise set s0 ¼ s.
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Even though this augmented Gibbs step is computation-
ally efficient, its overall performance will mainly depend on
the correlations between v and s. If we write the joint
distribution of ðs; vÞ, we realize that they are jointly
Gaussian with covariance matrix,

� Σ ΣỸTΓ
ΓỸΣ Γþ ΓỸTΣỸΓ

�
: ð27Þ

Looking at Eq. (27), we see that Σ, defined in Eq. (9), is
influencing the correlations between s and v. From our
earlier analysis, see also [14], this may be a problem since
Σ may be dense for the high signal-to-noise ratio param-
eters. We can expect this Gibbs step to show poor mixing
on their marginals. However, for lower signal-to-noise
ratio parameters, Σ tend to be band diagonal and we can
expect this Gibbs move to be much more efficient. We
confirm this expectation with help of numerical experi-
ments in Sec. VII B.

C. Overrelaxation

The overrelaxation method, see [39] for the statistical
background, is a way around these strong correlations.
Instead of sampling successively from distributions in
Eqs. (25) and (26), we are going to sample from

vtþ1 ¼ ΓỸst þ γðvt − ΓỸstÞ þ Γ1=2ð1 − γ2Þ1=2Z1; ð28Þ

and

stþ1 ¼ MỸTðvtþ1 þ N−1dÞ þ γðst −MỸTðvtþ1 þ N−1dÞÞ
þM1=2ð1 − γ2Þ1=2Z2; ð29Þ

where Z1, Z2 are two independent standard normal
variables; Z1 has the dimension of v and Z2 of s. Here,
γ ∈� − 1; 1½ is a parameter chosen by the user.
It is straightforward to show that the move in Eq. (28)

samples the distribution in Eq. (25), i.e., the distribution
of vtþ1 is given by Eq. (25) if that of vt is, and that the
move in Eq. (29) leaves the distribution in Eq. (26)
invariant. In addition, it has been argued in the statistical
literature [39] that such a “symmetrical” conditional
moves around the mean make it possible for the Gibbs
sampler to move in a consistent direction in the presence
of correlations, thus suppressing the random-walk behav-
ior of the Gibbs sampler.

VII. EXPERIMENTS

In this section we consider several experiments. For the
first comparison of our algorithms, we assume that we
observe the entire sky. This way, the covariance matrices
are diagonal, the centered, noncentered, and interweaving
algorithms are computationally cheap and we can easily
draw many samples.

In the second round of experiments we assume exactly
the same setting as the first one, except that we apply the
80% Planck mask leading to a posteriori coupled multi-
poles. All the masks and products of the Planck mission can
be found on their website [40].
In both cases in order to test our algorithms in the

circumstances reflecting potential future applications we
assume noise levels and the resolution reflecting roughly
those of the future CMB satellite mission, LiteBird [41].
The final set of experiments is designed to mimic a

ground-based setup. We take here (very roughly) the
parameters of the 90 GHz frequency channel of the
Simons Observatory, see [42]. We assume a sky coverage
of 37%, what leads to even more strongly coupled
multipoles.
In all the cases the simulated maps contain the CMB

signal and noise only.

A. Polarization full-sky experiment

For this first experiment comparing interweaving and the
centered and noncentered Gibbs algorithms, we assume we
observe the entire sky and that the noise covariance matrix
writes N ¼ α2I, where I is the identity matrix of dimension
Npix. For ease of implementation we are doing inference on
EE and BB power spectra only, assuming that only maps of
the Q and U Stokes parameters are available. In this case,
owing to the full sky coverage, we can exactly sample a
map from the constrained realization step in Eq. (9) at no
cost since the signal covariance matrix is diagonal in the
harmonic domain. In addition, the power spectrum coef-
ficients are a posteriori independent and we can derive an
analytical expression for each marginal distribution.
Regarding the setup, we choose NSIDE ¼ 256 with

lmax ¼ 512 andwe apply an instrumental beam of 30-arcmin
fwhm. We choose a rms noise of α ¼ 0.2 μK-arcmin. Since
the BB spectrum coefficients have a very low signal-to-noise
ratio for the highest multipoles, we recover the BB spectrum
with bins progressively becoming wider bins starting at
l ¼ 396, corresponding to SNR ¼ 0.24, and get a total of
412 spectrum amplitudes instead of the 512 initial ones.
We consider in this case three algorithms: Centered—

corresponding to the centered Gibbs (Sec. III), noncen-
tered—corresponding to the noncentered Gibbs, Sec. IV,
and ASIS, Sec. V. For the two last algorithms, we first run
10 chains of length of 300 samples for each algorithm and
use these samples to tune the proposal distributions of the
noncentered power sampling step. Once we have the
covariance matrices of the proposal distributions, we
run 10 chains of 104 iterations for both noncentered
and ASIS algorithms and compute the relevant metrics
on this basis. For the centered algorithm we run 10 chains
of 104 iterations. For each of the algorithms we then
compute the so-called integrated autocorrelation time
(IAT) as a function of the multiple number, where IAT
is defined as,
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IATl ≔ 1þ 2
XNlag

k¼1

ρlk ;

and ρlk is the autocorrelation of the chain at lag k for Cl

defined at stationarity as

ρlk ≔
CovðCl;0; Cl;kÞ
VarðCljdÞ

; ð30Þ

with Cl;0 ∼ pðCljdÞ and Cl;k is obtained after k iterations
of Gibbs sampler, starting at Cl;0.
Figures 5 and 6 show the IAT for each algorithm against

the multipole number and the logarithm of the signal-to-noise
ratio respectively. Since it is known [17] that the noncentered
Gibbs sampler does not mix well—however well is it tuned
—for medium to high signal-to-noise ratio we only tuned it
for coefficients with expected signal-to-noise ratio less than 1.
For readability, we only show the results for these coefficients
and we display the BB case in two different panels to cover
the entire range of the corresponding values. As expected, the
interweaving ensures that the ASIS algorithm mixes as well
as the centered one on signal-to-noise ratio superior to 1.

However, when the SNR starts to be low, the integrated
autocorrelation times of the centered Gibbs algorithm
increase sharply compared to those of the interweaving.
Note also that for the lowest signal-to-noise ratios, the
noncentered sampler performs better than the centered
version, as expected, and that ASIS has even lower integrated
autocorrelation times than noncentered Gibbs. These results
are in agreement with the analysis of Sec. V.
In order to have a clearer picture of the respective

performances of the algorithms, we plot the ratios of
IATcentered=IATasis and IATnoncentered=IATasis against the
multipoles in Figs. 7 and 8, respectively. We show them
against the log signal-to-noise ratio in Figs. 9 and 10. It is
clear from these plots that the interweaving algorithm
inherits the excellent mixing properties of the centered
Gibbs on the marginal distributions of the high signal-
to-noise ratio parameters while outperforming it on the
ones with lower signal-to-noise ratios. In addition, the
interweaving algorithm outperforms the noncentered Gibbs
one over the lower signal-to-noise range. We provide
example of histograms for a wide range of signal-to-noise
ratios in Appendix D 1.

FIG. 5. Integrated autocorrelation times against multipole for each algorithm and the full-sky case. The results for the marginals of the
BB coefficients are split into two graphs to show better the details of the observed behavior.

FIG. 6. Integrated autocorrelation time against log(SNR) for each algorithm and the full-sky case. The results for the marginals of the
BB coefficients are split into two graphs to show better the details of the observed behavior.
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This simple experiment shows how good the mixing
properties of the interweaving algorithm are on the full
range of multipoles as it is able to sample efficiently for
high and low signal-to-noise ratios. Our analysis of the
respective efficiencies of the algorithms does not take into
account the computing time. However, for the full sky
cases, these algorithms are very cheap computationally. In
the presence of a sky mask, the computational time
becomes an issue. Moreover, the power spectrum coef-
ficients, fClg, are no longer independent and this may
hinder the noncentered power spectrum sampling step. In
order to test the algorithms in more realistic contexts, we
consider a second experiment with a cut-sky in the next
section.
In the following, we will also test a broader set of the

plausible algorithms building on the ideas introduced
earlier. Specifically, in addition to the “Centered” and
“ASIS” algorithms, we will consider an algorithm called
“ASIS RJPO” combining the interweaving with the RJPO
step, respectively (Sec. VI A). We will also use a number of
algorithms based on either the Centered or the ASIS ones,
but which use some number of the augmented Gibbs
sampler iterations, (Sec. VI B) to replace the need for
the PCG solution. In these cases we refer to these
algorithms by the name of the initial algorithm followed
by an integer defining the number of the augmented Gibbs
iterations. For example, “Centered 1” is the usual centered
Gibbs algorithm with the PCG solver replaced by a single
iteration of the augmented Gibbs sampler. In these cases,
we set β ¼ α−2 þ 10−14, where α2 defines the noise level.
For a more general noise covariance matrix, this should be
generalized and we should choose a β that is greater than
the largest eigenvalue of the inverse of this matrix. We also
consider a algorithm called “Centered overrelax”, which is
the centered Gibbs algorithm with the PCG step replaced
by two iterations of overrelaxation plus one iteration of
classical augmented Gibbs sampler. In these cases, we set
γ ¼ −0.995 chosen to be close to −1 to deal with the strong
correlations of the covariance matrix, see Eq. (27). Table I
summarizes all these algorithms.

B. Nearly full-sky polarization experiment

The setup of this experiment is exactly the same as the
one Sec. VII A except that we apply the 80% Planck sky
mask, that we plot in Appendix D 2. We use the same
binning and blocking schemes as in the previous section.
Because we do not analyze the full sky, we cannot access

the true posterior distribution and the system to solve for
the constrained realization step is no longer diagonal. We
therefore have to rely on the TPO algorithm and the PCG
solver [37] as done in previous works [17,14] and
explained in Sec. III B, or rely on the augmented Gibbs
sampler.
In the algorithms employing the PCG solver we follow

[14] and set the error threshold to 10−6, except for ASIS

FIG. 7. Ratios of integrated autocorrelation time against the
multipole number for the centered Gibbs, numerator, and the
ASIS, denominator, algorithms and the full-sky case. A ratio
larger than 1 indicates that centered Gibbs is performing better
than interweaving in terms of autocorrelation time.

FIG. 8. As Fig. 7 but for the noncentered Gibbs algorithm
instead of the centered one.

FIG. 9. Ratios of integrated autocorrelation time against the
logarithm of the signal-to-noise ratio for the centered Gibbs,
numerator, and the ASIS, denominator, algorithms. The full-
sky case.

FIG. 10. Ratios of integrated autocorrelation time against
signal-to-noise ratio for noncentered Gibbs on interweaving.
Note that, for readability, the results for the BB coefficients
are split in two graphs, given the broad range of values they span.
The full-sky case.
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RJPO, where it is set to 10−5. In all cases we use a diagonal
preconditioner.
We tune the algorithms as follows: We run each one of

them for a few hundred iterations. Based on the results, we
estimate the covariances of the marginal of each multipole
and use them as the proposal covariances—multiplied by a
scalar inferior to one—for the actual run, targeting a 25%
acceptance rate. After tuning, every algorithm is run for 103

iterations, except for Centered overrelax and Centered 1
which are run for 105 iterations since they are computa-
tionally cheaper.
We first look at the ESS per second of each algorithm.

If we run the algorithm for N iterations, the ESS for the
marginal of a power spectrum coefficient with multipole l
is defined as

ESSl ≔
N

IATl
;

where IATl is defined in Sec. VII A. The ESS per second,
for each marginal, is then defined as the ESS for the N
iterations divided by the CPU time in second needed for the
N iterations. Obviously, for any l, the greater ESSl per
second, the better.
We plot the ESS per second in Fig. 11. Centered 1 and

Centered overrelax outperform the other algorithms in term
of ESS per second, whatever the SNR. Otherwise, the
algorithms using the PCG sampling step seem to be
performing better on EE coefficients than the ones using
an auxiliary Gibbs step. This is especially the case of ASIS
1 which clearly underperforms. The opposite is true for BB.
We can easily explain these observations; the augmented
Gibbs constrained realization step is much cheaper than a
PCG resolution of the system, but it also leads to much
worse mixing properties on EE but not on BB. We are
facing a tradeoff between computing time and mixing on
EE; the smaller the number of augmented Gibbs steps, the
faster the algorithm but the greater the autocorrelations.
The same holds for ASIS RJPO. We must then find the
number of Gibbs steps maximizing the ESS per second. But
overall it seems these algorithms will not perform as well as
their PCG counterparts on EE.

The reader should also note that the noncentered step of
interweaving comes with a cost that cannot be reduced; in
our case roughly 130 spherical harmonic synthesis oper-
ations. That is why ASIS 1 performs much worse than
ASIS 20 and ASIS 65; as the algorithm has to perform at
least 130 spherical harmonic transforms, one could as well
do 20 augmented Gibbs constrained realization step instead
of 1, improving the mixing properties of the algorithm
without increasing the computing time so much, leading to
a better ESS per second.
The picture is different for the BB spectrum coefficients;

the augmented Gibbs constrained realization step is mixing
much better given their lower signal-to-noise ratios and
hence the algorithms using such a step have a better ESS
per second than their PCG counterparts. Note that Centered
1 and Centered overrelax are outperforming all the other
algorithms by far. That is because it comes at almost no
cost—only one spherical harmonic analysis and one
synthesis per iteration. This has to be compared to the
heavy cost of the PCG solver, typically 150 PCG iterations,
complemented by 2 spherical harmonics transform per
iteration, of the Centered, ASIS and ASIS RJPO algo-
rithms, and to the incompressible cost of the noncentered
step of the ASIS 1, ASIS 20, and ASIS 65 algorithms. Since
the augmented Gibbs step mixes well on this signal-to-
noise ratio, Centered 1, and Centered overrelax are good
mixing and cheap algorithms, hence their ESS per second is
much better. One must be careful though as this behavior
tends to fade on very low signal-to-noise ratios; the
centered parametrization has greater and greater autocor-
relations as the signal-to-noise ratio decreases.
In order to get a better idea of the relative performances

of the algorithms, we examine the ratios of ESS per second
of each algorithm on the ESS per second of the usual
centered Gibbs and of the interweaving algorithm, see
Tables II and III.
These tables confirm the behavior we described above;

on EE coefficients ASIS 1 and ASIS 65 are outperformed
by Centered and ASIS in terms of ESS per second, while
ASIS 20 seems to perform similarly. Note that the algo-
rithms tend to perform worse in Centered compared to
ASIS; although ASIS and Centered have roughly the same

TABLE I. Summary of the algorithms used in the experiments described in the text highlighting the approaches
they implement to address the constrained realization and the power spectrum sampling steps.

Algorithm Constrained realization Power spectrum sampling

Centered PCG Centered move
ASIS PCG Centeredþ noncentered moves
ASIS RJPO RJPO Centeredþ noncentered moves
ASIS 1 Auxiliary variable Centeredþ noncentered moves
ASIS 20 Auxiliary variable Centeredþ noncentered moves
ASIS 65 Auxiliary variable Centred þ noncentered moves
Centered 1 Auxiliary variable Centered move
Centered overrelax Overrelaxation Centered move
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FIG. 11. Effective Sample Size per second against logðSNRÞ for each algorithm. For the sake of clarity, we group the algorithms with a
similar performance and plot different groups in separate panels. The left columns shows the results for the EE and the right one for the
BB spectra. The case of nearly full-sky coverage.

TABLE II. For each algorithm, percentiles of their ESS per
second relative to the ESS per second of the Centered algorithm for
the EE spectrum coefficients and the nearly full-sky experiment,
see Sec. VII B.

Algorithm 5th 25th 50th 75th 95th

ASIS 0.544 0.685 0.772 0.88 1.061
ASIS 1 0.095 0.126 0.16 0.225 0.9
ASIS 20 0.287 0.477 0.697 1.044 1.997
ASIS 65 0.396 0.575 0.786 0.988 1.288
ASIS RJPO 0.647 0.79 0.896 1.013 1.217
Centered 1 1.015 1.862 2.915 5.303 29.31
Centered overrelax 2.843 4.708 6.925 11.265 28.635

TABLE III. For each algorithm, percentiles of their ESS per
second relative to the ESS per second of the Centered algorithm
for the BB coefficients and the nearly full-sky experiment, see
Sec. VII B.

Algorithm 5th 25th 50th 75th 95th

ASIS 0.376 0.697 1.016 1.625 3.966
ASIS 1 1.04 1.694 2.696 4.936 14.132
ASIS 20 1.115 1.689 2.466 3.972 10.15
ASIS 65 0.567 0.967 1.477 2.522 6.103
ASIS RJPO 0.391 0.644 1.007 1.719 4.097
Centered 1 38.62 63.838 83.914 116.926 169.758
Centered overrelax 2.173 14.331 36.227 100.185 492.866
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mixing on EE, ASIS is more expensive than Centered. In
addition, Centered is outperforming ASIS on EE because it
is a bit cheaper. On BB however, each algorithm seems to
outperform Centered. Again, this is because the augmented
Gibbs constrained realization step leads to as good a mixing
as the PCG resolution while dramatically reducing the
overall cost of the algorithms, leading in turn to a much
better ESS per second. As for ASIS, its ESS per second is
greater than the one of Centered only for the lowest signal-
to-noise ratio coefficients. This indicates that we could
probably have applied the noncentered step on these
parameters only; the algorithm would have been cheaper
while still having good mixing properties for the low
signal-to-noise ratio cases, leading to a much better ESS
per second, on both EE and BB.
We should pay a closer attention to Centered 1 and

Centered overrelax. These algorithms are computationally
cheap compared to any other algorithm. Hence, whatever
their mixing properties for the EE coefficients and for the
very low signal-to-noise ratio parameters, their ESS per
second is much higher. In addition, the ESS per second of
Centered overrelax is higher than the one of Centered 1 on
EE coefficients, showing that this step is handling the strong
correlations better. Finally, Fig. 12 shows the empirical mean
posterior of Centered overrelax with the two standard
deviations intervals. The solid black lines denotes the true
spectrum. The recovered spectrum seems to match the true
spectrum well.

C. Polarization cut-sky experiment

The setup of this second cut-sky experiment is the same
as in the preceding section, except that we apply the Simons
Observatory-motivated 37% sky mask, see [42], that we
plot in Appendix D 2, and set the noise rms to σ ¼ 0.28 μK
per pixel for both EE and BB spectra coefficients. Since we
have very low SNR parameters we start binning the BB
multipoles at l ¼ 320 into progressively wider bins. After
binning is applied, we are left with 331 bins out of the 512
initial multipoles. For the noncentered power spectrum
sampling step, we assume a single bin for multipoles 2 ≤
l ≤ 280 followed by bins of width 1 for 280 < l ≤ 331.
As in the previous section, we make tuning runs of 10

parallel chains of 300 iterations. Then, we run all algo-
rithms for 10 parallel chains of 103 iterations, except for the
Centered 1 and Centered overrelax cases, for which we run
10 parallel chains of length 105. Again, following [14], we
set the threshold for the PCG algorithm to 10−6, except for
the ASIS RJPO algorithm, for which we set the threshold
to 10−5.
Figure 13 shows the ESS per CPU second against

logðSNRÞ. ASIS, ASIS RJPO and Centered algorithms
tend to perform the same, except on the lower range of
signal-to-noise ratios where Centered algorithm is out-
performed by ASIS and ASIS RJPO. We also note ASIS

RJPO performs better than ASIS on the low SNR
paremeters.
Clearly, the Centered 1 and Centered overrelax variants

outperform all other algorithms, sometimes by several
orders of magnitude and over almost the entire range of
signal-to-noise ratios; that is because it is computationally
very cheap compared to the other algorithms. Note however
that its mixing properties degrade for extreme, either too
high or too low, signal-to-noise ratio. That is because the
auxiliary step mixes worse on high signal-to-noise ratios
while the centered parametrization provides a bad mixing
on low signal-to-noise ratios.
Finally, Tables IV and V summarize the distribution of

the ratios of ESS per second. On average, with EE, the
Centered 1 algorithm performs 14 times better than the
ASIS and the Centered ones, with a minimum of 0.17 and a
maximum of 416. The few multipoles for which the ESS
per second is worse than that of the ASIS and Centered
cases are the ones corresponding to the highest signal-to-
noise ratios, where the auxiliary variable step mixes very

FIG. 12. Comparison of posterior power spectrum to the true
power spectrum for the nearly full-sky experiment. The blue
points correspond to the mean power spectrum. The top and
bottom of the horizontal bars of the crosses correspond to the
mean plus/minus two standard deviation. The horizontal bars
correspond to the l range spanned by the binning scheme. We
only plot the crosses for one every ten multipoles on the
nonbinned part. On the binned part, we only plot the crosses
for one every two multipoles. The panels show EE (top) and BB
(bottom) power spectra.
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badly. On BB, the Centered 1 variant performs on average
214 times better than the ASIS and Centered approaches,
with a minimum at 5 and a maximum at 1147. Note that the
Centered overrelax algorithm performs better than the
Centered 1 one on EE but not on BB coefficients.

However, it still performs much better on the BB coef-
ficients than the ASIS and Centered variants.
Figure 14 shows the empirical mean posterior distribu-

tion of Centered overrelax with the two standard deviation
interval. The solid black line denotes the true power
spectrum.

VIII. CONCLUSION

We have discussed and compared a number of the Gibbs
samplers implemented in the context of the CMB power
spectrum estimation.
Two of the studied cases, the centered Gibbs [11] and

noncentered Gibbs [23] samplers, have been previously
applied to the inference of the power spectrum of the
CMB signal. While both the variants have been demon-
strated to be feasible, they have been also found to be
computationally very demanding. Two main reasons
behind it have been identified [11,23]. First, both these
algorithms display poor sampling efficiency, with the
centered Gibbs failing on the low signal-to-noise ratio
coefficients and the noncentered Gibbs on the high signal-
to-noise ratio coefficients. Second, both these algorithms
require significant computations for every sky signal
sample due to the need for solving the constrained
realization system of equations. We have elaborated on
both these factors from the theoretical perspective and
demonstrated them via numerical experiments.

FIG. 13. Effective sample size per second against logðSNRÞ for each algorithm and the cut-sky experiments. For the sake of clarity, we
plot the results for the Centered 1 case, separately.

TABLE IV. For each algorithm, percentiles of their ESS per
second relative to the ESS per second of the Centered algorithm
for EE coefficients. These results are for the cut-sky experiment,
see Sec. VII C.

Algorithm 5th 25th 50th 75th 95th

ASIS 0.549 0.738 0.991 1.248 1.703
ASIS RJPO 0.633 0.88 1.111 1.349 1.973
Centered 1 1.172 2.819 5.469 10.991 60.119
Centered overrelax 3.854 7.75 12.709 23.646 93.642

TABLE V. For each algorithm, percentiles of their ESS per
second relative to the ESS per second of the Centered algorithm
for BB coefficients. The shown results are for the cut-sky
experiment, see Sec. VII C.

Algorithm 5th 25th 50th 75th 95th

ASIS 0.548 0.785 1.067 1.497 4.4
ASIS RJPO 0.621 0.982 1.239 1.819 4.922
Centered 1 75.717 129.257 183.94 279.193 516.07
Centered overrelax 28.877 52.064 75.548 104.045 157.7
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We have subsequently proposed a number of possible
extensions aiming at improving the overall performance of
these two methods.
First, we have looked at improving the sampling effi-

ciency of the standard algorithms. To this end, we have
introduced the interweaving concept proposed earlier in the
statistical literature, and implemented it in the CMB power
spectrum estimation context to improve on the mixing of the
over the entire range of signal-to-noise ratio, enabling a more
efficient sampling of the entire power spectrum. While
potentially promising, the improvement comes at the cost
of increased computational time per sample.
Second, we have looked at the ways of lowering the cost

of single sample computations via statistical means. We
have considered two approaches here. Our first proposal,
the RJPO algorithm allows for approximate solutions to the
constrained realization problem without introducing biases
to the final results and does not increase the sample

autocorrelation length, if proper tuning is ensured. Our
second proposal alleviates the need for solving the con-
strained realization system altogether by introducing an
auxiliary variable. The algorithm is easy to implement and
tuning free, but comes at the price of increased dimension-
ality of the problem.
We have compared and studied all these variants on

simulated CMB maps with full-sky, nearly full-sky, and
limited cut-sky coverage.
We have found that the Centered overrelax and the

Centered 1 variants are consistently performing the best out
of the all algorithms considered here and for all studied
simulated cases. The performance gain is often very
significant. In particular, in the cases with full- and nearly
full-sky coverage the Centered overrelax algorithm has
performed, on average, an order of magnitude better on EE
and two orders of magnitude better on BB in terms of ESS
per second than the other algorithms.
This Centered overrelax algorithm exhibits, however,

some drawbacks; for very low or very high signal-to-noise
ratio coefficients it produces long autocorrelations. For very
low ratios it is because of the centered parametrization, while
for the very high ones, it is because of the bad mixing of the
augemented Gibbs sampler step. To solve the first problem,
we face a tradeoff; we may improve on the mixing by using a
noncentered step on the lowest signal-to-noise ratio coef-
ficients, but this would increase the cost of the algorithm. To
solve the second problem, we would need to find a better
mixing algorithm for the constrained realization step, or find
more efficient ways to solve the system.
Note that Centered 1 tends to have the same short-

comings, except that the bad mixing for the very high
signal-to-noise ratio is even worse, since we are not using
the overrelexation strategy on top of the auxiliary scheme.
For the very low signal-to-noise ratios, Centered 1 also
struggles because of its centered parametrization. It mixes
somewhat better than Centered overrelax because it is a bit
cheaper.
We also note that another MCMC algorithm addressing

these problems and seemingly efficient for the entire range
of signal-to-noise ratios has been developed in [16].
However, to our knowledge, this algorithm has only been
used to make inference on the cosmological parameters
instead of the power spectrum. In addition, it requires two
resolutions of the high-dimensional constrained realization
system and is thus very costly and requires the tuning of
proposal distributions.
The experiments used in this work were applied to CMB-

only sky maps with rather simply noise. In practice, the CMB
power spectra will have to be derived from multifrequency
data sets where the sky signal comprises cosmological,
astrophysical, such as foregrounds, and often environmental
effects, e.g., atmosphere, as well as instrumental contribu-
tions. The sampling algorithms proposed here will have to be
extended to account for such effects, what will require

FIG. 14. An example of the constraints on the power spectra
derived in the cut-sky experiment, using the Centered overrelax
algorithm in the case of the ground-based experiment discussed in
the text. The black dashed lines show the true input spectra. The
blue points show the best power estimates in each bin equal to the
mean power computed over the generated chains. The vertical bars
of the crosses correspond to the mean plus/minus one standard
deviation, and the horizontal bars the corresponding bins in l. We
only plot the crosses for one every ten multipoles on the nonbinned
part. We plot the crosses for every multipole on the binned part.
The top panel shows the EE power spectrum and the bottom—the
BB one. The input CMB maps assumed the standard cosmological
model with the assumed tensor-to-scalar ratio r ¼ 0.001.
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adapting them to more complex and involved likelihoods,
e.g., [43–46]. A significant progress in this direction in the
context of the standard, centered Gibbs algorithm has been
demonstrated in [47,48], which however continue being
affected by significant numerical cost. The algorithms
proposed and studied in this work should be directly relevant
in the context of overcoming the current limitations of these
implementations. We leave this for future work.
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APPENDIX A: IMPROPER PRIORS

In this Appendix we show that in the case of a full-sky
observation and a noise matrix proportional to identity
N ¼ αI, using a flat prior over the power spectrum lead to a
proper posterior distribution while Jeffrey’s prior leads to
an improper posterior distribution.
Since we assume full-sky coverage and a noise matrix

proportional to identity, we can rewrite Model (1) in the
harmonic domain,

d ¼ sþ n;

where s is the signal map expressed in the spherical
harmonics basis—the vector of ðal;mÞ2≤l≤lmax;0≤m≤l coeffi-
cients, that is, s ∼N ð0;CðfClgÞÞ. We also now have n ∼
N ð0;B−2αwÞ where w ¼ 4π

Npix
, α being the noise matrix in

spherical harmonics basis. It follows that d is the observed
sky map expressed in the harmonic domain too.
In this case, the likelihood straightforwardly writes as

LðdjfClgÞ ¼
Ylmax

l¼2

exp ð−ð1=2Þ kdlk22
Clþb−2l αwÞ

jCl þ b−2l αwjð2lþ1Þ=2

× 1fCl>0g: ðA1Þ

Let us suppose we are using a flat prior on the power
spectrum. In this case, we have πðfClgjdÞ ∝ LðdjfClgÞ.
Then, doing the following change of variable: yl ¼ Cl þ
b−2l αw we have

Z
∞

0

LðdjfClgÞdC2…dClmax ∝
Z

∞

0

Ylmax

l¼2

pγðyl; αl; βlÞ

× 1fyl>b−2l αwgdy2…dylmax ;

up to a positive multiplicative constant. Here pγ means

inverse Gamma distribution with parameters βl ¼ kdlk22
2

and
αl ¼ 2l−1

2
. Since 1fyl>b−2l αwg ≤ 1fyl>0g, we have
Z

∞

0

LðdjfClgÞdC2…dClmax

≲
Z

∞

0

Ylmax
l¼2

pγðyl; αl; βlÞdy2 ×… × dylmax :

And the right-hand term of this equation is integrable as the
product of independent inverse Gamma densities. Hence, the
posterior distribution we obtain with a flat prior is proper.
Now, with Jeffrey’s prior pðfClgÞ ¼

Qlmax
l¼2

1
Cl
, things are

different,

Z
1

0

LðdjfClgÞpðfClgÞdC2…dClmax

¼
Z

1

0

Ylmax

l¼2

exp ð−ð1=2Þ jjdljj22
Clþb−2l αwÞ

jCl þ b−2l αwjð2lþ1Þ=2
1

Cl
1fCl>0g:

But, on �0; 1� and for any l ∈ f2;…;lmaxg we have

exp

�
−ð1=2Þ jjdljj22

Cl þ b−2l αw

�
≥ exp

�
−ð1=2Þ jjdljj

2
2

b−2l αw

�

and

1

jCl þ b−2l αwjð2lþ1Þ=2 ≥
1

j1þ b−2l αwjð2lþ1Þ=2 :

Hence we have

Z
1

0

LðdjfClgÞpðfClgÞdC2…dClmax

≳
Z

1

0

Ylmax

l¼2

1

Cl
dC2 × � � � × dClmax

:

And obviously the right-hand side diverges to infinity.
Since the integrand of the left-hand side is positive on
�0;∞½, this proves that the posterior distribution is improper
if we use Jeffrey’s prior on the power spectrum.

APPENDIX B: SIGNAL-TO-NOISE RATIO

The signal-to-noise ratio is defined according to Eq. (18).
When we observe the entire sky and when the noise matrix
is proportional to the identity matrix: N ¼ α2I, the noise
power spectrum is given by
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Nl ¼ α2
4π

Npixb2l
;

where the beam function bl is given by

bl ¼ expf−lðlþ 1Þσ2FWHM=ð8 logð2Þg;

with σFWHM ∈ R. Because of the exponential drop of the
beam function, the noise power spectrum sharply increases
with l. We plot the signal-to-noise ratio as a function of l
for the full-sky experiment described in Sec. VII A,
see Fig. 15.

APPENDIX C: MIXING

In this Appendix we provide a intuitive understanding of
what we call the “mixing” of a MCMC algorithm. As a toy
example, suppose we wish to sample the Gaussian vector
ðX; YÞ with mean zero and covariance matrix,

Σ ¼
�
1 ρ

ρ 1

�
; ðC1Þ

where ρ ∈� − 1; 1½. Now we set ρ ¼ 0 and we use a Gibbs
sampler to sample from this distribution. We can plot the
trajectory of the algorithm, see Fig. 16.

We can also suppose that ρ ¼ 0.99, in which case we get
another trace plot, see Fig. 17.
We plot the autocorrelations of the Gibbs sampler for X

and Y in Figs. 19 and 18.
We can see in Figs. 16 and 17 that the Gibbs sampler

with ρ ¼ 0 explores the target distribution much more

FIG. 15. Logarithm of the signal-to-noise ratio for the full-sky
experiment of Sec. VII A. Top: EE spectrum coefficients.
Bottom: BB spectrum coefficients.

FIG. 16. Trace plot, in red, of the Gibbs sampler targeting the
joint distribution of ðX; YÞ for ρ ¼ 0, described in Appendix C.
The circles are the level sets of the normal distribution.

FIG. 17. Trace plot, in red, of the Gibbs sampler targeting the
joint distribution of ðX; YÞ for ρ ¼ 0.99, described in Appendix C.
The circles are the level sets of the normal distribution.
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efficiently than when ρ ¼ 0.99. We can also see in Figs. 19
and 18 that the autocorrelations are much longer when
ρ ¼ 0.99 than when ρ ¼ 0. More precisely, the Gibbs
sampler samples independently when ρ ¼ 0 while when
ρ ¼ 0.99, the sampled points are still correlated after 150
steps. When an algorithm explores the target distribution
and shows low autocorrelations like the Gibbs sampler
when ρ ¼ 0, we say it is mixing well. On the contrary,
when an algorithm behaves like the Gibbs sampler when
ρ ¼ 0.99, we say it is mixing badly. Here, the term

“mixing” does not have a precise definition and we use
it loosely.
Even though we use the term “mixing” loosely, we can

still characterize the convergence of a Markov chain with
state space X , invariant distribution π and transition kernel
P. We usually want our Markov chain to converge
geometrically to the invariant distribution π, that is

kPnðx; dyÞ − πðdyÞkTV ≤ Crn ðC2Þ

for any x ∈ X, where C > 0 and r ∈ ½0; 1Þ are constants.
The constant r is called the geometric rate of convergence.

APPENDIX D: EXPERIMENTS

1. Full-sky polarization experiment

In this Appendix we show histograms and autocorrela-
tion plots that we obtained running the full-sky experiment
described VII A on Figs. 20–23. All these figures confirm
our analysis of Sec. V and the results of Sec. VII A; the
interweaving algorithm performs as good as the centered
Gibbs on high signal-to-noise ratio coefficients and as good
as the noncentered Gibbs on low signal-to-noise ratio ones.
Note also that the kernel density estimation of the histo-
grams of interweaving matches almost perfectly the true
posterior marginals for any signal-to-noise ratio.

2. Sky masks

In this Appendix we provide plots of the two sky maps
used in the experiment section, see Figs. 24 and 25.

3. A first cut-sky polarization experiment

This Appendix provides kernel density estimation based
on the histograms of the histograms used in Sec. VII B. See
Figs. 26–29.

4. A second cut-sky polarization experiment

This Appendix provides kernel density estimation based
on the histograms obtained in Sec. VII C. See Figs. 30
and 31.
Note that for the lowest SNR BB coefficients, Centered

gives an irrelevant estimate of the posterior density while
Centered 1 gives a result in agreement with ASIS and ASIS
RJPO; even though Centered 1 suffers from the centered
parametrization, thanks to its low computational cost, we
are able to perform enough iterations to have a reliable
estimate, which is not the case of Centered because of its
high computational cost.

FIG. 18. Autocorrelation plots of the Gibbs sampler, described
in Appendix C, for Y and for ρ ¼ 0 and ρ ¼ 0.99.

FIG. 19. Autocorrelation plots of the Gibbs sampler, described
in Appendix C, for X and for ρ ¼ 0 and ρ ¼ 0.99.
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FIG. 21. Examples of autocorrelations for the BB spectrum coefficients for the full sky experiment, Sec. VII A.

FIG. 20. Examples of autocorrelations for the EE spectrum coefficients for the full sky experiment, Section VII A.
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FIG. 23. Examples of kernel density estimation of histograms for the BB coefficients for the full sky experiment, Sec. VII A. For
readability and since the mixing of the noncentered Gibbs is bad, we do not include its histograms on this figures.

FIG. 22. Examples of kernel density estimation of histograms for EE spectrum coefficients for the full-sky experiment, Sect. VII A.
For readability and since the mixing of the noncentered Gibbs is bad, we do not include its histograms on this figures.
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FIG. 26. Kernel density estimation ofmarginals for a sample ofmultipoles for theEE coefficients for the cut-sky experiment, Sec. VII B.

FIG. 25. A sky mask used for the second cut sky experiment described in Sec. VII C and motivated by the Simons Observatory-like
experiment. This mask covers roughly 35% of the sky.

FIG. 24. Planck sky mask used for the nearly full-sky experiment described in Sec. VII B. This mask covers roughly 80% of the sky.
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FIG. 28. Kernel density estimation of marginals for a sample of multipoles for the EE spectrum coefficients for the cut-sky
experiment, Sec. VII B.

FIG. 27. Kernel density estimation of marginals for a sample of multipoles for the BB spectrum for the cut-sky experiment, Sec. VII B.
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FIG. 30. Kernel density estimation of the posterior density of the EE spectrum coefficients for the cut-sky experiment, Sec. VII C.

FIG. 29. Kernel density estimation of marginals for a sample of multipoles of the EE spectrum coefficients for the cut-sky experiment,
Sec. VII B.
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